
Boise State University
ScholarWorks
Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

7-1-2009

RNA Search with Decision Trees and Partial
Covariance Models
Jennifer A. Smith
Boise State University

This document was originally published in IEEE/ACM Transactions on Computational Biology and Bioinformatics. Copyright restrictions may apply.
DOI: 10.1109/TCBB.2008.120

http://scholarworks.boisestate.edu
http://scholarworks.boisestate.edu/electrical_facpubs
http://scholarworks.boisestate.edu/electrical_facpubs
http://scholarworks.boisestate.edu/electrical
http://scholarworks.boisestate.edu/electrical
http://dx.doi.org/10.1109/TCBB.2008.120

RNA Search with Decision Trees and Partial
Covariance Models

Jennifer A. Smith

Abstract—The use of partial covariance models to search for RNA family members in genomic sequence databases is explored. The

partial models are formed from contiguous subranges of the overall RNA family multiple alignment columns. A binary decision-tree

framework is presented for choosing the order to apply the partial models and the score thresholds on which to make the decisions.

The decision trees are chosen to minimize computation time subject to the constraint that all of the training sequences are passed to

the full covariance model for final evaluation. Computational intelligence methods are suggested to select the decision tree since the

tree can be quite complex and there is no obvious method to build the tree in these cases. Experimental results from seven RNA

families shows execution times of 0.066-0.268 relative to using the full covariance model alone. Tests on the full sets of known

sequences for each family show that at least 95 percent of these sequences are found for two families and 100 percent for five others.

Since the full covariance model is run on all sequences accepted by the partial model decision tree, the false alarm rate is at least as

low as that of the full model alone.

Index Terms—Bioinformatics, computational intelligence, covariance models, decision trees, RNA database search.

Ç

1 INTRODUCTION

SEARCHING for new members of RNA sequence families
in genomic data is made more difficult than protein

sequence homology search by the need to account for
secondary structure. Searches based on primary sequence
only are generally not very effective since base-pairing
patterns (secondary structure) are much more highly
conserved than nucleotide identity in functional RNA [1],
[2]. The underlying reason is that RNA molecules which
perform such functions as catalysis or molecular recognition
require a specific three-dimensional shape in order to
perform these tasks. The most important factor in determin-
ing three-dimensional shape is the base-pairing pattern.
This pattern is often maintained by substituting pairs of
nucleotides simultaneously such that the pair remains
canonical (a GC, AU, or GU pair in either order), although
exceptions to the need for canonical pairs do exist.

A modeling strategy that includes joint probabilities of
substitution for both nucleotides of a consensus pair is the
covariance model [3]. Like its cousin, the profile hidden
Markov model [4] used for primary sequence modeling, the
covariance model includes position-specific penalties for
insertions, deletions, and substitutions. Covariance model
estimation and search has been implemented by the
Infernal [5] package which is the basis for creating the
Rfam [6] RNA families database. A major problem with
Infernal is that it is extremely computationally demanding.
The search algorithm uses dynamic programming for
optimal alignment and scoring, but often requires sequence

prefiltering in order to get acceptable computation times.
Early use of the search algorithm relied on a BLAST [7]
primary sequence prefilter to find database regions to
search with the full covariance model. More recently,
hidden Markov model (HMM) primary sequence prefilters
have been employed either as rigorous filters [8] or
nonrigorous filters [9]. The former guarantee that the
prefilter will not remove any database region which would
exceed the covariance model threshold. The rigorous filters
often do not reduce the database size sufficiently, and
nonrigorous HMM filters, like the BLAST filters, can
erroneously reject database regions. There have also been
recent speed improvements obtained by excluding very
improbable regions of the alignment search space, such as
the application of query-dependent banding (QDB) [10].
These methods usually involve limiting the net number of
insertions and deletions allowed on subsequences of the
model’s consensus sequence. Other methods of searching
for noncoding RNA genes include methods specific to a
particular class of ncRNA such as RNAmmer [23] which is
specifically targeted at ribosomal RNA and methods which
use only a single sequence rather than a family multiple
alignment such as RSEARCH [25]. A combined package
that can use either the rigorous or nonrigorous filters
discussed above is available as RaveNnA [24].

Crucial to keeping computation times feasible is limiting
the number of net insertions allowed in new family
members which are sought in the database. The model
has a consensus sequence length (length of the sequence
with highest possible score) which is added to whenever
a database sequence has insertions with respect to the
consensus sequence and subtracted from whenever the
database sequence has deletions. The original search
method of Infernal used a maximum search length D

specified in advance. This length maximum was applied to
all subsequences throughout the scoring procedure. This
resulted in some significant inefficiencies when scoring

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009 517

. The author is with the Electrical and Computer Engineering Department,
Boise State University, 1910 University Ave., Boise, ID 83725-2075.
E-mail: jasmith@boisestate.edu.

Manuscript received 11 May 2008; revised 21 Oct. 2008; accepted 22 Oct.
2008; published online 29 Oct. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number
TCBB-2008-05-0086.
Digital Object Identifier no. 10.1109/TCBB.2008.120.

1545-5963/09/$25.00 � 2009 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

Authorized licensed use limited to: Boise State University. Downloaded on August 6, 2009 at 20:33 from IEEE Xplore. Restrictions apply.

very short consensus subsequences near the model ends.
These inefficiencies have been largely eliminated in the
recent QDB versions of Infernal since there is now an upper
and a lower bound on search length that varies with the
consensus subsequence being scored. The computational
complexity of the original search method was OðLDMnb þ
LD2MbÞ, where L is the length of the database to search, D
is the maximum search length, Mnb is the number of
nonbifurcation states, and Mb is the number of bifurcation
states. A discussion of covariance model states appears in
a later section, but it is clear that reducing D reduces
computation time given a particular model (M values) and
database (L value) at the risk of possibly missing long RNA
family members in the database. It is also clear that
elimination of bifurcation states is more effective at
reducing computation time than elimination of the same
number of nonbifurcation states. The parameter D needs to
be at least as large as the consensus sequence length and the
number of model states increases approximately in propor-
tion to consensus sequence length. As a result, the necessary
computation time tended to increase faster than propor-
tionally to the square of the consensus sequence length in
the original method.

