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[1] Representation of model input uncertainty is critical in ensemble‐based data
assimilation. Monte Carlo sampling of model inputs produces uncertainty in the
hydrologic state through the model dynamics. Small Monte Carlo ensemble sizes are
desirable because of model complexity and dimensionality but potentially lead to sampling
errors and correspondingly poor representation of probabilistic structure of the hydrologic
state. We compare two techniques to sample soil hydraulic and thermal properties
(SHTPs): (1) Latin Hypercube (LH) based sampling with correlation control and
(2) random sampling from SHTP marginal distributions. A hydrology model is used to
project SHTP uncertainty onto the soil moisture state for given forcings. For statistical
comparison, we generate 20 ensembles for 7 ensemble sizes. Variance in ensemble
moment estimates decreases with increasing ensemble size. The LH‐based approach yields
less variance in the estimate of ensemble moments at all ensemble sizes, an advantage
greatest with small ensembles. Implications for hydrologic uncertainty assessment, data
assimilation, and parameter estimation are discussed.

Citation: Flores, A. N., D. Entekhabi, and R. L. Bras (2010), Reproducibility of soil moisture ensembles when representing soil
parameter uncertainty using a Latin Hypercube–based approach with correlation control, Water Resour. Res., 46, W04506,
doi:10.1029/2009WR008155.

1. Introduction

[2] The objective of hydrologic data assimilation is to
produce estimates of variables characterizing hydrologic
conditions of a study area through the fusion of uncertain
model estimates and noisy observations. Estimation tech-
niques such as the Kalman filter provide mathematical fra-
meworks to derive optimal estimates of the hydrologic state
by weighting model estimates and observations by their
respective degree of certainty [Gelb, 1974]. However, tra-
ditional Kalman filtering is often complicated because of the
requirement of a linear model, or a linear approximation to a
nonlinear model [e.g., Galantowicz et al., 1999; Hoeben and
Troch, 2000]. Ensemble‐based data assimilation techniques
such as the ensemble Kalman filter [e.g., Evensen, 1994;
Margulis et al., 2002; Reichle et al., 2002; Crow and Wood,
2003; Evensen, 2004; Moradkhani et al., 2005a], ensemble
Kalman smoother [e.g., Dunne and Entekhabi, 2006], and
other ensemble‐based data assimilation techniques [Dunne
and Entekhabi, 2005; Moradkhani et al., 2005b], by con-
trast, have eliminated the need for model linearization in
many circumstances. In ensemble‐based data assimilation,

Monte Carlo techniques are used to sample probability
distributions that characterize the uncertainty in the model
inputs (parameters and forcings), and the full nonlinear
model dynamics are used to project these uncertainties onto
the hydrologic state forward in time until an observation
becomes available. Each Monte Carlo realization represents
an equiprobable and physically plausible prediction of the
hydrologic state of the system, given the uncertainty in
the model inputs. The collection (ensemble) of plausible
hydrologic states, taken together, characterizes the prob-
abilistic structure of the hydrologic state, as represented
by the dynamics of the model and uncertain model inputs: the
“first guess” ensemble. At the time when an observation is
available, some system of equations is used to simulate an
observable quantity (e.g., brightness temperature, radar
backscatter, river stage, etc.) based on the ensemble of
model simulated hydrologic states, yielding a corresponding
ensemble of predicted observations. Together, the first guess
ensemble and predicted observations constitute the prior
information about the hydrologic system under study.
Ensemble‐based data assimilation algorithms use this prior
information to update or reweight the individual ensemble
replicates to reflect new information contained in noisy ob-
servations. This updating or reweighting yields an ensemble
of replicates characterizing the hydrologic state of the system
in the model state space that is conditioned on the informa-
tion contained in the observational data: the “analyzed”
ensemble. The model is then reinitialized with these analyzed
realizations of the model state, and the model is integrated
forward in time under the influence of the uncertain inputs
until another observation becomes available.
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[3] Because it is composed of a finite number of reali-
zations obtained by subjecting a model to uncertain hydro-
meteorological forcings (e.g., precipitation, temperature,
radiation) and parameters (e.g., hydraulic conductivity, po-
rosity, retention curve parameters), the first guess ensemble
is an approximation of the probabilistic structure of the
hydrologic state. As such, the manner in which uncertainty
in the model forcings and parameters is represented, as well
as the nature and form of structural errors embodied within
the model, critically influence the ensemble‐based approx-
imation of the probabilistic structure of the hydrologic state
and, therefore, the degree to which observational data will
improve model estimates [e.g., see Crow and van Loon,
2006; Reichle et al., 2008]. Neglecting or poorly represent-
ing potentially important sources of uncertainty in the model
forcings or parameters can lead to a poor representation
of the probabilistic structure of the hydrologic state. The
importance of adequate representation of model input
uncertainty in ensemble‐based hydrologic data assimilation
is particularly relevant given the high dimensionality and/or
nonlinearity associated with hydrologic models, particularly
those that simulate moisture and energy states in a spatially
distributed fashion [e.g., Carpenter et al., 2001; Downer
et al., 2002; Ivanov et al., 2004a, 2004b; Qu and Duffy,
2007; Ivanov et al., 2008a, 2008b]. Decreasing the ensem-
ble size reduces computational costs associated with model
simulation, but makes the Monte Carlo–based approxima-
tion to the probabilistic structure of the hydrologic state
sensitive to errors in sampling the distributions meant to
characterize uncertainty in model parameters and forcings
(Figure 1a). For example, this is seen in Kalman‐like
ensemble updates as unrealistically low state error covari-
ance, which leads to an unrealistically high confidence in
the model estimate at the update and an insensitivity to
observations (Figure 1b). Although the ensemble of pre-
dicted observations may be substantially different than the

data, implying significant innovations, the unrealistically
low state error covariance will limit the degree to which
the innovations propagate back to the state. Conversely,
unrealistically high state error covariance, would lead to an
unrealistically high confidence in the observations.
[4] Imperfect characterization of soil hydraulic and ther-

mal properties (SHTPs) is an important source of uncer-
tainty in soil moisture estimates, and the associated latent
and sensible heat fluxes, derived from land surface hydrol-
ogy models [Margulis et al., 2002; Dunne and Entekhabi,
2005, 2006]. The model parameters describing SHTPs in
surface hydrology models affect the moisture‐holding ca-
pacity of the soil and the rates of moisture redistribution
and exchange between the land surface and the atmosphere.
The characterization of soils in hydrology models leads
to uncertainty in soil moisture for four important reasons:
(1) simplifying assumptions made to enable mathematical
description of complex and nonlinear hydrologic behavior
of soils (e.g., hysteresis in the moisture retention curve),
(2) imperfect laboratory and field techniques to estimate
hydrologic parameters of in situ soils, (3) spatially sparse
sampling and analysis of SHTPs, and (4) uncertainty in the
definition and categorization of soil units in spatial data-
bases even in data‐rich regions of the world such as the
Continental United States. In hydrologic modeling these
uncertainties in SHTPs and the model parameters describing
them can lead to significant uncertainty in model outputs of
interest such as soil moisture, latent, and sensible heat
fluxes.
[5] This study deals with the treatment of uncertainty in

