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Mekong River Delta sediment bears arsenic that is released to groundwater under anaerobic conditions over the past several 

thousand years. The oxidation state, speciation, and distribution of arsenic and the associated iron bearing phases are crucial 

determinants of As reactivity in sediments. Peat from buried mangrove swamps in particular may be an important host, source, or sink 

of arsenic in the Mekong Delta. The total concentration, speciation, and reactivity of arsenic and iron were examined in sediments in a 

Mekong Delta wetland by X-ray fluorescence spectrometry (XRF), X-ray absorption spectroscopy (XA  S), and selective chemical 

extractions. Total solid-phase arsenic concentrations in a peat layer at a depth of 6 m below ground increased 10-fold relative to the 

overlying sediment. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that arsenic in the peat was 

predominantly in the form of arsenian pyrite. Arsenic speciation in the peat was examined further at the micron-scale using XRF and 

X-ray absorption near-edge structure (XANES) spectroscopy coupled with principal component analysis. The multiple energy XRF 

mapping and XANES routine was repeated for both iron and sulfur phase analyses.  Our XRF/ XANES analyses confirm arsenic 

association with pyrite – a less reactive host phase than iron (hydr)oxides under anaerobic conditions.  The arsenian pyrite likely 

formed upon deposition/formation of the peat in a past estuarine environment (~ 5.5 ka BP), a process that is not expected under 

current geochemical conditions.    Presently, arsenian pyrite is neither a source nor a sink for aqueous arsenic in our sediment profile, 

and under present geochemical conditions represents a stable host of As under the reducing aquifer conditions of the Mekong Delta.  

Abstract 
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Furthermore, organic carbon within the peat is unable to fuel Fe(III) reduction, as noted by the persistence of goethite which can be 

reduced microbially with the addition of glucose. 

1. INTRODUCTION

Human exposure to arsenic through domestic use of groundwater in South and Southeast Asia starts with the weathering of 

Himalayan As-bearing rock in basin headwaters, followed by riverine transport and deposition into Holocene aquifers (Saunders et al., 

2005). Arsenic concentrations in basin groundwater commonly exceed the 10 μg As L-1 World Health Organization standard by more 

than 10-fold (Smedley and Kinniburgh, 2002). Consumption of arsenic-contaminated groundwater has led to the chronic poisoning of 

tens of millions of people in the Bengal Basin of West Bengal and Bangladesh (Ahmed et al., 2006; Chatterjee et al., 1995; 

Ravenscroft et al., 2009; Sambu and Wilson, 2008; Yu et al., 2003).  The widespread use of tube wells for drinking water supply has 

put millions more at risk in the Red River (northern Vietnam) and Mekong Deltas (Cambodia and southern Vietnam) (Berg et al., 

2007). 

The biogeochemical cycling of iron, sulfur, and carbon (in natural organic matter) largely control the partitioning and 

speciation of arsenic in these deltaic sediments. Under anaerobic conditions, microbially driven oxidation of organic matter coupled to 

the dissimilatory reductive dissolution of As-bearing iron (hydr)oxides causes the transfer of arsenic from the solid to the aqueous 

phase (Akai et al., 2004; Islam et al., 2004; McArthur et al., 2001; Nickson et al., 1998; Nickson et al., 2000; Van Geen et al., 2004). 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Geochimica et Cosmochimica Acta, published by Elsevier.
Copyright restrictions may apply.  doi:  10.1016/j.gca.2014.10.021



  

Reductive dissolution of As(V)-bearing Fe(III) (hydr)oxides is the dominant mechanism by which aqueous concentrations of arsenic, 

and its resulting transport, are increased (Dixit and Hering, 2003; Fendorf and Kocar, 2009; Kocar et al., 2008; Postma et al., 2007; 

Smedley and Kinniburgh, 2002; Tufano et al., 2008). 

In addition to Fe(III), sulfate is an important electron acceptor linked to organic carbon oxidation in anaerobic microbial 

respiration, and sulfide precipitation may act as solid-phase sink for arsenic. In combination with pH, the mineralogical form of Fe(III) 

(hydr)oxides determines the relative favorability of iron and sulfate reduction, and the two terminal electron accepting processes often 

occur simultaneously (Buschmann and Berg, 2009; Kocar and Fendorf, 2009; Postma and Jakobsen, 1996). Stoichiometric iron and 

sulfate reduction can lead to the formation of FeS(s) (e.g., mackinawite) and subsequent adsorption of As or the co-precipitation of As-

bearing iron sulfides (Buschmann and Berg, 2009; Couture et al., 2010; Couture et al., 2013a; Postma and Jakobsen, 1996). Iron 

monosulfides are often precursors to pyrite (FeS2(s)) in low-temperature geochemical environments (Morse and Rickard, 2004; 

Rickard, 1997; Rickard and Luther, 1997; Rickard, 1975), and may lead to arsenian pyrite (Fe(S,As)2) (Lowers et al., 2007; Savage et 

al., 2000), or arsenopyrite (FeAsS) (Bostick and Fendorf, 2003). Alternatively, pyrite may form by heterogeneous nucleation without 

FeS precursors on iron-rich clay minerals (Lowers et al., 2007). Indeed, As-bearing iron sulfides, including arsenian pyrite, are present 

in Bengal Basin (Bangladesh) sediments (Lowers et al., 2007; Polizzotto et al., 2005). Adequate sediment sulfur (sulfate) supply and 

reaction time allow for authigenic arsenian pyrite formation with arsenic incorporation up to 1.3 % (Lowers et al., 2007). The extent to 

which pyrite incorporates structural arsenic increases with decreased pyrite growth rate, higher As:S ratios in solution, and/or a higher 
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dissolved As concentration (Bostick and Fendorf, 2003; Fleet et al., 1989; Lowers et al., 2007). Non-Fe-bearing arsenic sulfides may 

scavenge As from solution as well. When arsenic reaches micro-molar levels under sulfate-reducing conditions, realgar (AsS) is the 

first As sulfide to precipitate in circumneutral pH environments with high Fe2+, low HS-/H2S activities, whereas orpiment (As2S3) 

stability is predicted at low Fe2+, high HS-/H2S conditions (O'Day et al., 2004). Thus, arsenic partitioning with sulfide minerals is a 

function of several environmental factors in sediment/soil systems including redox state, temperature, and activities of H+, Fe2+, and 

HS-/H2S.  