With QDB, it is the range of reasonable search lengths for
each consensus subsequence that is important. The model
parameters themselves tell when the accumulated insertion
and deletion penalties needed to get a particular deviation
from the consensus subsequence length make reaching the
score threshold impossible (or at least highly unlikely). As a
result, it is not as clear how computation time varies with
consensus sequence length. Longer subsequences generally
have more opportunities for insertions and deletions and
therefore typically have a larger range of search lengths.
Whether these ranges of lengths usually increase more or
less than proportionally with overall consensus sequence
length is not well known. For the five RNA families studied
in this paper, the answer appears to be less than propor-
tionally. With or without QDB, it is expected that the sum of
the computation times of several partial models will often be
less than the computation time of a full model when the sum
of the consensus lengths of the partial models equals that of
the full model. This computation time reduction will be even
more pronounced if breaking the full model into partial
models removes the need for any bifurcation states (such a
partition is always possible and is always used in the
examples of this paper).

An even further reduction in computation time can be
achieved if one avoids running all of the partial models on
every portion of the database. The scores observed from
partial models run earlier on a section of database can be
used to chose which partial model to run next, including the
possibility of completely skipping one or more partial
models. In most cases, not running one or more partial
models results from not attaining a high enough score on
earlier partial models to make obtaining the overall score
threshold more than very remotely possible (or perhaps not
possible at all). Occasionally, not running further partial
models may be the result of already exceeding the overall
threshold before all partial models are run. It is proposed in
this work that the choice of partial model order, partial

model score interaction, and when to stop applying partial
models and either reject or accept a database section could
be described with a binary decision tree. Finding a good
decision tree can be a complex task and a computational
intelligence method for doing this is proposed.

The reduced computational time required by partial
models relative to a full model does not come without a
cost. In general, the product of the false alarm rates of the
partial models is greater than that of the full model. This is
the result of not penalizing insertions between the partial
models and/or allowing partial models to overlap (effec-
tively not forcing one or both of the partial models to take
deletions in order to not share database positions). To make
sure that the false alarm rate for the partial models is no
more than for the full model, the full model will always be
run on those portions of the database that are accepted by
the partial model decision tree. As such, the partial models
work as a type of prefilter. If the fraction of the database
that is accepted by the decision tree is small, then the cost of
running the full model will also be small. It must also be the
case that true RNA family members are accepted by the
decision tree, otherwise they will not be found. The
objective of the decision tree design is therefore to minimize
computation time subject to the constraint that all training
sequences (known as “seed” sequences in the Rfam
database) are accepted. The Rfam database also includes
more sequences that have been found using the existing
models and the hope is that a very high percentage of these
test sequences also are accepted by the decision tree. In the
experimental section of this paper, seven RNA families are
examined. They are broken into somewhat equal sized
partial models and decision trees found. The resulting
computation time (including full model computation of all
portions of the database accepted by the decision tree) is
0.066-0.268 times that of applying the full model to the
whole database. By construction, the decision tree accepts
all training sequences. Tests on the full sets of known
sequences for the seven families result in 96 percent of U4
RNA family sequences being accepted, 95 percent of the
RyhB sequences, and 100 percent for five other RNA
families. Assuming the same full model threshold is used
whether applied to the full database or only to the decision
tree output, all sequences that are accepted by the decision
tree will pass the full model test. The false alarm rate will be
at least as low with the decision tree as without. False
alarms in the accepted database portion will occur in
exactly the same places, but false alarms cannot occur in the
portions rejected by the decision tree. It is not valid to
multiply the proportion of database accepted by the false
alarm rate of the full model to obtain an overall false alarm
rate. This is because database sections which cause a false
alarm in the full model are much more likely to get through
the decision tree than random sections of the database. So,
no more can be said than that the false alarm rate is at least
as low when using the partial model prefilter as when not.

The paper first gives a very quick overview of covariance
models and how they may be used to search for RNA in
genomic data (Section 2). The partitioning of the columns of
a secondary-structure-annotated multiple alignment, the
estimation of partial models, and the execution times of the

518 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009

Authorized licensed use limited to: Boise State University. Downloaded on August 6, 2009 at 20:33 from IEEE Xplore. Restrictions apply.

partial models versus full models is examined for five RNA
families (Section 3). The use and choice of binary decision
trees to guide the application order and thresholds used
with partial models is then presented (Section 4). Decision
trees are found for the five RNA families and performance
investigated (Section 5). Finally, conclusions are drawn
(Section 6).

2 COVARIANCE MODELS FOR RNA SEARCH

2.1 Covariance Model Structure

A covariance model can be thought of as an extension of a
profile hidden Markov model to incorporate expression of
joint probabilities of base pair substitutions rather than just
the marginal probabilities of each half of the pair individu-
ally. There are two classes of symbol-emitting nodes: one
which specifies an unpaired consensus position and emits a
symbol (A, C, G, or U) with a probability assigned to each
and one which specifies a pair of consensus positions and
emits a symbol pair (AA, AC, AG; . . . ;UU) with a probability
assigned to each of the 16 possible pairs. The two halves of
the consensus pair are generally not next to each other in the
consensus sequence. Consensus refers to the nominal
arrangement of nucleotides in sequences of a particular
RNA family from which individual sequences may deviate
through insertions, deletions, or substitutions. A profile
HMM can be viewed as simply a covariance model in which
no base-pairing occurs.

Fig. 1 shows a secondary structure diagram of a simple
example RNA on the right and the covariance model node
tree associated with this consensus secondary structure on
the left. The RNA sequence is represented starting at the
50 end (left end) and progressing to the 30 end (right end).
In the diagram, the most likely (consensus) nucleotide at
the left position (position index 1) is a C and is labeled

C1. If the ordered sequence of length 23 with symbols
CAAGCCCAG. . . CCAUCU appears in the database at
contiguous positions, it should generate the maximum
possible score during database search for this RNA
family. Twelve of the consensus positions (3-5, 9-11, 13-
15, and 20-22) are base-paired with other positions.

