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Case History

VSP traveltime inversion: Near-surface issues

Geoff J.M. Moret∗, William P. Clement‡, Michael D. Knoll‡, and Warren Barrash‡

ABSTRACT

P-wave velocity information obtained from vertical
seismic profiles (VSPs) can be useful in imaging subsur-
face structure, either by directly detecting changes in the
subsurface or as an aid to the interpretation of seismic re-
flection data. In the shallow subsurface, P-wave velocity
can change by nearly an order of magnitude over a short
distance, so curved rays are needed to accurately model
VSP traveltimes. We used a curved-ray inversion to esti-
mate the velocity profile and the discrepancy principle to
estimate the data noise level and to choose the optimum
regularization parameter. The curved-ray routine per-
formed better than a straight-ray inversion for synthetic
models containing high-velocity contrasts. The applica-
tion of the inversion to field data produced a velocity
model that agreed well with prior information. These re-
sults show that curved-ray inversion should be used to
obtain velocity information from VSPs in the shallow
subsurface.

INTRODUCTION

A vertical seismic profile (VSP) records energy traveling
from a surface source to receivers in a borehole. We can invert
the arrival times of compressional or P-waves at the receivers
to estimate the subsurface velocity profile near the borehole.
In shallow geophysics, these velocity profiles are used to assign
depths to reflectors identified on seismic sections (e.g., Allison
and Schieck, 1996; Jarvis and Knight, 2000) or to map changes
in subsurface properties (e.g., lithology, porosity, pore fluid)
that are of interest in environmental or engineering investiga-
tions (e.g., Michaels and Barrash, 1997; Milligan et al., 2000).
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Many VSP inversions (e.g., Stewart, 1984; Schuster, 1988;
Lizarralde and Swift, 1999) assume that the raypaths between
sources and receivers can be approximated by straight lines.
Schuster et al. (1988) found that the straight-ray assumption
is reasonable if velocity contrasts are small and the horizon-
tal offset between the shot and the receivers is less than the
depth of the first receiver. In VSPs collected in shallow inves-
tigations, however, source offsets from the well axis are com-
monly of the same order as the depths of the first few receivers.
Also, velocities in the shallow subsurface typically span a large
range (e.g., Miller and Xia, 1998): from less than 300 m/s to
greater than 2000 m/s for P-waves. Large velocity contrasts re-
sult in significant refraction of rays at interfaces. For example,
since saturated sediments have a much higher P-wave velocity
than unsaturated sediments, P-wave raypaths refract sharply
at the water table. As a result, a curved-ray model will better
approximate the true P-wave raypaths and give more realistic
traveltimes than can a straight-ray model in shallow subsurface
environments.

One way to estimate velocity from traveltimes using curved
rays is layer stripping (Milligan et al., 2000). In this method, the
velocity in the first layer is estimated assuming a straight ray-
path from the source to the first receiver. The interval velocities
in subsequent layers are calculated based on the time required
for a curved ray to reach the receiver in that layer. Layer strip-
ping can produce good results, but the velocity model is highly
sensitive to errors in traveltime picks, as the errors are propa-
gated into the subsequent layer velocities.

We have designed and implemented a curved-ray traveltime
inversion for shallow VSP data. Previous curved-ray VSP inver-
sions (e.g., Pujol et al., 1985; Lee, 1990; Mao and Stuart, 1997)
were designed to find the depths and velocities of a few dis-
crete layers. As a result, these inversions incorporated reflec-
tion data and considered refraction at a small number of layer

345



346 Moret et al.

boundaries. Previous curved-ray inversions also lacked quan-
titative error analysis. Shallow geophysics is often concerned
with small fluctuations in subsurface properties, so our inver-
sion uses a large number of layers to image gradual changes
in seismic velocity. We estimate the traveltime error from the
data using Morozov’s discrepancy principle, and we use use this
error to estimate the uncertainty in the layer velocities. After
describing our inversion, we will demonstrate its application
with both synthetic and field experiments.

