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Propagation Loss of Line-Defect Photonic
Crystal Slab Waveguides

Wan Kuang, Member, IEEE, Woo Jun Kim, Adam Mock, and John O’Brien, Senior Member, IEEE

Abstract—Photonic crystal slab waveguides are created by
inserting a linear defect in two-dimensional (2-D) periodic di-
electric structures of finite height. Photonic crystals provide 2-D
in-plane bandgaps through which light cannot propagate, how-
ever, the fact that the waveguide modes must be index-confined in
the vertical direction implies that the propagation loss is strongly
dependent on the out-of-plane radiation loss. We present a fully
three-dimensional finite-difference time-domain numerical model
for calculating the out-of-plane radiation loss in photonic crystal
slab waveguides. The propagation loss of the single-line defect
waveguide in 2-D triangular lattice photonic crystals is calcu-
lated for suspended membranes, oxidized lower claddings, and
deeply etched structures. The results show that low-loss waveg-
uides are achievable for sufficiently suspendedmembranes and ox-
idized lower cladding structures. The roles of the photonic crystal
in out-of-plane loss of the waveguidemodes are further analyzed. It
is predicted that the out-of-plane radiation loss can be reduced by
shifting one side of the photonic crystal cladding by one-half period
with respect to the other sides along the propagation direction.

Index Terms—Finite-difference time domain (FDTD), photonic
crystals, propagation loss, waveguides.

I. INTRODUCTION

TWO-dimensional (2-D) photonic crystal defect waveg-
uides have been the subject of active research [1]–[3] due

to their potential to be a basic building block for densely inte-
grated optics. They are most simply formed by inserting a linear
defect in a 2-D triangular lattice of air holes in a dielectric slab.
Photonic crystals provide a 2-D in-plane frequency bandgap for
the guided modes of the slab. In the vertical direction, light
is localized to the slab by means of total internal reflection.
Although the in-plane photonic bandgap prohibits light to prop-
agate anywhere but along the linear defect, a muchweaker index
confinement in the vertical direction raises the concern for the
out-of-plane radiation loss.

Quantitative characterization of the propagation loss is crucial
in waveguide design. As with the conventional slab waveguides,
even propagation modes that are confined in the core experience
radiation loss due to the penetration of exponentially decaying
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field in the substrate. In addition, the defect waveguide modes
that lie above the light line of the claddings are likely to couple
with the radiation modes. This coupling will cause the field to
radiate energy out of plane. Waveguide modes that are not prop-
erly confined in the vertical direction, although still propagating
along the defect due to the existence of the in-plane bandgap,
will eventually radiate out of plane.

In practice, waveguide mode can also leak energy in-plane as
it propagates along the defect due to an insufficient number of
periods of photonic crystal cladding. The photonic bandgap is
formed as a result of a periodic modulation of dielectric constant
with infinite periodicity.Apractical photonic crystal device has a
finite number of periods that allows the light tunneling through
the bandgap barrier. In general, the waveguide mode decays
by a few orders of magnitude after seven periods of photonic
crystals [4]. However, the rate of decay in the lateral direction is
also influenced by the waveguide design and the location of the
mode in the Brillouin zone. Increasing the hole radius generally
leads to a better lateral confinement and therefore minimizes
the energy overlaps between adjacent waveguides. Nonetheless,
channel crosstalk is one of the major issues for designing a
densely integrated photonic crystal circuitry.

Another major source of loss for photonic crystal defect
waveguides is related to the fabrication process. Photonic crys-
tals patterned with e-beam lithography sometimes suffer from
minor dislocations. The surfaces of the sidewalls are also likely
to have some degree of roughness and slant after dry etching. All
these imperfections can be a source of scattering loss. Quantify-
ing radiation loss of the modes due to fabrication imperfections
is a difficult issue. As fabrication imperfections are a rather
random phenomena in nature, statistical analysis is required for
characterizing the dislocation and roughness. The problem itself
can be classified into fabrication-induced in-plane propagation
loss and vertical radiation loss. For the in-plane loss, the fabrica-
tion imperfection diminishes the photonic bandgap, allowing the
field to escape the photonic crystal cladding. A few authors have
attempted to address this issue in [5] and [6]. However, more im-
portantly, the scattering of the field at imperfections cause radi-
ation out of plane. Unlike the in-plane case, where the scattered
field needs to go through several periods of photonic crystal, the
out-of-plane scattering cannot be trapped and is therefore more
sensitive to fabrication imperfections. As the problem is intrinsi-
cally three dimensional (3-D), it requires an efficient 3-D model
to handle. Recently, Hughes et al. [7] formulated the problem
with Green’s function and took scattering as a dipole radiation.

In this paper, transmission properties of the photonic crystal
defect waveguides are focused on the vertical radiation loss that
is intrinsic to the structures. The in-plane loss due to insufficient
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number of photonic crystal cladding periods is insignificant
and thereby ignored in the analysis. The extrinsic loss due to
fabrication is not considered either.

Since numerically modeling the exact 3-D waveguides is
hardly realistic due to an exorbitant amount of memory and
computational demand, an alternative approach is required.
Earlier works [8], [9] simplified the 3-D waveguides with its
2-D cross section along the propagation direction. They essen-
tially approximate a planar photonic crystal waveguide as a
one-dimensional (1-D) array of grooves. However, lateral lo-
calization of the defect waveguide mode inevitably spreads the
mode distribution in the reciprocal space. The lack of lateral
confinement in the model results in a calculated out-of-plane
loss more representative of 1-D gratings than for actual pho-
tonic crystal waveguides.