Buried natural organic matter or peat is implicated as the fuel for reductive dissolution of arsenic-bearing iron (hydr)oxides, 

leading to As release in the Bengal Basin (McArthur et al., 2004; McArthur et al., 2010; McArthur et al., 2011; McArthur et al., 2008; 

McArthur et al., 2001). Peat may potentially drive arsenic release locally and/or produce dissolved organic carbon (DOC), which may 

stimulate As release down gradient in the aquifer (McArthur et al., 2008). However, peat often has sulfur-containing functional 

groups, particularly of marine or estuarine origin, with a strong affinity for arsenic (Langner et al., 2012). Peat also facilitates the 

formation of potentially stable arsenian pyrite in anoxic sediments through microbially mediated processes (Huertadiaz and Morse, 

1992; Schoonen, 2004). Thus, the role of peat in regulating arsenic partitioning, reactivity, and mobility in sediments of the As-

impacted deltas of S/SE Asia is complex and unresolved. Here we seek to (1) define the speciation of arsenic, iron, and sulfur in the 

peat found in near-surface sediments (upper 10 m) of the Mekong Delta, (2), determine the reactivity of the peat-associated arsenic, 

and (3) determine whether buried peat is a source or sink for arsenic relative to groundwater in deltaic sediments.  We complement 
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field measurement with laboratory incubation studies to define the processes controlling arsenic partitioning within the near-surface 

sediments. 

2. MATERIALS AND METHODS

2.1. Field area

The Mekong River currently traces a 4600 km course from its headwaters in the Himalaya (Tibet) to the South China Sea 

(Hori, 2000). The modern Mekong Delta initiated at 8.4 ka following a period of rapid sea-level rise and aggradation of the fluvial 

system (Tamura et al., 2009).  Sea-level rise decelerated for the subsequent ~ 2000 years, producing aggrading to prograding tidal flats 

and mangrove forests and resultant peat layers in the sediment profile of the present-day upper Mekong Delta (Tamura et al., 2009).  

Rapid progradation of the delta has occurred from 6.3 ka to the present, with the highest sediment accumulation rates ensuing in the 

past 0.6 to 1 ka (Tamura et al., 2009).  

Our field area spans 50 km2 of the upper Mekong Delta in Kandal Province, Cambodia, and is bracketed by the Mekong and 

Bassac rivers (Lat. 11 31 3.90N, Long. 105 0 41.77E) (Polizzotto et al., 2008). Elevated levees along the riverbanks give way to native 

wetlands between the two rivers. The general stratigraphy of the field area is approximately 15 m of clays overlying > 30 m of aquifer-

forming sands (Benner et al., 2008). The annual monsoon causes the river stage to breach the levees, resulting in deposition of 

floodwater and arsenic-bearing sediments into the wetland basin. The hydraulic head of the interior surface wetlands exceeds that of 
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the Mekong River throughout the year except for the latter part of the rainy season (roughly July through October) (Benner et al., 

2008; Polizzotto et al., 2008). The fine-over-coarse stratigraphy and fluctuating hydraulic gradient result in a net annual flow velocity 

of 0.04 – 0.4 ma-1 vertically through the clay and 1 – 13 ma-1 horizontally through the aquifer sands toward the Mekong River (Benner 

et al., 2008). 

The monsoon-driven flooding of the wetland basin between the Mekong and Bassac rivers is generally seasonal, except in 

topographically low abandoned river channel (oxbow) wetlands. Permanent flooding in the oxbow wetlands leads to arsenic release 

(solid to solution transfer) in the surface clay aquitard and subsequent downward transport to the sandy aquifer where groundwater 

concentrations reach up to 16 μM As (Polizzotto et al., 2008). In a previously studied oxbow wetland within our field area, lysimeter-

collected mean pore-water arsenic concentrations are 0.7 – 0.9 μM at 1 and 2 m depth, and well water As concentrations are more than 

2.5 – 8 μM at 7 m (Kocar et al., 2008). The site of the current study is seasonally flooded, and has lysimeter-collected pore-water 

arsenic concentrations of < 0.1 μM at depths of 1.1 and 1.5 m and well water As concentrations are 0.2 μM at 7.5 m. Hence, aqueous 

arsenic concentrations increase with depth within the near-surface clays in both depositional environments, though to a lesser degree 

in the seasonally flooded wetland. 

The stratigraphy of the clay aquitard of the site for the current study is comprised of alternating reddish brown (Munsell color 

5YR 6/3) (natural levee) and gray (2.5Y 4/1 – 2.5Y 6/1) (floodplain) strata down to a depth of 6 m with an organic-rich (5.4 % C) dark 
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gray (2.5Y 3/1) layer between 5.4 and 5.6 m (Fig. A.1). A black (2.5Y 2.5/1) peat layer (21.5 % C) is present between 6.0 and 6.1 m 

(Table 1; Fig. A.1). The mean solid-phase arsenic concentration averaged across the top 6 m is 15.8 ± 4.7 mg As kg-1. 

2.2. Sediment collection and analysis.

An excavator was used to dig to a depth of 6.5 m. Aluminum cores were pounded into a fresh sediment face, immediately 

sealed with wax, vacuum sealed in a bag containing an anaerobic pouch (Mitsubishi Gas Chemical America, Inc.), placed on ice in the 

field and stored at 4 °C. Three sediment cores were retrieved per depth. 

Total elemental composition was determined by X-ray fluorescence spectrometry (XRF), and sediment pH was measured in 

0.01 M CaCl2•H2O (Dittmar et al., 2007). Total C and N analysis was performed on two different samples for each depth using a 

Carlo-Erba NA 1500 Elemental Analyzer. The groundwater is undersaturated with respect to calcite (Kocar et al., 2008). Saturation of 

Fe2+(aq) with respect to siderite is thermodynamically favorable in our sediment profile; however, siderite (FeCO3 cryst) is not detected 

by XRD in the near surface (top 6.5 m) (e.g., Figs. A.2 and A.3). Thus, the total C values are representative of the organic C content in 

these acidic sediments, in which carbonate precipitation is minimal. 

Sediment age was determined by 14C dating. Sediment cores were collected in copper pipe, immediately shock frozen in liquid 

nitrogen in the field, and preserved for 14C analysis at the Keck Carbon Cycle Accelerator Mass Spectrometer facility at University of 

California Irvine. Samples were combusted at 900 °C under vacuum for three hours in the presence of cupric oxide and silver wire, 
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and the resulting carbon dioxide was cryogenically purified and reduced to graphite for 14C analysis.  The calculation of 14C was 

corrected for mass dependent isotopic fractionation by 13C determination. 