THEORY

Forward model

The forward modeling problem of finding traveltimes for
curved rays in a layered Earth can be solved with ray shooting
(Hardage, 1983). This technique consists of using Snell’s law to
trace a ray downward from the source to the receiver. To trace
a ray to a specific receiver, the initial angle of the ray is varied
using the bisection method (Acton, 1990) until the ray passes
sufficiently close to the receiver (in this case, within 1 cm). The
general formula for the traveltime, t , of a ray traveling along a
path through a slowness field is

t =
∫

s(`) · ∂`, (1)

where ` is the raypath and s is the slowness (defined as the re-
ciprocal of velocity). For a layered system as shown in Figure 1,
the traveltime for a ray with an initial angle of θ1 hitting a re-
ceiver at depth z in layer j , where all the layers have an identical

Figure 1. Schematic diagram illustrating the parameters used
for the curved-ray forward model. Each layer has a thickness
of h and slowness of sn. The angle between the segment of the
ray in layer n and the vertical is θn. The depth of the receiver
is z.

thickness of h but different constant slownesses, sn, is

t = s1h

cos θ1
+

j−1∑
n=2

snh

cos
[

arcsin
(

s1

sn
sin θ1

)]
+ sj [z− ( j − 1)h]

cos
[

arcsin
(

s1

sj
sin θ1

)] . (2)

Inversion

The traveltimes produced by equation (2) depend on slow-
ness in a nonlinear way. Many different techniques can be used
to invert nonlinear systems. We used a linearized Occam’s in-
version scheme, which can be thought of as a first-order Tay-
lor series expansion of the traveltime vector in slowness space
(Menke, 1984). We used the “jumping” method (e.g., Scales
et al., 1990) to solve the inverse problem. The jumping method
allows us to apply constraints directly to the slowness model:

sn = (JnT
Jn + λ2WT

mWm
)−1JnT

(tn + Jnsn−1). (3)

In equation (3), sn is the vector of layer slownesses at it-
eration n. Wm is the model weighting matrix, a set of con-
straint equations that, in this case, minimize the first derivative
of the layer slownesses in the vertical direction. The vector
1tn is the desired change in the traveltimes, the difference be-
tween the forward-modeling results for iteration n and the data.
The scalar λ controls the tradeoff between fitting the data and
the model regularization. The Jacobian matrix Jn contains the
derivatives of the forward-modeled traveltimes at iteration n
with respect to the slownesses:

Jn
i j =

∂ti
∂sj

(4)

These derivatives are obtained by differentiating equa-
tion (2). For the traveltime to receiver i at a depth of z in
layer j , these derivatives are
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These analytical expressions can be evaluated using the slow-
ness model of the previous iteration and the angles produced
by the ray-shooting forward model.

At each iteration, the traveltimes to the receivers through the
current slowness estimate are forward-modeled, Jn and1tn are
calculated, and the new slowness model is found using equa-
tion (3). The inversion is halted when the magnitude of the
traveltime residual does not decrease between iterations.

All linearized inversions require a starting model. Often,
the choice of starting model can strongly influence the results
(e.g., Vasco et al., 1996). Two methods for choosing a starting
model are to try many starting models to characterize the non-
uniqueness or to choose a starting model that prior information
or preliminary analysis suggests is close to the “true” answer.
While the first approach gives a more complete answer, the sec-
ond is sufficient for our purposes. For the inversion described
above, synthetic experiments have shown that starting mod-
els with velocities reasonably close to the true values produce
accurate final-velocity models (Moret, 2003).

At many shallow sites, the P-wave velocity contrast across
the water table is large (e.g., Miller and Xia, 1998). The depth
of the water table is known because the depth to water in the
borehole can be measured. In our vertical first-derivative reg-
ularization scheme, each row of Wm constrains the velocity
contrast between two adjacent layers to be small. We can in-
corporate the available prior information about the water table
into the inversion by changing Wm so that it does not constrain
the velocity contrast across the layer boundary corresponding
to the water table.

