
Boise State University
ScholarWorks

Geosciences Faculty Publications and Presentations Department of Geosciences

11-1-2014

Introduction to an Open Community Infrasound
Dataset from the Actively Erupting Sakurajima
Volcano, Japan
David Fee
University of Alaska Fairbanks

Akihiko Yokoo
Kyoto University

Jeffrey B. Johnson
Boise State University

"Introduction to an Open Community Infrasound Dataset from the Actively Erupting Sakurajima Volcano, Japan" authored by Fee, D., Yokoo, A., and
Johnson, J. B. was originally published by Seismological Society of America in Seismological Research Letters, 85(6), 1151-1162 (2014). Copyright
restrictions may apply. doi: 10.1785/0220140051

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boise State University - ScholarWorks

https://core.ac.uk/display/61744727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.boisestate.edu
http://scholarworks.boisestate.edu/geo_facpubs
http://scholarworks.boisestate.edu/geosciences
http://dx.doi.org/10.1785/0220140051


○E

Introduction to an Open Community Infrasound
Dataset from the Actively Erupting Sakurajima
Volcano, Japan
by David Fee, Akihiko Yokoo, and Jeffrey B. Johnson

Online Material: Movie of time-synced visual and infrasound
data of two explosions at Sakurajima Volcano, Japan.

INTRODUCTION

Active volcanoes are significant sources of seismic and acoustic
radiation. Extensive work has shown that infrasound is an ef-
fective tool to study and monitor active volcanoes. Infrasound
is now a regular tool utilized by volcano observatories to aid in
volcano monitoring and hazard mitigation. Infrasound-based
studies are able to provide important information on eruption
dynamics and to develop quantitative models of volcanic erup-
tions. In addition, volcanoes provide excellent acoustic sources
for atmospheric propagation studies and can be used to infer
atmospheric dynamics and structure (see Johnson and Ripepe,
2011; Fee and Matoza, 2013 for recent reviews on volcano in-
frasound). The number of infrasound sensors and studies is
also increasing rapidly, including those deployed as part of
the USArray Transportable (seismic) Array. Lastly, seismic and
acoustic records provide complementary information on both
volcanic and nonvolcanic sources and elastic wave propagation
in the Earth and atmosphere (Arrowsmith et al., 2010).

Although the number of volcano infrasound stations and
research studies has increased substantially in recent years,
many questions remain unresolved. For example, current work
is focused on the spatial and temporal variability of the atmos-
phere and how it affects infrasound propagation at distances of
a few to thousands of kilometers (Johnson et al., 2012; Fee and
Matoza, 2013; Lacanna et al., 2014). Other studies are begin-
ning to assess the effects of complex topography and volcanic
crater morphology on infrasound signals recorded at both local
and regional distances (e.g., Matoza, Garces, et al., 2009; Kim
and Lees, 2011; Lacanna and Ripepe, 2012). To date, most
volcano infrasound studies assume linear sound propagation
from the source, yet this assumption may not be valid for all
volcanic explosions and has not been tested extensively (e.g.,
Yokoo and Ishihara, 2007). Quantitative volcano acoustic
source models are poorly constrained in most cases, in part
from propagation uncertainties and network density limita-
tions (e.g., Johnson et al., 2008; Kim et al., 2012). Seismo-

acoustic and acoustic–seismic coupling may be prevalent in vol-
canic regions (e.g., Matoza, Garces, et al., 2009; Ichihara et al.,
2012; Matoza and Fee, 2014), yet the nature of the coupling
has not been fully explored. These and other poorly resolved
questions remain in part because of the logistical challenges in
deploying dense sensor networks near volcanoes that are fre-
quently active. Volcanoes are inherently difficult places to work
due to inhospitable surroundings, challenging logistics, and dy-
namic nature of volcanic activity.