Conceptually similar to the models above, but improved by
adding the lateral modal confinement, Lalanne et al. [10] pro-
posed a frequency-domain S-matrix-like approach. A pseudo-
periodic plane-wave (Fourier) basis is used for the in-plane
direction, and an artificial periodization with absorbing bound-
aries for the vertical direction. It, therefore, results in an analysis
of a 2-D transverse cross section of the photonic crystal. The
model is capable of predicting the out-of-plane radiation losses
of the photonic crystals achievable with holes etched into the
substrate, but fails to address the out-of-plane losses of waveg-
uides produced by the introduction of a linear row of defects
because such structures are no longer fully periodic. It was fur-
ther refined in [11] and [12] to include defects in the in-plane
direction. It computes only the modes that are confined by pho-
tonic crystals laterally. However, the truncation of the Fourier
harmonics leads to an accuracy estimated at 0.1 dB/100µm [11],
or 10 dB/cm, making the method incapable of predicting low-
loss behavior.

Reducing the length of thewaveguides so that they are capable
of being directly solved, Hadley [13] calculated the out-of-plane
radiation losses of defect waveguide by solving 3-D Helmholtz
equations with a finite-difference technique. The method proves
to be straightforward but it also raises the issue on source excita-
tion efficiency, i.e., how many periods does it take to form a real
Bloch defect waveguide mode. The energy that is not coupled to
the guided defect waveguide modes tends to radiate off-plane,
however, it propagates along as it dissipates. Simulations with
short propagation distances are more vulnerable to slowly de-
caying radiation modes since their energies might be mistakenly
included as output power. Because the calculation cannot dis-
tinguish the noise caused by source coupling, the method left
those questions unanswered.

In this paper, a fully 3-D finite-difference time-domain
(FDTD) model is presented to predict the out-of-plane losses
of line-defect photonic crystal slab waveguides. In Section II,
two numerical approaches, either computing the ratio of power
loss to propagating power or calculating the quality factor of
the waveguide modes, are introduced. Both methods are derived
from the results of 3-D FDTD simulations. The propagation loss
of a single-line defect waveguide in a triangular lattice photonic
crystal is calculated in Section III for suspended-membrane ox-
idized lower claddings and deeply etched structures. The role

Fig. 1. (a) Structure of single-line defect waveguide for the numerical sim-
ulation. (b) Photonic band diagram of the waveguide. The dark gray region
indicates the modes of the bulk photonic crystals and light gray area represents
the vertical radiation light cone mapped in the propagation direction.

of the photonic crystal in forming waveguide modes is further
analyzed and a type-B photonic crystal waveguide is proposed
in Section IV. We will show that the out-of-plane radiation loss
can be reduced by an order of magnitude by shifting the pho-
tonic crystal claddings one-half periodwith respect to each other
along the propagation direction.

II. METHOD OF ANALYSIS

We present a fully 3-D method, which is similar to the tech-
nique used in quality factor calculation for microcavity [14].
The work presented here expands on our earlier report [15],
[16]. The photonic crystal defect waveguides are modeled with
a 3-D FDTD method [17], [18] using message passing interface
(MPI) [19], [20] to run in a parallel environment. Discretization
is no less than 20 points per inter-hole spacing. Fig. 1(a) shows
the computational domain that is terminated by Berenger’s
perfect matched layer absorbing boundary condition (PML-
ABC) [21] except in the propagation direction, where a periodic
boundary condition is applied instead. An order-N [22] con-
formal technique is applied in handling cylinders to overcome
the staircase of the original Cartesian grid FDTD formulation.
The eigenmodes are given by the peaks in the frequency spec-
trum of the complex field components recorded at various low-
symmetry locations for a given in-plane propagation constant β.

Fig. 1(b) shows the photonic band diagram of a suspended
membrane photonic crystal waveguide. The dark gray region
indicates the modes of the bulk photonic crystals in the propa-
gation direction. The propagation loss of the lowest order even
mode in the bandgap, which is marked with a thick curve in
the dispersion diagram, will be analyzed in detail later. In the
vertical direction, the propagation mode is confined by the in-
dex contrast of the dielectric membrane and the air cladding.
The light gray area in Fig. 1(c) indicates the radiation light cone
mapped on the propagation direction. The waveguide mode that
is above the light line can couple with the continuous spectrum
of the radiation modes.
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To calculate the vertical radiation loss, the waveguide is ex-
cited by a single frequency dipole source whose frequency is
given by the phase shift across the unit cell used in the periodic
boundary condition. A traveling field is emulated by means
of the double orthogonal excitation [23] in which a sinusoidal
excitation is applied to the real parts of the field component
and a cosinusoidal excitation is applied to the imaginary parts.
The energy of the unwanted modes is suppressed by applying
a time-domain band-pass filter whose central frequency aligns
with the dipole source frequency. The filter is implemented as
a convolution of a frequency-shifted window function and the
instantaneous electromagnetic field components in the time do-
main. The commonwindow functions can be found in any digital
signal processing handbook [24]. A window function is a low-
pass filter whose Fourier transform concentrates predominantly
around ω = 0. To obtain a band-pass filter, the window function
is multiplied by a sin(ω0t) function, which has the effect of
shifting the pass band of the window from ω = 0 to ω = ω0.
Here, a Blackman window of at least 30 000 time steps is em-
ployed with a side-mode suppression ratio larger than 57 dB and
a bandwidth of less than 0.005 in normalized frequency.

The Poynting vectors through the top and bottom planes in the
vicinity of the perfectly matched layer are summed up at every
instant as vertical power flow. Those through the longitudinal
plane are summed as in-plane power flow. The vertical radiation
loss α⊥ is calculated from the ratio of the vertical power flow
P⊥ to the in-plane flow Pt after a steady state is achieved

α⊥ = − log(1 − P⊥/Pt)
a

. (1)

By employing the periodic boundary condition and the filter
window, this power ratio method emulated an infinitely long
waveguide structure and thereby eliminates the confusion in-
curred by the mode excitation efficiency and surface-wave prop-
agation in loss calculations if a finite-length waveguide is used.
The numerical noise of the method is estimated to be less than
0.01 cm−1, which is the out-of-plane radiation loss calculated
by this method for a rigorously guided ridge waveguide.

