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Abstract

Modern Field-Programmable Gate Arrays (FPGAs) are
becoming very popular in embedded systems and high
performance applications. FPGA has benefited from the
shrinking of transistor feature size, which allows more on-chip
reconfigurable (e.g., memories and look-up tables) and routing
resources available. Unfortunately, the amount of
reconfigurable resources in a FPGA is fixed and limited. This
paper investigates the mapping scheme of the applications in a
FPGA by utilizing sequential processing (e.g., Altera Nios II or
Xilinx Microblaze, using C programming language) and task
specific hardware (using hardware description language).
Genetic Algorithm is used in this study. We found that placing
sequential processor cores into FPGA can improve the
resource utilization efficiency and achieve acceptable system
performance. In this paper, three cases were studied to
determine the trade-off between resource optimization and
system performance.

Key Words: FPGA, resource utilization, genetic algorithm,
scheduling.

1 Introduction

In recent years, Ficld-Programmable Gate Array (FPGA) has
gained popularity in the digital integrated circuit market,
specifically in high-performance embedded applications. One
of the most significant features of FPGAs is that designers can
configure them to implement complex hardware in the field.

With the improvement of integrated circuit technology, very
large logical structures are allowed to reside in a single FPGA
chip [5]. Not only the hardware function units (implemented
using hardware description language) can be placed and routed
into FPGAs, embedded processors can also be configured into
FPGAs. There are two types of embedded Intellectual
Property (IP) processor cores: hard and soft cores. Hard cores
are physical manifestations (built into the chip by the designer
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and foundry) of the IP design. Soft cores, which are more
portable and flexible than hard cores, are logical existence as
integrated circuit netlist or hardware description language
code. In general, an IP-based processor core, such as Xilinx
Microblaze or Altera Nios II, is much more flexible than the
general hardware logic. Once a processor is implemented in
the FPGA, it can be reused many times in a time-shared
manner. Unfortunately, the sequential operations limit the
system performance [1].

It is important to note that FPGA resources are limited.
When the hardware resources required by a task are more than
the available resources in a single FPGA chip, generally, it is
impossible to realize this system with the given FPGA. We
can configure the processor IP cores into FPGAs with the
application specific hardware. This allows us to implement
some portions of the design using C programming and the rest
are implemented using hardware description language. For
example, we can implement a task system, which consumes
6674 Configurable Logic Blocks (CLBs), using a single FPGA
chip with just 1920 CLBs by placing one soft processor IP core
into the FPGA. This allows the finite resources in a FPGA to
be used optimally and efficiently. More than one processor [P
cores may be used in a single FPGA to implement the complex
applications. However, it is noted that the processor [P cores
consume both the hardware logic (LUTs) and block RAM
resources of FPGAs. The number of processor IP cores inte-
grated into FPGAs is limited by the finite hardware resources
of FPGA. We found that, it was not good to put the maximum
number processor IP cores into a FPGA because the sequential
operations in the processor will restrict the system performance
too much. In this paper, three different cases are studied with
FPGAs Finite Resource Optimization Analysis Model in order
to obtain the optimal FPGA finite resources utilization scheme.

This paper is organized as follows. An overview of FPGA
architecture is described in Section 2. Section 3 presents
FPGAs Finite Resource Optimization Analysis Model with
Genetic Algorithm. Sections 4 and 5 provide a computational
complexity analysis with an example. Simulations setup and
results are presented in Section 6. The conclusion is presented
in Section 7.

2 FPGA Architectures

The basic architecture of FPGAs consists of an array of logic
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blocks, programmable interconnect, and 1/0O blocks. A logic
block which includes a fixed number of LUTs and flip-flops is
called a configurable logic block (CLB) or a logic array block
(LAB). In this paper, CLB is used. Programmable
interconnect joins these logic blocks to provide the required
interconnections.  1/O block is a pin level interface circuit,
which provides the interface between package pins and the
internal configurable logic.

With the development of micro-electrical technology, the
architecture of modern FPGAs is more complicated than
before. It is composed of more resource clements, such as
embedded memory blocks (bRAMs), multipliers, and even
processor IP cores. Figure 1 shows the generic architecture
overview of Xilinx Virtex 1I-Pro FPGA [5]. Xilinx Virtex-II
Pro FPGA includes an array of CLBs, 10B, Multipliers, Block
RAM, Embedded RocketlO, and two processors (IBM
PowerPCTM405) [5].

