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Abstract. Document image quality is degraded through
processes such as scanning, printing, and photocopying.
The resulting bilevel image degradations can be cate-
gorized based either on observable degradation features
or on degradation model parameters. The image degra-
dation features can be related mathematically to model
parameters. In this paper we statistically compare pairs
of populations of degraded character images created with
different model parameters. The probability that the char-
acter populations were degraded by the same model pa-
rameters correlates with the relationship between ob-
servable degradation features and the model parameters.
Two metrics of character difference are used: Hamming
distance and moment feature distance. Knowledge of un-
der which conditions characters will be similar and when
they will be different can influence the choice of param-
eters for future experiments.

Key words: Degradation model – Point spread func-
tion – Binarization threshold

1 Introduction

Document image quality is degraded as the ideal con-
ceptual image is changed to form physical and electronic
images through processes such as scanning, printing and
photocopying. This paper discusses bilevel degradations
in the context of the scanning process. For the bilevel
processes, two observable image degradations were de-
scribed in [3]–[7]. These degradations are the amount
an edge is displaced from its original location and the
amount of erosion in a black or white corner. The vari-
ables that cause these image degradations can be re-
lated to the functional form of the degradation model:
the Point Spread Function (PSF), the associated PSF
width, and the binarization threshold.

From a calibrated model, one can predict how a doc-
ument image will look after being subjected to the ap-
propriate printing and scanning processes and, therefore,

predict system performance. Large training sets of syn-
thetic characters can be created using the model when
the model parameters are matched to the source doc-
ument. This can increase recognition accuracy. It also
eases the burden of hand segmenting and labeling data.
Models of the degradation process, along with estimates
of the parameters for these models, can be combined to
make a decision on whether a given document should be
entered by hand or sent to an Optical Character Recog-
nition (OCR) routine [8,14,15]. A model will allow re-
searchers to conduct controlled experiments to improve
OCR performance. Knowledge of the system model pa-
rameters can also be used to determine which documents
originated from the same source and, when the model
includes multiple printing/scanning steps, which docu-
ment was the original and which was a later generation
copy.

The degradation model used for this research is con-
volution followed by thresholding [1]. The two most sig-
nificant parameters affecting degradations of bilevel im-
ages are the point spread function (PSF) width and the
binarization threshold [9]. Each pair of these values will
affect an image differently. However, several combina-
tions of these parameters will affect images in a simi-
lar fashion. The PSF accounts for the blurring caused
by the optics of the scanner. Its functional form is not
constrained, but needs to be specified. A form that is
circularly symmetric is usually chosen so its width is de-
termined by one parameter. The size is in units of pixels,
which allows the model to be used for scanning at any
optical resolution. The threshold converts the image to
a bilevel image. This is often done in software, and a
global threshold is assumed. The units for the threshold
are absorptance. The variations in the resulting bilevel
bitmaps come largely from phase effects [13].

Several methods have been proposed to calibrate this
model from bilevel images [2,4,6,7]. The resulting pa-
rameter estimates will never be error-free. However, not
all errors are equally bad. Some will produce characters
that have similar appearances. These are likely to result
in similar feature measurements and be more likely to
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2 Elisa Barney Smith, Xiaohui Qiu: Statistical Image Differences

have the same response from an OCR system. This type
of estimation error can be treated differently than esti-
mation errors that result in a larger change in the char-
acter appearance. This paper explores the amount that
character images will change statistically as the model
parameters used in their generation vary and how these
model parameters are related to image degradation fea-
tures.

Kanungo et al. [11] proposed a method of validat-
ing degradation models. This was achieved through a
nonparametric two-sample permutation test. It decided
whether two images originating from the same source are
close enough to each other to have passed through the
same sequence of systems. The application he proposed
was to decide whether a model of a character degradation
produced characters that were “close” to a set of “real”
characters generated by physical printing and scanning.
This testing could validate the degradation model and
the choice of model parameters. The underlying statisti-
cal method is not restricted to comparing real and syn-
thetic characters. Consequently, the two images could
also be two real images, or two synthetic images. This
statistical testing procedure can also be used to deter-
mine which parameters of the degradation model created
the sample of characters. Another statistical device, the
power function, was used to choose between algorithm
variables.