A unique opportunity arose in July 2013 that permitted an
unprecedented volcano infrasound dataset to be collected at
Sakurajima, Japan. This dataset, together with other infra-
sound data recently collected from Sakurajima, will be featured
this Focus Section. In July 2013, the International Association
of Volcanology and Chemistry of the Earth’s Interior
(IAVCEI) Scientific Assembly convened in Kagoshima, Japan,
the city adjacent to Sakurajima, an active volcano renowned for
its frequent explosions that generate very intense infrasound.
Sakurajima Volcano, which is easily accessible by paved road
encircling the edifice, is well monitored with a multiparameter
network operated by the Sakurajima Volcano Observatory
(SVO; now the SakurajimaVolcano Research Center). Because
this conference attracted more than 1000 volcanologists from
around the world, the IAVCEI Volcano Acoustics Commis-
sion organized a postconference workshop focused on all as-
pects of volcano acoustics. The two-day workshop, attended
by ∼50 individuals, provided a framework for discussion on
current topics and outstanding issues in volcano acoustics. The
participation of early career scientists was emphasized, as
was outreach to the local communities. In addition, through
collaboration with SVO, a dense network of volcano acoustic
sensors was deployed directly prior to the workshop for 8 days
in July 2013 (see Sakurajima Volcano section). The short-term
deployment included multiple sensor types with various
deployment topologies, including both arrays and a larger
network, with some sensors collocated for comparison.

During this period, diverse infrasound was recorded from
Sakurajima, including over 34 high-amplitude explosions. The
dataset was subsequently presented at the workshop, distrib-
uted to the participants, and is now available for public down-
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load from the Incorporated Research Institutions for Seismol-
ogy Data Management Center (IRIS-DMC). The ease of ac-
cess, high level of volcanic activity, local network capabilities,
and extensive collaboration permitted a high-quality volcano
acoustic dataset to be collected. Its open distribution and pro-
vision to the scientific community has precedent within the
seismic community, where waveform data is often freely shared.
It is our hope that this high-quality dataset will be openly used
for research and education and will encourage open distribu-
tion of volcano acoustic data and innovation in the future.

This Focus Section contains seven articles covering a wide
range of topics, broadly linked by the theme of Sakurajima
infrasound; five of the papers make use of the open-source da-
taset whereas one other uses complementary data. This intro-
ductory manuscript provides an overview to the data collected
and points out some general observations relevant to the
broader seismo-acoustic and volcanology communities. John-
son and Miller (2014) apply waveform modeling to estimate
volume of erupted material associated with the Sakurajima ex-
plosions. Kim and Lees (2014) use novel graphical processing
unit-based finite difference time domain processing to inves-
tigate 3D infrasound propagation and source localization.
McKee et al. (2014) test the network semblance method on
acoustic source localization at Sakurajima and use it to help
characterize volcanic activity. Matoza et al. (2014) focus on
the variety of explosions signals at Sakurajima and other vol-
canoes that do not fit within previous volcanic explosion mod-
els. Yokoo et al. (2014) use array processing techniques to
determine multiple-infrasonic source locations and examine
the role of near-vent topography. We believe the dataset gath-
ered and the high-quality manuscripts in this Focus Section
will serve as a benchmark for future infrasound studies and
will lead to significant advances in the field.

SAKURAJIMA VOLCANO

SakurajimaVolcano (31.59° N, 130.66° E, elevation ∼1117 m)
is an active volcano in southern Kyushu, Japan (Fig. 1), just
∼8 km east of Kagoshima City (population ∼606;000). Nearly
5000 local residents live on the flanks of the volcano, which is
practically an isolated island connected to the mainland in the
east by a narrow isthmus. Sakurajima is a postcaldera and an-
desitic–dacitic volcano, constructed 26,000 years ago (Kobaya-
shi et al., 2013). It occupies a position near the southern edge of
the Aira Caldera, which retains relatively youthful caldera mor-
phology. Chemical composition of the recent erupted materials
is 59% SiO2 (Matsumoto et al., 2013).

The last large eruptions at Sakurajima occurred in 1914
and 1946, when extensive lava flows (1.3 and 0:8 km3, respec-
tively) effused from the flank craters. Persistent explosive ac-
tivity has been focused at the summit crater (Minamidake)
since ∼1955 in the form of ash-rich, vulcanian-style eruptions
that typically have strong acoustic waves (Ishihara, 1985). In
2003, activity declined at the summit crater and in 2006
shifted to the Showa crater on the southeast side of the volcano
(Fig. 1) and continues there today. Showa crater lies on the

flank of the main edifice and is surrounded by significant
topography. Typical eruptions are archetypically vulcanian
and result in small (<3 km above sea level [km.a.s.l.]) ash
plumes and large (meter-sized) blocks ejected to distances of
1–3 km. Since 2009, these eruptions occur frequently and num-
ber ∼1000 per year. Rare but hazardous pyroclastic flows also
occasionally threaten local communities (Yokoo et al., 2013).