The covariance model node tree models unpaired
positions as either L or R nodes and paired positions as
P nodes. The remaining node types (S, B, and E) are
nonemitting and serve to organize the location of the three
emitting node types (L, R, and P). An L node emits a symbol
to the left of a subsequence represented by its child node. An
R node emits a symbol to the right of the child subsequence.
The P node emits a symbol on the right and the left
simultaneously. It is the existence of P nodes which are the
fundamental difference between a profile HMM and a
covariance model. All of the consensus nucleotides from the
secondary structure diagram also appear next to the
covariance model node which models the position. In both
cases, the nucleotide is merely the most likely one for the
particular position and all possible nucleotides are assigned
some nonzero probability at each position.

Internal to each node in the covariance model tree is a
state structure which allows for position-specific insertion
and deletion penalties as shown in Fig. 2. Penalties are also
different for insertion or deletion continuations versus
initiation. These penalties take the form of state transition
probabilities. All probabilities (both emission and transi-
tion) are given in the form of log likelihood ratios such that

SMITH: RNA SEARCH WITH DECISION TREES AND PARTIAL COVARIANCE MODELS 519

Fig. 1. Example covariance model node tree and associated RNA

secondary structure diagram. Both show consensus structure (no

insertions or deletions) and consensus sequence (most likely nucleotide

at each consensus position).
Fig. 2. Example covariance model states and interconnection for
portions of the covariance model node tree. Large boxes are CM nodes
from Fig. 1 and small boxes are the states internal to the nodes. Insert
states (IL and IR) have identical function to consensus L and R states
with the exception that the insert states have self-transition connections
(not shown). S and D states also have identical function even though the
reasons for their use are distinct.

Authorized licensed use limited to: Boise State University. Downloaded on August 6, 2009 at 20:33 from IEEE Xplore. Restrictions apply.

score calculations involve addition and comparison, but
never multiplication.

2.2 Database Search Using Covariance Models

Once a covariance model has been estimated using a set of
known sequences in an RNA family annotated with base-
pairing information, the model may be used for database
search. Given a position in the database at which the 30 end
of the sequence must be located and a maximum number of
insertions net of deletions in the database sequence, the
score of the database end position may be calculated
relative to the covariance model. The standard solution to
this scoring problem is to use dynamic programming. At
each state in the model, the highest scoring combination of
child state score, state transition score, and emission score
(if the state is an emitting state) is chosen. The choice among
state children is equivalent to choosing among subsolutions
with insertions, deletions, or neither on the ends of the
subsolutions.

The usual dynamic programming scoring algorithm is
attributed to the works of Cocke, Younger, and Kasami, and
is thus known as the CYK algorithm. End (E) states
represent null sequences and are given a score of 0 when
they are associated with a subsequence of length d ¼ 0, but
a score of �1 otherwise. Working from the E states toward
the root start state, subsequences grow by addition of a
symbol on the left end, right end, or both ends simulta-
neously with each visit to a left, right, or pair (L, R, or P)
state, respectively. Delete (D) states allow bypass of the
symbol-emitting L, R, or P states. The single-emission L and
R states can be used to emit the consensus symbol (in an L
or R node, respectively), to emit only half of a consensus
pair (in a P node) or insertions relative to the consensus
(where they are normally labeled IL or IR to highlight this
usage). The IL and IR states are the only ones that include
self-transitions (not shown in the figure). Start (S) states
allow for the collection of several child solutions without
emitting anything and are functionally identical to D states.
Bifurcation (B) states join two contiguous child solutions
into a whole.

Any given state in conjunction with all states below it can
be thought of as a representation of a consensus subse-
quence with possible insertions and deletions. The score of
the given state can be found for various lengths of this
subsequence with insertions and deletions included. Before
the use of QDB, all states were scored for all possible
lengths in the range 0 to D. This results in scores calculated
for some very improbable lengths (for example, scoring the
L state in the L11 node for lengths very close to D can only
be accomplished with many visits to IL first and will
acquire a huge insertion penalty). QDB causes every state to
have its own range of scoring lengths centered on the
consensus subsequence length such that only lengths that
incur reasonable aggregate insertion and deletion penalties
are considered.

The entire search (without QDB) can be expressed as
three nested loops over database end position j, search
subsequence length d, and state number v (listed from outer
to inner loop). The score of interest at each database
position j is the maximum value over search length d at the

root start state. That is, one wants maxd [s(j, d, 1)] at each
position j, where s(j, d, v) is calculated using

for j ¼ 0 : L; d ¼ 0 : Dðs:t:d � jÞ; v ¼M : 1 {

y ¼ set of children of state v

sðj; d; vÞ ¼
case state type of v is {

E : sðj; d ¼ 0; vÞ ¼ 0; sðj; d > 0; vÞ ¼ �1
D; S : maxy½sðj; d; yÞ þ tðv; yÞ�
L : maxy½sðj; d� 1; yÞ þ tðv; yÞ� þ eðj� dþ 1Þ
R : maxy½sðj� 1; d� 1; yÞ þ tðv; yÞ� þ eðjÞ
P : maxy½sðj� 1; d� 2; yÞ þ tðv; yÞ� þ eðj; j� dþ 1Þ
B : max0�k�d½sðj� k; d� k; yLÞ þ sðj; k; yRÞ�

}

}

In cases where an index is negative, the associated score
is made to be �1. State transition scores are given as t(v, y)
from child state y to parent state v. Emission scores for
single emissions are given by e(x), where x is a database
sequence position that returns either an A, C, G, or U, and
emission scores for paired positions is given by eðxL; xRÞ,
where xL and xR are a pair of database sequence positions
returning an ordered pair of database symbols. It can be
seen that B states are particularly expensive to calculate
since these scores require an addition loop over k with
upper limit d, whereas all other states have no fourth inner
loop. The resulting complexity is OðLDMnb þ LD2MbÞ,
where Mnb is the number of nonbifurcation states and Mb

is the number of bifurcation states. The QDB modification
limits the range of d at each state. The QDB complexity then
becomes OðLDnbMnb þ LD2

bMbÞ, where Dnb is the mean
nonbifurcation state search bandwidth and D2

b is the mean
of the squared search bandwidths for bifurcation states.

