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Wavelet Deconvolution in a Periodic
Setting Using Cross-Validation

Leming Qu, Partha S. Routh, and Kyungduk Ko

Abstract—The wavelet deconvolution method WaveD using
band-limited wavelets offers both theoretical and computational
advantages over traditional compactly supported wavelets. The
translation-invariant WaveD with a fast algorithm improves
further. The twofold cross-validation method for choosing the
threshold parameter and the finest resolution level in WaveD is
introduced. The algorithm’s performance is compared with the
fixed constant tuning and the default tuning in WaveD.

Index Terms—Cross-validation (CV), wavelet deconvolution.

I. INTRODUCTION

RECENT work by Johnstone et al. [4] has introduced
WaveD: the method of wavelet deconvolution in a peri-

odic setting. WaveD uses band-limited wavelets that offer both
theoretical and computational advantages over traditional com-
pactly supported wavelets. The translation-invariant version of
WaveD [2] improves the performance of ordinary WaveD by
cycle-spinning over all circulant shifts. The fast algorithm that
implements the translation-invariant version of WaveD takes
full advantage of the fast Fourier transform (FFT) and runs in

steps only. The excellent asymptotic results
and fast algorithm make WaveD a very attractive noniterative
deconvolution technique. We refer WaveD as the transla-
tion-invariant version of WaveD below if we do not explicitly
distinguish them.

This letter introduces a twofold cross-validation (CV) method
for choosing the threshold parameter and the finest resolution
level in WaveD. Section II reviews the WaveD method. The CV
algorithm is introduced in Section III. Section IV illustrates the
algorithm using simulation. All the discussion in this letter con-
cerns signals in one dimension but can be extended to higher
dimensions naturally. See [3] for WaveD image deblurring, a
two-dimensional case.

II. WAVED: WAVELET DECONVOLUTION IN WHITE NOISE

In the periodic setting and discrete data, the deconvolution
can be stated as follows. Suppose we observe

(1)
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where , is a positive constant, ’s are
independent and identically distributed (i.i.d.) white Gaussian
noise, and

(2)

The goal is to recover the unknown function from the noisy,
blurred observations given the known func-
tion . It is further assumed that the function is peri-
odic on the unit interval , and has a certain degree of smooth-
ness quantified by the decay of its Fourier coefficients . For
ordinary smooth convolution, and the decay pa-
rameter is referred as the Degree of Ill Posedness (DIP) of
the deconvolution problem (1) according to [4] (the notation

means that for a constant ).
The ordinary WaveD estimator of , based on hard thresh-

olding, is

The is the usual indicator function. The and are es-
timated wavelet coefficients of the true wavelet coefficients
and of , respectively.
is the set of indexes corresponding to a coarse resolution level
and the set of indexes

details up to a fine resolution level . The is the
threshold for the estimated wavelet coefficients at the th reso-
lution level. The chosen scaling function and wavelet function

are band-limited. In particular, the periodic Meyer wavelet
basis is used. The algorithm implementing the discrete Meyer
wavelet transform is different from the pyramid algorithm of the
usual discrete wavelet transform, which uses the compactly sup-
ported wavelet basis [5]. The Kolaczyck’s algorithm for discrete
Meyer wavelet transform operates on the Fourier coefficients of
both the data and the Meyer wavelet and takes
steps.

With a slight abuse of notation, mainly in order to be consis-
tent with the notation in [4], denote and as the Fourier
coefficients of and , respectively. Denote as the Fourier
coefficients of . Denote and its cardinality
as . From the compact support of the Fourier transform of
the Meyer wavelet, we have

With suitably chosen , , and , the main steps of the
ordinary WaveD are as follows.
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1) Compute Fourier coefficients , , and compute
by using Kolaczyck’s algorithm, where

is the complex conjugate of .
2) Set the thresholds

where

3) Apply level-dependent thresholding on . Finally, apply
the inverse discrete Meyer wavelet transform on the
thresholded wavelet coefficients estimate to obtain , an
estimate of .

Essentially, the above thresholding algorithm is based on the
following idealized independent normal model:

(3)

where are white Gaussian noise. Then the level-dependent
universal threshold [1] is

(4)

for .
Note that is an upper bound of the actual

for the argument of the asymptotic theory in [4, Eq. (48)]. The

(5)

is usually smaller than .
The exact model for unknown parameters is

The ’s are correlated with

The WaveD does not utilize any covariance information. An at-
tempt to use these covariance information necessitates an itera-
tive deconvolution procedure that is computationally intensive.
The WaveD is a noniterative technique.

