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Reduced Switching-Frequency Active Harmonic
Elimination for Multilevel Converters

Zhong Du, Member, IEEE, Leon M. Tolbert, Senior Member, IEEE,
John N. Chiasson, Senior Member, IEEE, and Burak Ozpineci, Senior Member, IEEE

Abstract—This paper presents a reduced switching-frequency
active-harmonic-elimination method (RAHEM) to eliminate any
number of specific order harmonics of multilevel converters. First,
resultant theory is applied to transcendental equations to elimi-
nate low-order harmonics and to determine switching angles for
a fundamental frequency-switching scheme. Next, based on the
number of harmonics to be eliminated, Newton climbing method
is applied to transcendental equations to eliminate high-order
harmonics and to determine switching angles for the fundamental
frequency-switching scheme. Third, the magnitudes and phases of
the residual lower order harmonics are computed, generated, and
subtracted from the original voltage waveform to eliminate these
low-order harmonics. Compared to the active-harmonic-elimina-
tion method (AHEM), which generates square waves to cancel
high-order harmonics, RAHEM has lower switching frequency.
The simulation results show that the method can effectively
eliminate all the specific harmonics, and a low total harmonic
distortion (THD) near sine wave is produced. An experimental
11-level H-bridge multilevel converter with a field-programmable
gate-array controller is employed to experimentally validate the
method. The experimental results show that RAHEM does effec-
tively eliminate any number of specific harmonics, and the output
voltage waveform has low switching frequency and low THD.

Index Terms—Field-programmable gate-array (FPGA) con-
troller, multilevel converter, reduced switching-frequency active
harmonic elimination.

I. INTRODUCTION

MULTILEVEL converters have received more and more
attention because of their capability of high-voltage

operation, high efficiency, and low electromagnetic interference
[1]–[3]. The desired output of a cascaded multilevel converter
is synthesized by several sources of dc voltages. With an
increasing number of dc-voltage sources, the converter voltage
output waveform approaches a nearly sinusoidal waveform
while using a fundamental frequency-switching scheme. This
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results in low switching losses, and because of several dc
sources, the switches experience a lower dV/dt. As a result,
the multilevel-converter technology is a promising technol-
ogy for high-power electronic devices for utility applications
[4], [5] such as flexible ac transmission devices. For these
applications, the output voltage of the converters must meet
maximum voltage and current total-harmonic-distortion (THD)
limitations such as those specified in IEEE 519 [6]. Therefore,
a method must be used to limit the harmonics produced by the
converters.

Generally, different pulsewidth-modulation (PWM) methods
such as sinusoidal-triangle PWM and space-vector PWM com-
bined with different control technologies such as feedforward
control are widely used [5]–[17]. But, they do not completely
eliminate any number of high-order harmonics of the output
voltage [18]–[23], and selective-harmonic-elimination method
cannot guarantee THD required by applications [24]–[32]. To
address the problem of having high-order harmonics at low-
modulation indexes, the active-harmonic-elimination method
(AHEM) has been proposed [33], [34]. AHEM uses a fun-
damental frequency-switching scheme in which the switching
angles are determined using elimination theory [24], [25] to
eliminate low-order harmonics. Then, the specifically chosen
higher harmonics (e.g., the odd nontriplen harmonics) are elim-
inated by using an additional switching angle (one for each
higher harmonic) to generate the negative of the harmonic
to cancel it. But, AHEM described in [33] and [34] has a
disadvantage in that it uses a high switching frequency to
eliminate higher order harmonics. A special case to use a low
switching frequency to eliminate some harmonics is discussed
in [35].