3 PARTITIONING AND PARTIAL MODELS

When building a covariance model from aligned sequence
data, it is necessary to have a contiguous range of sequence
positions. However, one cannot just choose any range of
alignment columns to build a partial model since any base-
paired position in the range must have the other half of the
base pair also in the range. Dividing the alignment between
the two children of a covariance model bifurcation will
always work. It is also always possible to divide the
columns at any point that is not enclosed by any base pair.
In the example model of Fig. 1, the division between U11

and U12 is clearly possible since U11 is the rightmost
consensus position of the bifurcation’s left child and U12 is
the leftmost consensus position of the bifurcation’s right
child. Alternatively, one notes that C1, A2, U12, and U23 are
not enclosed by any base pair, and therefore, a division can
be made on either side of these consensus positions.
Possible partial models include C1 by itself, C1A2, and
G13G14U15A16A17C18C19A20U21C22. Although the partial
model G14U15A16A17C18C19A20U21 would be valid, it is not
a good choice, since G13 and U22 cannot then be assigned to
any other partial model partition. One also notes that U12

could have been assigned to either of the children of the
bifurcation (as an R node at the top of the left child or as an
L node at the top of the right child). The standard used by

520 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009

Authorized licensed use limited to: Boise State University. Downloaded on August 6, 2009 at 20:33 from IEEE Xplore. Restrictions apply.

Infernal is to always use an L node whenever either an R or
an L node is possible, and hence the choice made in Fig. 1.
However, the choice of alignment columns for partial
models does not need to follow this rule.

The two children of a bifurcation are always start nodes
and merely renumbering nodes and states such that each
child becomes a root start node almost gives two valid
partial models. The only difference is that a root start node
includes both left and right insert states whereas a left child
start node includes neither type of insert state and a right
child start node includes only a left insert state (see Fig. 2).
This is done since the nodes above the bifurcation are
responsible for the insertion possibilities outside of the
joined bifurcation children. Insertion possibilities between
the two joined children could be done with either an insert
right on the left child or an insert left on the right child.
Keeping with Infernal’s preference for L to R rule, an IL
state is assigned to the right child. The easiest way to
generate partial model parameter files is to divide the
multiple alignment file into contiguous ranges of columns
and run the Infernal cmbuild program on the new input
files rather than try to renumber the nodes and states and
add new IR and possibly IL states to the start nodes.

An example of multiple alignment of the five seed
sequences for the Rfam P1 RNA family (accession number
RF00623) is shown in Fig. 3 along with a possible assign-
ment of contiguous columns to one of four partial models
(the numbers 1-4 in every seventh row). Partial model 1 is a
50 dangling end of all L nodes. This partial model is

conceptually identical to a profile HMM. Partial model 2 is
a stem-loop (hairpin) structure as is partial model 4. Partial
model 3 is a connector between the two hairpins and is also
composed of all L nodes. To create the four partial model
parameter files, simply create four multiple alignment files
with the assigned alignment columns in each and run
cmbuild four times.

Not all RNA families are amenable to division into parts.
Some families have consensus sequences that are too short
(perhaps only 20-30 consensus positions) to warrant
division. Searches for these family members already run
fast relative to the families with longer consensus se-
quences. Some other families have two halves of a base pair
with one position very close to the 50 end and the other very
close to the 30 end of the consensus sequence. These families
can often be broken up into reasonable partial models, but
the partial models do not fully cover the original full model.
If the part of the full model that is not covered is highly
conserved, then the partial models may not be very
effective. There still remains a large portion of the longer
family models that can be divided completely and the
number of such families should continue to grow as new
families are found.

Seven RNA families from Rfam have been divided into
parts, as shown in Table 1: U4 (five parts), MicC (four parts),
DsrA (three parts), HgcF (three parts), P1 (four parts), RyhB
(three parts), and SL1 (three parts). The U4 family has a
large number of seed sequences (30) and total number of
known sequences (102 after filtering to less than 90 percent
sequence identity). Because of the large number of member
sequences, U4 will be chosen for detailed analysis in the
following sections. For each partial model in Table 1, the
consensus column numbers are shown. This is followed by
two sets of execution time data normalized to the full model
execution time. The data were generated using the UNIX
time command (user time) when running the cmsearch
program in the Infernal 0.81 package on a recent Pentium
single processor. By default, Infernal 0.81 uses QDB, but this
can be turned off with the �noqdb flag. It can be seen that
the advantage of breaking the full covariance model into
pieces is less using QDB than without. Since using QDB
generally makes search time about half as much as without,
it is expected that most users will want to use QDB and all
the results that follow in this paper are based on the
assumption that QDB will be used. The “predicted” lines in
Table 1 show the normalized values of D times M, where D
is the automatically calculated maximum search length and
M is the number of covariance model states. It can be seen
that DM is a fairly good predictor of execution time when
not using QDB. As expected, it is not so good at predicting
execution times with QDB. Finally, the sums of the
measured and predicted normalized execution times across
all the partial models is shown. Particularly when using
QDB, there is not a lot of advantage to the partial models if
all partial models need to be run on every portion of the
database. This is even more true if one is going to run the
full model on any significant portion of the database that
has been accepted by the partial model search in order to get
more reasonable false alarm rates. Occasionally, running all
partial models on the full database takes even longer than

SMITH: RNA SEARCH WITH DECISION TREES AND PARTIAL COVARIANCE MODELS 521

Fig. 3. Five sequences forming the “seed” alignment for the RF00623
(P1) RNA family in Rfam. The secondary structure annotation lines have
a dot for unpaired sequence locations, < for the left half of a pair, and a >
for the right half of a pair. Since the standard covariance model cannot
handle pseudoknots (two or more base pairs that are neither nested nor
disjoint), this notation is unambiguous. The seventh line of the alignment
shows a possible assignment of columns to one of four partial models.