Discrepancy principle

Two parameters required by the inversion are an estimate of
the variance of the traveltime noise and a value of λ. Morozov’s
discrepancy principle (Morozov, 1984; Hansen, 1992) provides
a rationale for choosing these parameters.

Wahba (1990) applied the discrepancy principle using the
function ν(λ), defined as

ν(λ) = ‖1t f ‖2

trace
(
I− J f

(
J f T J f + λ2WT

mWm
)−1J f T

) , (6)

where iteration f is the final iteration of the inversion. The
denominator of equation (6) is an estimate of the degrees of
freedom of the data noise (Wahba, 1990). When the optimum
λ value, λ∗, is used, the value of ν(λ∗) is equal to the variance
of the traveltime error, σ 2

d (Wahba, 1990).
Hansen (1992) found that the behavior of ν(λ) could be used

to estimate both λ∗ and σ 2
d . To obtain these estimates, we in-

vert the data for many values of λ and then plot the function
ν(λ) versus λ−1. At high λ values, ν(λ) decreases steadily with
decreasing λ. When ν(λ) reaches the noise level of the data,
the velocity model cannot fit the data better without becoming
much less smooth, so ν(λ) levels off at a plateau and does not
decrease further until much smaller values of λ. The value of
the function ν(λ) at the plateau should be equal to the vari-
ance of the noise in the data, σ 2

d (Hansen, 1992). The optimum
regularization parameter, λ∗, is the λ value at the left end of
the plateau, that is, the most highly regularized model with the
desired value of ν(λ). Hansen (1992) suggested that higher λ
values could also be used to compensate for the inexactness of
the Jacobian matrix.

Uncertainty

The final velocity model is more useful if the uncertainty
in each layer’s velocity is known. The model covariance ma-
trix contains information about the effect of data errors on the
model parameters (Menke, 1984). The diagonal of the model
covariance matrix gives the variances of each parameter. The
off-diagonal terms are the covariances, which contain infor-
mation on the relationships between parameters. As shown in
Alumbaugh and Newman (2000), the model covariance matrix
for a linearized inversion can be calculated using

Cm =
[
J f T J f + λ2WT

mWm
]−1
. (7)

In order to obtain the 95% confidence intervals for each layer’s
slowness, we multiply the square root of each diagonal element
of the matrix by 1.96 (95% of the area beneath a Gaussian
curve is contained within 1.96 standard deviations of the mean).
The uncertainties in the slownesses are normally distributed, so
the uncertainties in the velocities are not. The 95% confidence
limits for the layer velocities are

νmin
i = 1

si + 1.96σmodel
i

, νmax
i = 1

si − 1.96σmodel
i

. (8)

The equation for vmax
i is discontinuous. If σmodel

i is larger than
si , then the lower 95%= 0 confidence limit for si is negative,
making νmax

i negative also. This physically unrealistic negative
value of νmax

i indicates that no confidence can be placed in the
estimate of νi .

SYNTHETIC EXAMPLE

We tested our inversion routine on a synthetic data set. The
test had three objectives: (1) to see whether the noise value
estimated using the discrepancy principle was correct, (2) to
verify that the inversion results were close to the original ve-
locity model, and (3) to compare the results of our routine with
a straight-ray inversion.

We generated the synthetic data using the ray-shooting al-
gorithm described above. In the simulated survey, the shot was
located 1 m away from the wells and the receivers were posi-
tioned every 0.1 m from just below the “water table” at 2 m
depth to the bottom of the well, resulting in 179 synthetic trav-
eltimes. We simulated picking errors in our data by adding
Gaussian noise with a standard deviation of 0.05 ms.

