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Protein Family Classification 
Using Structural and Sequence Information 

Scott F. Smith, Member, ZEEE 

Abstract-Protein family classification usually relies on 
sequence information (as in the case of hidden Markov models 
and position-specific scoring matrices) or on structural 
information where some sort of average positional error 
between the atomic locations is used. The positional error 
method requires that the structure of all the proteins to be 
classified is known. Sequence methods have the advantage that 
a much larger number of proteins can be classified (since far 
more sequences are know than structures). However, sequence 
methods discard a large amount of useful information 
contained in the structures of the subset of proteins in the 
family for which structures are known. A protein family 
classification system is presented which uses both structural 
and sequence information and combines this information in a 
way consistent with fuzzy systems theory. The non-linear 
fuzzy-theory-based method is found to perform better than 
either an  equally-weighted linear combination of the sequence 
and structural information or the sequence information alone. 

Index Terms-Biological sequence analysis, computational 
molecular biology, fuzzy systems, proteins. 

1. INTRODUCTION 

The classification of proteins into families is useful 
because it can suggest possible functions and structure for 
proteins where these are unknown. A number of protein 
classification databases exist, including the Structural 
Classi/cation of Proteins (SCOP) [I], Class, Architecture, 
Topology, and Homologous Supei+amily (CATH) [2], and 
Protein Fumi/y (Pfam) [3] databases. Methods used to 
generate these classifications include sequence-only 
automated methods such as profile hidden Markov models 
(profile HMM) [4] and position-specific scoring matrices 
(PSSM) [5] as well automated structural alignment and 
hand curation. 

When the sequence of a new protein to be classified is 
known, but the three-dimensional structure is not, then 
comparison of the new protein with profile HMM or PSSM 
of existing protein families is the normal course of action. 
These methods ofien work since most proteins contain 
conserved regions that are similar to other proteins /6]. 
These conserved regions are normally in the hydrophobic 
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core of the protein and are mostly composed of alpha 
helices and beta sheets. Amino acids on the surface of 
proteins are much more variable and form loops that 
connect the alpha helices and beta sheets. Sequence-only 
methods like the HMM and PSSM find conserved and non- 
conserved regions directly from the sequence data. The 
probabilistic model discovers the degree of conservation 
!?om the observed sequence data, but does not use any 
structural information to determine locations where 
conservation should be more likely due to being in the 
protein core. If the number of known proteins in the family 
is very large, then the observed sequences are a good 
measure of whether a given position is conserved or not. If 
very few sequences in a family are observed, then the 
degree of conservation at a location within the alignment is 
harder to estimate. 

In this paper, structural data from the subset of protein 
family members with known structure is used to estimate 
the degree of membership of a protein sequence location in 
the set of Conserved sequence locations using the structural 
data. All family members are used to estimate the degree of 
membership of sequence locations in the set of conserved 
sequence locations using sequence data. A combined degree 
of membership estimate at each sequence location is found 
using standard fuzzy logic operations. This combined 
degree of membership estimate is then used to weight the 
scores of a PSSM. 

Section I1 details how the fuzzy-theory-based estimate of 
the degree of conservation at each residue position is 
obtained and also describes two alternative estimates of 
degree of conservation to he tested. The method used lo 
score a new protein sequence for which structural 
information is not known is discussed in Section 111. The 
Monte Carlo simulation method to determine the level of 
significance of the score is presented in Section 1V. Section 
V gives a specific protein domain family example, the TPR 
domain from the Pfam database and compares the 
sensitivity of the three conservation estimates. The 
specificity of the three estimates is examined in Section VI. 
The specificity is examined in terms of proteins from 
nineteen other families not matching the three models 
determined for the TPR family. Sensitivity for three other 
protein families is examined in Section VII. The 
computational complexity of the algorithm is addressed in 
Section VIII. Conclusions are drawn in Section IX. 
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11. DEGREE OF CONSERVATION ESTIMATES 

A multiple alignment is first performed on all of the 
sequences known to be in the family and the sequence that 
is to be tested for family membership. The sequence to be 
tested is then removed from the multiple alignment for the 
purposes of estimating the degree of conservation and the 
position-specific scoring matrix. 

