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Cavity Resonant Mode in a Metal �lm Perforated with Two-Dimensional Triangular

Lattice Hole Arrays
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Abstract

The transmission property of metallic �lms with two-dimensional hole arrays is studied experimentally and numerically.
For a triangular lattice subwavelength hole array in a 150 nm thick Ag �lm, both cavity resonance and planar surface
modes are identi�ed as the sources of enhanced optical transmissions. Semi-analytical models are developed for calcu-
lating the dispersion relation of the cavity resonant mode. They agree well with the experimental results and full-wave
numerical calculations. Strong interaction between the cavity resonant mode and surface modes is also observed.
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1. Introduction

The experimental �nding of extraordinary optical trans-
mission [1] through optically thick metallic �lms perfo-
rated with periodic arrays of subwavelength holes, or plas-
monic crystals, has sparked considerable interest. En-
hanced transmissions through such structures are of great
scienti�c values and have been exploited in several nanopho-
tonic [2] and biomedical applications [3]. Many theories
have been developed to understand the mechanism of such
phenomenon [4�9]. It is generally believed that the exci-
tation and coupling of surface plasmon-polaritons (SPPs)
at the planar metal-dielectric interface play an important
role [4, 6, 9]. The discrete translational symmetry intro-
duced by the hole arrays allows the coupling between the
incident light and the otherwise non-radiative SPPs.

More recently, it is been numerically shown that cav-
ity resonances can also lead to an enhanced optical trans-
mission [5, 7, 10�12]. Several experiements have shown
such behaviors in a 1D slit [13], rectangular holes [14],
and annular rings [15]. The cavity resonance mechanism
is based on Fabry-Pérot resonances of guided modes in
the slits or holes. The quality factor of these resonances,
and thus their e�ect on the transmission, depends on the
propagation loss of the guided mode and modal re�ectiv-
ity. However, questions remains as to the existence of such
resonance in circular holes [15, 16]. Ordinary circular hole
exhibits a very low Q factor, compared with 1D slits illumi-
nated with p-polarized light or two dimensional 2D annular
apertures with a resonant TE11 fundamental mode.
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In this work, we numerically and experimentally demon-
strated the existence of a relatively high Q cavity reso-
nance in a triangular lattice air holes. The transmission
through the cavity is resonantly enhanced at well-de�ned
wavelengths, depending on the �lm thickness and the dis-
persion relation of the guided modes. This guided mode
also di�ers from those in a 1D slit, a rectangular hole, or
an annular ring in that the mode does not localize com-
pletely inside each circular hole. Instead, the mode is a
super mode of the periodic array of holes, similar to the
cladding mode of a photonic crystal �ber [17]. The work
also showed that cavity resonance can strongly interact
with planar surface waves, leading to an anti-crossing be-
havior on the transmission spectra.
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Figure 1: Scheme of the experimental setup: light from
a triply-pumped Q-switch OPO laser is attenuated and
compressed to a collimated 5 ns pulse with a beam di-
ameter of 300 µm at the device surface. Using a Fresnel
rhomb, the input polarization for all wavelengths of in-
terest are maintained as linear and parallel to the plane
of incidence. The inset is a scanning electron micrograph
image of a plasmonic crystal.
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2. Experiments and Measurements

A number of two-dimensional arrays of cylindrical cav-
ities in metallic �lms were prepared and analyzed for this
study, an example of which is shown in the inset of Fig. 1.
Typically, a silver �lm of 150 nm thick was �rst deposited
on a Schott's N-SF6 glass substrate by physical vapor de-
position. Electron beam resist, polymethyl methacrylateis
(PMMA) was spin-coated and arrays of circles were ex-
posed with electron beams. The cylindrical holes were
then etched into the Ag �lm by ion beam etching with a
subsequent removal of PMMA. The patterned area is no
smaller than 300µm× 300µm.
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Figure 2: Calculated electric �elds Ex and Ez at the wave-
lengths of peak transmission for 30◦ incidence on a 2-D
periodically modi�ed Ag �lm, calculated by 3-D FDTD
method for (a) planar surface mode and (b) cavity reso-
nant mode. (c) Measured optical transmission for p-wave
incidence for an incident angle from 0◦ to 40◦. A 150 nm
Ag �lm on a glass substrate is perforated with 100 nm ra-
dius air holes in a triangular lattice. The lattice constant
is 420 nm.