Due to the disadvantage of high switching frequency of
AHEM, a new reduced switching-frequency active-harmonic-
elimination method (RAHEM) is proposed to eliminate any
specific number of harmonics. First, resultant theory is applied
to transcendental equations to eliminate low-order harmon-
ics and to determine switching angles for the fundamental
frequency-switching scheme (e.g., the 5th, 7th, 11th, and 13th).
Next, based on the number of harmonics to be eliminated,
Newton climbing method is applied to transcendental equa-
tions to eliminate high-order harmonics (the odd nontriplen
harmonics, such as the 19th, 23rd, 25th, and 29th in the exper-
iments) and to determine switching angles for the fundamental
frequency-switching scheme. Third, the magnitudes and phases
of the residual lower order harmonics are computed, generated,
and subtracted from the original voltage waveform to eliminate
these low-order harmonics. The experimental results show that
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Fig. 1. (a) Topology of single-phase cascaded H-bridge multilevel converter. (b) Output waveform of multilevel converter using the fundamental frequency-
switching scheme.

the method can effectively eliminate all the specific harmonics,
and a low THD near sine wave is produced. Compared to
AHEM in [33] and [34], RAHEM that is proposed in this
paper has lower switching frequency and retains all the other
advantages of AHEM.

II. HARMONIC ELIMINATION FOR

MULTILEVEL CONVERTER

A. Switching-Angle Determination for Low-Order
Harmonic Elimination

A cascaded H-bridge multilevel converter uses several dc
sources to synthesize a sinusoidal waveform. Fig. 1(a) shows
the topology of a single-phase cascaded H-bridge multilevel
converter. The control of the multilevel converter is to choose
a series of switching angles to synthesize a desired sinusoidal
voltage waveform. The 11-level multilevel-converter output
voltage waveform generated by the fundamental frequency-
switching scheme is shown in Fig. 1(b). In Fig. 1(b), P1,
P2, . . . , P5 are conduction periods of different H-bridges.

If the separate dc-source (SDCS) voltages for all the
H-bridges are equal, which is defined as Vdc here, the Fourier
series expansion of the output voltage waveform shown in
Fig. 1(b) is

V (ωt) =
∞∑

n=1,3,5,...

4Vdc

nπ
(cos(nθ1) + cos(nθ2)

+ cos(nθ3) + · · · + cos(nθs)) sin(nωt) (1)

where s is the number of dc sources in a cascaded H-bridge
multilevel converter. Ideally, given a desired fundamental

voltage V1, one wants to determine the switching angles
θ1, . . . , θs so that V (ωt) = V1 sin(ωt), and specific higher har-
monics of V (nωt) are equal to zero. For a three-phase applica-
tion, the triplen harmonics in each phase need not be cancelled
as they automatically cancel in the line-to-line voltages. For
example, in the case of s = 5 dc sources, usually, the low-order
5th, 7th, 11th, and 13th harmonics can be cancelled.

The switching angles can be found by solving the following:

cos(θ1) + cos(θ2) + cos(θ3) + cos(θ4)

+ cos(θ5) = m

cos(5θ1) + cos(5θ2) + cos(5θ3) + cos(5θ4)

+ cos(5θ5) = 0

cos(7θ1) + cos(7θ2) + cos(7θ3) + cos(7θ4)

+ cos(7θ5) = 0

cos(11θ1) + cos(11θ2) + cos(11θ3) + cos(11θ4)

+ cos(11θ5) = 0

cos(13θ1) + cos(13θ2) + cos(13θ3) + cos(13θ4)

+ cos(13θ5) = 0 (2)

where the modulation index m is defined as m = πV1/(4Vdc).
These transcendental equations characterizing the harmonic

content are converted into polynomial equations, and the resul-
tant method is employed to find all their solutions when they
exist [29], [30]. The 11-level solutions are shown in Fig. 2(a).
The higher order harmonic voltages Vn are computed by (1),
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Fig. 2. (a) Solutions for switching angles versus m. (b) Corresponding THD
versus m.

and the THD for the corresponding solution computed by (3) is
shown in Fig. 2(b).

THD =

√√√√
49∑

n=5,7,11,...