2.3. Arsenic-doped goethite preparation.

Goethite was synthesized by oxidation of FeCl2•4H2O at pH 7 (Schwertmann and Cornell, 2000), identified by X-ray 

diffraction (XRD), and doped with As(V) to a final concentration of 169 mg As(V) (kg FeOOH)-1 – corresponding to the molar 

arsenic-to-iron ratio found in South and Southeast Asian sediments (Kocar and Fendorf, 2009). The goethite suspension was N2-

purged (> 1 h/L) and autoclaved at 121°C and 18 psi for 1 h.  

2.4. Batch incubation.

Incubations were initiated in the field immediately upon sample collection to determine whether As/Fe release from sediments 

was limited by the reactivity of organic carbon or As-bearing iron (hydr)oxides.  Incubation of peat samples was conducted in glass 

serum vials containing N2-purged (> 1 h/L) and sterile filtered (0.2 m) groundwater medium buffered to pH 7.1 with a final 

composition of 2.7 mM KCl, 0.28 mM MgSO4, 7.8 mM NaCl, 0.41 mM CaCl2•2H2O, 0.018 mM NH4Cl, and 10 mM PIPES. Prior to 

peat addition, three treatment additions to the groundwater medium were performed in triplicate: 10 mM glucose, As-loaded goethite, 

and 10 mM glucose + As-loaded goethite, along with an unamended control. The mass ratio of goethite to peat was 0.64:1. Each 
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treatment had an abiotic counterpart achieved by antibiotic addition (150 mg penicillin L-1, 250 mg streptomycin L-1, and 40 mg 

chloramphenicol L-1). The incubation vials were purged with N2 for at least 1 min after 5 cm3 of peat was injected using a syringe. 

Samples of peat were weighed before and after oven drying at 105 °C for 48 h to determine the dry mass of peat added in each 

incubation. 

The incubation vials were returned to the lab and continuously mixed on an end-over-end rotator at ~ 20 rpm. The batch 

incubations were sampled 4 times over a period of 40 d, with the initial sampling occurring ~ 24 h after sediment additions in order to 

achieve a homogeneous suspension. Entrance of oxygen into the incubation vials was limited during sampling by the following N2-

flushing techniques when a glovebag was unavailable. For each sampling point, an aliquot of the mixed suspension was extracted 

using an N2-purged syringe and 16G needle, and dispensed into an N2-purged, crimp-sealed 30 ml serum vial. The suspension was 

allowed to settle, and the supernatant was extracted and filtered through a 0.2 m polyethersulfone syringe filter for aqueous chemical 

analysis. Alkalinity and pH were measured immediately as described for groundwater analysis (Electronic Annex). The remaining 

supernatant was acidified to ~ 2 % v/v with concentrated HNO3 for elemental analysis by ICP-MS.  

2.5. Total and HCl-extractable arsenic.

The sediment cores were extruded, dried under 95%N2/5%H2 atmosphere, and homogenized by mortar and pestle. A 1 M 

hydrochloric acid (HCl) extraction was performed in duplicate on two replicate sediments samples for each depth to quantify an 
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operationally defined “reactive” As pool, presuming this concentration of HCl invoked the dissolution of amorphous Fe/Mn oxides, 

acid volatile sulfides, and carbonates (Keon et al., 2001). A citrate-bicarbonate-dithionite (CBD) extraction was performed in 

duplicate on two replicate sediment samples of the peat, ostensibly dissolving all reducible iron present (Loeppert and Inskeep, 1996). 

The 1 M HCl and CBD extracts were measured by inductively coupled plasma optical emission spectrometry (Thermo ICAP 6300 

Duo View Spectrometer). The instrument detection limit was 5 ppb. Standards used for ICP-MS calibration were within ± 5% of 

external standards. Quality control standards were analyzed at least once per 15 samples run to ensure a  5% deviation from the 

standard curve was maintained. Total arsenic concentrations were determined by XRF.  

2.6. Bulk X-ray absorption spectroscopy. 

Arsenic K-edge XAS was performed at beam line 11-2 at the Stanford Synchrotron Radiation Laboratory (SSRL). Energy 

selection was achieved with a Si (220) monochromator detuned 30 – 40 % for harmonic rejection, and energy calibration was 

performed by assigning a K-edge position of 11874.0 to a Na3AsO4 standard. Fluorescent X-rays were measured with a multi-element 

germanium detector. For As K-edge XANES spectroscopy, samples were packed into 2 mm thick polycarbonate slot mounts in 

Kapton tape (25 μm thickness). Least squares fitting of normalized XANES fluorescence spectra was optimized over a range of 11850 

to 11890 eV using normalized spectra of six standards representing the potential As species within the sediments. Arsenic K-edge 

EXAFS spectroscopy was performed in a He-purged cyrostat at 25 K. Arsenic standards were sufficiently diluted in BN to achieve a 
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unit change in absorption across the K-edge. Arsenic standards were verified by powder XRD. Sample fluorescence and standard 

transmission spectra were averaged, background subtracted, and normalized using the program Athena (Ravel and Newville, 2005). A 

spline function was fit through the absorption envelope and subtracted from each spectrum. The resulting EXAFS function ( ) was 

transformed into k-space (Å-1) and weighted by k3. Least squares fitting of the  function was performed over a k range of 1 to 15.5 Å-1 

in Athena. 

Iron K-edge EXAFS spectroscopy was performed at beam line 11-2 at SSRL in fluorescence and transmission mode. Energy 

selection was maintained by a Si (220) monochromator detuned 40 – 50 % for harmonic rejection, and energy calibration was 

achieved by assigning a K-edge position of 7112.0 to a Fe foil. Fluorescent X-rays were measured with a Lytle detector fitted with a 3 

m thick Mn filter. The bulk peat sample was deposited on 0.2 m cellulose nitrate filter paper and packed in Kapton tape (25 m 

thickness). Least squares fitting of the Fe EXAFS ( ) function was performed over a k range of 3 to 13 Å-1. The specific iron standards 

used for fitting were defined by a combination of electron microprobe/energy dispersive spectrometry and XRD. 