Authorized licensed use limited to: Boise State University. Downloaded on August 6, 2009 at 20:33 from IEEE Xplore. Restrictions apply.

just running the full model (see QDB entry for DsrA). A

method for selectively using only some of the partial models

on each portion of the database is the only way to get a

significant reduction in execution time and such a method is

presented in the next section.
Since the U4 family is to be analyzed in detail, the

specific partition used in the results to follow is shown in

Fig. 4. This partition removes three bifurcations from the

original model. It was chosen to generate five partitions of

somewhat equal size. No attempt has been made to

optimize the choice of partition boundaries or number of

partitions. The automation of model partitioning has been

left to future work.

4 DECISION TREES

The strategy employed here to make efficient use of the
partial models is to design a binary decision tree. Each
nonleaf node of the tree specifies one of the partial models
and a threshold value for the score generated by that partial
model. The leaf nodes specify either reject or accept. Those
locations in the database which reach an Accept node are
then processed with the full covariance model such that the

false alarm rate will be no higher than if the whole database
was processed with the full model. If the P-values at the
thresholds chosen for each partial model are known, then
the probability of reaching any given node in the decision
can be calculated. It will be assumed that the fraction of the
database containing true family members is insignificant
such that the probability of reaching a decision tree node is
nearly equal to the probability of reaching that node from a
random portion of the database that does not contain a
family member. The probabilities of reaching nodes can
then be multiplied by the execution time associated with the
model run at that node to find overall processing cost.

Fig. 5 shows a possible decision tree for the U4 family.
Partial covariance model 1 is run on the entire database. This
incurs a computation cost of 0.042 since the root node
probability is 1.000 and the normalized cost of partial
model 1 is 0.042 (from Table 1). Partial model 3 is then
always run, but with two different thresholds depending on
the results from running partial model 1. Since model 3 is
always run (probabilities 0.835 plus 0.165 for the two child
nodes of the root), the cost of these two nodes is 0.091 (again,
see Table 1). The total cost can be found from adding up the

522 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009

Fig. 4. U4 (RF00015) consensus secondary structure and sequence

divided into five parts. On the 50 (left) end is a dangling end composed of

all L nodes. The other four parts (stems 1-4) are each composed of a

hairpin and connector regions.

Fig. 5. A decision tree for the U4 (RF00015) RNA family using five partial
covariance models. The probabilities p of reaching each node are
shown. It is possible for the same partial model to appear again further
down the tree (for example, Part 1 at both the tree root and in the lower
right in this tree) as long as the lower model has a higher threshold than
the upper. There is no additional computation cost for the second partial
model since the partial model score has already been calculated once.

TABLE 1
Partitions and Execution Times

Partitions are consensus column numbers in the seed (training) multiple
alignment. Execution times are relative to that of the full model. Rfam
accession numbers: U4 = RF00015, MicC = RF00121, DsrA = RF00014,
HgcF = RF00058, P1 = RF00623, RyhB = RF00057, SL1 = RF00198.
Predicted values are D times M, whereD is the maximum search length
and M is the number of states. Execution times are shown both with (the
default) and without the use of query-dependent banding (QDB).

Authorized licensed use limited to: Boise State University. Downloaded on August 6, 2009 at 20:33 from IEEE Xplore. Restrictions apply.

products of the node probabilities and the partial model
normalized execution times where Accept nodes require full
model execution. Using the decision tree in Fig. 5 and the
five U4 partial models results in a mean execution time of
0.249 with QDB relative to using the full model alone.

The goal is to construct a decision tree with minimal
average execution time subject to the constraint that all seed
sequences in the family are accepted. Even with only four or
five partial models, the number of possible combinations of
tree topologies and thresholds is huge. There is no obvious
algorithm to construct an optimal tree, so the use of
computational intelligence methods is suggested.

One such method uses an evolutionary algorithm where
each gene consists of a node type (a partial model number
or terminal) and a threshold index. The fitness of a solution
is one plus the fraction of seed sequences that lead to a
Reject node if any of the seed sequences leads to a Reject
node. Otherwise, the fitness is the average execution time.
This fitness function should be minimized (or its negative
should be maximized). If the best fitness that can be found
is greater than 1, then it is better to revert to simply using
the full covariance model. Since execution time is mini-
mized subject to the constraint that all seed sequences pass
the decision tree, there is never any reason to choose a
partial model threshold different than one of the members
of the set of scores of the seed sequences for the given
partial model. The threshold index can then be a value in
the range [1 S], where S is the number of seed sequences.
The threshold used is the score of the indexed sequence
against the selected partial model. It is often the case that
several of the seed sequences are identical within the
alignment column range of the partial model, and therefore,
the partial model scores are identical for these sequences.
This is actually an advantage, since the probability of
choosing a particular threshold value is proportional to the
number of sequences that use it. As an example, the
U4 family has 30 seed sequences and has been broken into
five partial models, so each genetic algorithm gene would
have a value in the range [0 5] to specify node type (0 =
terminal, m = partial model for m > 0) and a value in the
range [1 30] for a threshold index.

Fig. 6 shows an example of a 17-gene chromosome which
maps to the decision tree in Fig. 5. To convert an ordered list
of genes into a decision tree, the first gene is the tree root,
the second gene is the root’s left child, the third gene is the
root’s right child, the fourth gene is the left child of the
root’s left child, etc. Some of the genes in the representation
may be inactive since a higher level node’s gene has a node
type of Reject or Accept (these inactive genes are marked
with X in Fig. 6). Nodes marked as terminals (node type 0)
are taken to be Reject if they are a left child and Accept if they
are a right child (for example, gene E has node type 0 and
specifies an Accept node since it is the right child of gene B).
Nodes which are not terminal might not have any children
specified if the child chromosome positions are beyond the
end of the chromosome. In this case, the nonterminal node
is given Reject and Accept children as left and right child,
respectively, even though these nodes have no associated
gene. Partial model scores for each seed sequence (as in
Table 2) are used to convert the threshold indexes into

threshold values. In order to avoid chromosomes getting
excessively long, the chromosome may be pruned at the
point where no genes to the right are active. Mutations take
the form of selecting a new value for the node type and/or
threshold index. Insertions, deletions, and crossover should
be done on a whole gene basis.