SHTPs and corresponding model parameters. The goal is
not to perform parameter estimation, but rather to ensure
that uncertainty in SHTPs is represented sufficiently well to
ensure that (1) ensemble estimates of the variance in soil
moisture are realistic and (2) ensemble estimates of the
mean and variance in soil moisture are consistent (i.e., they

Figure 1. A conceptual diagram showing the ensemble Kalman filter process. (a) When uncertainty in
the model forcings and parameters is well characterized, the uncertainty in the model estimate often in-
creases as the time since the initialization increases and the assimilation of observations leads to a reduc-
tion of the uncertainty in the model predictions, relative to the first guess. However, (b) when uncertainty
in forcings and parameters is not well characterized the uncertainty in the model estimate can decrease as
time since initialization increases. Despite a large innovation (difference between the predicted observa-
tions and the observed data), the unreasonably low error in the first guess ensemble results in relatively
little information propagating back to the model state estimate.
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do not vary significantly across multiple ensembles, each
using different stochastically generated or perturbed sets of
the model parameters). In a modeling study we investigate
two techniques to model uncertainty in parameters de-
scribing SHTPs that are input to a process‐based ecohy-
drology model. Using an existing and widely used database
of soil properties comprising 1209 soil samples from 9
different soil textural classes [Schaap and Leij, 1998] we fit
marginal distributions to parameters required by the model,
and examine the rank correlation structure among the
parameters conditioned on soil textural class. The fit mar-
ginal distributions and rank correlation matrices are used to
generate random soil parameter samples of varying size
using the two sampling techniques. The first technique
considered is based on a Latin Hypercube sampling (LHS)
scheme and imposes correlation known or believed a priori
to exist among the parameters. LHS provides an algorithmic
technique to ensure that low‐probability parameter values
that are potentially of high consequence to model behavior
are sampled at small sample sizes. The importance of cor-
relation control in representing uncertainty in soil para-
meters is illustrated conceptually in Figure 2. For a sandy
loam soil, the joint space of values of the saturation and
residual soil moisture (�S and �R, respectively) demonstrates
(1) region of physically possible combinations as illustrated
by the gray area, (2) the region bounded by the data from the
database of Schaap and Leij [1998] illustrated by the black
area, and (3) the measured values of �S and �R from the

database of Schaap and Leij [1998] (Figure 2). The corre-
lation control algorithm provides a means of ensuring that
stochastically generated soil parameters used in ensemble‐
based modeling of soil moisture exhibit joint behavior that is
similar to previously collected soils data. The second ran-
dom sampling technique considered neither controls corre-
lation among the stochastic samples of input parameters nor
guarantees that low‐probability parameter values will be
sampled from their respective marginal distribution. To as-
sess the performance of each sampling scheme we perform a
series of numerical experiments designed to investigate the
sensitivity of the ensemble statistics of near‐surface soil
moisture (mean and variance) to ensemble size. Because our
motivating interest lies in improving our ability to eco-
nomically estimate soil moisture at hillslope scales (e.g., 10
to 100 m) using ensemble‐based data assimilation techni-
ques, we are particularly interested in the degree to which
the ensemble mean and variance in near surface soil mois-
ture (which is related to geophysically observable variables)
is consistent at small ensemble sizes.
[6] In section 2 we describe the theory and methodology

used in this study, including a brief description of the
sampling techniques and a description of the physics of the
ecohydrology model and related input parameters re-
presenting SHTPs. Section 3 presents an overview of the
statistical analysis of a database of parameters describing
SHTPs, an outline of the modeling experiments, and the
results of the numerical experiments for a series of ensemble

Figure 2. For the sandy loam soil texture, �S and �R are plotted based on the data of Schaap and Leij
[1998]. The white area enclosed by the solid black lines represents the physically possible area of var-
iation in �S and �R, given the extremes in the data set and assuming �S and �R are completely independent.
The gray area is the convex hull enveloping the actual data from the database, which are plotted within
this area as black plus symbols.
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simulations at a point scale. Conclusions and implications of
the results for ensemble‐based soil moisture uncertainty
assessment, data assimilation, and parameter estimation are
discussed in section 4.

2. Theory and Methodology

[7] This section presents a detailed overview of the two
sampling techniques used in this study. The ecohydrology
model used is then briefly introduced, followed by a de-
scription of the parameters required by its soil moisture
simulation component.

2.1. Model Parameter Sampling Techniques

2.1.1. Latin Hypercube–Based Sampling With
Correlation
[8] Latin Hypercube sampling (LHS) is a useful tool to

generate replicates of uncertain model inputs under con-
straints of limited computational resources. In the context of
ensemble soil moisture data assimilation computational
burden arises from (1) the large state‐space dimensionality
that typifies spatially distributed processes, (2) the com-
plexity and nonlinearity of models that continuously resolve
energy and water balance under intermittent and spatially
varying hydrometeorological forcings, and (3) requirements
of multiple model runs to construct the ensemble that
characterizes state variable uncertainty. Its use in the rep-
resentation of hydrologic model parameter uncertainty has
been previously suggested and applied in the literature [e.g.,
Beven and Freer, 2001; Yu et al., 2001; Christiaens and
Feyen, 2002; van Griensven et al., 2006; Abbaspour et al.,
2007]. LHS has also been used to efficiently model errors
in satellite rainfall estimates [Hossain et al., 2006]. For a
given number of samples (ensemble replicates), m, the LHS
approach stratifies the marginal cumulative density function
(CDF) of a parameter into m strata with equal probability
mass. In probability space, the boundaries of these strata are
located at 0, 1/m, 2/m …1. Each of the m replicates is gen-
erated by sampling uniformly once within each of the m
strata, and inverting the marginal CDF to arrive at the ran-
dom sample of the uncertain input variable. By stratifying the
CDF into equally probable regions, the LHS approach en-
sures that the m random model inputs will include values that
have a relatively low probability of occurrence, but are po-
tentially of high consequence to the model outputs condi-
tioned on their occurrence. For example, soils with very high
moisture‐holding capacities and correspondingly low satu-
rated hydraulic conductivity may be encountered infre-
quently but may be of high consequence in terms of the
dynamics of local soil moisture and runoff generation (e.g.,
easily saturated). The shape of the marginal CDF will in
some circumstances impact the number of strata (or re-
plicates) m that must be used to adequately capture the tails
of the distribution. In particular, care must be exercised with
those marginal distributions having long tails, or defined on
semi‐infinite and infinite domains.
[9] The processes encompassed within modern watershed