Sulfur K-edge XANES spectroscopy was performed at beam line 4-3 at SSRL. Energy selection was maintained by a fully 

tuned Si (111) monochromator with harmonic rejection mirrors in place. Energy calibration was achieved by assigning the first white 

line of a Na2S2O3 standard to 2472.02 eV. X-rays were measured with a Vortex detector in fluorescence mode. Samples and beam 

path were kept under He (g) purge to avoid loss of photon flux. Standard sulfur K-edge XANES spectra were collected, internally 

calibrated, and normalized to a dimethylsulfoxide spectrum as described previously (Almkvist et al., 2010). (See Figure A.4 for more 
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details on the normalization procedure.) Least squares fitting of normalized XANES fluorescence spectra was optimized over a range 

of 2465 to 2490 eV using the LINEST function in Microsoft Excel (Almkvist et al., 2010). The least squares fitting procedure first 

aimed to reproduce all the features of the spectra quantitatively using the smallest number of components and eliminating those 

contributing to less than 5 % of the sum, yielding fits with up to 4 components (Couture et al., 2013b). The fit with the lowest R-factor 

value was chosen as the final fit. The major types of sulfur compounds found in sediments/soils were included as standards in the 

fitting routine: pyrite (FeS2), pyrrhotite (FeS), organic sulfides, elemental S, thiols, thiosulfate, sulfoxides, sulfites, sulfones, 

sulfonates, sulfate esters, and sulfates (Almkvist et al., 2010). The sulfur compounds contributing to the final fits for all S XANES 

performed included pyrite, organic sulfides, sulfoxides, and a sulfate ester (Figs. A.4 and A.5; Table A.1).  

2.7. Micro X-ray fluorescence ( XRF) mapping and XANES spectroscopy. 

A section of peat from the intact core was dried under 95%N2/5%H2 atmosphere and fixed in EPOTEK 301_2FL epoxy. A thin 

section (30 m thick) was prepared on a quartz slide under low O2 and low temperature conditions (Spectrum Petrographics method 

X26A). Coarse-scale XRF mapping and XANES analysis were performed at beam line 10-2 at SSRL with a spot size of 25 m in 

diameter. Finer-scale XRF mapping and XANES spectral acquisition were performed at beam line 2-3 at SSRL, equipped with KB 

focusing mirrors providing a spot size of 2 x 2 m. Elemental maps were generated using a single-element Si drift Vortex detector; the 

sample was continuously rastered across the X-ray beam using a 5 m pixel step-size and dwell time of 50 ms per pixel. Windowed 

counts of each element were isolated from the full X-ray fluorescence spectra and normalized to the intensity of the incident X-ray 
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beam (I0). Energy was selected using a Si (111) double crystal monochromator and calibrated by assigning a K-edge position of 

11874.0 to a Na3AsO4 standard. Based on XANES spectra of six As standards representing the potential chemical species within the 

aquifer sediments, we mapped a region of the thin section at As K-edge energies of 11867, 11869, 11872, 11876, and 11881 eV. 

Using the SMAK routine (Webb, 2011), principal component analysis (PCA) was performed on dead time corrected maps to 

determine optimal locations for XANES spectral analysis. Least squares fitting of normalized XANES spectra was optimized from 

11850 to 11890 eV in SIXPACK (Webb, 2005). Normalized XANES fluorescence spectra of the As standards corresponding to the 

five As K-edge energies were used to fit the multiple energy XRF maps in a non-negative linear least squares sense in SMAK 

(Mayhew et al., 2011).  

We verified that the peat grains in the coarse As XRF map (Fig. 4) were representative of the entire peat sample based on 

three main lines of evidence: (1) A coarse XRF map of the entire peat thin section (Fig. A.6); (2) Coarser scale multi-energy XRF 

mapping coupled to the As XANES fitting routine revealed similar arsenic speciation to that observed in Fig. 5 (Fig. A.7); and (3) 

the two images in Fig. 4 each spanned roughly 50 % of the surface area of the entire peat grain.  

The multiple energy XRF mapping and XANES spectral acquisition routine was repeated for iron phase analysis of the peat. 

Energy calibration was achieved by assigning a K-edge position of 7112.0 eV to a Fe foil standard. Based on XANES spectra of 

standard iron-bearing sulfides, carbonates, silicates, and oxides, the five Fe K-edge mapping energies chosen were 7120, 7122, 7127, 

7131, 7139 eV. Least squares fitting of XANES spectra was optimized from 7110 to 7150 eV. The number of Fe standards used for 
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each fit was guided by PCA and variance analysis of the unknown XANES spectra. The specific Fe standards used for fitting were 

defined by a combination of electron microprobe/energy dispersive spectroscopy and XRD, target transformation of standards based 

on the PCA, as well as by the “Cycle Fit” function in SIXPACK (Webb, 2005). The proportion of Fe(II) and Fe(III) bearing minerals 

in the resultant XANES fit was used to estimate the Fe(II):Fe(III) ratio for a given point on the map. Normalized XANES 

fluorescence spectra of pyrite – the representative Fe(II) standard – and goethite – the representative Fe(III) standard – corresponding 

to the five Fe K-edge energies were used to fit the multiple energy XRF maps in a non-negative linear least squares sense to achieve 

a distribution map of Fe oxidation state (Mayhew et al., 2011). 

Finally, using beam line 14-3 at SSRL, multiple energy XRF mapping and XANES spectral collection were performed for S 

analysis of the peat grains. Focusing mirrors provided a spot size of 5 x 5 m and harmonic rejection. Energy was selected using a Si 

(111) double crystal monochromator, and calibrated by assigning the top of the white line of a Na2SO4 standard to 2483.0 eV. The 

sample was rastered identically as for arsenic and iron mapping: continuous mode, 5 m step size, and 50 ms dwell time per pixel. The 

S K-edge mapping energies chosen based on preliminary XANES spectra of various sulfur standards were 2460 (background), 2470, 

2472, 2473.5, 2474.5, 2482.5, and 2500 (total fluorescence). Least squares fitting of normalized XANES fluorescence spectra was 

optimized over a range of 2465 to 2490 eV using normalized spectra of multiple standards representing the potential sulfur species 

within the sediments as described for bulk S XANES (Section 2.6). 
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Section 2.8. X-ray diffraction. 

Synchrotron powder X-ray diffraction was performed at beam line 11-3 at SSRL with an incident beam energy of 12735 eV. 

Samples were prepared as described for bulk Fe EXAFS (Section 2.6). Peak identification was performed using JADE XRD Pattern 

Processing Ver. 6.5 (Materials Data, Inc., 2002).  