A .  Conservation Estimate from Sequence Information 
The degree of conservation from sequence data is 

estimated by placing the residues at a given multiple. The 
degree to alignment sequence position into one of four 
groups. These groups are hydrophobic (A, V, L, I, M, F, 
and P), charged (D, E, R, and K), polar (S, T, Y, H, C ,  N, 
Q, and W), and glutamine (G). The largest of the four 
calculated fractions becomes the estimate of the degree of 
conservation from sequence. The fractions will not 
necessarily add up to one, since gaps in the multiple 
alignment do not appear in any group. 

B. Conservation Estimate from Structural Information 
The spatial locations of the alpha carbon atoms in the 

protein backbone are obtained from Protein Data Bank 
(PDB) [7] files for the subset of proteins where structure is 
known. Those amino acid positions that are near the surface 
are then estimated using a simple algorithm that determines 
the furthest extent of the protein in twenty-six different 
directions. These directions are the major axes (six 
directions), all pairs of major axes (twelve directions), and 
all triplets of major axes (eight directions). These positions 
are then extended by two amino acid positions in either 
direction along the amino acid chain. The fraction of 
sequences that are non-surface at a given position becomes 
the conservation estimate from structural information. Gaps 
in the multiple alignment are treated as if they were surface 
positions. 

C. Combined Degree of Conservation Estimate 
We would like to combine the estimated level of 

conservation from the sequence information with that 
obtained from the structural information. One way to do this 
would be to take a weighted average of the two estimates. 
However, there is no clear way lo choose the weights to be 
placed on the two initial estimates. It could be argued that 
the weights should be estimated from data, where 
conservation estimates from many protein families are made 
and the reliability of the two estimates assessed in each 
case. The weights are then chosen as inverse to the 
measured reliability. This implicitly assumes that reliability 
of the estimates are similar between families. However, 
large variations in the fraction of proteins in a family with 
known structure and the alpha helix versus beta sheet 
structures of the hydrophobic core may mean that the 
reliability of the two estimates is much different for 
different families. 

Instead, a method consistent with fuzzy logic theory [XI is 
used. We wish to define an amino acid location as 
conserved if either the structural data indicates the location 
is very conserved, or the sequence data indicate the location 
is very conserved, or both sets of data indicate that the 
location is at least moderately conserved. 

Formally, we define Q as the set of sequence locations 
that are conserved based on the sequence data. The set Tis  
the set of sequence locations that are conserved based on 
the structural data. The set C will be the set of sequence 
locations that are conserved based on the combined data 
which a location x is a member of Q, T, or C respectively is 
given by mQ(x), mT(x), and mC(x). The sets of locations 
that are very conserved based on sequence or structural data 
are VQ and VT respectively. Using the concentration 
operation the membership function of the sets VQ and V7 
can be obtained as 

mVQ(x) = [mQ(x)]’ and mVT(x) = [mT(x)I2. ( I )  

The statement that a location should be either very 
conserved based on sequence data, or very conserved based 
on structural data, or at least somewhat conserved in both 
can be written as 

C= V Q u  VTu [ Q n  r] .  (2) 

The associated membership function for C can be 
calculated from 

mC(x) = max{mVQ(x), mVT(x), min[mQ(x), mT(x)]}. (3) 

In order to avoid having either the sequence or the 
structure dominate the combined membership function, 
mVQ, mVT, m e ,  and mT are all normalized to have a mean 
of I .O before doing the above calculation. The mC result is 
also normalized to have a mean of 1.0 after the calculation 
so that the use of mC as a weight can be compared to using 
the equally weighted average ( m e  + m7)/2. In what follows, 
the membership function values for each sequence position 
will be used as weights for the relative importance of 
matching a position in the position-specific scoring matrix 
(PSSM). 

111. SCORMG A NEW PROTEIN SEQUENCE 

To test if a new sequence is similar to the existing family, 
the new sequence is scored by comparing the residue 
observed at each position in the aligned new sequence to a 
weighted measure of the frequency of occurrence of that 
residue in that position among the known family members. 

First, the number of non-gaps in the family members at 
each position is counted. For each of the twenty possible 
amino acids, the number of observations of that amino acid 
at the position is then counted. A pseudo-count of one is 

. 
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added to each of the counts such that a score of zero at any 
position will not dominate the estimate. The unweighted 
PSSM is the number of observed amino acids divided by the 
number of non-gaps. 