ecohydrology models frequently require many parameters as
input. Moreover, there may be reason to believe that para-
meters that represent physical attributes of the soil column
or are directly measurable are physically related to other
parameters (e.g., residual moisture content is always less
than saturation or total porosity for a particular soil sample)

and thus demonstrate varying degrees of correlation with
one another. Iman and Conover [1982] proposed the so‐
called restricted pairing (RP) algorithm that imposes a target
rank (Spearman) correlation matrix,T, on amatrix containing
m samples of n different parameters. The n parameters may
individually possess any combination of marginal distribu-
tions, and because rank correlation measures monotonic
correlation (rather than linear correlation) the n‐dimensional
joint distribution among the parameters need not be known.
Although specification of the joint distribution of the para-
meters is not necessary in the RP algorithm, the n marginal
distributions together with the imposed rank correlation
matrix determine the joint first‐ and second‐order behavior
between the parameters. Thus, care must be taken in selec-
tion of marginal distributions of the parameters.
[10] The initial step in the RP algorithm consists of con-

structing an m by n matrix (V), whose columns are identical
and contain the standard normal inverse of the increasing
van der Waerden scores,

V¼

��1 1= mþ 1ð Þð Þ ��1 1= mþ 1ð Þð Þ � � � ��1 1= mþ 1ð Þð Þ

��1 2= mþ 1ð Þð Þ ��1 2= mþ 1ð Þð Þ � � � ��1 2= mþ 1ð Þð Þ

..

. ..
. . .

. ..
.

��1 m= mþ 1ð Þð Þ ��1 m= mþ 1ð Þð Þ � � � ��1 m= mþ 1ð Þð Þ

2
666666664

3
777777775
;

ð1Þ

where F−1(·) is the standard normal inverse function. Row
entries of each column are then subjected to a random
permutation, to arrive at the matrix V*. The m van der
Waerden scores in each column of the matrix V are effec-
tively nonrandom CDF ordinates from each of the m Latin
Hypercube strata in probability space. Transforming the
entries of V to standard normal deviates and randomly
permuting the rows within each column creates the m‐by‐n
matrix V* of standard normal variables that span the stan-
dard normal distribution as widely as possible with m
samples, which possesses no serial correlation within each
column, and which possesses no meaningful correlation
between the n columns. The remainder of the RP algorithm
consists of a series of matrix‐vector manipulations to reor-
ganize the entries of the matrix V* to approximate the target
rank correlation matrix T. The n‐by‐n rank correlation
matrix, RVV, of matrix V* is computed by computing the
rank correlation coefficient, rxj xk, for each pairing combi-
nation of the n parameters as

rxjxk ¼
Pm

i¼1 Rank xij
� �� R xj

� �� �
Rank xikð Þ� R xkð Þ� �

Pm
i¼1 Rank xij

� �� R xj
� �� �2h i1=2 Pm

i¼1 Rank xikð Þ� R xj
� �� �2h i1=2 ;

ð2Þ

where Rank(·) is the rank transformation of the argument,
and R (xj) = R(xk) = (m + 1)/2. The random permutation of
the columns of matrix V, denoted V*, should leave little
correlation structure. The n‐by‐n lower triangular matrix Q
is then obtained through a Cholesky factorization of the
matrix RVV,

RVV ¼ QQT : ð3Þ
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[11] Similarly, the n‐by‐n lower triangular matrix P is
found by performing a Cholesky factorization on the target
rank correlation matrix, T, that we wish to impose on the
uncertain model inputs,

T ¼ PPT : ð4Þ

[12] The matrices Q and P are effectively the square root
matrices of the correlation matrices RVV and T, respec-
tively. Post multiplying P by Q−1 yields an n‐by‐n lower
triangular matrix S,

S ¼ PQ�1: ð5Þ

S is a linear operator that can be used to remove any cor-
relation structure that exists in V*, imposing instead the
correlation structure of T, by post multiplying V* by ST,

S* ¼ V*ST : ð6Þ

[13] The m‐by‐n matrix S* has a rank correlation matrix
that approximates T. The elements of S* are then input to
the standard normal operator, F(·), to retrieve the matrix
V** whose columns contain nonrecurring values ranging
from 0 to 1, and which approximately has the desired rank
correlation matrix. The elements of V** are then inverted
based on the appropriate marginal distribution for each of
the n parameter columns to arrive at the m‐by‐n matrix X*.
The matrix X* thus contains m replicates of the n parameters
that are sampled from a Latin Hypercube and exhibit a rank
correlation structure that approximates the assumed or
known rank correlation matrix T.
2.1.2. Random Sampling
[14] The second technique for obtaining m replicates of n

uncertain model inputs is significantly less complex than the
RP technique and is referred here as simple random sam-
pling (SRS). This method assumes that each of the n un-
certain parameters have the same marginal distributions as
for the RP case above. However, in this case no effort is
made to impose any correlation among the n parameters, nor
are any efforts made to ensure that extremes of the marginal
distributions for each parameter are sampled. Stated dif-
ferently, for a given sample size there is no guarantee that
low‐probability but potentially high‐consequence parameter
values are sampled or that any of the m n‐dimensional
parameter combinations are statistically implausible. Rather,
in the SRS case the m replicates of the each of the n
parameters are generated by repeatedly and independently
drawing randomly from each of the respective marginal
distributions. Using the SRS approach with large m, the m
samples of each parameter would well characterize the
assumed marginal distribution underlying that parameter.
However, because the SRS approach does not impose any
correlation among the m combinations of n parameters and
to the degree that the target correlation matrix (T) is not
approximately equal to the n‐by‐n identity matrix, statis-
tically implausible combinations of parameters are more
likely to occur when using the SRS approach versus the
RP approach outlined above.

