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ABSTRACT 

Calibration of scanners and cameras usually involves measuring the point spread function (PSF). When edge data is used 
to measure the PSF, the differentiation step amplifies the noise. A parametric fit of the functional form of the edge spread 
function (ESF) directly to the measured edge data is proposed to eliminate this. Experiments used to test this method show 
that the Cauchy functional form fits better than the Gaussian or other forms tried. The effect of using a functional form of 
the PSF that differs from the true PSF is explored by considering bilevel images formed by thresholding. The amount of 
mismatch seen can be related to the difference between the respective kurtosis factors. 

Keywords: Spatial attribute characterization, point spread function, edge spread function, kurtosis factor. 

1. INTRODUCTION 

To use desktop scanners and cameras in scientific research, it is necessary to carefully calibrate the response of the optics 
in those systems. An estimate of the actual PSF shape and size usually provides the desired information. Numerous 
methods for estimating the PSF have been developed over time as researchers have encountered this need. Many of those 
methods directly estimate the PSF by measuring the response to prespecified inputs to the imaging system. 

The most common method of estimating the properties of the optical system is through use of a knife edge. Chazallet and 
Glasser compared methods of using a sinusoidal input, a bar chart input, and a knife-edge towards the goal of estimating 
the PSF with particular attention to spatial sampling and concluded that the knife-edge method, which uses a high contrast 
edge, or a step function in intensity, to produce an ESF was most favorable overall [5]. PSF estimation from a slanted edge 
has been refined over the years as the applications and the required detail have evolved. Cordella and Nagy used a knife 
edge and computed the spot size by counting the number of pixels with values in the range between 10% and 90% of the 
black and white levels [6]. Simonds developed a method that does not depend on the rotational symmetry assumption to 
estimate the 2-D modulation transfer function (MTF) using a series of knife-edge measurements [18]. Wong analyzed 
how the misalignment of a knife-edge from the sensor elements affects the MTF [20]. Reichenbach et al. describe an 
"extended knife-edge technique" for MTF estimation where they use the fact that the edge is not perfectly aligned with the 
columns of the sensor elements to extend the accuracy beyond the Nyquist frequency of the digital sensor. This, through 
the Vernier scale principle, leaves extra sample points available for averaging to reduce the effects of noise [16]. Reichen­
bach's approach specifically considers the effects of the spatial quantization in the characterization of the image acquisi­
tion system. This method was then incorporated into the ISO Standard 12233 [11]. Burns investigated the influence of 
several variables in the estimation process on bias and variation of the estimates and suggested refinements to improve 
location ofthe edge and estimation of the slope [2, 3]. 

Researchers often take the measured knife edge data, perform a derivative or differencing operation and fit it to a func­
tional form to get an estimate of the PSF or line spread function (LSF). The noise in the scanned image is amplified by the 
differentiation step needed to convert the observed ESF to a PSE This can obscure the true PSF shape. Smith proposed a 
method of directly fitting a Hermite polynomial to the measurements of the ESE Then by knowing the relation between 
the coefficients of the Hermite polynomial and a parametric form representing the MTF, the MTF can be directly reached 
[19]. This paper expands on the Smith's idea of doing a parametric fit to the ESF, but restricts the form to a common func­
tion instead of a Hermite polynomial. This can still be applied to multiple rows of edges combined through Reichenbach's 
method to represent the shape of the ESF with more samples to reduce the effects of noise, but by directly fitting the func­
tional form of the PSF to the data, the effect of differentiation on the raw data is eliminated. 

In this paper the PSF is specified parametrically under five different PSF(LSF)lESF functional form assumptions: square 
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Table 1: PSF and ESF Equations 

Functional Fonn PSF(x;w) ESF(x;w) 

Square Pulse Ws 1 Ws Ws 0 x~--- -"'2<x<"'2 2 Ws 

0 else ..!...x+! Ws Ws 
--<x<-

Ws 2 2 - 2 

1 
Ws 

x> "'2 

Triangular Pulse 
42..+ 1- wr wr 

-- <x<O 0 x~--

W 2 wr 2 2 
r 

2( ~+!r wr 
-42..+1- wr -- <x~O 

O<x<- wr 2 2 
W 2 Wr - 2 

r 
1 - 2( ~ - D2 wr 

0 else O<x<-
wr - 2 

1 
wr 

x> "'2 

Raised Cosine ~(l + cos(21t x~) we 
0 x~--we W 2 

xlI . ( x~ we we - + - + -sm 21t- --<x~-
we 2 21t W 2 2 

1 
we 

x>-
2 

Gaussian 1 _!(~2 erJ(~) + ~ __ e 2 

./2ica 
Cauchy a/1t 

1 (~l --- ~atan - + 2 x2 +a2 

pulse, triangular pulse, raised cosine, Gaussian and Cauchy. The fonnulas used for each are shown in Table 1. Each PSF 
also has a parametric ESE Each of these ESFs will be fit by gradient descent to the individual rows to minimize the error 

error = L [esfix( i), J..I, w, a, b) - data(x(i))]2 . (1) 