We inverted this noisy data using many different λ values to
generate a discrepancy principle plot for these noisy synthetic
traveltimes (Figure 2). The leftmost λ value on the plateau
is 40000 (1/λ= 2.5× 10−5). The plateau value corresponds to
Gaussian error with a standard deviation of 0.045 ms, a 10%
underestimate of the true value. This result suggests that the
discrepancy principle can be used to estimate data error levels
with reasonable accuracy.

Figure 3 shows the inversion result produced using a starting
model with a velocity of 500 m/s above the water table and
2500 m/s below and a λ value of 40000. The velocity across the
synthetic water table was not constrained. The final velocity
model has the same general structure and velocity values as the
synthetic model but has less abrupt velocity contrasts because
of model regularization.

We also tested the inversion using synthetic data with both
Gaussian noise and a static time shift. The final velocity model
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is nearly identical to Figure 3 except for a small change in the
velocity of the layer above the water table (e.g., a change of
<10 m/s for a shift of 0.1 ms). All of the rays travel nearly ver-
tical paths in this layer, so a change in the layer velocity results
in a nearly constant shift in the traveltimes. The discrepancy
principle plot for the synthetic data with the static shift closely
resembles Figure 2. This similarity indicates that noise esti-
mates from discrepancy principle plots represent the random
component of traveltime noise.

We also used the synthetic experiment to compare our non-
linear curved-ray inversion to a linear straight-ray inversion.
The straight-ray code used an inversion scheme similar to

Figure 2. Discrepancy principle plot for curved-ray inversion of
the synthetic data set. The dashed line is the plateau level, which
corresponds to traveltime noise with a standard deviation of
0.045 ms. The circled point is at λ= 40000, the chosen value.

Figure 3. Inversion results for the synthetic data set using both
the curved-ray and straight-ray inverse routines. The dotted
line is the true velocity model. The dash-dotted line is the
straight-ray inversion result, which is unable to reproduce the
velocity model above 7-m depth and contains high-frequency
oscillations. The solid line is the curved-ray inversion result,
which matches the true model reasonably well except at abrupt
velocity transitions.

Lizarralde and Swift (1999):

s = (GT G+ λ2WT
mWm

)−1GT t. (9)

The elements of the linear operator G are the path lengths of
each ray in each layer. Because of the straight-ray assumption,
the path lengths do not depend on the layer slownesses, making
the problem linear.

We chose a λ value for the straight-ray inversion by using
the χ2 statistic (Lizarralde and Swift 1999). The χ 2 statistic
compares the misfit of the solution with the expected misfit,
given the traveltime noise. When the normalized χ 2 statistic
has a value near 1.0, the results fit the data with the expected
degree of misfit. We systematically varied λ and found that a
λ value of 10,000 produced a normalized χ2 value of 1.25. Be-
cause changing λ slightly to get a normalized χ2 value closer to
1.0 would not have qualitatively changed the resulting velocity
model, we used a λ value of 10000 for the final inversion result.

Figure 3 compares the results for the straight-ray and the
curved-ray inversions of the synthetic data. The straight-ray
velocity model is more oscillatory. Because of the simplifying
straight-ray assumption, the straight-ray inversion results must
include unrealistic velocity changes to reach the desired travel-
time misfit level. The larger scale variations in the straight-ray
inversion result match the synthetic model at deeper layers,
where the straight-ray assumption is a better approximation.
However, the straight-ray inversion is unable to match the layer
velocities above roughly 7 m. At shallow depths, the raypaths
cannot be reasonably approximated by straight rays, so the
inversion cannot recover the true velocity model. While ignor-
ing the χ2 information and choosing a larger λ value would
eliminate the oscillations in the straight-ray inversion results, a
larger λ value would not be able to overcome the fundamental
limitations of the forward model in dealing with large velocity
contrasts within a few meters of the surface. The results of this
comparison suggest that curved-ray inversion is needed to ac-
curately recover the subsurface velocity structure from travel-
times for typical near-surface survey geometries and velocities.