Sakurajima Volcano is monitored using a multiparameter
network established and run by the SVO of Kyoto University
(KU). This network consists of 10 seismic sensors, 4 infra-
sound sensors, 1 thermal and 2 video cameras, 8 borehole tilt
meters, and 2 sets of water-tube tiltmeters and strain meters
inside underground tunnels (Iguchi et al., 2013), making it
one of the most heavily instrumented and best monitored vol-
canoes in the world. A cyclic inflation–deflation deformation
cycle associated with explosions has been identified and assists
with short-term precursory forecasting (Iguchi et al., 2008;
Yokoo, et al., 2013). Regular measurements of SO2 and ash
are also taken (Shimano et al., 2013).

In addition to continuous monitoring, numerous seismo-
acoustic studies have been undertaken at Sakurajima. Kamo
et al. (1994) used local seismometers and pressure sensors to
identify explosions at Sakurajima. Building on the work of
Tahira (1982), they also measured long-range infrasound sig-
nals from Sakurajima and were amongst the first researchers to
propose an acoustic monitoring system for volcanic eruptions.
An early study by Iguchi and Ishihara (1990) characterized the
very high-intensity pressure signals associated with Sakuraji-
ma’s vulcanian eruptions and contrasted them with explosions
from Suwanosejima Volcano. Seismic and geodetic studies at
Sakurajima have focused on the source processes leading up to
and during explosive eruptions. Inflation and deflation cycles
for each eruption, corresponding to magma supply and release,
are identified in both the tilt and strain records (Ishihara, 1990).
Moment tensor analysis of explosion earthquakes (Uhira and
Takeo, 1994; Tameguri et al., 2002) revealed the occurrence of
a deep implosion (∼2 km depth) for vulcanian eruptions that
corresponds to upward movement of the magma or gas. Expan-
sion-and-contraction at shallow depths (∼0:5 km) immediately
after the deep implosion is identified by the seismic moment as
well (Tameguri et al., 2002). This shallow process manifests as
a ”strain-step” (Ishihara, 1990) due to the release of pressure,
which ultimately relates to the radiation of a high-amplitude
infrasound signal at the start of the explosion.

Other important infrasound-focused studies have fol-
lowed, including several studies that incorporated integrated
multiparameter geophysical data. Garces et al. (1999) found an
increase and change in small acoustic events leading up to a
larger vulcanian explosion. This dataset was further analyzed
by Morrissey et al. (2008) using a joint seismo-acoustic ap-
proach. Yokoo et al. (2009) used high-frame rate video and
infrasound sensors to identify a precursory acoustic wave asso-
ciated with the swelling of the viscous lava plug just prior to an
explosion. This precursory wave was followed by a shock wave
associated with the onset of the main explosion. Yokoo et al.
(2013) expanded on previous work by others (e.g., Iguchi et al.,
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2008) and utilized a multiparameter dataset to model the proc-
esses leading up to vulcanian explosions at Sakurajima.

DATA COLLECTION

Multiple infrasound sensors were deployed around Sakurajima
in July 2013 by a collaborative team from the University of
Alaska Fairbanks (UAF), Boise State University (BSU), and
KU. Figure 1 shows the location of all acoustic sensors deployed
on Sakurajima during mid-July 2014, and Table 1 provides the
sensor locations and slant distance and azimuth to the vent.

UAF deployed five stand-alone digital sensors in a net-
work-style configuration around the volcano (HAR, ARI,
SVO, KUR, and KOM). Three sites had National Center for
Physical Acoustics (NCPA) digital infrasound sensors with
piezo-ceramic sensing elements with 24-bit digitizer and

Global Positioning System timing. These low-noise sensors
have a flat frequency response between ∼0:02 and 250 Hz and
pressure range of �1190 Pa. The other two UAF sites had
Hyperion IFS-5201 digital infrasound sensors with a similar
design as the NCPA versions, with flat frequency response
between ∼0:02 and 250 Hz and pressure range of �1000 Pa.
All five sites were sampled at 500 Hz and recorded between
∼18 and 27 July 2013. BSU deployed two small aperture arrays
of six sensors at various times at site KUR, KTG, and HAR
(Fig. 1). The array site at KUR remained for the duration of
the experiment. KTG recorded between 18 July 0700 and 19
July 0300 UTC and was moved to HAR between 19 July 0500
and 22 July 0200 UTC. Six elements were installed at KUR on
18 July, and six more were added (from HAR) on 22 July. BSU
sites consisted of infrasonic microphones packaged at BSU’s
infrasound lab, which incorporate AllSensors MEMs pressure
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▴ Figure 1. (a) Map of Sakurajima Volcano and stations deployed in July 2013. Red triangle indicates the active vent within Showa crater.
Various sensor deployments are denoted as follows: University of Alaska Fairbanks (UAF), Boise State University (BSU), University of
Bristol (UB), and Sakurajima Volcano Observatory (SVO). (b) Image from station KUR of a typical vulcanian explosion on 21 July 0056 UTC.
(c) Ash plume rising above Sakurajima as viewed from near Kagoshima (∼8 km west of the vent).
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transducers with ranges up to �1250 Pa and flat frequency
response above ∼0:04 Hz. Operation and calibration of this
type of microphone is discussed in Marcillo et al. (2012). BSU
pressure data was digitized at 200 Hz using 24-bit Omnirecs
DATA-CUBE recorders.