5 EXPERIMENTAL RESULTS

In this section, detailed results of using partial covariance
models are shown for the U4 RNA family [11], [12], [13], [14]
and summary results are presented for the MicC [15], [16],
DsrA [17], [18], [19], HgcF [20], P1 [21], RyhB, and SL1
families. U4 is chosen because it is representative of RNA
families with relatively long sequences and many known
family members exhibiting groups of sequences with
differing local sequence conservation. The other six families
come from randomly selecting from the families with long
consensus sequences and throwing out those which where
too closely related. For example, the HgcA, HgcB, . . . ,
HgcG, HhcA, and HhcB families are all “high GC” content
ncRNA genes in thermophilic bacteria (although only HgcC,
HgcE, HgcF, and HgcG currently have Rfam families), so
only one of this class of families was considered for
examination. The P1 sRNA gene in bacteria also has related
genes P9, P11, P15, P16, P24, and P26 in Rfam. DsrA and
MicC are found mostly in bacteria (except for one member
each in a virus). The MicC sRNA possibly regulates the

SMITH: RNA SEARCH WITH DECISION TREES AND PARTIAL COVARIANCE MODELS 523

Fig. 6. Example genetic algorithm representation of the decision tree in
Fig. 5. The chromosome has 17 genes (A-Q), each with at node type in
the range [0 5] and a threshold index in range [1 30] given as type/index.
A node type of 0 indicates a terminal node, which is a Reject node if it is
a left child and an Accept node if it is a right child. Nodes marked with X
are inactive since a node higher in the tree is a terminal Reject or Accept
node. Extra Reject and Accept nodes are added as the left and right
children, respectively, for nonterminal nodes whose children are beyond
the end of the chromosome (for example, the children of L and M). The
threshold indexes are used to obtain a threshold value using Table 2 (for
example, gene A contains 1/8, which uses the partial model 1 score for
the eighth sequence = 12.73).

Authorized licensed use limited to: Boise State University. Downloaded on August 6, 2009 at 20:33 from IEEE Xplore. Restrictions apply.

OmpC protein and has a related family MicF which possibly
regulates OmpF. U4 appears in many eukaryotes and is
associated with other ncRNA in the spliceosome (such as
U1, U2, U5, U6, U11, and U12). The selection of five RNA
families is hopefully diverse enough to be indicative of RNA
families with long consensus sequences. The average
lengths of the five families are 137.9 (U4), 121.6 (MicC),
85.8 (DsrA), 168.6 (HgcF), 180.0 (P1), 65.0 (RyhB), and 103.0
(SL1). About three quarters of the 607 Rfam version 8.1
(October 2007) families have average length over 75 bases
which was the cutoff for the definition of long used here.

Table 2 shows the scores generated by the full covariance
model and each of the five partial models on all of the
30 seed sequences of the U4 RNA family in Rfam. The score
threshold used in the Rfam 8.1 database is about 48.5, so
some of the seed sequences (numbers 2, 3, 4, 7, and 8) would
not be found in the database search if they were not already
part of the hand curated seed family. The last column of the
table shows the sum across all five partial models for each
sequence and this value is generally larger than that of the
full model. This is due to no penalty being applied to
insertions between the models or database overlaps of the
models (which would require deletions for the full model).
However, the full model scores and sum of partial model
scores are highly correlated as should be expected.

None of the seed sequences is completely identical to any
other seed sequence, so none of the full model scores are
identical to any other. It is not unusual that the portion of
the sequences covered by a partial model is identical in one
or more seed sequences. For example, in sequences 2
through 7, partial model 1 gives a score of 14.73 in every
case since the sequences are identical from consensus
position 1 through 16 in these sequences.

The minimum partial model scores near the bottom of
Table 2 show that no single partial model does well on all
30 seed sequences. The maximum partial model scores
show that all partial models do well on at least one of the
sequences. Study of the scores for individual sequences
indicate that some sequences might be detected with a high
score on a single partial model, another sequence with a
high score on a different partial model, and a third sequence
might require moderate scores on more than one partial
model. These complex relationships make it hard to find
partial model application order and thresholds.

The P-values (probability that a random sequence with
the same A, C, G, and U proportions as the consensus
sequence will have a score at least as high as the true family
member sequence) are shown in Table 3 for the 30 seed
sequences. The products of the P-values across all five

524 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009

TABLE 3
Full and Partial Model P-Values for U4 Seed Sequences

All P-values are generated using the cmbuild and cmsearch programs in
the Infernal 0.81 suite with default settings (which includes using QDB in
cmsearch). P-values are based on fitting 1,000 random sequences to an
extreme value distribution.

TABLE 2
Full and Partial Model Scores for U4 Seed Sequences

All scores are generated using the cmbuild and cmsearch programs in
the Infernal 0.81 suite with default settings (which includes using QDB in
cmsearch). Scores are 1og (base 2) likelihood ratios with units of bits.

Authorized licensed use limited to: Boise State University. Downloaded on August 6, 2009 at 20:33 from IEEE Xplore. Restrictions apply.

partial models is shown in the last column and is generally
larger than that of the full model. This indicates that the
false alarm rate when using all five partial models is more
than when using the full model. In a number of cases, this
false alarm rate is unacceptably high. Since Rfam uses a
threshold of about 48.5, a P-value of less than about 1E-7 is
reasonable (AF326336 has a score of 47.28 and P-value of
1.3E-7, and AF204671 has a score of 50.86 and a P-value of
4.6E-8). Sequences 2, 3, 4, 7, and 8 do not meet the Rfam
threshold, so P-values of more than 1E-7 using partial
models are not a great problem, but other sequences such as
numbers 5, 6, 9, and 23 have P-values using all five partial
models that are too high. If not all partial models are to be
run, there are other sequences that will cause unacceptably
high P-values if thresholds are set low enough to find them.
Clearly, it is necessary to run the full model on the accepted
portion of the database using the partial models in order to
get acceptable false alarm rates.