FIELD EXAMPLE

We used the curved-ray inversion routine described above
to invert a shallow reverse vertical seismic profile (RVSP). An
RVSP uses a surface geophone to record energy from a bore-
hole source. The principle of reciprocity holds that the travel-
time for a ray remains unchanged if the source and receiver
locations are reversed, so the same inverse code can be used
for VSPs and RVSPs.

The RVSP data set used in this study was collected in well
C4 at the Boise Hydrogeophysical Research Site (BHRS), a re-
search wellfield near Boise, Idaho (Barrash and Knoll, 1998).
The BHRS is developed in a shallow, unconsolidated, sand-
and-cobble aquifer underlain by a clay aquitard. Because pref-
erential flow paths play an important role in flow and transport
processes in sand-and-cobble deposits (e.g., Jussel et al., 1994),
considerable interest in mapping the heterogeneity of such sed-
iments exists.

A borehole sparker was used as the seismic source for the
RVSP. A sparker is a rubber-walled cell full of salt water con-
taining a spark gap. When a high voltage (approximately 4 kV)
is discharged across the spark gap, the ionization of a small
amount of salt water caused by the electric current creates an
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acoustic disturbance that expands to the rubber walls. The rub-
ber walls transmit the disturbance to the surrounding fluid in
the form of P-wave energy. In dry holes, the coupling between
the sparker walls and the formation is poor, so data collected
using the sparker has the highest signal-to-noise ratio below
the water table. We used a vertical-component geophone to
record the arriving seismic energy. The resonance frequency of
the geophone was 10 Hz and, according to the manufacturer,
it had a uniform amplitude response to roughly 1 kHz. The
geophone was placed less than a meter from the well, and the
elevation of the geophone was surveyed. The sparker was low-
ered into the well and fired every 0.1 m from just below the
water table to the bottom of the well.

The data were recorded on a 24-bit engineering seismograph
with a 0.0625 ms sample interval and a 64 ms record length.
A 24 dB acquisition gain and an antialias filter were applied.
The traces collected are shown in Figure 4. The first arrival
traveltimes of the data were picked with a commercial seismic
processing package that uses subsample interpolation. We used
a total of 121 traveltimes.

The data were inverted using the routine described above.
At the time of data collection, the water level in the well was
1.62 m below land surface. The large velocity contrast could
be slightly higher than the water level in the well due to capil-
lary effects. At the BHRS, however, the height of the capillary
fringe would be relatively small because of the coarse grain size
of the sediments in the aquifer (Dingman, 1994). We used bore-
hole deviation logs to set a different horizontal offset for each

Figure 4. RVSP record from well C4 at the BHRS. The noisy
traces that occur every 10 ft (3.05 m) were collected with the
sparker next to casing breaks. The traveltimes for these traces
were not included in the inversion.

shot. The model weighting matrix Wm was designed to prevent
it from constraining the velocity contrast across the water ta-
ble. The starting velocity model we used was 2500 m/s below
the water table and 300 m/s above the water table. This model
was based on the results of a seismic refraction experiment at
the BHRS (S. Goldstein, 2002, personal communication).

The discrepancy principle plot for the inversion of the C4
data set is shown in Figure 5. The slope of the curve de-
creases with decreasing λ, but the curve does not have a distinct
plateau. This continuous decrease may indicate that the noise
level is not uniform. Because the signal amplitude decreases
with depth, the traveltime noise may increase with depth. We
chose to use the highest ν(λ) value in the region of slowly de-
creasing ν(λ) to avoid underestimating the uncertainties in the
layer velocities. This value corresponds to a λ value of 25000
and a σd of 0.027 ms. The choice of λ is somewhat arbitrary, but
using nearby λ values does not noticeably affect the results.
The σd value is between one-half and one-third of the sample
interval, an error level similar to other studies that have used
subsample picking (e.g., Lanz et al., 1998).