Alternatively, waveguide loss can be obtained directly from
the Fourier spectrum. The underlying principle is similar to the
lifetime or the quality factor calculation in a resonant cavity. The
waveguide mode in a finite structure is not lossless, the energy
in the mode U(t) decays as

U(t) = U(t0) exp
(
−ω0(t− t0)

Q

)
(2)

where the quality factor of the mode Q is given by the ratio of
the mode frequency ω0 and the full-width at half-magnitude∆ω
of the Lorentizen energy spectrum centered at ω0

U(ω) =
∆ω

(ω − ω0)2 + (∆ω/2)2
. (3)

The quality factor is calculated from the ratio of the full-width
at half-magnitude of the cavity resonance in the frequency do-
main ∆ω to center frequency ω0. The difficulty of this approach
is an insufficient frequency resolution directly from the Fourier
spectrum; the smallest identifiable spectral width usually cannot
resolve a quality factor higher than a few hundred. Distortion

Fig. 2. Pade approximation for the lowest defect mode in W1 waveguide
Fourier spectrum of a single-line defect suspended membrane photonic crystal
waveguide for the propagation constant β = 0.65π in the normalized frequency
range of 0.264 and 0.274 as open circles and its Pade approximation for the
interpolated frequency as a blue curve. The inset shows the detailed spectrum
at the resonance frequency ω0.

to the spectrum is also introduced because the numerical simu-
lation terminates before the impulse response is fully evolved.
This has the effect of viewing the true time-domain response
through a rectangular window, which translates mathematically
into the convolution of the true spectrum with a sinc function.
The convolution widens the peaks in the spectrum among other
effects. This distortion can be reduced by increasing the time
response window, but at the price of a longer simulation time.
Pade approximation addresses the problem by extrapolating the
electromagnetic field in the time domain beyond the actual sim-
ulationwindow [25], [26]. The discrete Fourier transform (DFT)
series is interpolated with a Pade function, which is the ratio of
an order I and an order J polynomials QI (ωk ) and DJ (ωk )

P (ωk ) =
QI (ωk )
DJ (ωk )

=
∑I

i=0 αi(ωk )i∑J
j=0 βj (ωk )j

. (4)

Taking β0 to be unity, coefficients αi and βj in (4) can be
solvedwith the Fourier spectrum atωk . The resulting continuous
Pade function has a frequency resolution significantly improved
beyond the original Fourier spectrum. By combining Pade ap-
proximation with the DFT, the quality factors of all waveguide
modes can be determined with just one FDTD simulation.

An important numerical issue of interpolating Fourier se-
ries with Pade’s polynomials using (4) is worth noting. Both
polynomials QI (ωk ) and DJ (ωk ) are exponential functions of
frequency, the numerical errors due to the truncation of a 64-bit
floating point number increase as the order of the polynomials
increases. The amount of numerical error is also not uniformly
distributed. Higher order terms of the polynomials suffer more
significantly than do the lower order terms. It is usually advanta-
geous to normalize the frequency ωk so that the exponents of ωk

predominantly distribute around unity to alleviate the numerical
round-off errors.

Fig. 2 shows the interpolated frequency spectrum of the mag-
netic field from the Pade polynomials as well as the Fourier
spectrum as open circles for the first defect waveguide mode in
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TABLE I
PHOTONIC CRYSTAL DEFECT SLAB WAVEGUIDES CONSIDERED IN THE CALCULATIONS

the photonic bandgap at β = 0.65π/a. Since the full-width at
half-magnitude ∆ω is defined in the optical power, it should be
given by the full-width at 1/

√
2 of the maximum in the figure.

The waveguide mode has an extremely high quality factor as it
lies outside the radiation light cone.

The quality factor Q describes the waveguide loss per unit
time. The propagation loss, which is generally expressed as the
loss per unit distance, can be related to the Qs of the waveguide
modes by [27]

U(L) = U(0) exp(−αL)

= U(0) exp
(
− ω0

Qvg
L

)
(5)

where vg is the group velocity of the waveguide mode at fre-
quency ω0. The propagation loss of the waveguide at ω0 is
therefore given by the ratio of ω0 and the product of the quality
factor Q and the group velocity vg

α =
ω0

Qvg
=

2πc/a(a/λ0)
Qvg

=
2πng

aQ

(
a

λ0

)
(6)

where ng is the group index of the waveguide mode ng = c/vg .
Group velocity can be generally calculated from the dispersion
diagram of the waveguide by vg = ∂ω0/∂β. However, such
calculations generally require a detailed ω–β dispersion relation
at a very small sampling step ∆β.

III. SINGLE-LINE DEFECT PHOTONIC CRYSTAL WAVEGUIDES

In this section, we will analyze the propagation loss of five
single-line defect photonic crystal waveguides, as detailed in
Table I. Of these five, two are suspended membrane structures
that differ in their suspension distances above a GaAs substrate.
Distance in the normalized thickness d/a = 1.0 and 3.0 are con-
sidered here. Another two waveguide geometries in which the
membranes have asymmetric air-top and oxide-bottom cladding
layers are considered with oxide thickness of d/a = 2.0 and 5.0.
Finally, a deeply etched structure in which the photonic crystal
extends through the AlxGa1−xAs lower cladding layer is in-
cluded. All five structures have a GaAs substrate. It is worth
noting that the result from this paper is equally applicable to
waveguides fabricated in InP and Si material systems as the
refractive indices of each layers can be reproduced in both ma-
terials at 1.55 µm. We limit our study to defect waveguides

Fig. 3. Vertical radiation loss of the suspended-membrane single-line defect
photonic crystal waveguide as a function of the in-plane propagation constant
β . The values at the reduced Brillouin zone boundary β = π/a are not included
in the plot to avoid divergence due to the slow wave effect.

formed by removing a single row of holes along the Γ–K di-
rection. In all cases, holes with radii of r/a = 0.3 arrayed in a
triangular lattice are taken to perforate five dielectric structures.