The algorithm for translation-invariant WaveD fully exploits
the periodicity of and . It computes the translation-in-
variant estimate of over all circulant shifts with complexity
only without actually going through indi-
vidual “cycle-spin” steps. The brute-force “cycle-spin” would
apparently cost . This fast algorithm of transla-
tion-invariant WaveD is very attractive. The main steps of the
translation-invariant WaveD are as follows.

1) Compute Fourier coefficients , , and perform
deconvolution

where is the estimated Fourier coefficients of .
2) Set the thresholds .
3) Loop resolution level from to to compute ,

the detail estimate of at resolution level . The is
computed by a sequence of operations, including convolu-
tion, inverse Fourier transform, thresholding, and Fourier
transform. See [2, Sec. 6 ] for details.

The performance of WaveD depends on the tuning parameters
, , and ’s. The coarse scale has the default value 3 and

is not as influential as the other tuning parameters. For , the
asymptotic theory suggests that

For example, when , , we have by
the above guidance. Apparently, this cannot be used for a finite
sample. In the WaveD software, the is set to be the level pro-
ceeding , where is the smallest level where
100% of thresholding occurs. This leaves the choice of ’s
more important.

In the direct data case , there is
no need to choose since it is always set to be , where

. That is, all the empirical wavelet coefficients are
used in the thresholding process for the denoising problem. This
is because the variance of wavelet coefficients is considered to
be constant across level in the direct data case, so that a few
coefficients that bear significant signal information are distin-
guishable from the rest that are pure noise. Note that the true
wavelet coefficients of a wide class such as Besov space sig-
nals decay exponentially fast with increasing resolution level .
With indirect data as in model (1), it often occurs that the vari-
ance of empirical wavelet coefficients increases with , as
seen in (5), so that signal can hardly be separated from noise in
those fine levels. Consequently, all the wavelet coefficients in
those fine levels have to be discarded.

The ’s depend on . Asymptotic theory suggests that
should be large, but for a finite sample size, smaller may be
desirable. The default value in WaveD is set to be . In the sim-
ulation study for Boxcar convolution in [2], was set to 0.35.

The difficulty facing the choice of and deems necessary
a data-adaptive approach. We propose a CV-based approach in
the next section.

III. CROSS-VALIDATION FOR WAVED

The aim of deconvolution is the minimization of the mean
integrated square error (MISE)

MISE

The , hence the MISE, depends on the tuning parameters. In
practice, the is unknown, so a tool that mimics MISE has to be
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devised. CV is such a tool widely used to choose a tuning param-
eter in many statistical settings. The classic leave-one-out CV is
performed by systematically deleting one observation from the
construction of an estimate and then comparing the observed
value to the predicted value at the deleted point. This simple
leave-one-out procedure cannot be directly applied to wavelet
deconvolution because the WaveD algorithm [2], [4] only oper-
ates on data sets of size that is a power of 2.

In the direct data case, [6] introduced two-fold CV to choose
a threshold for wavelet shrinkage estimate. The basic idea is
to remove all the odd-indexed observations first, then use the
remaining even-indexed observations to get the wavelet esti-
mates of the even-indexed function values, and then compare
the odd-indexed observations to the predicted values at odd-in-
dexed points by linearly interpolating the even-indexed function
estimates. The same procedure is done for all the even-indexed
observations. The CV score function CVS compares the in-
terpolated wavelet estimates with the left-out observations to
form an estimate of a prediction error at a particular threshold.
The CVS is then numerically minimized over values of the
threshold. This two-fold CV can be extended to the deconvolu-
tion setting.

The detailed steps forming the CVS is discussed below.
For the given , from the given data

, , where for an integer ,
remove all the odd-indexed ’s from the set. This leaves
evenly indexed , which are re-indexed from .
A function estimate is then constructed from the re-indexed

by WaveD. The linear interpolation is used to predict the
by

setting because is assumed to be periodic.
Then the left-out odd-indexed observation is predicted by

The is computed for the odd-indexed points by WaveD and
the interpolant , the predicted even-indexed observation
computed as above. The CV score function compares the pre-
dicted with the observed values

CVS

The computational complexity for getting CVS is still
. The Matlab code forming the CVS is

given in the Appendix.
We seek the , that minimize the CVS , that is

argmin CVS

The simplest way to solve this optimization problem is to
solve the minimization problem for each possible value of
first. For to , solve

CVS

and then select

argmin CVS

and set .

Empirical experiments show that this sometimes over-
estimates the . So we choose the final as the smaller value
of this and . With , the default choice for

, is determined from the data as follows. It is set to be
the level proceeding the smallest level, where 100% of thresh-
olding occurs in ordinary WaveD [4].