3. RESULTS

3.1. Sediment profile characterization.

The top 3.0 m of sediment has a reddish brown (Munsell color of 5YR 6/3) hue. Gray (Munsell colors of 2.5Y 4/1 – 2.5Y 6/1) 

layers spanning 3.0 m to 4.0 m and 4.8 m to 5.4 m deep sandwich another brown (10YR 6/3) layer between 4.0 and 4.8 m deep. A 

dark gray (2.5Y 3/1) sediment layer spans 5.4 m to 5.6 m overlying a gray (2.5Y 6/1) layer extending to 6.0 m. Finally, a black (2.5Y 

2.5/1) peat layer is present between 6.0 m and 6.1 m.  
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The total C content is elevated in the gray and black sediments relative to the layers with a brown hue. The total C % generally 

decreases with depth in the brown layers from 0.54 % at 0.26 m to ~ 0.28 % at 4.2 m – 4.6 m (Table 1). The total C concentration 

ranges from 0.49 % to 0.85 % in the gray layers and from 1.7 % to 21.5 % in the black layers (Table 1). The variability between 

replicate samples was ± 10 % or less for all but the total C measurement at 5.80 m (± 17 %), indicating the degree of heterogeneity in 

C concentration within each sediment layer.  

The peat layer and overlying sediment profile developed within the last 5.7 ka (Table 2), indicating an average sediment 

accumulation rate of 1 m ka-1, corroborating previous measurements of 1 – 3.3 m ka-1 for our field area over the past 6 ka (Polizzotto 

et al., 2008). Sediment age 0.5 m above the peat decreases to 3.8 ka (Table 2), indicating a relatively low sediment accumulation rate 

of 0.3 m ka-1 (see Electronic Annex) – within the range of 0.3 – 0.7 m ka-1 measured for a comparable floodplain facies unit near our 

field site (Tamura et al., 2009). As the profile transitions from gray floodplain sediments to the overlying brown natural levee 

sediments, the measured sediment accumulation rate generally increases to  1 m k a-1. 

3.2. Arsenic speciation and acid-extractability within near-surface sediments.

Arsenic is present as As(V) in the top ~ 4 m of the sediment profile in the seasonally flooded wetland, with As(III) appearing 

in roughly equal proportion to As(V) at 5 m depth (Fig. 1). Arsenic-bearing sulfides are present in the organic-rich (5.4 % C) dark 

gray sediment layer at 5.55 m and a black peat (21.5 % C) layer at 6.10 m. The average total As concentration of the sediment in the 
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top 6 m is 15.8 ± 4.7 mg As kg-1, which increases 10-fold in the peat layer (6.0 – 6.1 m) to 153 mg As kg-1. In addition, the percentage 

of the total arsenic that is acid-extractable (by 1 M HCl) averages 10.6 ± 2.6 % (1.60 ± 0.15 mg As kg-1) in the top 6 m, and decreases 

to 0.9 % (1.38 ± 0.72 mg As kg-1) in the peat layer. 

3.3. Reactivity of peat toward As/Fe release 

Arsenic release (solid to solution transfer) was not observed in incubations of peat with As-loaded goethite, 10 mM glucose, 10 

mM glucose + As-loaded goethite, or unamended groundwater medium (pH 7.1) (Fig. 2). Goethite addition to the peat did not 

stimulate iron release, nor was aqueous Fe observed in the incubation of peat alone. However, aqueous iron was produced in both the 

glucose and glucose + goethite treatments. 

3.4. Solid-phase arsenic speciation in peat

In addition to total and acid-extractable concentrations, we examine the oxidation state and chemical form of As in the peat. 

Least squares fitting of the bulk XANES shows a 94% contribution by As-bearing sulfides with arsenite (likely adsorbed) accounting 
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for the remaining 6% (Fig. 1). The white line energy position differentiates arsenite (AsO3
3-), arsenate (AsO4

3-), and arsenic-bearing 

sulfides.  Owing to the small shift in white line energy between arsenic sulfide species, resolving specific phases is more challenging. 

To overcome this limitation, we utilized variation in the EXAFS ( ) spectra between phases; analysis of the k3-weighted As  function 

to a k of 15.5 Å-1 shows the chemical form of arsenic in the bulk peat sample conforms to that of arsenian pyrite (Fig. 3a). Other As 

sulfides, including arsenopyrite, realgar, and orpiment, as well as organic arsenic species were not observed (Fig. A.8). The first and 

second peak positions in the Fourier transformation of the (k) for arsenian pyrite and peat are aligned (Fig. 3b). Further, arsenian 

pyrite accounts for every oscillation in the real part of the Fourier transformation of the peat’s (k) (Fig. 3c). The amplitude of the (k) 

and the magnitude of Fourier transformation are quenched for the peat relative to the arsenian pyrite standard, likely reflecting a lower 

crystallinity in the peat.  

Solid-phase As is heterogeneously distributed in the peat (Fig. 4), concentrating on the exterior of individual peat grains and 

co-associating with S and Fe (Fig. 4b). Additionally, S is present in areas of the peat where As is not, and Fe is common throughout 

the peat. We chose prominent grains depicted in Fig. 4 to illustrate the speciation of As (Fig. 5) and its association with Fe (Figs. 6 and 

7) and S (Figs. 8 and 10). Within the peat grains depicted in Fig. 5a, As resides as a combination of As-bearing sulfides and as arsenite

(adsorbed), ranging from 72 to 100 % As-sulfide (Table A.2). Further, within the grains in Fig. 5b, As is comprised of As-bearing 

sulfides and arsenite, ranging from 81 to 100 % As-sulfide (Table A.2). The multiple energy mapping and XANES fitting routine 
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corroborate the As speciation observed from the individual XANES spectra, with As-bearing sulfides dominating the grain-As 

speciation and arsenite making a minor contribution (Fig. A.7). 

3.5. Solid-phase iron speciation in peat.

Solid-phase Fe concentration is highest around the exterior of the individual peat grains and in general parallels the spatial 

distribution of As (Figs. 5 and 6). Iron(II) predominates in the areas of highest Fe (and As) concentration based on XANES analysis 

(Fig. 6; Table A.3). The Fe hotspot associated with the As-bearing sulfide is exclusively Fe(II). In general, Fe(II) is higher where iron 

(and arsenic) are concentrated, whereas the proportion of Fe(III) increases in regions of low Fe concentration (Fig. 6c). Least squares 

fitting of the Fe EXAFS function of the bulk peat sample confirms the presence of pyrite (27 %), Fe (hydr)oxides (hematite and 

goethite) (14 %), and Fe-bearing silicates (clinochlore and ferruginous smectite) (62 %) (Fig. 7). 