Kanungo et al. demonstrated their method using a
bit flipping and morphological degradation model [11]
and in a separate experiment [10] also using Baird’s con-
volution and thresholding model. They measured the dif-
ference between 10 point, 300 or 400-dpi Computer Mod-
ern Roman e’s with the Hamming distance as they sep-
arately varied each of the model parameters. Their ap-
proach of statistically comparing character populations
is applied in this paper to the convolution and threshold-
ing degradation model shown in Figure 1. The parame-
ters in this model are the point spread function (PSF)
width, w, and the binarization threshold, Θ. Both popu-
lations of character images were synthetically generated.
Both model parameters were varied in combination to
see their joint effects and to see by how much the charac-
ter images created with different model parameters will
vary over the regions of the joint parameter space.

This paper starts by describing two image degrada-
tions and how they relate quantitatively to the degrada-
tion model parameters. It then describes the experiment
conducted using Kanungo’s non-parametric permutation
test to mathematically illustrate the size of the difference
between two sets of degraded characters created using
our model with different parameters. We then describe
how the difference between character images is related
to the degradation features.

2 Image Degradations:

Each model parameter set will produce a different char-
acter image. Examples of the characters that are pro-
duced for 600 dpi 12-point sans-serif font ‘W’ over a
range of PSF widths and binarization thresholds are

Fig. 1. Scanner model used to determine the value of the
pixel (i, j) centered on each sensor element.

Fig. 2. Characters after blurring and thresholding over a
range of PSF widths, w, and binarization thresholds, Θ. A
broad range of character appearances can be seen, but some
characters have general similarities.

shown in Figure 2. Some of the degradations that are
introduced are common to multiple characters, such as
the final thickness of the character strokes, but each char-
acter is slightly different. Two primary image degrada-
tions associated with bilevel processes were defined in
[4–6]. These are the edge displacement and the erosion
of a black or white corner. All these degradations are
functions of the degradation model parameters, w and
Θ.

During scanning, the profile of an edge changes from
a step to an edge spread function, ESF, through convo-
lution with the PSF. This is then thresholded to reform
a step edge, Figure 3. The amount an edge was displaced
after scanning, δc, was shown in [3,4] to be related to w
and Θ by

δc = −wESF−1(Θ). (1)

The edge spread determines the change in stroke width
after scanning. An infinite number of (w, Θ) values could
produce any one δc value. Equation (1) holds when edges
are considered in isolation, for example when the edges
are separated by a distance greater than the support
of the PSF. Figure 4 shows how the values of (w, Θ)
vary for 5 different constant δc values for each of two
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Fig. 3. Edge after blurring with a generic PSF of two widths,
w. Two thresholds that produce the same edge shift δc are
shown.

Fig. 4. Loci of constant edge spread, δc =[-2 -1 0 1 2] (from
top to bottom), for two PSF functional forms.

PSF shapes. A positive threshold value will produce a
negative edge displacement. The curves for δc and -δc

are symmetric around the Θ=1/2 line. If Θ=1/2, then
δc=0 for all values of w.

The other pair of bilevel image degradations are the
amount of erosion seen in a black or a white corner after
scanning [4,6]. These degradations are caused by the in-
teraction of the two edges, but also include the displace-
ment of the individual edges. The erosion of a corner can
occur in any of the three forms shown in Figure 5. Point
p0 is the apex of the original corner. Point p2 is the point
along the angle bisector of the new rounded corner where
the blurred corner equals the threshold value. Point p1

is the point where the new corner edges would intersect
if extrapolated. The distance

db = p1p2 (2)

is not the erosion from the original corner location, but
it does represent the degradation actually seen on the
corner, and this quantity can be measured from bilevel

Fig. 5. The blurred corner (grey area and lines) may be dis-
placed from the original corner position (black line) in three
different ways. The visible erosion, db, is calculated the same
for all three.

document images. The corner erosion distance, db, de-
pends on the threshold, the PSF width, and the func-
tional form similar to the edge displacement above.