V 2
n /V1. (3)

B. Newton Climbing Method for High-Order
Harmonic Elimination

If the fundamental frequency-switching scheme is used to
eliminate any high-order harmonics (in this 11-level case, any
other four h1, h2, h3, h4 high-order harmonics such as 19th,
23rd, 29th, and 31st) instead of low-order harmonics (such as
5th, 7th, 11th, and 13th), then the transcendental equations that
need to be solved are

cos(θ1) + cos(θ2) + cos(θ3) + cos(θ4)
+ cos(θ5) = m

cos(h1θ1) + cos(h1θ2) + cos(h1θ3) + cos(h1θ4)
+ cos(h1θ5) = 0

cos(h2θ1) + cos(h2θ2) + cos(h2θ3) + cos(h2θ4)
+ cos(h2θ5) = 0

cos(h3θ1) + cos(h3θ2) + cos(h3θ3) + cos(h3θ4)
+ cos(h3θ5) = 0

cos(h4θ1) + cos(h4θ2) + cos(h4θ3) + cos(h4θ4)
+ cos(h4θ5) = 0. (4)

As the order of the harmonics increase, the degrees of the
polynomials in the harmonic equations dramatically increase
and one reaches the limitations of the capability of contem-
porary computer algebra software tools (e.g., Mathematica or
Maple) to solve the system of polynomial equations by using
elimination theory [30]. It is difficult to solve (4) by the
resultant method for this reason. To conquer this problem, the
fundamental frequency-switching angle computation of (4) is
solved by the Newton climbing method whose initial guess is
obtained from the solutions of (2).

The Newton iterative method for (4) computation is

xn+1 = xn − J−1f (5)

where xn+1 is the new value and xn is the old value. J is the
Jacobian matrix for the transcendental equations, and f is the
set of transcendental functions.

f =




5∑
n=1

cos(θn)

5∑
n=1

cos(h1θn)

5∑
n=1

cos(h2θn)

5∑
n=1

cos(h3θn)

5∑
n=1

cos(h4θn)




. (6)

The Jacobian matrix is expressed in (7), shown at the bottom
of the next page.

By using the proposed Newton climbing method, the solution
for (4) can be found.

C. Low-Order Harmonic Elimination

The voltage content in (1) has the following four parts:
fundamental frequency voltage, triplen harmonic voltages, low-
order harmonic voltages (such as 5th, 7th, 11th, 13th, and 17th),
and high-order harmonic voltages (such as 19th, 23rd, 29th,
31st, and above). Assuming that the application is a balanced
three-phase system, the triplen harmonics need not be elimi-
nated, because these harmonics cancel in the line–line voltage
automatically. As part of the high-order harmonics have been
eliminated by the fundamental frequency-switching scheme,
here, a quasi-square wave with a precalculated fundamental
frequency and magnitude (determined by duty ratio) equal to
those of the harmonic that needs to be eliminated is subtracted.
In Fig. 3, an example of fifth harmonic elimination is shown.
The results will be compared to AHEM.
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Fig. 3. Fifth harmonic elimination.

To eliminate the low-order nontriplen harmonics, a square
wave is generated (one for each of these harmonics) whose
fundamental is equal to the opposite of the harmonic that is to
be eliminated, as it is done in AHEM [33], [34]. For example,
the seventh harmonic content is

V7(t) =
4Vdc

7π
[cos(7θ1)+cos(7θ2)+· · ·+cos(7θs)] sin(7ωt).

(8)

To eliminate the seventh harmonic (let h = 7), a square wave
whose Fourier series expansion is

Vk1(t) = −
∑

q=1,3,5,7,...

4Vdc

qπ
[cos(qhθ1) + cos(qhθ2)

+ · · · + cos(qhθs)] sin(qhωt) (9)

is generated. The q = 1 and h = 7 term of (9) cancels the
seventh harmonic of (8). Here, as the waveform injected into
the converter is a square wave, the square wave contains not
only the fundamental frequency content which is used to cancel
the specified harmonic but also contains higher order harmonics
(such as fifth, seventh, . . ., etc.) of the fundamental frequency of
the injected square wave. Because the fundamental frequency
of the injected square wave is the frequency of the harmonic
that will be cancelled in the output voltage, the orders of actual
harmonics generated by the injected square wave are products
of the harmonic order of the injected square wave and these
nontriplen numbers. One example to cancel the fifth harmonic
is shown in Fig. 3.