We only deal with the lowest order even mode in the bandgap
that is marked with a thick curve in the dispersion diagram.
The out-of-plane transmission loss as a function of the in-plane
propagation constant β for the suspended membrane photonic
crystal waveguides is plotted in Fig. 3. Since this loss does not
include the in-plane radiation loss or that resulting from fab-
rication imperfections, it should be viewed as a lower limit to
the loss expected for real devices. The radiation goes up as the
waveguide modes reach above the light line. A thick low-index
bottom cladding layer is required for isolating the guided modes
from the radiationmodes of the substrate. Still, radiation through
the bottom cladding generally dominates the out-of-plane radi-
ation loss. The deep undercut structure suffers the least vertical
radiation loss among all the waveguides considered and has a
minimum loss of approximately 0.2 cm−1 caused by the remain-
ing evanescent coupling between the waveguide mode and the
radiation modes of the high-index substrate. Both suspended
membrane structures suffer higher loss at the Brillouin zone
boundary as a result of a slower group velocity. Comparing with
available computational results [12], the propagation loss for
the fundamental mode above the light line, which is dominated
by the out-of-plane radiation loss, is nearly identical. Below the
light line, however, differences appear. Because [12] calculates
total (in-plane and out-of-plane) loss of a suspended membrane
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Fig. 4. Vertical radiation loss of suspended membrane single-line defect pho-
tonic crystal waveguides as a function of normalized frequency.

photonic crystal waveguide with no high-index substrate in the
proximity, the propagation loss is largely due to the in-plane
loss caused by a finite number of photonic crystal claddings. In
contrast, the below-light-line loss shown in Fig. 3 is the result
of the remaining out-of-plane coupling between the waveguide
mode and the high-index substrate, which could be significant
if membrane is only 0.5 µm above the substrate.

In general, waveguide transmission loss is characterized as a
function of frequency or wavelength. This can be obtained by
mapping the propagation constant to the corresponding normal-
ized frequency a/λ0 given by thewaveguide dispersion relation.
Fig. 4 shows the vertical radiation loss of the waveguide as a
function of normalized frequency. The plot covers the frequency
range for the guided mode marked as a thick line in Fig. 1. The
top axis of the figure also shows that the corresponding wave-
length in vacuum had a lattice constant of a = 450 nm been
taken for the waveguide.

Both suspended-membrane photonic crystal waveguides al-
low low-loss transmission between normalized frequency of
0.265 and 0.275. However, for the deep undercut structurewhere
the membrane is suspended by 1.35 µm above the GaAs sub-
strate, the lowest out-of-plane radiation loss is 0.2 cm−1. In com-
parison, the same loss for a shallow undercut structure whose
membrane is suspended by only 450 nm is 10 cm−1 at its min-
imum. The out-of-plane radiation loss is improved by 50 times
by a moderate increase (900 nm) of the separation between the
membrane and the substrate. The low-loss bandwidth is approx-
imately 60 nm when operating around 1550 µm as the central
working wavelength.

Fig. 5 shows the magnitude of the magnetic field component
Hz of the defect waveguide mode at the mid-plane of the mem-
brane for selected propagation constants from π/a to 0. It is
extrapolated from the field in a unit cell, calculated from the
3-D FDTD method with an appropriate phase constant

Hz (r + R) = Hz (r)eiβR . (7)

The dotted black circles in the plot delineate the edges of
the air holes. The corresponding reciprocal space distributions
of the modes given by a Fourier transform are shown on the

Fig. 5. Propagation mode at the mid-plane of the waveguide slab and their
inverse space distribution for the single line-defect photonic crystal waveguides
at propagation constant β of (a) π/a, (b) 0.7π/a, (c) 0.4π/a, and (d) 0.

right. A white dashed circle in the middle of the plot shows the

projection of the air light line, given by
√

β2
x + β2

y = ω/c.

The Fourier transform of the field at β = π/a shows that it is
predominantly distributed at βy = ±π/a. In the x̂-direction, the
reciprocal space distribution spreads out as a result of the lateral
confinement. Its distribution in the ŷ-direction is a delta function.
The width shown in the figure is an artifact to enhance the image
clarification. Note that there is zero overlap of the mode with the
radiation air light line. As shown in Fig. 3, waveguide modes
with zero overlap with the light line are practically lossless
except for the evanescent coupling loss to the substrate when
the membrane is not suspended far enough above the substrate.

Except for the case of βy = 0, the predominant spatial har-
monics lies in the first extended Brillouin zone −2π/a < βy <
−π/a. As shown in Fig. 5, the Bloch part of the waveguide
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Fig. 6. Group velocity vg for the lowest waveguide modes in the photonic
bandgap of a suspended-membrane photonic crystal defect waveguide.

mode can be generally approximated by the sum of the two spa-
tial harmonics. As the in-plane propagation constant β of the
waveguidemode varies from π/a to 0, its spatial harmonic in the
first Brillouin zone, −π/a < βy < π/a, becomes increasingly
closer to the radiation light cone and eventually overlaps. As
shown in Fig. 3, the out-of-plane radiation loss increases dra-
matically at β = 0.5π/a. It corresponds to the waveguide mode
whose reciprocal space distribution first overlaps with the light
cone. The close correlation of the out-of-plane radiation loss of
the waveguide mode and its reciprocal space distribution sug-
gests that the propagation loss can be reduced by decreasing the
mode overlap with the radiation light cone. However, it should
be noted that the out-of-plane radiation loss is the Poynting
vector flux of the electromagnetic field away from the guiding
layer. The Fourier transform of the magnetic field at the center
of the slab only gives a qualitative estimate of the waveguide
loss. In Section IV, waveguide with an improved out-of-plane
loss is designed under such premise.