This estimates the edge location, /1, to sub-pixel accuracy, while also calculating the best width parameter, w, and the a 
and b reflectance levels. A line is fit through estimates of the edge locations over multiple rows by linear regression to 
improve their accuracy. These edge locations are then used to get a better estimate of the knife edge location used to 
combine the multiple rows of data to get a composite ESE The ESF parameters are then estimated from this composite 
edge, again by gradient descent, to minimize the error shown in Equation 1. 

While the paper is assumed to be totally white and the ink is assumed to be totally black, even after conversion of the gray 
level intensities to reflectances, this is rarely the case. This discrepancy can not be ignored. Parameters a and b were 
included in the estimation process to 'stretch' the ESF to fit the actual intensity ranges set by the reflectance of the paper 
and ink. 

Experiments using this proposed method of estimating from the ESF fonn will be shown in the next section, followed by 
an analysis of how the magnitude of the mis-fit between functional fonns can be predicted by looking at the kurtosis 
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Plot of PSF width estimates (a) at four angles on the HP Scanjet 4c and (b) at two angles on the Apple Color One .. 
Estimates for five shape hypotheses are shown. The PSF is not circularly symmetric for either scanner. 

factors of the assumed PSF and the actual PSF. 

2. PSF ESTIMATION EXPERIMENTS 

This section describes the experiments and corresponding results of measuring the PSF from grey-level information. The 
scanning experiments were done using two scanners, an HP Scanjet 4c and an Apple Color One Scanner. The HP Scanjet 
4C is a 600dpi optical resolution color scanner. The Apple scanner has 300dpi optical resolution. The two scanners allow 
testing of the algorithms under different optical resolutions and potentially different PSF shapes. Both scanners were used 
to scan test charts in grey-tone mode to produce 8-bit deep images. A mapping derived from a scan of the reflectance step 
charts in [12] was used to convert the 8-bit gray level values into reflectance. A knife edge image was scanned and 
converted to reflectance units on both the ScanJet and the Apple Color One scanners. The ESF corresponding to five of 
the proposed PSF shapes were fit to the edge scans. 

The PSF widths were measured at four different orientations in the HP scanner to determine whether the PSF is circularly 
symmetric: in the direction of the array sensor, in the direction of the motion of the scanning bar, and at ±45 degrees to 
the array sensor. The width estimates differed by 20% between the widths along the scan bar and in the direction of scan 
bar motion. Thus, the PSF does not have circular symmetry in two dimensions. Plots of the width estimates by angle, 
including the widths estimated at ±45° with an ellipse fit to the estimates for all five reflectance PSF shape hypotheses, are 
shown in Figure 1a. Figure 1b shows graphically the estimates for the Apple Color One scanner in the direction of the 
array sensor and in the direction of the motion of the scanning bar also with ellipses fit to the data. The PSF for the Apple 
scanner is more elliptical than the PSF for the HP scanner. This distortion can actually be seen in images scanned on the 
Apple scanner. 

Figure 2 shows the ESF for the best fit parameters compared with the composite ESF. Tables 2 and 3 show the estimates 
of the PSF width parameters resulting for each PSF assumption at each angle for the HP scanner and the Apple Color One 
scanner respectively. While there is good fit to all forms including the Gaussian, the best fit on both scanners was the 
Cauchy. The edge resulting on the Apple One scanner (not shown) does not make a good match for any PSF other than the 
Cauchy. The estimation was more difficult on the Apple scanner because the response to the white was still changing at a 
larger radius than the response to the black. This particularly affected the estimate for the raised cosine along the scan bar 
direction making it appear anomalous compared to the other estimates in Figure 1. This level in fit among different PSF 
functional forms was evaluated subjectively and quantified by comparing the mean square error (MSE) of the fits shown 
in the tables. The Cauchy function fits the best both graphically and numerically with the MSE being one half to one third 
the size of the MSE for the best fit to a Gaussian. Note that the MSE numbers should not be compared across orientations 
as different numbers and lengths of rows were used for different scans . 
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(a) Plot of composite knife edge from the HP Scanjet 4c. Best fit ESF for five different shape hypotheses are shown. 
(b) Close up of the knee of the plot. 

Table 2: PSF width estimates from grey level knife edge on the HP ScanJet scanner. 