IV. SIMULATION RESULTS

We present some simulation results to compare the WaveD
with fixed and , with fixed but default and the CV
tuning based on four artificial signals borrowed from the
statistical wavelet literature [2]. Each of the four test signals,
(a)Lidar, (b)Bumps, (c)HeaviSine, and (d)Doppler exhibits
some inhomogeneous behavior.

With fixed , the default choice for is determined from the
data by setting it as the level proceeding the smallest level where
100% of thresholding occurs in ordinary WaveD [4].

The results presented in Table I are based on 1000 indepen-
dent simulations with for Gamma blur with medium
noise level . The corresponding blurred signal-to-noise
ratio (BSNR) (BSNR , where

denotes the mean of the blurred signal sam-
ples) is 36.70, 33.18, 48.55, and 27.88, respectively, for Lidar,
Bumps, HeaviSine, and Doppler signals. For Gamma blur,
is the probability density function of the distribu-
tion. Such filter with DIP is often referred to as smooth
convolution in the statistical literature since its Fourier coeffi-
cients decay homogeneously [4].

The results presented in Table II are based on 1000 indepen-
dent simulations with for Boxcar blur with medium
noise level . The corresponding BSNR is 36.27, 30.39,
48.41, and 26.92, respectively, for Lidar, Bumps, HeaviSine,
and Doppler signals. For Boxcar blur,
with , DIP .

In both tables, the best performance is obtained with fixed
tuning parameters in the first row as used in the simulation study
of [2]. The soft thresholding rule gave poorer results than the
hard thresholding, whether using a fixed tuning parameter or a
CV-based tuning parameter. The default value ,

perform worst. It tends to select the larger than the
one in the first row. CV tuning is close to the best performance.
Similar patterns were observed when using small and
large and also when using .

The best performance obtained in the Table I and II with fixed
and is not practically obtainable because it is not clear how

the and are chosen. The CV tuning provides an operational
tool that mimics the best.

V. CONCLUSION

This letter has introduced twofold cross-validation to the
wavelet deconvolution in a periodic setting. Simulation results
show that this twofold cross-validation is adept at selecting a
threshold and the finest resolution level. The cross-validation
method extends to image deconvolution in a straightforward
manner.
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TABLE I
MONTE CARLO APPROXIMATIONS TO RMISE = Ekf̂ � fk .

SMOOTH BLUR DIP = 1

TABLE II
MONTE CARLO APPROXIMATIONS TO RMISE = Ekf̂ � fk .

BOXCAR BLUR DIP = 1:5

In [6], a leave-one-out cross-validation algorithm has also
been devised for the denoising problem, which works for data
sets with any sample size. It is an interesting research topic to
see if this more computationally intensive cross-validation can
bring benefits in the wavelet deconvolution context.

APPENDIX

MATLAB SOURCE CODE FORMING THE TWO-FOLD

CROSS-VALIDATION SCORE FUNCTION

function y = CVS(eta; yobs; g;L;deg;F);

%Two fold cross-validation score function

%Inputs (required):

% eta: the smoothing parameter

% yobs = f � g + Noise

% g: Sample of the (known) function g

% Inputs (optional):

% L: Lowest resolution level (default = 3)

% deg deg of the Meyer Wavelet (default = 3)

% F Finest resolution level (default = J� 1)

% Outputs

% y=Two fold cross-validation score

% function

n = length(yobs);

J = log 2(n);

if nargin < 6, F = J � 1; end

if nargin < 5, deg = 3; end

if nargin < 4, L = 3; end

index even = 2 � (1 : 1 : n=2);

yobs even = yobs(index_even);

g even = g(index_even);

index odd = index even � 1;

yobs odd = yobs(index_odd);

g odd = g(index_odd);

f estimate even = TIwaveD1(yobs_even,g_even,L,

deg,F,eta);

f predict odd = interp1(index_even, f_estimate_

even,. . .

index_odd(2:end), ‘linear’);

f predict odd = [0:5 � (f estimate even(end) + . . .

f_estimate_even(1)), f_predict_odd];

ypredict odd = real(i�t(�t(g odd): � . . .

fft(f_predict_odd)));

f estimate odd = TIwaveD1(yobs_odd,g_odd,L,

deg,F,eta);

f predict even = interp1(index_odd, f_estimate_

odd,. . .

index_even(1:(end-1)), ‘linear’);

f predict even = [f predict even; 0:5 � . . .

(f_estimate_odd(end)+f_estimate_odd(1))];

ypredict even = real(ifft(fft(g_even).� . . .

fft(f_predict_even)));

y = errorLp(yobs odd;ypredict odd; 2) + . . .

errorLp(yobs_even,ypredict_even,2);
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