The embedded IBM PowerPC 405 is a 32-bit high
performance and low power RISC hard processor core. It is
fully compliant with the 32-bit implementations of the
PowerPC User Instruction Set Architecture (ISA) and can be
reprogrammed with the other resources together during the
FPGA configuration. Xilinx Virtex-4 is the newest generation
with more high-speed I/O technology and digital signal
processing features. With these modern FPGAs, it is possible
to configure multiple soft processors into a single FPGA
device by designers.

The processor in FPGAs provides incomparable vast
flexibility for the trade-off between software and hardware. In
general, the number of soft processors that can [it into a FPGA
is only limited by the resource of the FPGAs.
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Figure 1: The generic architecture overview of Xilinx Virtex-
Il Pro FPGA

3 FPGA Finite Resource Optimization Analysis Model
with Genetic Algorithm

The FPGA Finite Resource Optimization Analysis Model is
shown in Figure 2.
It is used to describe the major elements of the FPGA
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Figure 2: FPGA finite resource optimization analysis model

resources assignment algorithm. The nucleus of this model is
the FPGA resources assignment algorithm based on Genetic
Algorithm. One of the inputs to the algorithm is the FPGA
resources list, which includes the number of CLBs for a given
IFPGA device, the number of soft processors to be integrated
into the given FPGA, and the number of CLBs and the size of
the bBRAMs that each soft processor employs. Another input is
the system information list, which gives the detailed
information of the application (number of tasks and how these
tasks are related). The FPGA resources assignment algorithm
generates the FPGAs resources utilization information and the
task system schedule. The former presents the percentage of
the specific FPGAs hardware utilization (CLBs) for the given
task system. The latter shows the execution time (unit time) of
the task system. The shorter the schedule length is, the more
desirable the solutions are.

3.1 FPGA Resources

There is a number of hardware resources in a single FPGA
chip, including CLBs, 10Bs, bRAMs, special logics (e.g.,
multiplier and digital signal processing block), and routing
resources. A soft processor placed and routed in a FPGA will
use a fixed amount of CLBs and bRAM. For example, it has
been found through experiments that Xilinx Microblaze will
use about 400-500 CLBs. In this paper, the number of CLBs
in a FPGA is considered as the hardware resources restrictions.
In addition, the number of bRAMs, which are used for internal
program and data storage of the configured soft processors,
present the limitation of the tasks that are assigned to the soft
processors. Thus, FPGA resources list includes the number of
the CLBs where the hardware applications can be assigned to
and the size of memories which store the program and data for
the soft processor.

3.2 Task System

Task system is a model of the application. It is decomposed
into a set of tasks which can be executed as software processes
on a soft processor core, or as hardware functions
(implemented using hardware description language) within a
FPGA. When the task system is created, we define the
execution time for the software and hardware respectively. A
sample task system data is shown as Table 1 [2]. We use a
directed acyclic graph (DAG) to present a task system [1]. A
sample task system DAG is shown as Figure 3 [2].
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Table 1: A sample task system resources

Soft Processor FPGA Hardware Logic
Task Executio | Program | Execulio FPGA
_— n time Mcmory n time Resou_rces
(unit required (unit Required
time) (Bytes) time) (CLBs)
Task
: 74,640 184 2,560 32,220
Task | 5,836,5 ' o
S 8 06*3‘6 19,240 | 208400 | 30,509
T"‘:;Sk 34200 | 22,348 400 30,509

Figure 3: A sample task system DAG

3.3 FPGA Resource Utilization Information

One of the outputs of FPGA resources assignment algorithm
is FPGA resource utilization report. It describes the allocation
scheme for every task, whether it is in the processor or task
specific logic, and the percentage of the utilization of CLBs for
a FPGA device.

3.4 Task System Schedule

Another output of FPGA resources assignment algorithm is
task system schedule. This report gives the execution time of
the task system and the order of execution of the tasks within
each soft processor in a FPGA chip. The execution time of the
task system determines the system performance.