3.6. Solid-phase sulfur speciation in peat.

The solid-phase distribution of S in the peat grains coincides with that of As and Fe; high S concentrations are found along the 

grain exterior (Fig. 8). Principal component analysis of the multiple energy maps coupled with S XANES spectral analysis shows 

complex S speciation (Figs. 9 and 10). Sulfur XANES spectra of the peat grains indicate a predominance of pyrite on the grain 
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exterior that grades to organic S species (i.e., organic sulfides, sulfoxides, and sulfate esters) in the interior (Figs. 10 and A.4; Table 

A.1), corroborating the bulk S XANES spectrum comprised of pyrite and organic S species (Figs. 8c and A.5). 

4. DISCUSSION

4.1. Authigenic arsenian pyrite formation

Our site transitioned from a salt marsh to mangrove forest containing brackish water between 8.5 to 6.3 cal ka BP owing to sea 

level rise accompanying sediment aggradation and delta progradation, producing peat layers throughout the surrounding upper 

Mekong Delta (Nguyen et al., 2005; Tamura et al., 2009).  The peat at 6 m depth in our site, aged 5.675 ± 0.020 ka, which directly 

underlies gray sediments representative of a flood plain depositional environment, likely corresponds to the “organic mud” of similar 

depth in sediment cores collected proximal to our field site (Tamura et al., 2009). Thus, the peat developed in a saline environment 

that likely continued even as the coastline receded southeast to present-day Vietnam, as saltwater intrusion may have occurred up to 

tens of kilometers along the Mekong during high tide in the dry season – the extent of present-day seawater intrusion (Hori, 2000; 

Tamura et al., 2007). Seawater likely assisted in supplying the necessary sulfur (sulfate) for arsenian pyrite formation. Even with low 

sulfate reduction rates, a low sedimentation rate of ~ 0.3 m/ka from ~ 5.7 ka to 3.8 ka at our site (Electronic Annex), arsenian pyrite 

formation would result in anoxic, H2S-poor and reactive iron-rich peat (Huertadiaz and Morse, 1992). The reactivity of the organic 

matter was likely sufficient to fuel sulfate reduction for a period of time after deposition as in other marine environments (Huertadiaz 
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and Morse, 1992; Morse and Wang, 1997). The iron supply likely came from iron (hydr)oxides and weathering of primary silicate 

minerals (Fig. 7) (Lowers et al., 2007; Morse and Wang, 1997; Poulton et al., 2004). 

Microscale X-ray imaging and spectroscopy  reveals that arsenian pyrite exists as coatings on peat grain exteriors (Figs. 4 – 6 

and A.7).  Arsenic and sulfur enrichment on grain exteriors (Figs. 4 – 5 and 8 – 10) suggests supply through an aqueous source with 

precipitation on the organic (peat) particle. Additionally, the lack of correlation between arsenic or sulfur and the concentrations of the 

chalcophiles copper and zinc implies authigenic origin; R2 values are  0.006 (n = 147,568) for the linear regressions of As vs. Cu, As 

vs. Zn, S vs. Cu, and S vs. Zn (data not shown). In contrast, clastic pyrite grains often retain chalcophile correlations reflective of the 

pyritic source material (Leblanc et al., 2000). Finally, SEM/electron microprobe shows framboidal pyrite (data not shown) consistent 

with authigenic formation (Lowers et al., 2007; Nickson et al., 2000). 

Arsenic speciation on the grain exteriors is a combination of As sulfide (predominantly arsenian pyrite) and arsenite (Fig. 5). 

The adsorbed arsenite may result from inadequate sulfur supply from infiltrating surface water and/or peat decomposition; 

alternatively, it may have formed through a progressive loss of S with infiltrating waters of freshwater origin. The coexistence of iron 

(hydr)oxides and pyrite in the peat (Fig. 7) and the close association of Fe(II) and Fe(III) minerals in general (Fig. 6) indicate the 

potential for iron transformation reactions, which may be kinetically hindered under anoxic conditions (Wersin et al., 1991) and/or 

limited by pore-water diffusion within peat grains/aggregates.  
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Because the net annual water flux through the ~ 15 m surface clay aquitard of our field site is vertical (Benner et al., 2008; 

Polizzotto et al., 2008), we can use the trend in pore-water arsenic concentrations along the flow path to evaluate whether the peat 

layer is currently acting as a source or a sink. The aqueous arsenic concentrations are not significantly different above (measured at ~ 

3 m depth), within (measured at ~ 6 m depth), or below (measured at ~ 8 m) the peat (Fig. A.9), indicating there is currently no 

detectable As mass transfer to or from the peat. If pyritization were currently occurring in the peat, we would expect the aqueous 

arsenic concentration to be lower in the peat relative to the overlying strata. The aqueous arsenic profile along with low dissolved 

sulfide concentrations (median = 13 nM in shallow wells in our field area (Kocar et al., 2008)) suggest sulfidization and pyritization in 

the peat are not currently dominant processes controlling vertically transported dissolved arsenic. Nevertheless, low levels of 

sulfidogenesis may persist in the presence of Fe(II) and/or Fe(III), which can scavenge sulfide from pore-water. Nevertheless, the low 

dissolved sulfide limits the extent of potential pyrite formation through heterogeneous nucleation on iron-rich clays without a FeS(s) 

precursor (Lowers et al., 2007; Rickard et al., 2007). Further, FeS(s) is undersaturated with respect to Fe2+ and HS- in the peat 

(assuming pH = 7.4, Fe2+ = 2.2 ± 0.9 x 10-4 M, HS- = 30 nM, and logKsp = -3 (Lindsay, 1979), the saturation index = -2.8), and is not 

detected in the peat by Fe EXAFS (Fig. 7), S XANES (Fig. 8), or XRD (Fig. A.3). Thus, the current geochemical conditions in the 

peat do not favor pyrite formation, which requires FeS(s) and/or greigite (Fe3S4) – also not detected – as a precursor (Rickard, 1997; 

Rickard and Luther, 1997; Schoonen, 2004; Wilkin and Barnes, 1997). Pyritization in the peat is thus likely a remnant of past sulfate 

reducing conditions. 
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4.2. Arsenic speciation and retention. 