The aforementioned campaign deployments supple-
mented the existing SVO network, as well as two research
arrays (KUR and USN) deployed concurrently by the Univer-
sity of Bristol (UB) and KU on a separate project (Fig. 1). The
UB-KUR array consisted of three Hyperion IFS-3000 sensors
and one Chaparral 25Vx and was arranged as a linear array
over ∼250 m about 3 km from Showa crater. The UB-USN
array had five infrasound sensors (Datamark SI102) deployed
roughly linear extending east of the active vent between ∼11:5
and 14.5 km. The UB sensors were deployed primarily for a
separate research project and will be discussed in future work.
The SVO network has infrasound sensors at sites ARM, HAR,
KUR, and SVO (Fig. 1). They are ACO 7144 at ARM and
HAR and Datamark SI100 at KUR and SVO. All data from
the sensors are logged by Datamark LS7000 or LS7000XT.
Array data at KUR from a December 2011 campaign using

nine sets of sensor and logger (Datamark SI102 and Datamark
LS8800) are utilized in Yokoo et al. (2014).

Data were gathered and quality controlled before being
distributed to the workshop participants. Collocated diverse
sensor types were quantitatively compared to assess relative in-
strument responses. Figure 2, for example, shows waveforms for
a typical explosion recorded on multiple sensors at site KUR.
This site is unique in that it has four nearly collocated infra-
sound sensors. Displayed data from the BSU, UAF, UB, and
SVO deployments are high-pass filtered above 10 s with a two-
pole, causal, Butterworth filter to ensure similar response char-
acteristics. In general, the waveform shape, amplitude, and tim-
ing are consistent between the four sensors. The exception is
the Bristol recording, which appears to have amplitudes ∼25%
higher, suggesting that the calibration value of the sensor or
digitizing system may need to be re-evaluated. UAF and BSU
data were assembled and distributed to workshop participants
via FTP and are now available via IRIS-DMC. The data from
the UAF and BSU deployments now serve as open resource to
the seismo-acoustic community for use in education, training,
and research.

DATA OVERVIEW AND DISCUSSION

The diverse infrasound data collected from Sakurajima in July
2013 provide insight into the volcano’s activity, eruption
physics, and wave propagation in the presence of complex
topography. Sakurajima infrasound is notable for the regular
high-amplitude, short-duration explosions, which are often fol-
lowed by lower level, sustained infrasonic tremor or jetting.
Figure 3 shows a pseudohelicorder plot of 24 h of infrasound
data from Sakurajima on 21 July with each line displaying
60 min of data. Time periods of infrasound production from
Sakurajima are determined using cross-correlation analysis on
the BSU KUR array. Cross correlation on array station pairs is
performed in 10 s overlapping windows, which have been time
shifted to account for propagation time from source to receiver.
Data are band-pass filtered between 1 and 20 Hz to capture the

Table 1
Station Locations and Information

Station
Name Latitude (°N) Longitude (°E) Elevation (m)

Distance to
Vent (m)

Azimuth to
Vent (°N)

Sensor
Type

Deployment
Group

KUR 31.58355 130.70130 61 3487 261 HYP UAF
ARI 31.55802 130.66314 100 2400 6 NCPA UAF
KOM 31.61504 130.68611 133 4525 206 HYP UAF
HAR 31.59340 130.63428 410 3408 119 HYP UAF
SVO 31.58946 130.60114 39 6263 101 NCPA UAF
KURA 31.58374 130.70139 75 3487 261 MEMS BSU
KTGA 31.61034 130.63709 120 4486 142 MEMS BSU
HARA 31.59355 130.63395 390 3408 119 MEMS BSU