Decision trees have been found for each of the seven RNA
families and are shown in Table 4 along with average
normalized execution time and fraction of all known
sequences passed to the full model for scoring. Each node
of the decision tree is represented by three items surrounded
by parentheses. The first item is a partial model number with
threshold, the second item is the left child node (child node
for case where the partial model score does not exceed
threshold), and the third item is the right child node (child
node for case where the partial model score exceeds
threshold). R and A refer to Reject and Accept nodes,
respectively, in this notation. The entry for U4 in Table 4
may be compared to Fig. 5, which graphically shows the
same tree. The average normalized execution times range
from 0.066 to 0.268 of the execution time required for full-
model search. For U4, the estimated time to run the full CM
on an eight gigabase database using a single 2.8 GHz

Pentium 4 is 1,258 days [8], so a normalized runtime of 0.249
implies a runtime of 313 days instead. In all cases, the
fraction of known RNA family members found is 95 percent
or better.

One notices from the decisions trees in Table 4 that the
trees for the four non-U4 cases are considerably simpler.
This is a result of not having subfamily diversity within the
overall RNA family. In U4 (and some other Rfam families),
the overall family could have been divided up into separate
families. The choice of what constitutes a family involves a
trade-off between better parameter estimation from having
more training sequences and loss of detail by averaging
across groups of sequences with features that are similar
within group but heterogeneous between groups. In Table 5,
one sees that the four non-U4 families have considerably less
variation in scores for each partial model. If one examines
the sequences of these families, there are no apparent
subfamily groups that might potentially be considered
families of their own.

Decision trees for these simpler families without sub-
family diversity are easier to generate without the use of
computational intelligence tools. If the least computationally
expensive partial model combined with a threshold equal to
the score of the lowest scoring seed sequence has P-value
less than the ratio of its execution time to the next smallest
execution time, then this partial model and threshold
combination makes a very good root node in the decision
tree. The left child of the root in such case should be a Reject

SMITH: RNA SEARCH WITH DECISION TREES AND PARTIAL COVARIANCE MODELS 525

TABLE 4
Decision Trees and Statistics for All Five RNA Families

The notation (Part:Thesh, No, Yes) indicates that partial model Part is
run with threshold Thresh with left child node No and right child node
Yes. R and A refer to Reject and Accept nodes, respectively. Fig. 5
shows a graphical expansion for U4.

TABLE 5
Mean, Minimum, and Maximum Partial Scores for Five Families

Authorized licensed use limited to: Boise State University. Downloaded on August 6, 2009 at 20:33 from IEEE Xplore. Restrictions apply.

node. This rule can be iterated on the right child of the root
and subsequent right children. This is exactly the situation in
the MicC, DsrA, and HgcF trees shown. In P1, the root node
also follows this rule. Recognizing these cases can reduce the
need to apply computational intelligence tools where they
are not really necessary. However, U4 is not the only family
with a long consensus sequence and a large number of
known family members that might potentially have a
complex decision tree.

Table 5 also illustrates a problem with making partial
models too small. In general, the variability in partial model
scores relative to the mean score is greater than that of the
full model. As the full model gets divided up into increasing
smaller partial models, this tendency would become even
more noticeable since smaller multiple alignment column
ranges are more likely to be completely covered by a region
of nonconservation in one or more of the member sequences.
So, very small partial models will have good execution
times, but are unlikely to have a P-value on the lowest
scoring seed sequence such that a Reject node left child is
desirable. With many highly erratic small models to choose
from, the potential to overfit the decision tree to the seed
sequences also increases. A very short segment of the
multiple alignment which just happens to be nearly identical
for all the seed sequences might not be so well conserved in
yet undiscovered family members. As a result, division of a
full model into three to five partial models appears to be a
useful approach, but the usefulness of dividing into 10 or
more partial models is questionable (unless the consensus
sequence is extremely long).

6 CONCLUSION

It has been shown that the technique of reducing computa-
tion time for covariance-model-based database search for
RNA family members using partial covariance models is
potentially useful. In some cases, the choice of partial model
application order and threshold values can be quite complex
(as with the U4 RNA family) and may require some form of
automated search to obtain a good choice. Binary decision
trees allow a reasonable way to describe the partial model
order and threshold choices. Computational intelligence
methods can be applied to find good decision trees without
too much difficulty. For some cases, these computational
intelligence methods are unnecessary since the decision tree
is relatively obvious. These simple cases are generally
associated with RNA families that do not have subfamilies
that might reasonably be families in their own right.

Execution times in the range 0.066-0.268 of the full model
have been shown for seven RNA families with no more
than 5 percent loss in family sequences found (and no loss
at all in five out of seven families). Execution time
reductions could potentially be even larger since the
number of partial models and their boundaries were chosen
in an ad hoc fashion and there is no guarantee that the
decision trees used are optimal. Future work on this topic
would include investigation of the best method to select
partial models, including the possibility of overlapping
partial models or a partial model set that does not cover
every multiple alignment column. The possibility that base
pairs that were ignored in the original full model to avoid

having pseudoknots [22] might be included in overlapping

partial models is also open to investigation.

ACKNOWLEDGMENTS

This work was supported in part by the US National

Institutes of Health under Grant P20 RR016454 from the

INBRE Program of the National Center for Research

Resources.

REFERENCES

[1] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge Univ. Press, 1998.

[2] S. Eddy, “Computational Genomics of Noncoding RNA Genes,”
Cell, vol. 109, pp. 137-140, 2002.

[3] S. Eddy and R. Durbin, “RNA Sequence Analysis Using
Covariance Models,” Nucleic Acids Research, vol. 22, pp. 2079-
2088, 1994.