2.2. The tRIBS‐VEGGIE Model

[15] The ecohydrology model used to propagate uncer-
tainty in soil hydraulic and thermal properties to near‐

surface soil moisture is the Triangulated Irregular Network–
based Real‐time Integrated Basin Simulator (tRIBS) and
Vegetation Generator for Interactive Evolution model
(VEGGIE) [Ivanov et al., 2004a, 2004b, 2007, 2008a,
2008b]. tRIBS‐VEGGIE is a spatially distributed model that
resolves mass, energy, and carbon balance over a watershed
at the hillslope scale by representation of coupled (1) bio-
physical energy processes (e.g., partitioning of input solar
radiation in the canopy and soils), (2) biophysical hydrologic
processes (partitioning of rainfall into interception, through-
fall, plant water uptake, etc.), and (3) biochemical processes
and vegetation phenology. The model takes as input precip-
itation and meteorological forcings, as well as the topo-
graphic and soil boundary conditions. A full treatment of the
tRIBS‐VEGGIE model is beyond the present scope of work
and the reader is directed to the work of Ivanov et al. [2004a,
2004b, 2007, 2008a, 2008b]. The present study focuses on
point‐scale moisture dynamics, however, and therefore the
parameters dealing with lateral moisture redistribution in the
subsurface are not required or introduced. Moreover, this
study is limited to assessing the influence of uncertainty in
soil parameters on the ensemble behavior of soil moisture
independently of vegetation effects. Thus, unvegetated (i.e.,
bare soil) conditions are assumed. We briefly describe the
process mechanisms represented in tRIBS‐VEGGIE that re-
quire parameters representing SHTPs: infiltration of precip-
itation in variably saturated soils, ground heat flux, and bare
soil latent and sensible heat fluxes.
[16] Infiltration of water into the soil is modeled using a

one‐dimensional Richards equation for a sloped surface that
allows for lateral gravitational drainage. The lower bound-
ary condition of the model is a flux boundary condition,
consistent with the assumption of significant depth to the
saturated zone in the semiarid environment for which the
model is currently most applicable. Moisture in the finite
element soil column can vary between the input residual
volumetric moisture content (m3 m−3), �R, and the volu-
metric moisture content at saturation (m3 m−3), �S. tRIBS‐
VEGGIE uses the Brooks‐Corey model [Brooks and Corey,
1964] to characterize the relationship between volumetric
moisture content (�) hydraulic conductivity, K(�), and soil
matric potential, y(�). The Brooks‐Corey parameterization
requires specification of a hydraulic conductivity at satura-
tion (cm h−1), KS, the pore distribution index parameter
(dimensionless), l, and the air entry pressure (mm), yb.
[17] Ground heat flux in the tRIBS‐VEGGIE model is

calculated through the method outlined by Wang and Bras
[1999], which is based on a numerical solution to the
one‐dimensional heat diffusion equation with constant heat
diffusivity. The solution to the heat diffusion equation
proposed by Wang and Bras [1999] is based on the recent
history of soil surface temperatures, and requires specifica-
tion of the volumetric thermal conductivity and heat capacity
of the soil. Both the thermal conductivity and heat capacity
depend on the moisture state (�) at the time of calculation, and
therefore require specification of soil‐specific thermal para-
meters as input. Computation of the soil heat capacity is
moisture‐dependent linear combination of the input heat
capacity of the soil solid materials, Cs,solids (Jm

−3K−1), the
moisture content at saturation of the soil (�S), the heat
capacity of liquid water, and the moisture state in the near
surface (�). Moisture‐dependent calculations of thermal
conductivity in tRIBS‐VEGGIE are based on the method
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suggested by Farouki [1981] and require specification of
the thermal conductivity of the dry soil (Jm−1s−1K−1), ks,dry,
and the corresponding thermal conductivity of the saturated
soil (Jm−1s−1K−1), ks,sat.
[18] Latent and sensible heat fluxes from the bare soil in

tRIBS‐VEGGIE are computed through a resistance formu-
lation, in which independent resistances to latent and sen-
sible heat fluxes are calculated. The gradient between air
temperature and soil skin temperature drives sensible heat
flux, while the gradient between atmospheric humidity and
air humidity in the near‐surface pore space drives latent heat
flux. Humidity in the pore spaces near the soil surface, in
turn, depends on the soil skin temperature. In this formu-
lation, the latent heat flux depends on the soil matric po-
tential and moisture state in the near surface, and on the
input parameters �S and �R. It should also be noted, that
sensible and latent heat fluxes also indirectly depend on the
soil thermal properties outlined above, because each flux
component depends on the soil skin temperature.
[19] The SHTPs required as input to the tRIBS‐VEGGIE

model and considered as uncertain in the present study are
summarized in Table 1.

3. Soil Database Analysis, Modeling Experiment
Setup, and Results

[20] Efforts to fit marginal distributions and compute rank
correlation matrices from the soil hydrologic parameter da-
tabase used in this study are summarized here. This is fol-
lowed by an overview of the modeling experiments and
analytical techniques employed to evaluate the impacts of
the different soil parameter sampling techniques on soil
moisture ensemble statistics, along with the results of these
experiments.

3.1. Statistical Analysis of Soil Properties

[21] The soils data used in this study constitute a meta-
database from 3 soil surveys [Rawls and Brakensiek, 1985;
Ahuja et al., 1989; Leij et al., 1996]. These data have pre-
viously been analyzed by Schaap and Leij [1998], and un-
derlie the ROSETTA software issued by the U.S. Depart-
ment of Agriculture’s Salinity Laboratory. This metadata-
base contains 2134 records corresponding to individual soil
samples, 1309 of which possess a measurement of saturated
hydraulic conductivity (KS). The parameters measured for
each record are summarized in Table 2. Note that the me-
tadatabase used by Schaap and Leij [1998] present param-
eter values for the van Genuchten–Mualem [van Genuchten,
1980] soil water retention model, whereas the tRIBS‐
VEGGIE model requires Brooks‐Corey parameters [Brooks

and Corey, 1964]. Morel‐Seytoux et al. [1996], however,
demonstrated equivalence between the parameters of the van
Genuchten and Brooks‐Corey soil water retention functions
and provided transformations between the parameterizations.
[22] Each record was assigned to a soil textural class

based on the recorded sand, silt, and clay fraction. The
number of records within each textural class ranges from 10
(silt) to 514 (sandy loam) and is shown in Table 3. Of the
1309 records with KS data, 9 textural classes are represented
by at least 20 records and are set apart for further statistical
analysis. In our analysis of these 9 textural classes we as-
sume that the within‐class ranges of parameter values and
correlation structure characterize the ensemble behavior of
each textural class. In light of this assumption, within each
of the 9 selected textural classes we fit marginal distribu-
tions to each parameter and computed the Spearman corre-
lation matrices, as required to generate uncertain replicates
of the SHTPs necessary to simulate soil moisture with the
tRIBS‐VEGGIE model.
[23] We assumed that the log‐transformed hydraulic

conductivity data is normally distributed based on previous
studies of hydraulic conductivity distributions [e.g., Reynolds
and Elrick, 1985]. Further, the residual moisture content (�R)
data exhibited a significant number of records possessed �R
equals zero. We treated the marginal distribution of �R as a
mixed discrete‐continuous distribution, with an atom of
probability at 0 with mass equal to the empirical frequency
of occurrence of �S = 0 for each textural class, and a two‐
parameter beta distribution for nonzero values of �S. Initial
candidate distributions for the remainder of the parameters
were the gamma, two‐parameter beta, and exponential dis-
tributions. The chosen distribution for each parameter was