In Fig. 3, the harmonic to be cancelled is a sinusoidal
waveform, and the generated waveform to cancel it is a square
waveform. The difference between the harmonic to be cancelled
and the square wave is higher order harmonics. For example, in
Fig. 3, the next harmonic of concern that is produced by (9) is
at 5 × 7 = 35. This harmonic and higher ones (7 × 11, etc.)

are easy to filter using a low-pass filter. Repeating the earlier
procedure, the 5th, 11th, . . ., 25th harmonics can all be elimi-
nated. The net effect of this method is to remove the low-order
harmonics at the expense of increasing the switching frequency
when new harmonics are eliminated. This method is referred to
as RAHEM, because in this method, a square wave is used to
cancel low-order harmonics instead of high-order harmonics.
As low-order harmonic elimination needs lower number of
switchings than that of high-order harmonic elimination, the
total switching frequency for RAHEM will be lower than that
of AHEM.

By using RAHEM, any specific number of harmonics can be
eliminated. Here, the cases that will eliminate harmonics up to
17th, 25th, and 31st are discussed.

III. REDUCED SWITCHING-FREQUENCY ACTIVE

HARMONIC ELIMINATION FOR 11-LEVEL

MULTILEVEL CONVERTER

A. Harmonic Elimination Up to 17th

For the harmonic-elimination requirements, the fundamental
frequency-switching scheme will be used to eliminate the 7th,
11th, 13th, and 17th harmonics, and negative square waves will
be used to eliminate the fifth harmonic. The equation of the
fundamental frequency-switching scheme can be

cos(θ1) + cos(θ2) + cos(θ3) + cos(θ4)

+ cos(θ5) = m

cos(7θ1) + cos(7θ2) + cos(7θ3) + cos(7θ4)

+ cos(7θ5) = 0

cos(11θ1) + cos(11θ2) + cos(11θ3) + cos(11θ4)

+ cos(11θ5) = 0

cos(13θ1) + cos(13θ2) + cos(13θ3) + cos(13θ4)

+ cos(13θ5) = 0

cos(17θ1) + cos(17θ2) + cos(17θ3) + cos(17θ4)

+ cos(17θ5) = 0. (10)

Fig. 4 shows the switching-angle solutions for (10) to elim-
inate the 7th, 11th, 13th, and 17th harmonics. It is shown in
the figure that, for some modulation-index ranges, there are
several solution sets; and for some modulation-index ranges,
there is only one solution set. This is similar to the solution
of the fundamental frequency-switching scheme to eliminate
the 5th, 7th, 11th, and 13th harmonics. Fig. 5(a) shows the
lowest THD for RAHEM and AHEM, and Fig. 5(b) shows

J =




sin(θ1) sin(θ2) sin(θ3) sin(θ4) sin(θ5)
sin(h1θ1) sin(h1θ2) sin(h1θ3) sin(h1θ4) sin(h1θ5)
sin(h2θ1) sin(h2θ2) sin(h2θ3) sin(h2θ4) sin(h2θ5)
sin(h3θ1) sin(h3θ2) sin(h3θ3) sin(h3θ4) sin(h3θ5)
sin(h4θ1) sin(h4θ2) sin(h4θ3) sin(h4θ4) sin(h4θ5)


 (7)
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Fig. 4. Switching angles for harmonic elimination up to 17th.

Fig. 5. Harmonic elimination up to 17th. (a) Lowest THD for RAHEM and
AHEM. (b) Switching number in a cycle corresponding to the lowest THD for
RAHEM and AHEM.

the switching numbers corresponding to the lowest THDs for
RAHEM and AHEM. From the figure, it is shown that the
lowest THD of RAHEM is lower than that of AHEM for most
of the modulation-index range. The upper bound switching
number for RAHEM is only 5, and it is 17 for AHEM.

Fig. 6. Switching angles for harmonic elimination up to 25th.