3.5 The FPGA Resources Assignment Algorithm—Genetic
Algorithm

Genetic Algorithm (GA) based on Darwinian natural
evolution and selection is a search technique for approximate
solutions to optimization problems. The basic operations of
GA include initialization, evaluation, selection, reproduction,
and termination [4]. Starting from an initial population (list
scheduling is used), a population is randomly initialized with
tasks assignment using the available hardware resources or soft
processors. The individual member of the population 1s
expressed by a separate data structure as candidate. For each
candidate, the schedule length is the fitness function. The
selection of candidates for the subsequent generation is based
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on their fitness function. A set of parents with the best genetic
information (better schedule length) are selected to breed the
offspring. A roulette-wheel-style selection is used in this
process. The reproduction process creates the next generation
population through two genetic operations: crossover and
mutation. A single-point crossover technique is used for the
crossover process. We randomly select a location on the
chromosome structure as the crossover point. The new
candidate is generated by replicating and combining two parent
candidates at the chosen crossover point. One is from the first
parent chromosome above the crossover point, and the other is
from the second parent chromosome below the crossover
point, The mutation operation will take place according to a
given probability of mutation parameter. The task assignments
are selected at random for mutation process when the mutation
occurs. There is an equal probability that the genes are chosen
from either parent when the mutation does not occur [1]. The
evaluation, selection, and reproduction processes are repeated
until a termination condition has been reached. Figure 4
depicts this Genetic Algorithm process.

4 Computational Complexity of the FPGA Resources
Assignment Algorithm

In this section, we discuss the time complexity and
efficiency of the FPGA resources assignment algorithm. There
are many factors that will influence the GA efficiency,
including the population encoding, fitness function, population
size, the probability of mutation, and the termination condition.
In this paper, the following parameters are considered:

p: the size of population in GA

i: the number of evolution generation

pm: the probability of mutation

s: the number of soft processors to be configured into FPGA
k: the number of tasks in the task system to be assigned

To determine the complexity of this GA and measure the
efficiency, tests were carried out using a computer system with
Pentium 4 3GHz processor 1GByte memory running CentOS
4.3 Kemel 2.6.9. Table 2 and Figure 5 show the execution
time of GA with the different parameters.

The curve in Figure 5(a) shows the time complexity of GA
for parameter p is O(p2). From Figure 5(b), the approximate
straight lines show the linear characteristic and the time
complexity of GA for parameter i is O(i). Both Figure 5(c)
and Figure 5(d) show the characteristic of the log2n (n is a
positive integer). So, the time complexity of GA for parameter
pm and s is O(log2pm) and O(log2s) respectively.

According to the computational complexity theory, we can
know that the time complexity of GA is O(p2). In the
algorithm, there is a sorting operation that sorts all candidates
in a population with a bubble sorting algorithm for crossover
and mutation operations. The time complexity of candidates
sorting operation is O(p2) [6]. The sorting operation is the
most complex process in this GA implementation. So, we can
use the time complexity of this sorting operation to present the
time complexity of GA. On the other hand, the population size
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Figure 4: Genetic algorithm process

p is an important parameter for GA and can determine the
search space complexity of GA directly. If we enlarge the
search space, the computational complexity will be increased
greatly. From this analysis, the population size must be
selected carefully for GA. 1f it’s too low, the search space is
too small to provide enough samplings and GA gets the poor
results. If it’s too large, time complexity of the algorithm will
be raised and GA gets the lower algorithm efficiency [3].
Also, finding a good termination condition and decreasing the
number of the evolution generations can also improve the
algorithm efficiency.

5 FPGA Resource Utilization Analysis Case Studies

In this example, the Power Quality Monitor System (PQMS)
[4] is placed and routed into Xilinx XC3S1000 FPGA in
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different assignment schemes to test the utilization of the
FPGA resources. The POMS is designed to measure the
quality and recliability of the power system. It can be
decomposed into 10 tasks. Figure 6 is a DAG for the PQMS
[2]. Table 3 shows the performance data of hardware and
software of the PQMS.

Xilinx XC3S1000 FPGA consists of 1,920 CLBs and 55,296
bytes bBRAM. We assume that each Xilinx Microblaze soft
processor will consume 500 CLBs. When all the tasks are
implemented using the FPGA hardware logic (using HDL), it
has been determined that the task system will require 12,020
CLBs (See Table 3). This value is more than the hardware
logic resources in the given FPGA. So, it is impossible for this
task system to be implemented using pure HDL.