Table 1. Soil Hydraulic and Thermal Properties Required by
tRIBS‐VEGGIE

Symbol Description

KS saturated hydraulic conductivity (mm h−1)
�R residual moisture content (m3 m−3)
�S saturated moisture content (m3 m−3)
l Brooks‐Corey pore distribution index parameter
hb Brooks‐Corey air entry pressure parameter (mm)
ks,dry volumetric thermal conductivity of dry soil (J m−1 s−1 K−1)
ks,sat volumetric thermal conductivity of saturated soil (J m−1 s−1 K−1)
Cs,solids volumetric heat capacity of soil solids (J m−3 K−1)

Table 2. Parameters in the Schaap and Leij [1998] Database

Parameter Description

% clay percent clay by mass
% sand percent sand by mass
% silt percent silt by mass
rb bulk density, not used (g cm−3)
KS saturated hydraulic conductivity
�R residual moisture content (mm3 mm−3)
�S saturated moisture content (mm3 mm−3)
a van Genuchten fitting parameter
n van Genuchten fitting parameter

Table 3. Number of Data Records by Classified Textural Class

Number of Records
in Database

Number of Records in
Database with KS Data

Clay 94 63
Sandy clay 10 8
Silty clay 29 14
Sandy clay loam 181 135
Silty clay loam 92 42
Clay loam 142 56
Sandy loam 514 334
Loam 252 119
Silt loam 327 135
Sand 342 277
Loamy sand 141 123
Silt 10 3
Total 2134 1309
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based both on the significance of computed Kolmogorov‐
Smirnoff (KS) goodness‐of‐fit statistics and visible com-
parison between the fit marginal distributions and empirical
histograms of each parameter. According to these criteria,
the two‐parameter beta distribution was chosen to represent
the uncertainty in the remaining parameters. In the context of
the soil properties considered here, the beta distribution is
particularly advantageous because it is defined over a finite
interval and can therefore constrain parameters to realistic
values. The method of moments was used to estimate the beta
distribution parameters a and b. The mean and variance for
each soil parameter within each soil textural class, the esti-
mates of the parameters describing the fit marginal distribu-
tions for each soil parameter and soil textural class together
with plots of the fit marginal distributions along with the
empirical histograms for each parameter and textural class,
and the computed Spearman rank correlation matrices for
each of the 9 considered textural classes are provided as
auxiliary material.1

3.2. Soil Moisture Ensembles: Experimental and
Analytical Framework

[24] To contrast the two SHTP sampling techniques in the
context of ensemble soil moisture modeling, results of a
single ensemble experiment are presented in Figure 3. Using
each sampling algorithm, 100 combinations of soil parameter
inputs to tRIBS‐VEGGIE were generated. The near‐surface
soil moisture (top 10 cm) response during a 1000 h period
was then simulated, assuming initial soil moisture condi-
tions corresponding to 10% effective saturation (defined as
Se = [� − �R]/[�S − �R] = 0.10). Both ensembles were
subjected to the same hydrometeorological forcings and the
rainfall is depicted in Figure 3a. Figure 3b shows individual
replicates and ensemble mean soil moisture response in the
top 10 cm of soil for the case in which the ensemble of soil
parameters was produced using the RP algorithm. Figure 3c
depicts the results when the ensemble of soil parameters was
produced using SRS. Figure 3d shows the time evolution of
the ensemble standard deviation in soil moisture for both
sampling approaches. The ensemble mean soil moisture
response appears virtually identical for the two SHTP sam-
pling algorithms (Figures 3b and 3c). However, several soil

1Auxiliary materials are available in the HTML. doi:10.1029/
2009WR008155.

Figure 3. The time evolution of (a) rainfall used to drive the tRIBS‐VEGGIE model, (b) soil moisture in
the top 10 cm (m3 m−3) for the simulations in which SHTPs were generated using the RP technique, (c) soil
moisture in the top 10 cm (m3 m−3) for the simulations in which SHTPs were generated using the random
sampling technique, and (d) the standard deviation in soil moisture (m3m−3). In Figures 3b and 3c, gray lines
depict individual ensemble replicates, while the black line depicts the ensemble mean. In Figure 3d the
dashed line shows ensemble in which SHTPs were generated using random sampling, while the solid line
indicates the ensemble in which they were generated using the RP technique.
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moisture replicates evolved with SRS‐generated soil para-
meters appear to be physically unrealistic. Specifically, the
soil moisture response of several replicates seems to saturate
after the first rainfall event and remains saturated throughout
the remainder of the simulation (Figure 3c). Furthermore,
some replicates evolved with SRS‐generated soils demon-
strate large increases in near‐surface soil moisture during
interstorm periods, an implausibly large sensitivity to evap-
orative forcing (Figure 3c). The ensemble standard deviation
in soil moisture, a measure of soil moisture uncertainty,
generally responds similarly in time (Figure 3d). However,
the ensemble standard deviation is higher for the experiment
in which soil parameters were generated using the SRS ap-
proach (Figure 3d). Because a reasonably large number of soil
parameter combinations were generated using each tech-
nique, the difference in the ensemble standard deviation in
near‐surface soil moisture is likely the result of parameter
combinations that are statistically unlikely that, when sub-
jected to meteorological forcings within the tRIBS‐VEGGIE
model, also lead to soil moisture dynamics that are unrealistic.
[25] The overarching objective of this work, however, is

to investigate the degree to which the ensemble estimate of
mean and variance in near‐surface soil moisture vary de-
pending on the technique by which soil property uncer-
tainty is represented and the size of the ensemble. To this
end, the present work requires producing sufficiently many
ensemble first‐ and second‐order statistics, across a range
of ensemble sizes, to quantify estimator variances. We vary
the ensemble size (K) in powers of 2, from 24 to 210 (i.e.,
from 16 to 1024 replicates). To investigate potential differ-
ence in behavior associated with soil textural class variation
we consider three distinct soil textures: loam, sandy loam,
and clay. For each ensemble size (K) and soil textural class
we generate 20 independent ensemble parameter combina-
tions, each consisting of K combinations of the soil para-
meters required as input to tRIBS‐VEGGIE, using both the
RP and SRS technique. All replicates in these simulations are
subjected to the same hydrometeorological forcings for a

period of 1000 h, and the soil moisture state is not con-
strained to observations at any point during the simulation
(i.e., soil moisture ensemble simulations are open loop).
The rainfall time series used to drive the model is the same
time series depicted in Figure 3a. Initial soil moisture
conditions again correspond to 10% effective saturation.
[26] This set of simulations yields 20 time‐evolving en-