The corner erosion distance is a combination of the
distance from the original corner to the extrapolated cor-
ner, p1p0, which is based on the edge spread δc, and the
distance along the angle bisector from the original cor-
ner to where the amplitude of the blurred corner equals
the threshold, p1p2. Thus
db = p1p2 = p1p0 + p0p2 (3)

=
−wESF−1(Θ)

sin(φ/2)
+ f−1

b (Θ; w, φ)

where

fb(d0b; w, φ) =
∫ x=∞

x=0

∫ y=xtan φ
2

y=−xtan φ
2

PSF (x−d0b, y; w)dydx.

(4)

As with edge displacement, a given amount of corner
erosion can also occur for an infinite number of (w, Θ)
values. The erosion of a white corner is defined similarly
and results in

dw(w, Θ) = db(w, 1 − Θ). (5)

Samples of constant db and dw are shown in Figure 6.

3 Experiment

Experiments were run to statistically compare charac-
ters in pairs of populations each made with different pa-
rameters based on the method proposed by Kanungo et
al. [11]. In the experiments presented in this paper, the
two populations, X and Y, are both composed of syn-
thetically generated characters created by the blurring
and thresholding model with varying phase offsets [13].
The characters in population X were created with PSF
width and binarization threshold parameters (w0, Θ0),
and those in population Y with (w1, Θ1). The null hy-
pothesis that these sets of characters have been drawn
from populations with a common set of parameters was
compared to the alternate hypothesis that they have
been drawn from populations with different parameters:

HN : (w0, Θ0) = (w1, Θ1) (6)
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4 Elisa Barney Smith, Xiaohui Qiu: Statistical Image Differences

Fig. 6. Observable erosion contours for constant erosion on
(a) a black corner, db, and (b) on a white corner, dw. Loci
are for a Gaussian PSF and φ = π/4.

HA : (w0, Θ0) �= (w1, Θ1). (7)

Each experiment consisted of the following steps:
1. Create a set of synthesized characters X = {x1, x2, ...,

x2M} with the model parameters of {w0, Θ0, PSF}.
2. Using the permutation test method, calculate the null

distribution of the population and choose a threshold,
d0, to make the misdetection rate or significance level,
ε, about 5%.

3. Create a set of synthesized degraded characters Y =
{y1, y2, ..., y2M} of the same character class, using pa-
rameters {w1, Θ1, PSF}.

4. Randomly permute the sets X and Y and select M
characters from each.

5. Measure the distance between characters in sets X
and Y to compute the distance Dk between the sets
of {xk1, xk2, ..., xkM} and {ykM+1, ykM+2, ..., yk2M}.

6. Repeat steps (4) and (5) K times and get K distances
D1, D2, ..., DK .

7. Compute the probability of P{Dk ≥ d0} = #{k|Dk ≥
d0}/K.
The distance between individual characters was mea-

sured using the Hamming distance. The distance be-
tween sets of characters, Dk, was calculated using the
trimmed mean nearest-neighbor distance. The parame-
ter K was set to 1000. Steps (3)-(7) were repeated for
several parameter sets (w1, Θ1) in the vicinity of (w0,
Θ0) to generate a two-dimensional power function. This
will show how likely it is that a change in system param-
eters will cause the characters to differ by our metric.

Experiments were conducted around several initial
parameter combinations (w0, Θ0) to see how the loca-
tion in the (w, Θ) space affects the results. The com-
binations of initial points (w0, Θ0) that were used are

0 2 4 6 8
0

0.5

1

(a) (b) (d)

(e)

(f)

(g)

(h)

(i)

(j)

Θ

(c)

w=w s

Fig. 7. Set of (w0, Θ0) values used as null hypotheses in the
sequence of experiments.

shown in Figure 7. These points were chosen to give a
range of edge displacements δc = {−2,−1, 0, 1, 2} for the
initial characters and to fill the (w, Θ) space. The initial
character image used was a 600-dpi 12-point sans-serif
‘W’. The PSF form was a square pillbox with a base
width w = ws.