As shown in Table 4, three cases with 1, 2, and 3 Microblaze
soft processors in the FPGA arc simulated using the Finite
Resource Optimization Analysis Model. When one Xilinx
Microblaze is used, the whole task system can fit into the
FPGA because some of the tasks are assigned to the soft
processor. The task system consumes 95.408 percent of FPGA
hardware resources and the design gets an acceptable system
performance. When two Xilinx Microblazes are employed, the
percentage of the hardware resources utilization of FPGA is
90.668 pereent and the better system performance is obtained.
When three Xilinx Microblazes are used, the smallest
percentage of the hardware resource utilization of FPGA is
achieved, but the worst system performance is found. The
reason is that the more tasks that are assigned into the soft
processors, the performance suffers from the highly sequential
operation in the processors. Thus, the best area-time trade-off
in this example is to integrate two soft processors into a single
Xilinx XC3S51000 FPGA. With this configuration, some tasks
execute in software processors and the rest of the tasks are
implemented using HDL. All are in one FPGA.

Table 2: The execution time of the GA with the different

paramctcrs
The execution time (milisecond)
Test parameters k: Task numbers
k=10 k=16 k=30

Population size: p 10 17750 21100 26670
(1=1000,pm=0.08, 25 92650 108560 141330
s=1) 50 334360 | 405150 532990

100 1277990 | 1541400 | 2036900
Generation number; 1 100 9890 10510 13570
(p=25,pm=0.08, 500 47600 53550 70900
=D 1000 | 92650 | 108560 | 141330

1500 | 137940 164250 211690
Probability of 0.08 92650 108560 141330
mutation: pm 0.16 | 123670 | 141570 | 162660
(p=25,4=1000,s=1) 22 [ 143730 | 157350 | 171860

0.32 | 153570 164620 173100
Soft processor 1 92650 108560 141330
number: s
(p=25,i=1000, pm=0.08) 2 116210 146350 156040

3 115960 149410 158570

4 132370 150050 157760

«Five tests are carried out for every item and the average
value is shown in the table.
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Figure 6: The DAG of PQMS
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Table 3: Power quality monitor system task system
information
Soft processor FPGA hardware logic
Task z ; Program i 3 FPGA
’ [ixecution Execution
name . ¢ memory + , resources
time  (unit 3 time (unit i
time) required i) require
(bytes) (CLB)
DFT 83,124 480 7,688 61,540 697
Vrms 60,520 1,004 92.25 275
Phi 313,460 1,464 200 564
Irms 15,115,930 156 10,240 779
Irms, | 60,520 1,004 92.25 275
Kdisp 1,161,310 1,092 150 722
Pave 1,201,540 1,284 150 1,339
Kdist 26,680 28 132.02 619
P 8,600 28 29.72 74
THDi 73,030 72 27242 1,330

6 More Comprehension Simulations and Results

In this section, we performed more simulations and
expanded the results with a 30-tasks system, Space Shuttle
Turbo Pump Task System [2]. The given FPGA is Xilinx
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Table 4: The resource utilization of different FPGA resource assignment for PQMS

1 Soft Processor 2 Soft Processors 3 Soft Processors

Simulation RU (%) SL RU (%) SL RU (%) SL

(ut) (ut) (ut)
B 95.94 18254300 88.65 15917000 82.34 98340100
2 95.94 18254300 88.70 15844000 82.40 98340100
3 95.94 18254300 88.70 15844000 82.34 98340100
4 95.26 18507300 92.66 15831000 96.72 98340100
3 95.26 18507300 92.71 16965600 §2.40 98340100
6 91.98 18340300 92.60 15831000 96.72 98340100
7 95.94 18254300 92.60 15831000 96.82 98340100
8 95.94 18254300 88.70 15844000 82.40 98340100
9 95.94 18254300 92.66 15831000 82.34 98340100
10 95.94 18254300 88.70 15844000 96.93 98340100
Max 95.94 18507300 92.71 16965600 96.93 98340100
Min 91.98 18254300 88.65 15831000 82.34 58340100
Ave 95.408 18313500 90.668 15958260 88.141 98340100

*RU(Resources Utilization), SL(Schedule length ), ut(unit time)

*The schedule length is an approximate value.