As stated in Section II, the propagation loss of photonic crystal
waveguide can also be calculated by the quality factor method.
Fig. 6 shows the group velocity for the defect mode of inter-
est for the suspended membrane photonic crystal waveguide. It
is obtained from a 3-D finite-element method (FEM) [4]. The
sign of its value is only a matter of choice in the calculation
and should not be taken as a negative index behavior. As can
be seen in the figure, the group velocity for a broad range of
normalized frequency between 0.29 and 0.33 is nearly constant.
However, it decreases dramatically as the mode approaches the
Brillouin zone boundary, implying a slow wave behavior. It is
worth noting that the results given by the 3-D FEM is likely to
be different from those of the 3-D FDTD, had we decided to
calculate the group velocity with 3-D FDTD. This is partly due
to the distinction in their approaches for numerical discretiza-
tion. FEM applies triangulation, which usually conforms better
to the circular geometry than do cartesian grids employed in
FDTD, under the same mesh density. Later, in comparing the
transmission loss from quality factor method with the power
ratio method, we should bear in mind that vg attributes to the
discrepancy to some extent.

Fig. 7. Propagation loss of a single-line defect photonic crystal waveguide
calculated by the quality factor of the mode, compared with the result from the
power method.

The propagation loss for the same mode in Figs. 3 and 4
can be calculated from its quality factor and group velocity by
applying (6). The method for calculating the quality factor is
detailed in [14]. The waveguide modes at the reduced Brillouin
zone boundary β = π/a and β = 0 are removed from the calcu-
lation due to the difficulty with respect to their group velocity.
Their theoretically zero group velocity [28] often makes nu-
merical result insensible. Fig. 7 shows the transmission loss of
the waveguide mode as a function of the normalized frequency
using both the power ratio and the quality factor methods. How-
ever, the result from the power ratio method only includes the
loss as a result of the out-of-plane radiation, therefore the qual-
ity factor method always gives a slightly higher transmission
loss.

A remarkable agreement can be found from the results given
by both approaches for the normalized frequency a/λ0 less than
0.28. It corresponds to low-loss transmission for the waveguide.
Both methods predict a minimum transmission loss of a fraction
of 1 cm−1. The discrepancy increases as the defect waveguide
mode moves above the radiative light line. Intuitively, we would
expect that the out-of-plane radiation loss dominates the total
loss for such lossy modes and therefore lesser discrepancy be-
tween two methods. This seeming contradiction arises from the
definition of the out-of-plane radiation loss. It is taken as optical
power exiting the top and bottom domains. However, the defect
mode above the light line apparently radiates at a large angle in
the case of uniform air cladding. A portion of the power that is
considered as the in-plane radiation loss is, in fact, due to the
out-of-plane radiation. Even so, the trend for a/λ0 > 0.28 for
both methods is similar.

The advantage of calculating the propagation loss from the
waveguide modes’ quality factor is obvious. It does not re-
quire an additional full 3-D FDTD simulation. The waveguide
transmission properties are practically given at the same time
as the dispersion band diagram. Of course, it cannot give us
the waveguide mode distribution due to the removal of the addi-
tional simulation. Additionally, the quality factor method cannot
distinguish the out-of-plane transmission loss from the in-plane
loss directly. However, such information can, in general, be in-
ferred from the dispersion band diagram.
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Fig. 8. Vertical radiation loss of oxide lower cladding single-line defect pho-
tonic crystal waveguide as a function of the in-plane propagation constant.

Even though suspended-membrane photonic crystal waveg-
uides offer a broad bandwidth for low-loss operation, its
prospect as the basic building block for integrated optical device
is clouded by several issues. First of all, efficient current injec-
tion into the suspended membrane structure is difficult. Since
the membrane is surrounded by electrical insulators vertically,
lateral current injection is usually required. Air is not only an
electrical insulator, but also a thermal insulator. For nonlinear
applications where high optical power density is required, con-
cern is raised for suspended-membrane photonic crystal waveg-
uides as to whether they are capable of channeling the heat.
In addition, power coupling with other optical components on
high-index substrate is likely to cause significant reflection. The
mechanical stability of the membrane waveguide is also ques-
tionable, particularly for devices with a large dimension.

For the aforementioned reasons, efforts are made to create
low-loss photonic crystal waveguide on a high-index substrate.
Since the radius of the substrate light cone is proportional to
its refractive index, optical materials with the smallest dielec-
tric constant are preferred. Considering the ease of fabrication
integration, AlxOy or sapphire naturally becomes the best can-
didate. Aluminum oxide, which has a refractive index of 1.6, is
formed by oxidizing AlxGa1−xAs with high Al composition.
Sapphire, on the other hand, can be bounded onto the GaAs
epitaxial structure [29]. Both structures are referred in the later
context as oxidized lower cladding.

The vertical radiation loss of such photonic crystal waveg-
uides is shown in Figs. 8 and 9 as a function of propagation
constant and normalized frequency, respectively. As in the case
with the suspended-membrane photonic crystal waveguides, a
thicker oxide cladding yields lower out-of-plane radiation loss.

In comparison with the suspended-membrane photonic crys-
tal waveguide, the range ofwave vectors under the cladding light
line is greatly reduced due to a lower index contrast between
the guiding layer and the bottom cladding. That range, which is
in the vicinity of the Brillouin zone boundary, also corresponds
to the low group velocity region. Consequently, oxidized lower
cladding structures allow a much narrower bandwidth, less than
3 nm near 1550 nm in this case. However, by tuning the waveg-
uide structure by means of the defect width, hole radius, and
hole shape, a broader bandwidth for an oxidized lower cladding
or sapphire-clad defect waveguide can be obtained [30].

Fig. 9. Vertical radiation loss of oxide lower cladding single-line defect pho-
tonic crystal waveguide as a function of normalized frequency.

Fig. 10. Vertical radiation loss as a function of normalized frequency for a
low index contrast single-line defect photonic crystal waveguide on an epitaxial
structure.

Beside placing guiding membrane on an oxide cladding, pho-
tonic crystal waveguide is also created from low index contrast
epitaxial structure. The air holes usually perforates the semi-
conductor by a few micrometers. Due to a weak vertical index
contrast, transmission loss for single-line defect photonic crys-
tal waveguides on an epitaxial structure is very high. Fig. 10
shows the out-of-plane radiation loss for the deeply etched pho-
tonic crystal waveguides. The lattice constant a is chosen to be
480 nm. As can be seen from the plot, loss is generally high,
because the Bloch mode is above the substrate light line for all
the propagation constants. This waveguide is predicted to have
a minimum out-of-plane radiation loss of 174 cm−1. The opera-
tion range, in which this loss is predicted to be 300 cm−1 when
centered at 1550 nm, spans a wavelength range of 134 nm. This
range corresponds to the modes near the vicinity of the Brillouin
zone center in the reciprocal space.