The two-dimensional power functions for several (w0, Θ0)
are shown as contour images in Figure 8. These contours
show the place where the probability of rejecting the
null hypothesis is constant over a range of alternate pa-
rameters (w1, Θ1). The probability of rejecting the null
hypothesis is less than 0.1 in the centers of the contour
areas. It is 1 in the area outside of the contour lines.
The blockiness in the contour shapes is caused by the
quantization in the range of (w1, Θ1) values used in the
experiments and the Matlab interpretation of the con-
tour.

The constant reject probabilities have a shape similar
to the constant edge spread contours shown in Figure 4.
This is more easily seen in Figure 9, where the hypoth-
esis reject probability contours from Figure 8 have been
superimposed on plots of the δc loci. The edge spread
degradation has the predominant effect on the appear-
ance of a character visually [5] and, from these results,
also statistically.

To show the sensitivity of this procedure, consider
the corresponding sets of characters in Figure 10a and b
which are created with parameters that are very close.
All the characters in set a were generated with a com-
mon set of model parameters (wa, Θa) = (0.4, 0.50). The
characters in set b were produced with model parameters
(wb, Θb) = (0.4, 0.55). While these two pairs of model pa-
rameters are very close, and the characters in sets a and
b appear similar, the null hypothesis that the popula-
tions from which these characters came were generated
with the same parameters was rejected with probability
equal to 1. In [5] it was proposed that characters with
a common δc value would appear most similar to hu-
mans, while other degradation features, such as db and
dw, change the character’s appearance less. This similar-
ity is now quantified through statistical testing.

Maintaining a constant δc increases the probability of
the characters appearing similar, but they are only simi-
lar within a small range of (w, Θ) values. Figure 11 shows
sample characters with pairs having a common δc. The
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Fig. 8. Probability of rejecting null hypotheses with the letter ‘W’ using the Hamming distance between characters. (a)
(w0, Θ0) = (1.0, 0.5), (b) (2.0, 0.5) (c) (4.0, 0.75), (d) (4.0, 0.5), (e) (4.0, 0.25), (f) (6.0, 0.83), (g) (6.0, 0.67), (h) (6.0, 0.5), (i)
(6.0, 0.33), (j) (6.0, 0.17). The interior regions have a probability of less than 0.1.

Fig. 9. Composite showing results from Figure 8 superim-
posed over constant δc lines.

first column shows δc < 0, the middle δc = 0, the right
δc > 0. For characters with a positive δc (low threshold),
the characters have thicker strokes, whereas with nega-
tive δc, the characters have thinner strokes. The pairs of
characters in Figure 11 look similar, but the differences
can be easily seen because the model parameters used
to create them are very different, more so than in Fig-
ure 10. The places where the characters with common δc

differ most is at the corners.
While the δc value has remained the same, the corner

erosion and thus the character appearance is different.
For δc > 0, (Θ < 1/2) the db isolines are almost perpen-
dicular to the δc isolines, and for δc < 0 (Θ > 1/2) the
dw isolines are almost perpendicular to the δc isolines.
When w and |Θ−1/2| are large, a small change in (w, Θ)

Fig. 10. Synthetic characters created at two (w, Θ) combi-
nations with varying phase offsets. (a) (w, Θ) = (0.4,0.50),
(b) (w, Θ) = (0.4, 0.55). The characters in the two sets look
the same but are decided to be from different parameter sets
with probability of 1.

Fig. 11. Characters degraded with (w, Θ) values to produce
negative, zero and positive δc values. Each character has a
different (w, Θ) .
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6 Elisa Barney Smith, Xiaohui Qiu: Statistical Image Differences

will produce a larger change in the db and dw values (see
Figure 6). This causes the size of the region of low prob-
ability of rejecting the null hypothesis in Figure 8f,g,i
and j to be smaller than the corresponding regions in
Figure 8c and e.