Figure 1 is a diagram of the system employed for optical

transmission measurements. The experiments measured
the transmitted power through the device as a function
of incident angle, θ, and wavelength. A triply-pumped
optical parametric oscillator produces a linearly polarized
coherent light source that can be tuned from 420 nm to
2500 nm. The polarization for all wavelengths described
in this work is parallel to the plane of incidence. The col-
limated beam after the beam compressor has a divergence
angle of 5 mrad. The detector, D1, measured the energy
of the incoming beam and D2 measured the energy of the
transmitted beam. The attenuator, 3OD, limits the inci-
dent optical pulse energy to be less than 1µJ, thus reduces
peak incident power and eliminates the nonlinear e�ects.

Figure 2 shows the optical transmission of a 150 nm Ag
�lm on an N-SF6 Schott glass substrate perforated with a
triangular lattice of air holes. The lattice constant, a, is
420 nm and the radii of the air holes are 100 nm, as shown
in the Fig. 1 inset. The optical transmissions of plas-
monic crystals were measured for the wavelength range of
410 nm and 950 nm at a 5 nm interval. The incident angle
was varied from 0◦ to 40◦ with a measurement conducted
for every 5◦. The transmission was taken as the ratio be-
tween the readings of the two detectors, D2/D1, to remove
the impact of pulse-to-pulse energy �uctuation of the laser
source. A measurement was also performed for the trans-
mission of the wafer on which the device was fabricated.
The response of the device was normalized by the trans-
mittance of the wafer, eliminating the spectral response of
the photodiode and the 3OD.

3. Analysis

Figure 3(a) shows the dispersion diagram of the plas-
monic crystal by identifying the wavelength of peak trans-
missions for a given incident angle. The measurements
were overlaid with the numerical results from two semi-
analytical models, planar surface wave model and cavity
resonance model, which represent the two mechanisms in-
volved in enhanced optical transmissions. The purpose of
these models is to identify the origin of the transmission
peaks observed in Fig. 2. Since the semi-analytical model
does not account for all �eld interactions, some di�erences
with the the measurements are expected, particularly at
the Brillouin zone boundary. However, we will show that
the semi-analytical models agree qualitatively with the
measurements even with these substantial approximations.
A 3-D �nite di�erence time-domain (FDTD) simulation of
the dispersion relation is also shown in Fig. 3(b) as a
comparison.

In the planar surface mode model, incident light cou-
ples with SPPs at the planar interface of Ag and glass.
This coupling is assisted by the periodic modi�cation of
the Ag �lm, which scatters the incident light by one or
more grating vectors to match the planar surface plasmons
that is otherwise non-radiative. Under the empty lattice
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(a)

(b)

Figure 3: (a) Dispersion diagram of the 2-D periodically
modi�ed Ag �lm measured in Fig. 2. The circles are mea-
sured transmission peaks at a given incident angle. The
dashed and dotted lines are results from semi-analytical
models. (b) Dispersion diagram from the measurement,
as in (a), compared with 3-D FDTD calculations.

approximation, the enhanced transmission occurs when

|k0 sin θx̂+mb1 + nb2| = kSPP , m, n ∈ Z (1)

where kSPP is the magnitude of the wave vector for the
surface wave on the Ag-glass interface. b1 and b2 are the
reciprocal lattice vectors, given by b1 = ŷ4π/

√
3a and

b2 = x̂2π/a+ ŷ2π/
√
3a under the coordinate shown in the

Fig. 2 inset. It can be seen from Fig. 3(a) that most mea-
surements follow closely to the folded dispersion of surface
modes, shown as dashed lines in the �gure. And expected
discrepancy is found in the vicinity of the Brillouin zone
boundary, which is owing to multiple Bragg scatterings
not accounted for in the empty lattice approximation.