It should also be noted that deeply etched waveguides formed
by removing multiple rows of holes have been demonstrated
with significantly lower radiation loss. The calculations indicate
that a reduction in the radiation loss by more than three orders
of magnitude for these structures is possible. However, these
waveguides are multimoded at all frequencies.
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Fig. 11. (a) In-plane dielectric distribution of the waveguide and (b) its Fourier
transform for a single-line photonic crystal defect waveguide. The adjacent color
levels in the contour differ in magnitude by a decade.

IV. TYPE-B PHOTONIC CRYSTAL WAVEGUIDE

In Section III, we have shown that the propagation loss of
the photonic crystal waveguides is strongly influenced by the
vertical index profile. As shown in Fig. 5, the waveguide mode
is primarily consisted of two spatial harmonics, one of which
is within the range βy of −π/a and π/a. As the radiation
light cone enlarges due to a higher refractive index of the
bottom cladding, the spectral range in which spatial harmonics
do not overlap with the radiation light cone is reduced. For
the case of a deeply etched photonic crystal waveguide, all
waveguide modes in the photonic bandgap have substantial
amount of overlap with the radiation light cone of the bottom
cladding. The resulting coupling with the radiation modes
leads to a propagation loss of over 100 cm−1; whereas, for
suspended membrane and oxidized lower cladding photonic
crystal waveguides, a propagation loss of 1 cm−1 or less can
be achieved for those modes that have no spatial harmonics
inside the radiation light cone. It can, therefore, be expected that
the out-of-plane radiation loss can be reduced by decreasing
the overlap of the waveguide mode and the radiation light cone.
In this section, we will first analyze the role of the photonic
crystals played in forming the waveguide mode and then
present an approach to reduce the out-of-plane radiation loss
for photonic crystal waveguide with low vertical index contrast.

Fig. 11 shows the in-plane dielectric distribution of thewaveg-
uide in real and reciprocal spaces. The reciprocal space distri-
bution of the dielectric is obtained from a Fourier transform of
the real space distribution, which is not shown in full in Fig. 11.
The periodicity of the distribution in real space is very critical to
accurately calculating the reciprocal distribution. Not only does
the inter-hole spacing have to be precisely identical, the bound-
aries of the real space lattice also must satisfy periodicity as is
assumed in the fast Fourier transform (FFT). For the vertical

Fig. 12. (a) In-plane dielectric distribution of photonic crystals. (b) Its Fourier
transform. The adjacent color levels in the contour differ in magnitude by a
decade.

direction of the figure, the distance between neighboring holes
∆Oy equals to the lattice constant a; whereas, for the horizontal
direction, that distance ∆Ox is given by an irrational fraction
of a lattice constant

√
3a/2. Because of the strict requirement

of periodicity, the differential spacing ∆x for the horizontal di-
rection is intentionally modified to be an integer nx division of
∆Ox . This allows the distance between neighboring circles to
be an exact integer, free from the rounding error in a floating
point number. Since the scaling of the horizontal and vertical
directions are different, the Fourier transform shall be inversely
scaled to reflect the actual result.

With the preceding procedures, the reciprocal space distri-
bution of a perfect photonic crystal lattice is given by discrete
points at the lattice point as shown in Fig. 12. The contour plot
shows that nonzero Fourier components are expected only at
the reciprocal lattice locations. It is worth noting that the con-
tours do not have a physical width. The radius of each delta
component is an artifact to improve the clarification of the plot.

As shown in Fig. 11(b), the presence of the missing row
of holes causes spatial Fourier components that would not be
present in a bulk 2-D triangular lattice. In particular, there are
Fourier components along the waveguide direction, Γ–K, at
(b1 − b2)/2, where b1 and b2 are primitive vectors of the re-
ciprocal lattice.

From the discrete translation invariance of the waveguide
along the propagation direction and the Fourier transform of the
lattice, the electric field in the waveguide can be written as

E(x, y, z, t) =
∑
n

cnfβ (x, z)

×exp
(
i

{
ωt−

[
β+n

(
b1 − b2

2

)]
y

})
(8)
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Fig. 13. (a) Fourier transform ofHz at the mid-plane for the defect waveguide
mode at βy = 0.2π/a. (b) H2

z shown in the cross section of the same mode
with waveguide dielectric distribution overlaid by dotted lines. The adjacent
color levels differ in magnitude by a decade.

where n is an integer and cn is the coefficient for the spatial
harmonics. β is restricted to the first Brillouin zone of the re-
ciprocal space. Given b1 and b2 shown in Fig. 11(b), it can be
shown that

b1 − b2

2
=

2π
a

β̂y . (9)

The field solution assumed in (8) agrees with the reciprocal
space distribution of the waveguide mode shown in Fig. 5. As
can be seen in the figure, only the n = 0 term c0 in this series is
inside the radiation cone of the cladding layers and contributes
to the radiation loss of the waveguide mode.

This term is not large, however, as can be seen fromFig. 13(a),
which shows the Fourier transform of the in-plane Hz compo-
nent for the same propagation constant βy = 0.2π/a as field
H2

z in Fig. 13(b) obtained from a 3-D FDTD simulation. It
shows that the dominant component of the field is c1, which
is in the second zone. c1 is outside the light cone and does
not contribute to the radiation loss of the waveguide mode. c1
and c0 are coupled by the Fourier component of the lattice at
(b1 − b2)/2. It is clear that not only does the field leak through
the photonic crystal cladding but also the mode actually has
strong vertical propagation directly beneath the waveguide core
that contributes to the out-of-plane radiation loss. This can be
identified in Fig. 13(b) by the multiple contours inAlxGa1−xAs
cladding aligned below the defect. It implies an oscillatory, or
traveling wave behavior of the electromagnetic field. For a rig-
orous waveguide confinement, we expect the field magnitude to
exponentially decay in the waveguide cladding and substrate.