Figure 6 shows the inversion results and 95% confidence
intervals. The confidence intervals are large above 4 m because
of the lack of data and below 16 m because of the low ray
coverage. As a result, little confidence can be placed in the
velocity model except between 4 and 16 m.

To verify our results, we compared the final slowness model
produced by the inversion with a neutron porosity log from
well C4 (Figure 7). Details concerning the collection and pro-
cessing of the neutron log can be found in Barrash and Clemo
(2002). While seismic slowness generally increases as porosity
increases, we would not necessarily expect a simple relationship
between the two, as other factors in addition to porosity (e.g.,
grain-size distribution, pore-space geometry, effective stress)
can influence the seismic properties of a medium.

Figure 5. Discrepancy principle plot for curved-ray inversion of
the C4 RVSP data set. This curve does not exhibit a plateau. As
we wished to avoid underestimating the uncertainty in our ve-
locity model, we chose the highest reasonable “plateau” level.
This value, marked here with a dashed line, corresponds to trav-
eltime noise with a standard deviation of 0.027 ms. The circled
point is at λ= 25 000, the chosen value.
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Figure 6. Final velocity model produced by curved-ray inver-
sion of the C4 RVSP data set. The solid line is the veloc-
ity model; the dashed lines are the 95% confidence intervals.
Above ∼4 m and below ∼16 m, the velocities are unrealistic
and the uncertainties are great.

Figure 7. A comparison of the final slowness model produced
by curved-ray inversion of the C4 RVSP data set and a neutron
porosity log from the same well. The structure imaged by the
slowness model can be seen in the porosity log except for a
slowness peak at ∼7 m depth.

First-order similarity is evident between the seismic slow-
ness and porosity profiles (Figure 7) with zones of relatively
high values centered at about 5, 13, and 14.5 m. Examination of
core from wells at the BHRS indicates that such higher poros-
ity zones occur where the proportion of sand matrix is higher
relative to the cobble framework clasts and/or where pack-
ing of the sediment is less dense (Reboulet, 2003). Here we
note that the slowness peak at 7 m does not correspond to a
high-porosity zone (Figure 7), and core analysis indicates sed-
iments with low proportion of sand matrix in this interval. In
general, however, changes in porosity are reflected in the slow-
ness model. This suggests that our inverse routine was largely
successful in imaging variations in subsurface properties.

CONCLUSIONS

Ray bending affects shallow VSPs and RVSPs more than
deeper VSPs because of the geometry of acquisition and the
strong velocity contrasts in the shallow subsurface. This ray
bending must be considered when inverting shallow VSP or
RVSP traveltimes to produce accurate velocity models. In the
synthetic example, the straight-ray inversion was unable to re-
produce the true velocity model above 7-m depth. The veloc-
ity model produced by the straight-ray inversion also required
high-frequency oscillations to satisfy the data. In practice, any-
one using a straight-ray inversion for such a data set would use
a higher λ value, either ignoring χ 2 or increasing their estimate
of σd. Using a higher λ value would reduce the resolution of
the inversion.

The synthetic experiment also showed that the curved-ray
inversion presented here can produce accurate velocity models
in the presence of high velocity contrasts. Of particular interest
was the use of the discrepancy principle to estimate σd and to
choose λ. The σd estimate was within 10% of the true noise
level and the chosen λ value resulted in an accurate velocity
model.

The plateau in the plot of ν(λ) was not as distinct for the field
example. We suspect that the more gradual decline of ν(λ) was
due to variation in the noise level with depth. Because we did
not wish to underestimate the uncertainty in the final velocity
model, we chose the highest possible “plateau” value. The fi-
nal velocity model for a shallow RVSP data set was consistent
with prior information. The uncertainties associated with the
velocities show that the inversion of VSP or RVSP traveltimes
can distinguish between zones of different velocity on a scale
of ∼1 m. The ability to image the subsurface at this level of
resolution may be very helpful in engineering and hydrologic
investigations.
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