Besides bands originated from the surface modes, a
cavity resonance inside the air holes also exists around

the vacuum wavelength of 809 nm, as shown by the dot-
ted line in Fig. 3(a). This enhanced transmission is a
result of Fabry-Perot interference of the waveguide mode
supported along the holes of the Ag �lm. Similar behavior
was numerically [10, 12] and experimentally [13] observed
on subwavelength rectangular slits. The cavity resonance
was also suggested for metal �lms with two-dimensional
hole arrays [18]. However, the use of a perfect electric
conductor (PEC) in lieu of actual metal medium in the
simulations casts doubt of the generality of the result [16].
The cuto� frequency of a propagation mode for a cylindri-
cal waveguide created in a real metal deviates signi�cantly
from the PEC results [16]. However, it can be shown that
a propagation mode can be achieved for a triangular array
of cylindrical waveguides when the spacing between the
waveguides is su�ciently small. Figure 4 shows the dis-
persion diagram of this supermode for a lattice constant of
420 nm, calculated by a �nite element method. The metal
is �rst described by a lossless Drude model, ε = 1−ω2

p/ω
2,

in the calculations. The plasma frequency ωp is taken as
1.425 × 1016 rad/s. This guided cylindrical mode has a
real phase constant, β, larger than the wave number, k0,
supported by free space. The use of the lossless Drude
model in the numerical simulations simpli�es the identi-
�cation of propagation modes as the propagation mode
has a negligible attenuation constant. Simulations were
then carried out using measured Ag dielectric constants
[19] and the previous Drude model calculations as initial
conditions, these supermodes also include a non-zero at-
tenuation constant with a small correction to β. In each
crystal period, the propagation mode is predominantly lo-
calized along the cylindrical sidewall. Due to the large
spatial distribution of the mode, it is the most e�cient to
be excited by a spatially coherent light source. The cal-
culations were carried out for square lattice 2-D periodic
structures for the same hole radii and lattice constants as
in triangular lattice structures, no such propagation modes
have been observed.

Placing such a waveguide between two media, a cavity
resonance is formed when

2βd+ ∠rc + ∠rs = 2mπ, m ∈ Z (2)

where d is the thickness of the Ag �lm, ∠rc is the phase of
re�ection coe�cients rc at the interface of the waveguide
and air, and ∠rs is that at the interface of the waveguide
and glass substrate. This cavity resonance is essentially
a weak Fabry-Perot interference that ultimately leads to
a formation of standing wave inside the cylindrical air
holes. The peak transmission due to the cavity resonance
is nearly independent of the incident angle. Because of
the propagation loss of the supermode, the cavity reso-
nance becomes weaker with an increasing �lm thickness.
The shortest cavity is formed when the thickness d equals
to a quarter wavelength of the propagation mode. In this
case, Eq. (2) is satis�ed if one of the re�ections coe�cient
possesses a π phase shift. Figure 4 shows that such a con-
dition can be achieved only if the refractive index of the
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Figure 4: Dispersion diagram for super waveguide modes
in a triangular array of cylindrical hollow waveguides, as
shown in the inset. A lossless Drude model is assumed
for the metallic medium in this calculation. The e�ec-
tive index of the supermode is also shown as a function of
wavelength.

substrate is higher than 1.5. Increasing refractive index
contrast could result in a sharper Fabry-Perot interference.
The choice of Schott's N-SF6 glass, whose refractive index
is about 1.8 at 800 nm [20], is designed to satisfy these
requirements.