Along Sensor Row Scan Bar Motion Direction 
PSF Shape Assumption 

Width Estimate MSE Width Estimate MSE 

Square ws=2.67 0.30 ws=3.39 0.31 

Triangular wr=4.22 0.22 wT=5.26 0.19 

Raised Cosine wc=4.57 0.22 wc=5.65 0.20 

Gaussian 0=0.90 0.19 cr=1.14 0.17 

Cauchy a=0.50 0.06 a=0.65 0.04 

Diagonal -45 degrees Diagonal 45 degrees 
PSF Shape Assumption 

Width Estimate MSE Width Estimate MSE 

Square ws=2.96 1.31 ws=3.05 1.20 

Triangular wr=4.68 0.97 wr=4.80 0.81 

Raised Cosine wc=5.05 1.00 wc=5.23 0.72 

Gaussian cr=1.01 0.88 cr=1.04 0.84 

Cauchy a=0.55 0.35 a=0.55 0.35 

3. KURTOSIS 

For many applications the level of the fit to the PSF is not significant, but for other applications, errors in the fit have a 
large effect. One application for which the information about the PSF is needed is in modeling scanners for document 
image analysis. Here the PSF width together with the binarization threshold jointly affect the resulting character image 
quality. Broad correlation with the actual PSF shape will allow the general shape of the degraded character to be 
predicted, but a more exact fit is needed when evaluating the types of degradations character images incur when being 
scanned. The degradations that appear in character images are more noticeable when the threshold is either very high 
(near 0.9 reflectance) or very low (near 0.1 reflectance). This is exactly the region where the incorrect functional form of 
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Table 3: PSF width estimates from grey level knife edge on the Apple Color One scanner 

Along Sensor Row Scan Bar Motion Direction 
PSF Shape Assumption 

Width Estimate MSE Width Estimate MSE 

Square ws=2.39 1.07 ws=3.32 1.41 

Triangular w-r=3.56 0.91 wT=5.65 1.17 

Raised Cosine wc=3.53 0.94 wc=4.51 1.39 

Gaussian (5=0.77 0.87 (5=1.22 1.10 

Cauchy a=0.46 0.51 a=0.74 0.45 

Table 4: Kurtosis factors. 

Distribution Kurtosis Factor 

Square Pulse (Uniform) 1.78 

Triangular Pulse 2.40 

Raised Cosine 2.41 

Gaussian 3.00 

Cauchy undefined, but large 

the PSF/ESF is most noticeable. How the edges of characters and line drawings are distorted is a function of the ESF. 
PSFs where the tails rapidly decay will have a much smaller edge spread at extreme threshold than PSFs with the same 
standard deviation but with a heavier tail. The heaviness of the tails in the PSF can be quantified by the kurtosis. The 
kurtosis factor is the ratio of the fourth central moment to square of second central moment. 

E{(X_g)4} 

E{(x_~)2}2 
(2) 

and is independent of the parameters defining the distribution for many distributions. The kurtosis factors for the I-D PSF 
shapes used in this paper are shown in Table 4. 

The mismatch between the assumed PSF functional form and the true PSF functional form can be seen in images 
produced by bilevel systems. The effect of the mismatch can be quantified by the difference in the kurtosis factor. Systems 
where the kurtosis factor for the assumed functional form is smaller than the kurtosis factor of the true PSF functional 
form will have edges spread less far than expected and vice versa. This is illustrated in two experiments. First, synthetic 
characters were created with a PSF of each of the forms shown in Table 4 and using PSF widths that are the average of the 
values in Table 2 for horizontal and vertical directions. These were then thresholded at a thresholds of 8=0.1,0.3 and 0.5. 
If the shape of the PSF is insignificant, these characters, shown in Figure 3 at 4x their original size, should be identical 
since all PSF widths are those estimated from the same knife edge in Section 2. Visually the characters made with the 
same thresholds appear quite similar. The Hamming distance between every pair of these characters at common threshold 
values was calculated. The results are shown in Table 5. Notice that as the kurtosis factor difference increases, that the 
Hamming distance is generally greater. When looking at the Hamming distances that result when the threshold is 
increased, the Hamming distances get smaller. At a threshold of 8=0.5, the effect of the tail of the ESF should be at its 
minimum. It is certainly smaller than at other thresholds. This illustrates how when models of optical systems are being 
used for bilevel analysis and the functional form of the PSF doesn't match the PSF of a real system, predicted results 
would be different than expected. 