Arsenian pyrite is stable under anoxic conditions (Schoonen, 2004), helping to explain the low dissolved arsenic concentration 

in the peat (Fig. 2). Anoxic conditions in the peat were noted by signatures of methanogensis and metal reduction, along with 

redoximorphic features. As in other organic-rich freshwater and marine sediments (Huertadiaz et al., 1993; Huertadiaz and Morse, 

1992), the peat deposit studied here, being of estuarine/marine origin, would provide the sulfur and nucleation sites for pyrite 

formation and growth. A high organic carbon concentration promotes the formation – and actually the persistence of – iron sulfides in 

sediments (Morgan et al., 2012; Morse and Wang, 1997). A slowing of iron monosulfides-to-pyrite transformation kinetics through 

passivation by DOC or As(III) may occur over decadal timescales (Wilkin and Ford, 2006), allowing more time for arsenic to co-

precipitate with the pyrite – the predominant host of co-precipitated As and the most stable among iron sulfides (Kirk et al., 2010). 

Arsenic is incorporated into the crystal lattice of arsenian pyrite (Savage et al., 2000), consistent with the observation of pyrite by iron 

and sulfur XAS (Figs. 7 and 8) and sediments of the Bengal Basin and the Pearl River Delta (China) (Lowers et al., 2007; Wang et al., 

2012). 

Though arsenian pyrite is the principal As mineral in the peat layer here (which is of estuarine origin), alternate arsenic 

sulfides (lacking iron) may predominate in other estuarine sediment systems. For instance, incubation of fresh sediment from a 

temperate estuarine salt marsh with 55 uM As(III) leads to the formation of orpiment after initially adsorbing onto pyrite (Bostick et 
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al., 2004), in contrast to our site, which has a lower total aqueous arsenic concentration (0.57 ± 0.14 uM As). In shallow, reducing 

aquifer sediments adjacent to the San Francisco Bay, CA, realgar is the dominant As-bearing sulfide present with no evidence for 

coprecipitation of arsenic with pyrite (O'Day et al., 2004). Total solid-phase arsenic levels are in the same range (1 – 3 mmol As kg-1) 

as the peat studied here, though the aqueous concentrations are much higher in some areas (< 0.07 to 200 uM As) and the H2S activity 

is buffered by iron sulfide and iron (hydr)oxides at circumneutral pH (O'Day et al., 2004).  

Apart from the precipitation of sulfide minerals, organically bound arsenic is another means of As retention in peat. For 

example, in a groundwater-fed wetland enriched in arsenic from the weathering and erosion of As-bearing sulfide ore deposits, As is 

predominantly bound to sulfur groups of peat under persistent anoxic conditions (depth ~ 1.5 – 2.5 m), and to realgar in non-

equilibrium conditions at the surface (depth ~ 0 to 0.4 m) (Langner et al., 2012; Langner et al., 2013); arsenopyrite and arsenian pyrite 

are only minor arsenic species (Langner et al., 2013). The Swiss peatland samples examined by Langner et al. (2012) have higher S/Fe 

ratios (> 2 in depths ~ 1.5 – 2.5 m, sites B1 and B6) and much lower Fe/As ratios (< 50 in depths ~ 0 to 0.4 m, sites B3 and B5) than 

those found in the Cambodian Mekong Delta of 0.6 and 438, respectively. Flow-through reactors running influent solutions containing 

20 mM As and 200 mM SO4
2- through freshwater lake-bottom sediments for an 8-week period similarly sequestered As and S through 

the formation of AsS(s) and thiol-bound As(III) (Couture et al., 2013b). The influent concentration of 20 mM As is 2 orders of 

magnitude higher than current (and likely past) pore-water As levels in our sediment profile (Fig. A.9), improving the potential for 

AsS(s) precipitation.  In contrast to freshwater systems, sulfurization of organic matter in marine systems occurs more slowly than iron 
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sulfide formation (on the order of 102 – 104 years) (Werne et al., 2004). Though organic sulfur species are evident in both the bulk S 

XANES (Fig. 8) and S XANES spectra (Fig. 10) of our peat, organic sulfur-bound As is not detected (Figs. 3 and A.8).  Thus, 

organic matter sulfurization evidently did not compete with pyritization under the estuarine conditions of peat deposition here. 

4.3. Mass balance for arsenic enrichment in peat

The total arsenic concentration in the peat is 153 mg As kg-1 (Table 1). Compared to the mean concentration in the 6 m of 

sediment above the peat (15.8 ± 4.7 mg As kg-1), the apparent enrichment is approximately 10-fold above the baseline level. Pore-

water arsenic concentrations suggest that As sequestration in the peat layer is not operative presently, and we posit that the dominant 

loading of arsenic occurred during the reducing and residually saline conditions during and following peat deposition, which 

commenced some 5.7 ka BP. Aqueous arsenic supply to the peat would occur through the reductive dissolution of As/Fe-bearing 

solids annually delivered to the site in overlying sediment. Geochemical analysis of the sediment profile allows us to approximate the 

period over which the observed level of arsenic enrichment would occur.  Assuming a reductive dissolution rate of annually deposited 

Himalayan sediment estimated previously for our field area (Polizzotto et al., 2008) and a calculated sediment accumulation rate from 

14C dating, the noted arsenic levels in the peat layer would be achieved within 1800 years (estimates of the temporal period for 

enrichment are provided within the  Electronic Annex).  
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4.4. Arsenic reactivity 

Despite a ten-fold increase in total As concentration in the peat layer relative to the overlying sediment, the acid-extractable 

fraction remained constant at 1 – 2 mg As kg-1 throughout the profile (Fig. 1). Bulk As EXAFS indicates arsenic is predominantly 

arsenian pyrite (Fig. 3), and consistent with expectations, citrate-bicarbonate-dithionite extraction released only 1 % of the total 

arsenic in the peat (data not shown). Thus, iron (hydr)oxides (e.g., hematite) do not host appreciable arsenic within these high-As 

zones, and reductive dissolution is not a release mechanism. Though the total abundance of carbon (21.5 % w/w – principally in 

organic form) might suggest the peat would have the electron donating capacity to facilitate microbial-driven dissimilatory iron and/or 

arsenic reduction, incubation of the peat with As-goethite did not lead to arsenic release; it, in fact, decreased release presumably 

owing to an increased adsorbent concentration (Fig. 2).  Therefore, microbial utilization of organic carbon within the peat is 

prohibitive for driving iron (hydr)oxides reductive dissolution (at least on short timescales). Further, arsenic in the peat is already 

present in a reduced form, precluding direct As(V) reduction as a release mechanism. Hence, arsenic in the peat is in a form that is 

immune to anaerobic microbially driven release mechanisms. 