The insets of Fig. 2 show the calculated electric �eld
components, Ex and Ez, on plasmonic crystals excited by
a 30◦ p-wave incidence. The �elds are plotted on a cross-
section made along the Γ −K direction. The modes are
calculated by a 3D FDTD method with a Bloch-Floquet
boundary condition applied to the primitive cell of plas-
monic crystals. The electric �elds highlight the di�er-
ences between a cavity resonant mode and a planar sur-
face mode. For planar surface modes, the �eld localizes
along the interface of Ag and substrate. In comparison,
the cavity resonant mode localizes the electric �eld inside
the cylindrical air holes along the metal sidewall. The
standing wave has a peak intensity near the high-index
substrate and a valley near the low-index air interface, in
agreement with the previous analysis. The spatial dis-
tribution of the supermode also indicates that it couples
best with incident beam polarized in the Γ −K direction.
Experiments con�rm that the cavity resonance is not ob-
served for incident light linearly polarized in the Γ −M
direction.

Figure 3 shows that the planar surface mode and cav-
ity resonant mode form an anti-cross near 20◦. The en-
ergy gap formed between the two modes is 170 meV. This
indicates a strong �eld overlap between the cavity reso-
nant mode and planar surface mode. In comparison, we
also conducted a number of measurements on periodically
modi�ed Ag �lms of a larger 600− 650 nm lattice, where
planar surface modes on Ag-air and Ag-glass interfaces can

be excited at the same wavelength for the same incident
angle. For an Ag �lm of �nite thickness, the inteaction
of two surface modes leads to a spectral anti-cross. Fig.
5(a) shows the dispersion diagram for a periodically mod-
i�ed Ag �lm in 650 nm triangular lattice. The region of
interest is highlight in circle and further examined in Fig.
5(b). Figure 5(b) shows the re�ectance of the same struc-
ture for p-polarized incidence from the Ag side, measured
for 25◦ − 45◦ at an interval of 1◦ and a 2 nm wavelength
increment. The re�ection spectra distinguishes two sur-
face modes better than the transmission spectra [6]. The
excitation of surface modes at both Ag-glass and Ag-air
interfaces lead to a decrease of re�ection. At 35◦, an anti-
crossing can be identi�ed where two surface modes of an
in�nite metal would have intersect. However, the overlap
of two planar surface modes is greatly diminished by the
strong exponential decay of the �eld inside the metal �lm,
which lead to an anti-cross of less than 20 meV. In con-
trast, the strong interaction between the cavity resonance
and surface mode suggests the feasibility of converting be-
tween localized SPPs and extended, or long-range SPPs.
This property can be utilized to improve the sensitivity
of surface plasmon sensors. Oftentimes, the target analyte
cannot distribute near the peak �eld strength of the planar
surface modes. An increased sensitivity can be expected
for resonance mediated by the cavity resonant mode as it
exposes the electromagnetic �eld more towards the ana-
lyte.

4. Conclusions

In summary, the measurements and numerical mod-
els con�rmed the existence of a cavity resonant mode in
a periodically perforated metallic �lm. This resonance is
due to the propagation mode in the cylindrical waveguide.
However, this propagation mode di�ers from 1D slits, rect-
angular holes, or annular rings in that its existence relies
partly on the periodic arrangement of circular holes. For
an incident light with a linear polarization parallel to the
plane of incidence and aligned to the Γ −K orientation of
plasmonic crystals, cavity resonances in circular air holes
are observed besides the excitations of SPPs on the Ag-
glass interface. The strong interaction between the cavity
resonance and planar surface modes leads to an anti-cross
spectral behavior. This could be exploited in the sensing
applications to increase the device sensitivity.

The authors gratefully acknowledge the support from
NSF CAREER ECCS-0846415 and DARPA Contract No.
N66001-01-C-80345 for this work.
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(a)

(b)

Figure 5: (a) Dispersion diagram of a 150 nm thick Ag �lm
modi�ed with a 2-D triangular lattice of air holes. The lat-
tice constant is 650 nm. The circles are measured transmis-
sion peaks at a given incident angle for p-polarization. The
dashed and dotted lines are results from semi-analytical
models. The gray circle encloses the region where Ag-glass
and Ag-air surface modes intersect and form an anti-cross.
This is further shown in (b) where the re�ectivity of the
same structure was measured from the Ag side. The gray
scale indicates the magnitude of the re�ectance. Higher re-
�ectivity is shown in white. The open circles in (b) locate
the re�ection minimums for a given incident angle.
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