semble estimates of mean and variance in near‐surface soil
moisture for each ensemble size, K. Figure 4 depicts an
example the time evolution of 20 estimates of ensemble mean
(Figure 4a) and ensemble standard deviation (Figure 4b) soil
moisture for one ensemble size (64 replicates). For this
particular ensemble size, ensemble mean soil moisture is
estimated fairly consistently using either RP or SRS to
generate SHTPs input to the model (Figure 4a). However,
for this ensemble size the estimate of ensemble standard
deviation in soil moisture varies more when SRS is used to
generate the soil parameters required as input to tRIBS‐
VEGGIE, than when the RP technique is used to simulate the
soil parameters (Figure 4b). This reveals that, at this partic-
ular ensemble size, the estimate of ensemble soil moisture
variance is sensitive to the particular combination of soil
parameters sampled when SRS is used to generate the soil
parameters required by the model.
[27] In the context of ensemble soil moisture data assimi-

lation, achieving a consistent estimate of the ensemble
statistics on which the state update step is based with the
minimum number of ensemble replicates is a desirable goal
from the perspective of computational efficiency and cost. In
this case the number of ensemble replicates corresponds to the
number of soil parameter combinations generated using each
sampling technique and input to the tRIBS‐VEGGIE model.
A consistent estimate of the ensemble mean and variance, on
which ensemble data assimilation algorithms such as the
EnKF are based, is an estimate that is independent of the
actual parameter values used. Specifically, the ensemble first‐
and second‐order moments on which a hypothetical state
update would be based should not vary significantly when
different ensembles of soil parameters, generated in the same
way, are used to characterize the soil. Significant variation in
the soil moisture ensemble statistics across different ensem-
ble simulations with different soil parameter ensembles
drawn from the same marginal distributions could conceiv-
ably lead to significant differences in the innovations and
analysis increments in a data assimilation state update step.
Therefore, the appropriate measure of consistency in the first‐
and second‐order ensemble statistics is themean and variance
(or standard deviation) in the ensemble estimates.
[28] For each of parameter sampling algorithms outlined

above, and for each of the 20 independent ensembles and
each ensemble size, �̂�i (t) is the ensemble estimate of the
mean soil moisture for ensemble i at time t, defined as

�̂�i tð Þ ¼ 1

K

XK
k¼1

�k tð Þ; ð7Þ

where �k(t) is the value of soil moisture of replicate k of K at
time t. Similarly, �̂�i

2 (t) is the ensemble estimate of the
variance in soil moisture for ensemble i at time t, defined as

�̂2
�i tð Þ ¼

1

K � 1

XK
k¼1

�k tð Þ � �̂� tð Þð Þ2: ð8Þ

Figure 4. The time evolution of (a) soil moisture in the top
10 cm (m3 m−3) and (b) the standard deviation in soil mois-
ture (m3 m−3). Gray dashed lines show ensembles in which
SHTPs were generated using random sampling, while black
solid lines indicate ensembles in which SHTPs were gener-
ated using the RP technique.
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The ensemble estimates of �̂�i (t) and �̂�i
2 (t) are computed

for (1) each independent ensemble, (2) each ensemble size
class, (3) each soil textural class considered, and (4) each
parameter sampling technique. This yields 20 ensemble‐
based estimates of the mean and variance in near surface soil
moisture for each soil class, ensemble size class, and sam-
pling technique. For each soil class, ensemble size class, and
sampling technique, we compute the average and variance
(standard deviation) of the ensemble estimates of mean and
variance in soil moisture across the 20 independent en-
sembles. The average ensemble mean and average ensemble
variance in soil moisture, computed across the 20 indepen-
dent ensembles and 7 ensemble size classes, provides a
quantitative measure of the sensitivity of the ensemble es-
timates to ensemble size. Specifically of interest is (1) the
degree to which the average estimate of the ensemble mean
and average estimate of the ensemble variance changes as
the ensemble size increases and (2) whether the average
estimate of the ensemble mean and average estimate of the
ensemble variance in soil moisture varies between the two
parameter sampling schemes considered. For a particular
ensemble size (K), the average ensemble mean and average
ensemble variance in soil moisture across the N = 20 in-
dependent ensembles are computed as

�̂ �̂� tð Þð Þ ¼ 1

N

XN
i¼1

�̂�i tð Þð Þ ð9Þ

and

�̂ �̂2
� tð Þ� � ¼ 1

N

XN
i¼1

�̂2
�i tð Þ

� �
; ð10Þ

respectively.

[29] By contrast, the variance (standard deviation) of the
ensemble mean and the variance in the ensemble variance
are measures of the consistency of the ensemble estimates.
These statistical metrics provide insight into the degree to
which the variance in the ensemble estimates of the mean
and variance in near surface soil moisture are sensitive to
ensemble size, sampling technique, and soil texture. The
sample variance in the ensemble mean soil moisture esti-
mate is computed as

ŝ2 �̂� tð Þð Þ ¼ 1

N � 1

XN
i¼1

�̂�i tð Þ � �̂ �̂� tð Þð Þð Þ2; ð11Þ

while the sample variance in the ensemble estimate of var-
iance in soil moisture is computed as

ŝ2 �̂2
� tð Þ� � ¼ 1

N � 1

XN
i¼1

�̂2
�i tð Þ � �̂ �̂2

� tð Þ� �� �2
: ð12Þ

[30] Both s2 (�̂� (t)) and s2 (�̂� (t)) should be zero in the
limit of infinitely large ensembles (K), regardless of how
the uncertainty in the parameters is represented. At small
ensemble sizes, sampling error can cause both to be ap-
preciably different from zero. Furthermore, as mentioned
above the values of �̂� (t) and �̂�

2 (t) to which the ensemble
simulations converge as K increases may be different be-
tween the two sampling techniques because the SRS ap-
proach makes no attempt to impose correlation among the
parameters.
[31] For given hydrometeorological forcings, the rate at

which s2 (�̂�(t)) and s2 (�̂�(t)) decrease as ensemble size
increases can highlight tradeoffs between computational
burden due to increased ensemble size and the associated
decrease in the variance of the ensemble estimates of mean
and variance in soil moisture. Comparing the values of s2

(�̂�(t)) and s2 (�̂�(t)) for the RP and SRS approaches to re-
presenting soil parameter uncertainty at a given ensemble
size and during different times in the wetting‐drying cycle
can demonstrate the potential benefits of more careful
treatment of parameter uncertainty under ensemble size
constraints.
[32] Within each soil textural class considered, there is

almost no discernable difference between the two parameter
sampling techniques in the value of �̂ (�̂�(t)) at hour 750,
which immediately follows substantial rainfall event
(Figures 5a–5c). Furthermore, for both sampling techniques
and all three soil textural classes, �̂(�̂�(t)) does not vary
significantly as a function of ensemble size (Figures 5a–5c).
The fact that there is very little variation in �̂(�̂�(t)) between
sampling techniques for all soil types likely reflects the in-
fluence on the volume of rainfall during the preceding
precipitation event on the ensemble mean value of soil
moisture. At the same time during the simulation (750 h),
the two parameter sampling techniques produce substan-
tially different values of �̂(�̂�

2(t)), although within each soil
textural class the values of �̂(�̂�

2(t)) do not change signifi-
cantly as the ensemble size increases for either parameter
sampling technique (Figures 5d–5f). Furthermore, the RP
technique is associated with lower values of �̂(�̂�

2(t)) within
each soil textural class (Figures 5d–5f).
[33] For all soil textures, there are small differences seen

in �̂(�̂�(t)) as a function of ensemble size and parameter

Figure 5. At 750 h (just after cessation of rainfall) the
average ensemble mean soil moisture estimate across 20
ensembles as a function of ensemble size for (a) loam,
(b) clay, and (c) sandy loam soils is shown. The average
ensemble estimate of the standard deviation in soil mois-
ture across 20 ensembles as a function of ensemble size
for (d) loam, (e) clay, and (f) sandy loam soils.
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sampling technique at hour 1000, which immediately fol-
lows an extended drying period (Figures 6a–6c). For all
soil types, �̂(�̂�(t)) slightly increases with ensemble size
(Figures 6a–6c). Furthermore, at any given ensemble size
and for all ensemble sizes �̂(�̂�(t)) tends to be slightly
higher for the soil moisture ensembles simulated with the
RP‐generated soil parameters (Figures 6a–6c). At the same
time during the simulation (1000 h), for each soil type
�̂(�̂�

2(t)) does not substantially change as the ensemble size
increases, except at the smallest ensemble sizes of 16 and
32 (Figures 6d–6f). Moreover, for loamy and clay soil
types the two parameter sampling techniques seem to
produce values of �̂(�̂�

2(t)) that differ slightly, but notice-
ably (Figures 6d and 6e). However, for sandy loam soils
there is little difference in �̂(�̂�

2(t)) resulting from the dif-
ferent parameter sampling techniques.
[34] Figure 7 shows s2ð�̂�(t)) and s

2ð�̂�(t)) at t = 750 h into
the simulation during a significant rain event. For all soil
textures, using RP to generate soil parameters input to
tRIBS‐VEGGIE yields a lower value of s2ð�̂�(t)) at all
ensemble sizes (Figures 7a–7c). When comparing the tech-
niques, the difference in s2ð�̂�(t)) is greatest at the smallest
ensemble size, and is relatively insignificant at K = 1028
(Figures 7d–7f). Although s2ð�̂�(t)) is relatively low at the
minimum ensemble size (16) when RP is used to sample
SHTPs, it decreases only modestly as ensemble size in-
creases. Similarly, using RP to generate soil parameters input
to tRIBS‐VEGGIE yields a lower value of s2ð�̂�(t)) at all
ensemble sizes for all soil textures. When comparing the two
techniques, the difference in the value of s2ð�̂�(t)) at a given
ensemble size is largest at small ensemble sizes. However,
this difference decreases as K increases and is negligibly
small at ensemble sizes of K = 512 for clay and sandy loam
soils, and K = 256 for loam soils. When using SRS to gen-
erate soil parameters, doubling or quadrupling the ensemble

size from the minimum 16 yields much more consistency in
the estimate of ensemble mean and variance in soil moisture.
Figure 8 depicts similar results during a significant dry spell
in the rainfall record (t = 1000 h). Conclusions are largely the
same; however, note that at K = 16 for clay soils using SRS‐
generated soil parameters actually results in a lower value of
s2ð�̂�(t)) when compared to using RP‐generated parameters
(Figures 8a–8c). It is possible this is due to sampling error
associated with generating a relatively small number (20) of
independent ensembles to compute s2ð�̂�(t)) and s2ð�̂�(t))
(Figure 8). These results highlight the notion that careful
representation of uncertainty in model parameters describing
SHTPs required by a hydrologic model can lead to reduced
estimator (mean and variance) variance at small ensemble
sizes.

4. Discussion and Conclusions

[35] The results of this work indicate that when com-
putational resources serve as a constraint on the size of
the soil moisture ensemble, using a sampling technique
that (1) samples low‐probability but potentially high‐
consequence combinations of soil parameters and (2) im-
poses correlation known or believed to exist among those
parameters can potentially result in more consistent estima-
tion of ensemble mean and variance in soil moisture, as
measured by the variance in the ensemble statistic estimates
across 20 independent ensembles. This is a potentially
important conclusion in the context of hydrologic data
assimilation, because it demonstrates that potentially sig-
nificant reductions in the computational cost associated with
the Monte Carlo integration of hydrologic models during
the forecast step can be realized through careful attention
to the way in which model parameters are sampled. This
work is particularly targeted toward future ensemble data
assimilation studies using complex and spatially distributed
ecohydrologic models, in which the Monte Carlo simulation
of hydrologic moisture and energy states across the landscape
will constitute the bulk of the computational expense, rather
than the matrix computations associated with the state update.
As such, this work represents a relatively novel, but poten-
tially powerful, way of improving the computational eco-
nomics of high‐dimensional soil moisture data assimilation
systems.
[36] The finding that the parameter sampling techniques

considered here were associated with substantial differences
in the average value of the ensemble standard deviation in
soil moisture during a rainfall event is a potentially important
finding from the perspective of soil moisture data assimilation.
For example, because assimilation algorithms such as the
EnKF rely on a variance‐covariance matrix to resolve the
innovations in the model space, the way in which parameter
uncertainty is represented may play an important, if often
unrecognized, role in the model state update. Additionally, a
critical component of current and planned microwave soil
moisture remote sensing satellites is to allow for indepen-
dent quantification of errors in precipitation data used to
force land surface models [e.g., see Crow, 2007]. Employing
different techniques to sample the soil parameters required as
input to land surface models could lead to systemic differ-
ences in the ensemble statistics used to update those models
with available observations, and systemic differences in the
state update itself. When the magnitude of near‐surface soil