Distance to vent is slant distance. Stations ending in “A” denote an array. Sensor types are Hyperion IFS-5201, NCPA digital
infrasound sensors, and AllSensors MEMs pressure transducers.
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▴ Figure 2. Sensor comparison at station KUR. Waveforms for
each station are high-pass filtered above 10 s. Timing and ampli-
tude agree very well between the sensors, with the amplitude of
the UB sensor being the exception.
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▴ Figure 3. Pseudohelicorder plot for 21 July. Array processing is used to detect coherent infrasound originating from the direction of
Showa crater. Four channels (Numbers 1, 2, 4, and 6) of the KURA array are used to identify consistent and well-correlated (> 0:5) signals
over 10 s overlapping windows. Consistency criterion is used to assess that correlation lag times are robust. Array detections provide a
means to identify volcano infrasound even for small amplitude tremor or pulses that would be difficult to identify through visual inspection
alone. Data are band-pass filtered between 1 and 20 Hz.
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majority of the acoustic energy from the volcano and to reduce
low-frequency noise. Periods of high cross-correlation values
indicate the prevalence of both explosions and tremor. Large
explosions are apparent in Figure 3 at 0056, 0222, 0505, 0800,
1102, and 1120 UTC, whereas hours 1200–2300 have near-
continuous infrasonic tremor. Figure 1b,c displays images of
typical activity at Sakurajima: an energetic explosion and low-
level ash plume during a tremor episode.

We also apply a short-term average/long-term average
(STA/LTA)-based method to identify large explosions during
the eight-day deployment. Data from station ARI are first
filtered between 0.3 and 10 Hz. STA and LTA lengths of 2
and 10 s, respectively, and an STA/LTA ratio of 20 are chosen.
A minimum peak pressure threshold of 10 Pa at ARI is used to
cull out low signal-to-noise ratio and low-amplitude events.
Using these methods, we detect 34 explosions during the
deployment, with peak pressures ranging from 13 to 449 Pa at
ARI, which is located 2.4 km from Showa crater. These explo-
sions are displayed in Figure 4 and listed in Table 2.

The infrasonic signature of explosions at Sakurajima
shares some similar characteristics but also show some variabil-
ity. The large explosions are usually preceded by an absence of
infrasound shown as white background color in Figure 3 (e.g.,
hours 21 July 0815–1100 UTC), suggesting a closed vent prior
to explosive eruptions. Time duration of vent sealing varies
significantly during the experiment, from minutes to hours.
Similar precursory vent sealing was observed at Karymsky Vol-
cano, Kamchatka for explosions of similar magnitude and com-
position (Lopez et al., 2013).

Figure 5a shows a typical explosion waveform recorded at
station ARI. After a period of vent sealing, the explosion begins
with a slow rise in pressure lasting ∼0:75 s (Fig. 5b), which has
been previously attributed to the swelling of the viscous lava
plug (Yokoo, et al., 2009). A strong compression occurs next
and indicates the explosive disruption of the plug. A rarefaction
then follows and is often of lesser amplitude and longer period,
reminiscent of a blast wave from a chemical explosion. The
next few seconds often have complex waveforms, but many are
characterized by a damped oscillation that often transitions
into lower intensity tremor and/or jetting that can last for
minutes to hours. The explosions typically have peak spectral
periods of ∼1–3 s. Ⓔ Supplementary video 1 displays time
lapse imagery and infrasound data for two explosions on 19
July. Each explosion is preceded by a period of vent sealing and
consists of a short-duration burst of acoustic energy coincident
with ballistics and an ashy plume. These observations from
2013 are consistent with recent acoustic observations made at
Sakurajima in 2009 (e.g., Yokoo et al., 2013).

Explosions at Sakurajima occasionally produce very high-
amplitude infrasound. The waveform in Figure 5 is an example
of one of the highest amplitude explosions recorded during the
study at 21 July ∼1102 UTC at station ARI. This eruption
produced an ash-rich plume to 3.7 km.a.s.l., ejected bombs,
and produced visible lightning in the plume. The peak pressure
at ARI is 426 Pa at 2.3 km, corresponding to a reduced pressure
of 980 Pa at 1 km. Reduced pressure is calculated assuming a 1=r

pressure decrease (Johnson and Ripepe, 2011). This value is very
high compared to many previously published explosion signals
(Johnson and Ripepe, 2011) but is not anomalous for Sakura-
jima where exceptionally high-amplitude infrasound has been
routinely recorded (e.g., Iguchi and Ishihara, 1990). For com-
parison, impulsive signals from the 2006 explosive eruption
of Augustine Volcano, Alaska, produced reduced pressures up
to 336 Pa, but this eruption was considerably larger producing
much higher plumes up to 11 km.a.s.l. (Petersen et al., 2006).