Fig. 14. Photonic band diagram for a deeply etched single-line photonic crys-
tal defect waveguide, described in Table I, in an extended Brillouin zone scheme.
The defect mode analyzed for out-of-plane radiation loss is marked as a bold
line.

Fig. 14 shows the photonic band diagram of a deeply etched
photonic crystal waveguide in an extended Brillouin zone
scheme. The vertical radiation light cone due to the bottom
cladding and transverse radiating region in the photonic crystal
are mapped as yellow and dark blue areas, respectively. The de-
fect modes of interest for the out-of-plane radiation loss analysis
are marked with a thick curve in the figure. It is clear that the
waveguide mode is completely inside the radiation light cone of
the bottom cladding.

Two of the spatial harmonics in the range of −π/a < βy <
2π/a in Fig. 13 are identified in Fig. 14. The n = 0 and n = 1
terms, c0 and c1, in the cn of (8) are marked in the figure.
They are separated by G = 2π/a. If we take the average index
of the photonic crystal waveguide, the propagation constant of
the resulting waveguide mode can be estimated by the product
of the effective mode index neff and free-space wavenumber
k0 = 2π/λ0. In the case of a deeply etched photonic crystal
waveguide, the mode has a propagation constant of 0.9 × 2π/a
assuming an effective index of 3 and normalized frequency of
a/λ0 = 0.3. It is in the second Brillouin zone. Drawing an
analogy with the coupled mode theory, the spatial harmonics of
the photonic crystal waveguide mode in the first Brillouin zone
is the result of the coupling by the lattice G.

If the coupling between then = 0 component in the field in (8)
and the n = 1 component is reduced by reducing or eliminating
the Fourier component of the lattice at (b1 − b2)/2, so is the
waveguide radiation loss. This can be accomplished in a type-
B photonic crystal waveguide, which is formed by removing a
single row of holes from a triangular lattice and then shifting one
side of the cladding along the direction of the waveguide by half
a lattice period. For convenience, we will refer the conventional
photonic crystal waveguides as type-A waveguides.

Fig. 15(a) shows the in-plane dielectric distribution of a
type-B waveguide and its Fourier transform is shown in
Fig. 15(b). Photonic crystals both to the left and right sides
of the linear defect are triangular lattice with the same lattice
constant and hole radius. The position of the cladding is how-
ever displaced by half a period. It shows that there is no Fourier
component of the lattice along Γ–K at (b1 − b2)/2 because
of the cancelation of the contributions from each side of the
cladding after the half-period shift.
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Fig. 15. (a) In-plane dielectric distribution of the waveguide and (b) its Fourier
transform for a type-B single-line photonic crystal defect waveguide. The adja-
cent color levels differ in magnitude by a decade.

We expect a reduced radiation loss in a type-B waveg-
uide because of the elimination of the Fourier component at
(b1 − b2)/2, which occurs along the Γ–K axis, where the
Fourier transform of the field is peaked. In addition, radia-
tion loss is further reduced because the radiation field under
the two waveguide cladding sections is out of phase because of
the spatial shift in the lattice leading to a cancelation under the
waveguide core.

Fig. 14 shows the dispersion relation of a type-B waveg-
uide. The dark blue and light yellow areas represent the regimes
where the electromagnetic field radiates in the photonic crystal
cladding and radiates out-of-plane, respectively. The waveguide
mode of interest is marked with thick curve in the figure. Ex-
cept for the propagation constant β smaller than 0.4π/a where
anti-crossing between the lowest two modes occurs, the mag-
netic field component Hz of this mode assumes an even-like
symmetry along the center of the waveguide.

In type-A structures, the photonic crystal cladding has even
symmetry along the center of the defect. If the photonic crys-
tal is thought of as a perturbation of an epitaxial waveguide
structure, the coupling of a laterally even mode and a later-
ally odd mode under an even symmetry perturbation is zero.
As shown in Fig. 16, the lowest waveguide mode in the pho-
tonic bandgap, which assumes even symmetry, intersects with
the next higher mode, which assumes odd symmetry. However,
the perturbation is neither strictly even nor odd in a type-B
waveguide, resulting in an anti-crossing at the frequency where
the even and odd modes would otherwise intercept. Because
of the anti-crossing, the lowest mode of the propagation con-
stant between 0 and 0.4π/a possesses an odd-like symmetry,
which is the symmetry property of the next higher mode in the
bandgap.

Fig. 16. Photonic band diagram for a type-B photonic crystal waveguide on
an epitaxial structure consistent with AlxGa1−xAs/GaAs/AlxGa1−xAs. The
defect mode analyzed for the out-of-plane radiation loss is marked by the thick
curve. The dark gray and light gray regions indicate the modes of the bulk
photonic crystals and vertical radiation light cone.

Another distinction for type-A and type-B band diagrams
is at the Brillouin zone boundary. For type-A photonic crystal
waveguides, the dielectric distribution at βy = 2π/a causes de-
generacy breaking for all modes at a propagation constant βy of
π/a. However, due to the cancelation of out-of-phase photonic
crystals atβy = 2π/a, thewaveguidemode at the Brillouin zone
boundary is nearly degenerate. A slight frequency split does ex-
ist since this Fourier component is only zero along the Γ–K axis
as shown in Fig. 15(b) and the Fourier transform of the mode
in this waveguide has some spread in the βx and βz directions
because of the confined transverse mode profile f

(B )
β (x, z).