Figure 6. At 1000 h (during a significant dry down) the
average ensemble mean soil moisture estimate across 20
ensembles as a function of ensemble size for (a) loam,
(b) clay, and (c) sandy loam soils is shown. The average
ensemble estimate of the standard deviation in soil mois-
ture across 20 ensembles as a function of ensemble size
for (d) loam, (e) clay, and (f) sandy loam soils.
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moisture updates form a basis upon which to quantify errors
in the precipitation data used to force themodel, the technique
employed to represent uncertainty in the soil parameters re-
quired by the model may influence the interpretation of those
precipitation errors. This work has shown that while the size
of the ensemble plays a critical role in the estimator variance
of the ensemble mean and variance in near‐surface soil
moisture (Figures 7 and 8), correlation known or believed to
exist among the soil parameters dictates the values of the
ensemble mean and variance in soil moisture, particularly
during rainfall events (Figure 5). It is important to note
that the structure of the rank correlation matrix T in the RP
approach, which was calculated empirically from a soils
database in this study, influences the consistency of the
ensemble statistics. However, the magnitude of the empiri-
cally calculated rank correlation coefficient is sensitive to
the number of soil measurement records within each soil
textural class. It is possible, therefore, that ensembles of soil
parameters generated through the RP approach and the
associated ensemble soil moisture statistics derived from the
model are influenced by spurious soil property correlations
when the number of soil records used to compute T for each
textural class is small. This may lead to consistent estimates
of ensemble statistics that are nevertheless unrealistic because
the correlation among the model parameters has either been
overestimated or underestimated. This consequence indicates
that some caution is warranted in the use of the RP approach,
particularly in cases where the rank correlation matrix T
must be calculated with a small number records of the soil or
other model parameters.
[37] Depending on the way in which the physical me-

chanisms responsible for lateral redistribution of moisture in
the subsurface are represented within a particular model,
however, explicit representation of uncertainty soil para-

meters may have implications for the spatial patterns of
ensemble soil moisture statistics. For instance, the tRIBS‐
VEGGIE model formulates the slope‐parallel hydraulic
conductivity is assumed to be proportional to the (uncertain)
slope‐normal hydraulic conductivity. The constant of pro-
portionality is termed the anisotropy ratio, ar, and can either
amplify (ar > 1) or diminish (ar < 1) uncertainty in the
slope‐normal hydraulic conductivity. At any given time,
uncertainty in the slope‐normal hydraulic conductivity
arises from imperfect knowledge of the Brooks‐Corey
parameters as well as uncertainty in moisture status.
[38] It is important to note that an argument can be made

that the low ensemble soil moisture variance depicted in
Figure 1b is physically consistent with the expectation of
very little near‐surface moisture toward the end of a drying
cycle, irrespective of the soil. However, while it is true that
the total amount of moisture in the near surface would be
small at the end of a drying cycle, the residual moisture
content parameter is meant to capture the fact that most
natural soils do retain some small amount of moisture in
pore spaces not connected to the continuous pore network of
the soil, such as intra‐aggregate spaces, even under intense
natural drying conditions [Hillel, 1998]. Moreover, because
the hydraulic conductivity of the soil depends on the soil
moisture state, the potentially most important role of the
residual soil moisture parameter in hydrologic simulation is
in constraining the infiltration rate at the beginning of a
storm.
[39] This work is also of potential importance in the

calibration of spatially distributed hydrologic models, a
topic that has received a significant amount of attention in
hydrologic science literature. Early data assimilation studies
in the hydrologic sciences employed Kalman filtering pro-
cedures to simultaneously estimate the state and parameters

Figure 7. At 750 h (just after cessation of rainfall) the
standard deviation in the ensemble mean soil moisture esti-
mate across 20 ensembles as a function of ensemble size for
(a) loam, (b) clay, and (c) sandy loam soils is shown. The
standard deviation in the ensemble estimate of standard de-
viation in soil moisture across 20 ensembles as a function of
ensemble size for (d) loam, (e) clay, and (f) sandy loam
soils.

Figure 8. At 1000 h (during a significant dry down) the
standard deviation in the ensemble mean soil moisture esti-
mate across 20 ensembles as a function of ensemble size for
(a) loam, (b) clay, and (c) sandy loam soils is shown. The
standard deviation in the ensemble estimate of standard de-
viation in soil moisture across 20 ensembles as a function of
ensemble size for (d) loam, (e) clay, and (f) sandy loam
soils.
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of the Sacramento model by assimilating discharge ob-
servations. This automatic calibration approach to parameter
estimation has been used to identify a parameter and state
estimate that is best in a linear least squares sense as well as
a measure of the uncertainty in that estimate. A substantial
body of work has been devoted to global optimization ap-
proaches for calibration of complex hydrological models
[see, e.g., Duan et al., 1992; Gupta et al., 1998; Yapo et al.,
1998; Boyle et al., 2000]. These global optimization
approaches, which minimize an often multiobjective cost
function that penalizes deviations between predicted ob-
servations and observational data to arrive at some Pareto‐
optimal parameter estimate, may be advantageous when
using complex and high‐dimensional hydrologic models
because augmented state vector approaches may be sub-
stantially more computationally expensive. Vrugt et al.
[2005] exploited the strengths of both data assimilation
and global optimization strategies to estimate hydrologic
model states and parameters in an ensemble‐based frame-
work that they term simultaneous optimization and data
assimilation (SODA). The SODA framework, however, is
computationally expensive because it requires serial en-
semble data assimilation experiments interspersed with the
use of a shuffled complex evolution‐based global optimi-
zation scheme. The RP soil parameter generation technique
outlined in this work may stand to substantially reduce
computational costs associated with parameter estimation
through the SODA framework by reducing the size of the
ensemble simulation between successive iterations of the
optimization scheme. More recently, Markov Chain Monte
Carlo (MCMC) techniques have received a great deal of
attention in the calibration of hydrologic models and the
estimation of their parameters [Vrugt et al., 2008]. MCMC
is an optimization technique designed to minimize errors
between model predictions and observations in order to
estimate the parameters of a model and their posterior dis-
tributions. The RP approach outlined here could be used to
generate ensembles of soil parameters for sequential state
estimation with algorithms such as the EnKF based on the
estimated parameter posterior distributions obtained through
the MCMC technique.
[40] As pointed out by a reviewer, the approach taken in

this study assumes that the spatial distribution of soil tex-
tures is known. This is generally not the case, particularly in
locations outside the Continental United States. It is possible
to extend the techniques outlined here to include for the
possibility of uncertainty in the spatial distribution of soil
types. For example, through geostatistical analysis of to-
pography and surface lithology one could construct a map
delineating distinct lithotopo units and a corresponding
probability mass function that expresses the likelihood that a
given lithotopo unit is characterized by a particular soil
texture. This probability mass function could be used to
generate ensembles of maps delineating the possible spatial
distribution of categorical soil texture classes. Then, for
each potential soil texture map, the RP approach could be
used to generate an ensemble of soil parameters required
as input to the land surface model. This ensemble of soil
moisture ensembles could then be constrained to satellite
microwave observations in a data assimilation system,
which would conceivably lead to improved understanding
about the spatial distribution of soil textures. Such an

approach may lead to a process‐based mechanism for map-
ping soil texture globally.
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