Most explosive events during the deployment could be
classified as vulcanian, the typical style of activity for Sakura-
jima. The explosions produced ash-rich plumes and extensive
ballistics, with volcanic bombs often ejected hundreds of
meters from the active vent. Lightning within the plume also
accompanied many of the events. No pyroclastic flows were
observed. Plume heights associated with the explosions varied
between 1.8 and 6.1 km.a.s.l. during the deployment and were
sourced from the Showa crater at ∼750 m:a:s:l. Figure 6 shows
plume heights versus the peak pressure at station ARI for each
explosion. All plume heights used here were determined by the
Tokyo Volcanic Ash Advisory Centre (VAAC). There does not
seem to be a robust correlation between the two parameters, as
has been suggested for some other volcanoes (e.g., McNutt et al.,
2013). The paper by Johnson and Miller (2014) examines the
relatively poor scaling of infrasound amplitude and plume height.

Most commonly, the peak pressure typically occurs at the
very beginning of the explosion (Figs. 3–5) and represents ini-
tial disruption of the viscous magma plug and onset of magma
fragmentation or release of a gas pocket (Yokoo et al., 2013).
Visual observations confirm many of the plumes are driven by
extended processes occurring for minutes to hours after the
initial burst. These periods are associated with low frequency
(<3 Hz) tremor or jetting that often lasts for minutes after the
beginning of an explosion (Fig. 3), along with audible rumbling
and jetting. We also note the first few seconds of the eruption
occasionally show complex and variable pressure-time histories
(Fig. 4), suggesting that fragmentation and/or explosive gas
release is not always instantaneous or sourced from a uniform
location. In addition to the common bipolar compression/rar-
efaction pulse at the onset of the explosion, numerous explo-
sions begin with multiple lower amplitude compressions. This
may result from the slow explosion of the magma plug and is
addressed byMatoza et al. (2014). Note the peak amplitude for
these slow explosions are generally lower than the bipolar ex-
plosions, and some have a reduced rarefaction or none at all.
Other volcanoes with similar composition and style of activity
(e.g., Karymsky Volcano, Kamchatka and Augustine Volcano,
Alaska) occasionally show this behavior as well (Fee and Ma-
toza, 2013). In addition to variable explosion onsets, the sub-
sequent coda also shows variability between explosions, again
suggesting a complex pressure release time history during the
first few to tens of seconds of the explosion.

Sakurajima explosion waveforms exhibit significant vari-
ability across the network for a given eruptive event. Figure 7
displays the raw waveforms for the five UAF network stations
for a high-amplitude explosion, with each waveform amplitude
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corrected to a reduced distance of 1 km assuming 1=r (spheri-
cal) spreading. An isotropic source with radiation into a homo-
geneous and stationary (no wind) atmosphere and negligible
topography should produce the same amplitudes and wave-
forms across the network; however, it is clear in Figure 7 that

significant waveform distortion is occurring. Reduced pressures
vary greatly, from ∼500 Pa at HAR to ∼1400 Pa at KUR.
Waveform shape also varies significantly, with stations HAR
and SVO having a diminished rarefaction and station KUR
having additional higher frequency energy.
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▴ Figure 4. Waveforms for the 34 detected high-amplitude explosions during the deployment. Although some similarities exist among
explosions, significant variability is also present. See Data Overview and Discussion section for details on detection method. Waveforms
are high-pass filtered above 0.05 Hz to reduce low-frequency noise.
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Figure 8a shows the power spectral density using a multi-
taper method for the waveforms in Figure 7, whereas Figure 8b
shows the difference in spectral level for each station using sta-
tion ARI as a reference. The amplitudes have been corrected
for 1=r attenuation to 1 km. The difference spectra were cal-
culated on a log scale between 0.1 and 20 Hz and were
smoothed to emphasize the overall trends in spectral levels.
ARI is used as the reference station because it appears to have
the least amount of propagation effects related to topography
(Kim and Lees, 2014). HAR and SVO are reduced 10–15 dB
down relative to the reference below 1 Hz and reduced more
than 20 dB above 5 Hz. Surprisingly, KUR is 0–10 dB down

below 1 Hz and shows additional energy above 1 Hz. Station
KOM has lower spectral levels of about 5 dB below 1 Hz and
5–15 dB above 1 Hz (Fig. 8b). It is notable that weaker or no
audible sound was heard at stations HAR and SVO, contrast-
ing with the loud “booms” and “pops” observed at other sta-
tions during explosions. This is consistent with the spectra in
Figure 8.