5. SUMMARY and CONCLUSIONS
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Buried peat formed under saline conditions is common through much of the Mekong Delta, and therefore likely hosts a 

concentrated zone of arsenic in near-surface sediments. A ~ 6.3 to 6.5 ka mangrove peat layer over 5 m thick extends through a large 

portion of Mekong River lowland, from Phnom Penh to the Vietnam border (Tamura et al., 2009). Similarly, mangrove peat of 6.0 to 

6.5 ka is found in the innermost part of the Mekong Delta in Vietnam (Nguyen et al., 2005).  

In this study, peat formed during delta formation provided the biogeochemical requirements for the formation of arsenian 

pyrite – a chemically stable form under anoxic conditions – that led to arsenic enrichment relative to overlying sediment. The arsenic 

supply in the buried peat-rich sediment results from reductive dissolution of As-bearing iron (hydr)oxides around the time of burial 

and/or subsequent advective transport of As released in overlying sediment (Polizzotto et al., 2008). Arsenic is not currently 

associated with iron (hydr)oxides in the peat, and therefore is not subject to release by reductive dissolution.  The organic carbon in 

the peat studied here, coupled with its microbial community, does not lead to reductive dissolution of exogenous arsenic-bearing iron 

(hydr)oxides (Fig. 2). Further, the peat layer does not appear to be sequestering nor liberating arsenic currently based on pore-water 

concentration profiles. Nevertheless, we do not suggest the arsenian pyrite is in equilibrium with the sediment pore-water; rather, the 

extent to which arsenian pyrite is currently forming or dissolving is below our ability to detect here. We suggest that buried peat in the 

Mekong Delta and in analogous deltas worldwide, such as the Bengal Basin, served as a sink for arsenic under conditions of 

formation, presently host an enrichment of As, and would be a detectable source of As to pore-water only if the arsenian pyrite were 

oxidized.  
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Anthropogenic and climate-induced perturbations could increase the potential for oxidation of arsenian pyrite in near-surface 

peat layers. For instance, drawdown from increasing groundwater exploitation of the Mekong Delta could promote oxygen penetration 

deeper into the sediment profile and oxidize arsenian pyrite in peat layers. Alternatively, excavation of near-surface clayey sediments 

for brick making – a common practice in the Mekong Delta – can expose buried peat layers to oxygen. Finally, projected increases in 

land surface temperature may promote increased rates of organic matter degradation in soils/sediments, thereby destabilizing buried 

peat layers. 
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Table 1. Elemental composition of the sediment profile of a seasonally flooded wetland to a depth of 6 m.
Depth pHa Si Al Fe Ti Mn Cu Zn As S P 

(m) Mean (g/kg) SD (g/kg) Mean (g/kg) SD (g/kg) Mean SD (g/kg) (g/kg) (g/kg) (g/kg) (μg/g) (μg/g) (μg/g) (μg/g) (μg/g) (μg/g)
0.26 5.3 0.52 0.02 5.37 0.08 10.3 0.4 228 77 48 5.0 426 34 103 16 140 447
0.46 5.8 0.43 0.02 5.05 0.03 11.8 0.6 221 79 47 5.1 712 37 102 17 96 454
0.66 6.1 0.41 0.01 4.38 0.01 10.6 0.3 227 79 49 5.2 563 35 99 18 119 520
0.86 6.2 0.34 0.00 4.02 0.01 11.8 0.1 229 77 44 5.3 395 37 99 14 103 477
1.06 6.4 0.38 0.03 4.49 0.03 11.7 0.9 222 80 50 5.3 761 39 101 20 247 508
1.26 6.5 0.37 0.01 3.85 0.03 10.4 0.3 222 80 50 5.2 811 38 104 19 145 493
1.46 6.6 0.37 0.04 3.93 0.02 10.6 1.0 228 76 50 5.3 716 36 101 24 149 554
1.66 6.5 0.33 0.01 3.87 0.01 11.8 0.5 223 78 51 5.3 594 38 102 21 135 534
1.80 6.5 0.34 0.03 3.70 0.04 10.9 1.1 221 80 48 5.2 559 42 102 18 114 484
2.20 6.7 0.41 0.00 3.00 0.00 7.2 0.1 211 85 43 4.8 271 36 110 12 121 266
2.63 6.8 0.29 0.02 2.45 0.03 8.3 0.7 232 80 40 5.0 423 35 105 10 89 286
3.70 6.8 0.49 0.01 4.92 0.02 10.1 0.3 203 87 39 4.5 312 39 112 12 213 186
4.20 6.6 0.28 0.03 2.94 0.06 10.5 1.0 206 76 52 5.2 314 38 101 16 2346 291
4.60 6.8 0.28 0.03 2.76 0.02 9.9 0.9 220 81 43 5.3 349 35 103 12 863 279
5.00 6.6 0.92 0.03 7.88 0.06 8.5 0.3 188 94 42 4.1 328 55 114 13 366 105
5.46 6.2 1.60 0.03 17.14 0.05 10.7 0.2 187 97 32 3.9 214 74 124 14 555 173
5.55 4.3 3.36 0.02 54.44 0.71 16.2 0.2 172 87 29 3.5 328 72 109 25 5265 170
5.80 5.4 0.63 0.02 8.48 1.46 13.4 2.3 231 90 24 5.7 184 40 101 10 432 216
6.10 3.1 3.19 0.02 214.57 17.65 67.2 5.5 149 54 50 3.3 754 41 127 153 15920 477

aSediment pH was measured in 0.01 M CaCl2.

N C C/N
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Table 2. Sediment age determined by radiocarbon dating.

Depth (m) 13C (‰)a 14C (‰)b 14C Age (BP)c

0.46 -19.36 -115.8 930

0.86 -21.28 -154.7 1290

1.26 -22.15 -185.4 1590

1.66 -23.25 -176.8 1505

2.63 -24.07 -258.5 2345

3.70 -23.61 -254.8 2305

5.00 -23.50 -316.4 2995

5.55 - -377.5 3750

6.10 -28.43 -510.3 5675
aStandard deviation = 0.15
bStandard deviation  1.7
cStandard deviation  20
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