B. Harmonic Elimination Up to 25th

For the harmonic-elimination requirements, the fundamental
frequency-switching scheme will be used to eliminate the 5th,
19th, 23rd, and 25th harmonics, and negative square waves will
be used to eliminate the 7th, 11th, 13th, and 17th harmonics.
Here, the 5th harmonic needs to be eliminated by the fundamen-
tal frequency-switching scheme instead of the 17th harmonic,
because if negative square waves are used to eliminate the 5th
harmonic, it will generate a new 25th harmonic. Therefore, the
5th and 25th harmonics must be tied together for elimination.
They need to be eliminated by a fundamental switching scheme
or negative square waves. Here, the fundamental frequency-
switching scheme is used to eliminate both the 5th and 25th
harmonics, and the equation of the fundamental frequency-
switching scheme can be

cos(θ1) + cos(θ2) + cos(θ3) + cos(θ4)

+ cos(θ5) = m

cos(5θ1) + cos(5θ2) + cos(5θ3) + cos(5θ4)

+ cos(5θ5) = 0

cos(19θ1) + cos(19θ2) + cos(19θ3) + cos(19θ4)

+ cos(19θ5) = 0

cos(23θ1) + cos(23θ2) + cos(23θ3) + cos(23θ4)

+ cos(23θ5) = 0

cos(25θ1) + cos(25θ2) + cos(25θ3) + cos(25θ4)

+ cos(25θ5) = 0. (11)

Fig. 6 shows the switching-angle solutions for (11) to elimi-
nate the 5th, 19th, 23rd, and 25th harmonics. Again, the solution
distribution is similar to that of the fundamental frequency-
switching scheme to eliminate the 5th, 7th, 11th, and 13th
harmonics.

Fig. 7(a) shows the lowest THD for RAHEM and AHEM,
and Fig. 7(b) shows the switching numbers corresponding to
the lowest THDs for RAHEM and AHEM. From the figure,
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Fig. 7. Harmonic elimination up to 25th. (a) Lowest THD for RAHEM and
AHEM. (b) Switching number in a cycle corresponding to the lowest THD for
RAHEM and AHEM.

it is shown that the lowest THD of RAHEM is a little higher
than that of AHEM for most of the modulation-index range.
The upper bound switching number for RAHEM is 48, and it is
84 for AHEM.

C. Harmonic Elimination Up to 31st

The fundamental frequency-switching scheme is used to
eliminate the 19th, 23rd, 29th, and 31st harmonics, and negative
square waves are used to eliminate the 5th, 7th, 11th, 13th,
17th, and 25th harmonics. The equation of the fundamental
frequency-switching scheme can be

cos(θ1) + cos(θ2) + cos(θ3) + cos(θ4)

+ cos(θ5) = m

cos(19θ1) + cos(19θ2) + cos(19θ3) + cos(19θ4)

+ cos(19θ5) = 0

cos(23θ1) + cos(23θ2) + cos(23θ3) + cos(23θ4)

+ cos(23θ5) = 0

Fig. 8. Switching angles for harmonic elimination up to 31st.

cos(29θ1) + cos(29θ2) + cos(29θ3) + cos(29θ4)

+ cos(29θ5) = 0

cos(31θ1) + cos(31θ2) + cos(31θ3) + cos(31θ4)

+ cos(31θ5) = 0. (12)

The switching-angle solution is shown in Fig. 8. Fig. 9(a)
shows the lowest THD for RAHEM and AHEM, and Fig. 9(b)
shows the switching numbers corresponding to the lowest
THDs for RAHEM and AHEM. From the figure, it is shown
that the lowest THD of RAHEM is a little higher than that
of AHEM for most of the modulation-index range. But, the
upper bound switching number for RAHEM is 78, and it is 144
for AHEM.

From the cases of an 11-level multilevel converter to elim-
inate harmonics up to 17th, 19th, 23rd, 25th, 29th, and 31st,
it can be concluded that the lowest THDs for RAHEM and
AHEM for all the cases are similar for much of the modulation-
index range. However, the switching numbers for RAHEM
are much lower than that of AHEM. Usually, the switching
numbers of RAHEM are only half of that of the corresponding
AHEM.