The significant topography around Sakurajima is the likely
cause of the waveform variability between stations (e.g., Kim
and Lees, 2014). Figure 9a shows a 3D perspective map of
Sakurajima and the infrasound deployment, whereas Figure 9b
shows the station-vent profiles. Stations ARI, KOM, and KUR
have relatively unobstructed line-of-sight views of the active
vent, whereas stations HAR and SVO are blocked by the
volcano summit. Because line-of-sight is obscured to HAR and
SVO, sound must diffract around the summit to reach these
stations. This explains the diminished high frequencies (Fig. 8)
and generally lower amplitudes (Fig. 7) at these stations.
Longer wavelength, lower frequency sound will diffract more
effectively around the topography and will thus experience
lower attenuation. Any topographic barrier greater than the
wavelength (e.g., 340 m for a 1 Hz sound wave) will likely cause
significant diffraction (Pierce, 1981), as well as longer propa-
gation paths and travel times to the sites. Winds are unlikely to
be responsible for the variability observed at Sakurajima due to
the relatively close station–vent distances and low wind speeds
(McKee et al., 2014).

The topographic obstruction to the west of the active vent
(Figs. 1 and 9) may also act as a significant sound reflector.
Yokoo et al. (2014) demonstrate that reflections resulting in
multipathing contribute significantly to the infrasound coda
following large explosions. Station KUR, positioned almost
directly east, has additional high-frequency energy that may
result from reflections off the topography (Figs. 8 and 9).
Manuscripts in this Focus Section by Kim and Lees (2014),
McKee et al. (2014), and Yokoo et al. (2014) discuss acoustic
propagation and topographic effects at Sakurajima in more
detail. They complement recent studies that have noted the
significant effect of topography and diffraction on acoustic
propagation from volcanoes (e.g., Kim and Lees, 2011; Lacanna
andRipepe, 2012), including a study by Lacanna et al. (2014) on
regional (tens of kilometers) infrasound propagation from
Sakurajima in which wind is shown to play an important role.

In addition to transient explosions, Sakurajima also produ-
ces many examples of continuous, lower amplitude infrasonic
tremor. Figure 10 shows 1 h of data from stationARI containing
two large explosions and multiple tremor episodes. The data is
filtered between 0.3 and 10Hz and the amplitude limit is�5 Pa
to emphasize the lower amplitude tremor compared to the high-
amplitude explosion pluses. As is common for other explosions,
2–5 min of ∼0:3–3 Hz infrasonic tremor follows the high-
amplitude explosions at 11:02 and 11:20 UTC. Multiple other
tremor episodes during this period do not follow explosions.
Some spectral banding is apparent in the tremor at ∼1:5 and
3 Hz and may reflect either a source process or reflections/
reverberations from crater topography as has been noted for

Table 2
Explosion List, Including Onset Time and Peak Pressure at

Station ARI

Number
Date

(mm/dd)
Time (UTC)
(hh:mm:ss)

Peak
Pressure (Pa)