*1t is assumed that each Xilinx Microblaze soft processor consumes 500 CLBs in a single FPGA.

*The number of CLBs in Xilinx XC3S1000 is 1920.

*Total resource usage if all tasks are to assign to: soft processor: 12,020, CLB: 6,674,
*The different random seed of GA is used in the simulation for each row in above table.

XC355000 with 8,320 CLBs and 234K bytes bRAMs. We
also assumed that each soft processor consumes 500 CLBs.
The FPGAs Finite Resource Optimization Analysis Model was
used to simulate and test the utilization resources for the
different number of soft processor to obtain the best possible
performance within the available resources. Table 5 contains
the results of the simulations.

For each category of a different number configuration (1-8)
in Table 5, 10 simulations with different random seeds of
Genetic Algorithm were completed. The total of eighty
simulations is completed in this test. Generally, when we
put eight soft processors into FPGA, the better resource
utilization and the best system performance were achieved.
But this result doesn’t mean that the more soft processors we
use, the better solution will be obtained.

Global System for Mobile Communication (GSM) [2]
task system, with 16 tasks, is used to carry the same
simulations. In this simulation, we use Xilinx XC3S1500
with 3,328 CLBs and 72K bytes bRAMSs. Table 6 shows the
results of the simulations for the 16 tasks. When one sofl
processor was integrated into FPGA, the better resource
utilization and the best system performance were found in
these cases.

Table 5: Feasible utilization resource found by GA for
different FPGA resource assignment
Number of | Resource utilization (%) Schedule length
sofl (unit time)

Processor | Mip Max Ave Min | Max | Ave
0 - . - S - Z
1 95.16 | 9987 |97.55 | 325 | 560 | 452.1
2 5589 | 96.96 | 73.63 | 202 | 436 | 3032
3 38.70 99.71 81.31 139 | 225 179.6
4 65.44 99.31 90.42 113 | 151 124.9
5 54.54 93.51 76.91 86 138, 115.0
6 63.17 95.50 86.66 84 96 90.7
7 63.15 98.50 91.14 85 99 91.8
8 75.12 99.27 85.56 84 98 88.8

*Ten simulations with different random seeds of GA are made
for each row in above table.

*It is assumed that each Xilinx ‘Microblaze soft processor
consuimes 500 CLBs in a single FPGA.

*The number of CLBs in Xilinx XC3S5000 is 8320.

*Total resource usage if all tasks are to assign to: soft
processor: 24580, CLB: 281575.
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Table 6: Feasible utilization resource found by GA for different FPGA resource assignment for

task system with 16 tasks

I\UT(;? A 1{65011rcE02;1llzat10[1 Schedule length (unit time)
processor | Min Max Ave Min Max | Ave

0 . 5 ” y _ .

1 8344 | 99.43 94.88 | 156615 162516 160075.2 |

2 89.24 99.19 94.46 167131 | 173384 170734.1

3 83.02 99.90 97.05 172455 179460 176498.2

4 94.32 98.02 97.02 177675 188379 181404.6

5 93.72 99.76 96.61 199260 204091 201716.5

6 97.45 98.44 98.31 230581 234769 231999.8

*Ten simulations with different random seeds of GA are made for each row in above table.

*It is assumed that each Xilinx Microblaze soft processor consumes 500 CLBs in a single FPGA.
*The number of CLBs in Xilinx XC3S1500 is 3,328.

*Total resource usage if all tasks are to assign to: soft processor: 11,858, CLB: 12,014.

7 Conclusions

This paper presents a basic overview of the genetic
algorithm with resource utilization analysis for FPGAs. How
to utilize the finite FPGA resources optimally and efficiently is
significant in the FPGA design. Integrating soft processor into
FPGAs can greatly improve FPGA’s resource utilization
efficiency, but it doesn’t mean that the more sofl processors
are better for the performance. In fact, it is the reverse case.
For the different applications and given FPGA devices, we
show that the trade-off between the resource utilization and the
system performance can be found using FPGAs Finite
Resource Optimization Analysis Model.
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