Fig. 17 shows the magnitude of the magnetic field component
Hz and its reciprocal space intensity distribution for the propa-
gationmodes in a single-line type-Bphotonic crystalwaveguide.
The 2-D intensity plots only show the field at the mid-plane of
the guiding layer for the lowest propagation mode in the pho-
tonic bandgap, which ismarkedwith bold lines in Fig. 16. As the
epitaxy on which the photonic crystal waveguides is created has
a nearly symmetrical index profile with respect to the guiding
layer, the magnetic field is expected to be predominantly Hz at
the mid-plane of the guiding layer for the TEz mode. It is justi-
fied to use singleHz component to analyze the properties of the
mode. The dashed circle in the reciprocal space represents the
light line. Because photonic crystals extend a few micrometers
into the bottom cladding, the radiation light cone is strongly
modified by the presence of the periodic structure similar to the
case of out-of-plane propagation in the 1-D periodic layers. The
radius of the light line is chosen to reflect the average index of
the bottom cladding.

As shown in Fig. 16, the lowest propagation mode in the pho-
tonic bandgap intersects with the band of the photonic crystals
around the propagation constant of 0.8π/a and higher. The lat-
eral confinement of the field suffers as a result of the interaction
of the photonic crystal cladding. However, the weak spatial con-
finement results in a strong confinement in the reciprocal space.
The field distribution in the reciprocal space have the smallest
spread around the lattice points as shown in Fig. 17(a). Even
though the out-of-plane radiation loss of this mode is small, the
strong coupling with the photonic crystal cladding mode never-
theless makes it an overall poor candidate for waveguiding.
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Fig. 17. Propagation mode at the mid-plane of a type-B photonic crystal
waveguide and their inverse space distribution for single-line defect photonic
crystal waveguides at various values of the propagation constant β . (a) 0.8π/a.
(b) 0.5π/a. (c) 0.3π/a.

Fig. 18. Reciprocal space distribution of type-A and type-B photonic crystal
defect waveguide mode at β = 0.6π/a and β = 0.5π/a, respectively.

Fig. 18 shows the spatial harmonics of type-A and type-B
photonic crystal waveguide modes in the first Brillouin zone.
Both plots are normalized with their peak magnitude. The prop-
agation constants for the type-A and type-B waveguide modes
are 0.6π/a and 0.5π/a, respectively. It agrees with our previ-
ous analysis that the coupling between the spatial harmonics is
directly linked to the reciprocal space distribution of the waveg-
uide lattice. By removing the Fourier component of the lattice
along Γ–K at (b1 − b2)/2, the spatial harmonics for the type-B

Fig. 19. H2
z field cross section for the type-B photonic crystal defect waveg-

uide mode at βy = 0.5π/a. The dotted lines outline the waveguide dielectric
distribution. The field contour has one additional color level compared with
Fig. 13(b) to identify the radiation path. The adjacent color levels differ in
magnitude by a decade.

waveguides is zero at βx = 0. The magnitude at the vicinity of
βx = 0 is also small. In comparison, the magnitude for type-A
waveguide modes is much stronger at the same location. Be-
cause the part that overlaps with the radiation light cone has
predominantly small βx , type-B waveguides have a smaller out-
of-plane radiation loss.

Fig. 19 shows the longitudinal cross section of H2
z of the

guided modes in the type-B waveguides at 0.5π/a. The epitax-
ial structure and the air hole positions are delineated in the figure
as dashed lines. A comparison with the type-A waveguide mode
at 0.2π/a can be found in Fig. 13. This will be shown to be the
point with the lowest out-of-plane radiation loss for the band
considered. As shown in the figure, the vertical propagation
beneath the linear defect is absent. Radiation loss underneath
each of the cladding sections remains but is reduced. However,
the vertical attenuation of a type-B waveguide mode is slower
than that of a type-A waveguide. For a type-A suspended mem-
brane photonic crystal waveguide, the field decays over an order
of magnitude from the mid-plane of the guiding membrane to
the cladding interface. And that for a type-B photonic crystal
waveguide is less than a factor of 4. Because of that, holes must
be deeply etched in type-B structures to prevent the waveguide
modes from coupling with the radiation modes of the substrate.

The out-of-plane radiation loss as a function of normalized
frequency for type-B photonic crystal single-line defect slab
waveguides is shown in Fig. 20. The epitaxial structure of the
waveguide and etching depth of the holes are identical with
that of the deeply etched photonic crystal waveguide shown in
Table I. It is so chosen that a fair comparison of the waveg-
uide transmission loss before and after the optimization can be
achieved.

The lowest radiation loss for the type-B defect waveguide
with an identical vertical index contrast is predicted to be
10.7 cm−1. Fig. 20 shows the vertical radiation loss of the type-
B waveguide as a function of normalized frequency a/λ0 for a
lattice constant of 380 nm. The open squares are the calcula-
tion results by the power ratio method following a 3-D FDTD
simulation, and the curve is the spline fit. The top axis of the
figure shows the corresponding physical wavelength λ0. The
lattice constant for type-B waveguide is chosen to be 70 nm
shorter than that of thewaveguide in Fig. 10 because the low-loss
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Fig. 20. Vertical radiation loss for the type-B single-line defect photonic
crystal waveguide as a function of normalized frequency.

transmission happens at a slightly lower normalized frequency
for the former. As optical communication applications gener-
ally require the working wavelengths aligned with 1550 nm
low-loss fiber transmission window, we have insisted to have
low-loss transmission centered at 1550 nm.

V. CONCLUSION

In summary, a full 3-D numerical model was developed to
analyze the out-of-plane propagation loss of linear defect pho-
tonic crystal slabwaveguides. An infinite waveguide is emulated
by enforcing a periodic boundary condition over the waveguide
unit cell. The propagation mode is excited with double orthog-
onal excitation and a time-domain band-pass filter. The out-of-
plane radiation can be calculated either by the ratio of power
loss to propagating power or the quality factor of the waveg-
uide mode. The results show that, for a sufficiently thick bot-
tom cladding layer, both the suspended-membrane and oxidized
lower cladding structures are capable of low-loss transmission
over a range of frequencies. The role of photonic crystals in
forming waveguide modes is also examined. We have shown
that the out-of-plane radiation loss of the photonic crystal defect
waveguide can be reduced by an order of magnitude by shifting
the photonic crystal claddings one-half period with respect to
each other along the propagation direction.
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