1 07/19 01:32:01 28.6
2 07/19 02:19:11 55.0
3 07/19 02:44:39 14.2
4 07/19 03:04:47 115.9
5 07/19 05:11:45 104.9
6 07/19 10:50:48 135.1
7 07/20 03:11:56 44.2
8 07/20 07:12:10 409.1
9 07/20 21:15:06 215.0
10 07/20 22:33:23 248.6
11 07/20 23:06:58 357.1
12 07/20 23:21:50 449.5
13 07/21 00:55:56 28.6
14 07/21 02:22:25 103.8
15 07/21 05:04:54 180.2
16 07/21 07:59:45 57.3
17 07/21 11:02:13 426.2
18 07/21 11:20:09 72.4
19 07/22 07:36:06 153.2
20 07/22 11:20:19 145.1
21 07/22 12:35:23 13.1
22 07/22 12:59:33 173.9
23 07/22 14:34:00 172.1
24 07/23 08:00:45 30.1
25 07/23 20:08:40 16.5
26 07/23 21:51:41 75.1
27 07/23 23:11:29 182.7
28 07/24 05:02:31 13.7
29 07/25 01:09:36 48.5
30 07/25 14:06:55 16.2
31 07/25 15:07:50 16.3
32 07/25 17:55:06 93.6
33 07/26 00:10:05 33.0
34 07/26 04:41:07 23.3
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other volcanoes (e.g., Fee et al., 2010; Goto and Johnson, 2011).
Infrasonic tremor also persists for longer periods, including for
numerous consecutive hours on 21 July (Fig. 3), suggestive of
extended open-vent periods. Infrasonic tremor at Sakurajima
is usually coincident with sustained low-level ash emissions
typically rising <1 km above the vent. The tremor may also
reflect jetting process and resemble a low frequency form of
jet noise (e.g., Matoza, Fee, et al., 2009). As with explosion
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▴ Figure 5. Example explosion at station ARI. (a) Fifteen seconds of unfiltered data from station ARI, showing the high-amplitude ex-
plosion and (b) the slow precursory rise prior to the explosion. Time period in (b) is highlighted as the gray area in (a).
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▴ Figure 6. Plume height versus peak pressure for the 34
detected high-amplitude explosions. No strong correlation exists
between the two parameters. Plume heights are from the Tokyo
VAAC, and peak pressures are from station ARI.
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▴ Figure 7. Reduced pressure for all five network stations for a
high-amplitude explosion. Significant amplitude and waveform
variability exists, likely related to topography. Station name, slant
distance to the vent, and azimuth are also listed. Pressure is re-
duced to 1 km for all stations, and travel time is removed assuming
line-of-sight propagation.
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waveforms, propagation effects cause station-dependent vari-
ability that is regularly observable in tremor waveforms.

CONCLUSIONS

In July 2013, a unique infrasound dataset was collected at
Sakurajima Volcano, Japan, as part of a workshop focused

on volcano acoustics. This dataset features high-quality infra-
sound recorded on both infrasound arrays and a network.
Sakurajima produced extensive and varied infrasound during
the deployment, including over 34 high-amplitude explosions,
infrasonic tremor, and numerous other smaller events. Vent
sealing, indicated by a lack of infrasound, often precedes the
large vulcanian explosions, and lower amplitude tremor often
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▴ Figure 8. Spectral comparison for explosion in Figure 7. (a) Power spectral density for reduced pressure waveforms. Amplitude is in
decibel relative to 20 × 10−6 Pa2= Hz. (b) Difference in spectral levels using station ARI as a reference. All stations show a general re-
duction below 1 Hz. Above 1 Hz, KUR has additional energy whereas stations HAR and SVO have significant reductions.
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▴ Figure 9. (a) Three-dimensional perspective map of Sakurajima and the infrasound network deployment. (b) Station-vent profiles for
each of the network stations. Stations HAR and SVO have significant topographical obstacles between the station and vent. Red triangle
indicates the active vent with Showa crater.
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follows. Ash plumes resulting from the explosions range in
height between ∼1:5 and 6 km.a.s.l. and show no strong
correlation with acoustic pressure. Sakurajima also produces
sustained periods (hours) of open-vent activity and infrasonic
tremor associated with lower altitude ash-rich plumes. Explo-
sion waveforms vary significantly between explosions. Some
explosions have simple bipolar compressions/rarefactions,
whereas others begin with multiple compression and reduced
rarefactions, indicating complicated fragmentation of the
viscous lava plug.

The Sakurajima infrasound dataset contains significant
station-dependent variability. Stations for which propagation
paths are obstructed by significant topographic obstacles show
reduced amplitudes, particularly at high frequency. Reflections
off nearby topography may also complicate the waveforms re-
corded across the network. This suggests caution must be taken
in the analysis of infrasound waveforms. Various acoustic wave
propagation effects must be addressed before inferring and
inverting for source processes. Sampling of the full wavefield,
both azimuthally and radially, is thus necessary in these types of
situations. Quantification of signal amplitude, in the form of
reduced pressure, or infrasound energy should take into con-
sideration the effects of near-vent topography, as well as more
distant propagation effects. Further work is needed to address
the effects of complex topography and source variability on
longer range acoustic propagation. Perhaps volcanoes with less
extreme topography are less affected.

The dataset introduced here is explored in greater detail
within this Focus Section. The data itself are available for use
by the community for teaching, training, and research. Further
detailed source and propagation studies are possible with this
dataset. We hope that the data and research topics contained

herein will accelerate advances in the field of volcano acoustics
and also help educate future researchers.
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▴ Figure 10. Sakurajima infrasonic tremor on 21 July 1100–1200
UTC. (a) Waveforms and (b) spectrogram with two explosions at
1102 and 1120 and subsequent tremor. A third sustained tremor
episode begins around 1135 but is not preceded by an explosion.
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