[4] S. Eddy, “Hidden Markov models,” Current Opinion in Structural
Biology, vol. 6, pp. 361-365, 1996.

[5] S. Eddy, Infernal User’s Guide (version 0.81), http://infernal.
janelia.org, May 2007.

[6] S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S.
Eddy, “Rfam: An RNA Family Database,” Nucleic Acids Research,
vol. 31, pp. 3608-3612, 2003.

[7] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller,
and D. Lipman, “Gapped BLAST and PSI-BLAST: A New
Generation of Protein Database Search Programs,” Nucleic Acids
Research, vol. 25, pp. 3389-3402, 1997.

[8] Z. Weinberg and W. Ruzzo, “Faster Genome Annotation of Non-
Coding RNA Families without Loss of Accuracy,” Proc. Eighth
Ann. Int’l Conf. Research in Computational Molecular Biology,
pp. 243-251, 2004.

[9] Z. Weinberg and W. Ruzzo, “Sequence-Based Heuristics for Faster
Annotation of Non-Coding RNA Families,” Bioinformatics, vol. 22,
pp. 35-39, 2006.

[10] E. Nawrocki and S. Eddy, “Query-Dependent Banding (QDB) for
Faster RNA Similarity Searches,” PLoS Computational Biology,
vol. 3, pp. 540-554, 2007.

[11] C. Zwieb, “The uRNA Database,” Nucleic Acids Research, vol. 25,
pp. 102-103, 1997.

[12] I. Vidovic, S. Nottrott, K. Hartmuth, R. Luhmann, and R. Ficner,
“Crystal Structure of the Spliceosomal 15.5 kD Protein Bound
to a U4 snRNA Fragment,” Molecular Cell, vol. 6, pp. 1331-1342,
2000.

[13] P. Raghunathan and C. Guthrie, “A Spliceosomal Recycling Factor
that Reanneals U4 and U6 Small Nuclear Ribonucleoprotein
Particles,” Science, vol. 279, pp. 857-860, 1998.

[14] J. Thomas, K. Lea, E. Zucker-Aprison, and T. Blumenthal, “The
Spliceosomal snRNAs of Caenorhabditis Elegans,” Nucleic Acids
Research, vol. 18, pp. 2633-2642, 1990.

[15] S. Chen, E. Lesnik, T. Hall, R. Sampath, R. Griffey, D. Ecker,
and L. Blyn, “A Bioinformatics Based Approach to Discover
Small RNA Genes in the Escherichia coli Genome,” Biosystems,
vol. 65, pp. 157-177, 2002.

[16] S. Chen, A. Zhang, L. Blyn, and G. Storz, “MicC, A Second Small-
RNA Regulator of Omp Protein Expression in Escherichia coli,”
J. Bacteriology, vol. 186, pp. 6689-6697, 2004.

[17] D. Sledjeski and S. Gottesman, “A Small RNA Acts as an
Antisilencer of the H-NS-Silenced rcsA Gene of Escherichia
coli,” Proc. Nat’l Academy of Science USA, vol. 92, pp. 2003-2007,
1995.

[18] N. Majdalani, C. Cunning, D. Sledjeski, T Elliot, and S. Gottesman,
“DsrA RNA Regulates Translation of RpoS Message by an Anti-
Sense Mechanism, Independent of Its Action as an Antisilencer of
Transcription,” Proc. Nat’l Academy of Sciences USA, vol. 95,
pp. 12462-12467, 1998.

[19] S. Gottesman, “Micros for Microbes: Non-Coding Regulatory
RNAs in Bacteria,” Trends in Genetics, vol. 21, pp. 399-404, 2005.

[20] R. Klein, Z. Misulovin, and S. Eddy, “Noncoding RNA Genes
Identified in AT-Rich Hyperthermophiles,” Proc. Nat’l Academy of
Sciences USA, vol. 99, pp. 7542-7547, 2002.

526 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009

Authorized licensed use limited to: Boise State University. Downloaded on August 6, 2009 at 20:33 from IEEE Xplore. Restrictions apply.

[21] L. Livny, A. Brencic, S. Lory, and M. Waldor, “Identification of 17
Pseudomonas Aeruginosa sRNAs and Prediction of sRNA-
Encoding Genes in 10 Diverse Pathogens Using the Bioinformatic
Tool sRNApredict2,” Nucleic Acids Research, vol. 34, pp. 3484-
3493, 2006.

[22] D. Staple and S. Butcher, “Pseudoknots: RNA Structures with
Diverse Functions,” PLoS Biology, vol. 3, pp. e213, 2005.

[23] K. Lagesen, P. Hallin, E. Rødland, H. Stærfeldt, T. Rognes,
and D. Ussery, “RNAmmer: Consistent and Rapid Annotation
of Ribosomal RNA Genes,” Nucleic Acids Research, vol. 35,
pp. 3100-3108, 2007.

[24] Z. Weinberg, “Accurate Annotation of Non-Coding RNAs in
Practical time,” PhD thesis, Univ. of Washington, 2005.

[25] R. Klein and S. Eddy, “RSEARCH: Finding Homologs of Single
Structured RNA Sequences,” BMC Bioinformatics, vol. 4, p. 44,
2003.

Jennifer A. Smith received the PhD degree in electrical engineering
from the University of Idaho in 2003 and the MS degree in electrical
engineering from the University of Connecticut in 1993. She is an
assistant professor of computer engineering at Boise State University
in Idaho. Her research interests are in noncoding RNA gene search,
particularly in acceleration of search through algorithm redesign and
special purpose computing hardware. She has been active with the
IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology since its inception and most recently served
as the Symposium Chair for CIBCB 2008. She is a senior member
of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SMITH: RNA SEARCH WITH DECISION TREES AND PARTIAL COVARIANCE MODELS 527

Authorized licensed use limited to: Boise State University. Downloaded on August 6, 2009 at 20:33 from IEEE Xplore. Restrictions apply.

	Boise State University
	ScholarWorks
	7-1-2009

	RNA Search with Decision Trees and Partial Covariance Models
	Jennifer A. Smith

	untitled