The second experiment to illustrate this shows the effect of measuring the PSF width from a bilevel image when the PSF 
form is incorrectly assumed. Methods have been developed [1] to estimate the PSF width and binarization threshold from 
bilevel scans of a star sector test chart such as found in the Kodak Digital Science Imaging Test Chart TL-5003 [12]. This 

experiment was run by blurring a synthetically generated star chart with one PSF and thresholding it at 9 different thresh-
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Figure 3: Images of characters created with PSFs of the functional form and widths (a) square pillbox, Ws = 3.03, (b) triangular 
(conical), WT = 4.74, (c) raised cosine, We = 5.11, (d) bivariate Gaussian, (J = 1.02, and (e) Cauchy, a = 0.575. Row I 
was made at a threshold of 8 = 0.1, row 2 at 8 = 0.3, and row 3 at 8 =0.5. 

Table 5: Hamming distance between characters with "same" PSF width but different functional forms over three threshold 
values. 

Threshold, 8=0.1 Threshold, 8=0.3 Threshold,8=0.5 

S T RC G C S T RC G C S T RC G C 

Square 0 17 0 44 94 0 42 44 39 88 0 2 2 8 27 

Triangular 17 0 17 31 79 42 0 2 9 48 2 0 0 6 25 

Raised Cos 0 17 0 44 94 44 2 0 11 96 2 0 0 6 25 

Gaussian 44 31 44 0 66 39 9 11 0 55 8 6 6 0 21 

Cauchy 94 79 94 66 0 88 48 96 55 0 27 25 25 21 0 

olds. This was then used as the source data for PSF estimation under five different PSF functional form assumptions. 
Figures 4, 5, and 6 show the results for five PSF forms when the actual PSF is square, Gaussian and truncated Cauchy 
respectively. For a given scanner, the PSF width should remain constant for all thresholds used on that scanner. But since 
the effective ESF is different at different thresholds, when the PSF form doesn't match the actual PSF form, the mismatch 
will affect the images and thus the estimates. Looking at the square case in Figure 4, the results show that for every esti­
mate based on a PSF with a higher kurtosis factor (i.e., with any other PSF assumptions), when 18-1121 is large, the esti­
mated PSF width is biased as too small, and when 18-1121 is small, the estimate is biased as too large. This type of bias is 
called "right bias", because when multiple thresholds are shown, they look like a right parentheses ")". The estimates 
made under the square PSF assumption are slightly biased the opposite direction ("left bias") even though the square 
pillbox was the true PSF. The multiple orientations of the edges in the image relative to the PSF edge make the effective 
PSF almost cylindrical (cylindrical with a small skirt) which gives the true PSF a slightly higher kurtosis factor than the 
kurtosis factor used in the estimation procedure (a cylinder has a kurtosis factor of2, the square pulse has a kurtosis factor 
of 1.78). 

When the PSF used in blurring is a Gaussian, Figure 5, the estimates made based on a PSF with a higher than actual 
kurtosis factor (Cauchy) are again "right biased" such that when 18-1121 is large, the PSF width is underestimated, and 
when 18-1/21 is small, it is overestimated. When the assumed PSF has a smaller than actual kurtosis factor (square, 
triangle, raised cosine), the "left bias" is observed so that when 18-1121 is large, the PSF width is overestimated, and when 
18-1121 is small, it is underestimated. Even though there is bias in the width estimates, because the kurtosis factors of the 
triangle, raised cosine and Gaussian are close, the bias there is not nearly so pronounced, whereas the differences in 
kurtosis factors between the Gaussian versus Cauchy and the Gaussian versus the square pulse are greater and thus 
produce larger distortions. The Cauchy has a very high kurtosis factor. Figure 6 shows that estimates from a star blurred 
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A synthetic star target blurred with a square pillbox PSF, wS2=4, produced these estimates under the sector merge 
method when the indicated PSF assumptions are used. 
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A synthetic star target blurred with a Gaussian PSF, =1, produced these estimates under the sector merge method when 
the indicated PSF assumptions are used. 

with a Cauchy PSF will result in estimates that are significantly "left biased" under all other PSF assumptions. 

4. CONCLUSION 

A modification of the knife edge method is proposed for estimating the characteristics of a scanner or camera system. It is 
particularly useful when the data will eventually be used to estimate the camera characteristics in a parametric form. The 
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A synthetic star target blurred with a truncated Cauchy PSF, a=O.S, produced these estimates under the sector merge 
method when the indicated PSF assumptions are used. 

functional form found to best fit the data from actual scanners was Cauchy. While some researchers [9,16,17,20] have 
advocated for Cauchy, many researchers prefer to use Gaussian due to other properties of the Gaussian functional form. In 
bilevel systems assumptions of Gaussian over Cauchy can have effects that alter the assumed form of the image signifi­
cantly. Similar effects will be seen in gray level systems but they will appear as changes in the very brightest and very 
darkest gray levels which often can not be discerned by viewers. Researchers can use these descriptions to decide how the 
assumption ofPSF functional form will affect their research. 
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