For practical applications, the lookup table should be as
small as possible to achieve high dynamic performance. In the
proposed method, the size of the lookup table can be computed
as (mmax/0.01) × 2 × L bytes (here, L is the number of
H-bridges, and 0.01 is the modulation-index control resolution).
For example, for an 11-level multilevel inverter, there are five
H-bridges for each phase (L = 5). Therefore, the lookup table
size is around 5000 B, and a very small memory chip can
hold all the switching-angle data. Therefore, such a small
lookup table will be very helpful for the system to achieve
high dynamic transient performance. Because low-order volt-
age harmonics have been removed by harmonic elimination,
the system’s dynamic performance will be comparable to
other modulation strategies, which have much higher switching
frequencies.

Another issue for the cascaded H-bridge multilevel inverter is
uneven-load power sharing among different dc sources. In the
proposed method, this can be fixed by rotating the switching
angles among all the H-bridges every half cycle or every
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Fig. 9. Harmonic elimination up to 31st. (a) Lowest THD for RAHEM and
AHEM. (b) Switching number in a cycle corresponding to the lowest THD for
RAHEM and AHEM.

Fig. 10. (a) 10-kW multilevel converter. (b) FPGA controller for multilevel
converter.

cycle. It is simple and effective to balance uneven load among
different dc sources [3].

RAHEM can be used for most any multilevel-converter-
based power-electronics application. One promising applica-
tion is for cascaded H-bridge multilevel-converter-based static
Var compensation (STATCOM). This scheme can easily meet
IEEE 519 [36] harmonic standards for grid connection and
reduce the filter cost. Therefore, the whole system performance
can be increased.

Fig. 11. (a) Experimental multilevel-converter phase voltage for AHEM to
eliminate harmonics up to 31st (m = 3.78). (b) Line–line voltage. (c) Nor-
malized FFT analysis of line–line voltage shown in (b) (THD = 3.06%).
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Fig. 12. (a) Experimental multilevel phase voltage of RAHEM to eliminate
harmonics up to 31st (m = 3.78). (b) Line–line voltage. (c) Normalized FFT
analysis of line–line voltage shown in (b) (THD = 3.52%).

IV. EXPERIMENTAL VERIFICATION

To experimentally validate the proposed algorithm, a proto-
type three-phase 11-level cascaded H-bridge multilevel inverter
has been built using 60-V 70-A MOSFETs as the switching
devices, which is shown in Fig. 10(a). A battery bank of
15 SDCSs of 36 V each feed the inverter (five SDCSs per
phase). A real-time controller based on Altera FLEX 10-K
field-programmable gate array (FPGA) is used to implement
the algorithm with 8-µs control resolution. For convenience of
operation, the FPGA controller was designed as a card to be
plugged into a personal computer, which used a peripheral-
component-interconnect (PCI) bus to communicate with the
microcomputer. The FPGA controller board based on a PCI bus
is shown in Fig. 10(b).

The m = 3.78 and harmonic elimination up to 31st case
was chosen for comparison between RAHEM and AHEM to
implement with the multilevel converter. Fig. 11 shows the
experimental phase voltage and line–line voltage for AHEM,
and Fig. 11(c) shows the corresponding normalized fast Fourier
transform (FFT) analysis of the line–line voltage. Fig. 12 shows
the experimental phase and line–line voltage for RAHEM, and
Fig. 12(c) shows the corresponding normalized FFT analysis
for the line–line voltage.

From Figs. 11 and 12, it is shown that the harmonics have
been eliminated up to 31st for both AHEM and RAHEM. Their
experimental THD are 3.06% and 3.52%, and this corresponds
well with the theoretical computation of 3% and 2.75%. The
switching number is 78 for RAHEM but 121 for AHEM.

V. CONCLUSION

A RAHEM has been proposed and developed to eliminate
any number of specific harmonics for multilevel converters. It
can be derived from the computational results that this method
can reduce the switching frequency and achieve similar THD to
AHEM. The experiments validated that the proposed method
can eliminate all the specified harmonics, and the switching
frequency is dramatically decreased.
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