A similar set of experiments was run using a 600-dpi
12-point sans-serif ‘O’ over a subset of the cases used for
the letter ‘W’. The ‘O’ character has approximately the
same stroke width for the whole character but contains
no corners. The resulting power function contours are
shown in Figure 12. When the plots are compared to the
plots for the corresponding null hypothesis for the ‘W’
shown in Figure 8a,c,e,g,h and i, the appearance of the
same general shape can be seen. What is different, partic-
ularly for (w0, Θ0) = (6, 0.67) and (6, 0.33), is the prob-
ability of rejecting the null hypothesis being less than 1
extends for a larger range of values for the letter ‘O’. This
is due to the absence of corners. The degradation seen in
the characters is only due to the edge spread for a large
range of (w, Θ) values. With an absence of corners, no
corner erosion is present. However, the edge spread was
defined for edges that are isolated from each other, and
when the PSF width is large enough, this premise is no
longer valid [12]. The edges will interfere, and an effect
similar to the corner erosion will occur degrading the
character images. The corner erosion is a special case of
two edges spreading with interference, where the overlap
occurs at any PSF support width because the distance
between the edges at the corners is zero.

Another experiment was conducted to degrade 12-
point 300-dpi sans-serif ‘W’ characters. Now the width
of the strokes in pixels is significantly smaller than be-
fore. The results are shown in Figure 13. Again the gen-
eral shape of the power function contours matched the
countours of Figure 8 and the edge displacement lines.
Because the stroke widths for the 300-dpi characters were
significantly smaller in pixels than for the 600-dpi char-
acters of earlier experiments, the extent of the power
function contours was smaller too.

To see whether this effect was restricted to use of
the Hamming distance for measuring difference between
character images, the same set of experiments was re-
peated for the 300-dpi ‘W’, but the distance between
individual characters was measured using the distance
between the corresponding moment feature vectors. The
moments that were used are eight central moments. The
resulting two dimensional power functions are shown in
Figure 14. The same basic shape as was seen earlier for
the Hamming distance (Figures 8 and 13) is also present
here. The similarities follow the constant δc regions. The
similarity regions are small when θ is greater than 0.5
because the characters are smaller than previously.

For lower thresholds the moment feature distance
lead to larger regions of similarity than present when
the Hamming distance metric was used. The black cor-
ners on the upper left and right of the ‘W’ are most likely
to erode because they have a smaller angle measure, φ.
Changing the value of a single pixel at these corners of
the ‘W’ has a larger effect on the change in the mo-
ment features than changing a single pixel at an interior
corner location where the corners happen to be white.

Therefore the model paramters that have a constant db

are more likely to be considered similar than for model
parameters with a constant dw (see Figure 6).

4 Conclusion

A statistical test was conducted to compare the sim-
ilarity between groups of characters synthetically gen-
erated as the parameters (w, Θ) were varied over the
two-dimensional parameter space. Prior experiments [11]
varied individual degradation parameters and evaluated
the size of the power function to choose between algo-
rithm variables. In this paper the focus is on the inter-
action between the model parameters. Analysis showed
that the amount of variation in the characters correlated
highly with the change in the edge spread degradation,
δc. This edge spread can be quantified in terms of the
degradation system model parameters (w, Θ). This rela-
tionship was present for two similarity metrics: Hamming
distance and moment feature distance.

Degradation models may be used in the future to gen-
erate synthetic characters for use in OCR experiments.
This research can be used to decide how to distribute
model parameters if we want to experiment with char-
acters with small differences, or larger differences that
are evenly distributed. Experiments were conducted with
the characters ‘W’ and ‘O’ at two effective scanning res-
olutions. This gives more insight on how the shape of
a character will influence the variation in the resulting
bitmap. Characters with many corners, thin strokes, or
variable width strokes will remain similar over a smaller
range of (w, Θ) values.

The statistical difference between characters could
also be used as a metric of model parameter estimation
error. When estimating the degradation model parame-
ters, errors along the δc isolines will not produce as large
of a difference in the characters generated with the model
as would an error perpendicular to these isolines, espe-
cially for characters with fewer corners. Because w and
Θ are not in the same units, conventional metrics like
Euclidean or city-block are not reasonable for combin-
ing errors in these two estimates. Also, simply adding a
scaling factor will not necessarily help because we do not
know how to equate width and threshold units and there
may not be a linear relationship between the two units.
But if we measure error in units of character difference,
we can use this information to fine tune the defect model,
better predict what the true model paramters should be,
and evaluate the accuracy and effectiveness of the model.
This could lead to meaningful improvements in perfor-
mance.
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