The weighted PSSM is formed by multiplying each 
location in the unweighted PSSM by the combined degree 
of conservation from part I1 above. The log of each element 
of this PSSM is then taken to solve computing precision 
problems. The score of a new sequence is simply the sum of 
the individual PSSM values at each location corresponding 
to the observed residue in the new sequence. Three such 
PSSM are generated, one each using the weights mC, (mQ + 
m n  / 2, and a constant weight of 1. The first and second 
will allow comparison of using the non-linear fuzzy-based 
estimate of conservation to a simple linear estimate where 
both use structural and sequence information. The third 
PSSM uses only sequence information and can be used 
detect whether inclusion of structural information has any 
benefit at all. 

IV. SIGNIFICANCE OF THE SCORE 

In order to determine the significance of the scores 
resulting from the three PSSM when compared to the null 
hypothesis that the score was generated by chance, Monte 
Carlo simulations are run with 1000 reshuffled versions of 
the sequence under test. The mean score generated from 
these reshuffled versions is taken as the null hypothesis 
score. Since the scores are generated in terms of logs, the 
difference between the unshuffled test sequence score and 
the null hypothesis score is a measure of the significance 
level of the score. A base-two log is taken when generating 
the PSSM, so the units of significance are bits. A 
significance measure of 10.0 will therefore imply that the 
test sequence match is 1024 times (2”) more likely than 
pure chance. 

It should he noted that by using a reshuffled version of 
the test sequence, we have eliminated the possibility of 
matching based on the test sequence and the family having 
the same order-independent ratios of amino acid 
occurrences. However, this information itself may have 
some (but probably not much) explanatoly power as to 
whether the test sequence is  a member of  the family. As 
such, this method generates a conservative (high) estimate 
of the null hypothesis score. 

V. TPR DOMAIN EXAMPLE 

To test the performance of the classification scheme 
developed in this paper, the significance levels of the score 
using fuzzy weighting is compared to the significance levels 
using the equally-weighted average and to no weighting. 

As an example domain, the tetrabico peptide repeat 
(TPR) domain from the Pfam database was used. Reasons 
for choosing this family include the fact that it is in the 
“top-twenty” list on the Pfam site of most-frequently 

occurring protein families and that it has an adequate 
number of sequences with know structure (twelve). There 
are a total of 575 sequences in the “seed” family of hand- 
curated sequences, including sequences of both known and 
unknown structure. There is an average of 18% sequence 
identity among the sequences which places this domain in 
the “twilight zone” of  remote homologs [9] that are difficult 
to classify. The multiple alignment for this domain is 34 
residues long. 

Table I shows the twelve sequences out of the total 575 
sequences for which the three-dimensional structure is 
known. The first column shows the Swiss-Prot name that is 
used for the sequence within the Pfam multiple alignment 
file (the family as a whole has Pfam identifier PF00515). 
Several of the domain sequences actually come from the 
same polypeptide molecule, where this domain appears 
more than once along the molecule length. As a result, there 
are in fact only six different proteins (ncf2-human. 
fkh5-human, ppid-bovin, ppp5_human, pex5-human, and 
iefs-human). The second column of Table I shows the 
Protein Data Bank (PDB) name for the same protein. There 
are actually seven PDB proteins listed (Ihh8, IktO, lihg, 
la17, Ifch, lelw, and lek)  since iefs-human corresponds to 
lelw in one case and lelr in two other cases. The two PDB 
entries are just slightly different versions of the same 
protein. The third column of Table I shows the residue 
positions of the domain within the total protein. These 
residue positions are the same for the Swiss-Prot and PDB 
proteins used here, but in general this might not be the case. 

A .  Degree of Conservation Estimate 
A test sequence is selected at random and removed from 

the set of sequences used to estimate the model of the 
protein domain family. The test sequence is always chosen 
from the 563 sequences that do not correspond to known 
three dimensional structures since there are so few known 
StNCtureS. 

The coordinates tiles for the seven PDB proteins are 
obtained from the PDB database and the relative three 
dimensional locations of the alpha carbon atoms of each 
residue are extracted. The surface residue sequence letters 

TABLE I 
TPR DOMAINS WITH KNOWN STRUCTURE 

Swiss-Prot Name PDB Name Residues 
ncR human I hh8 71-104 
tkb5Ihuman I ktO 3 17-350 

ppid-bovin lihg 273-306 
ppid-bovin lihg 307-340 
p w - h u m n  la17 28-61 
P P P L ~ ~ W ~  la17 96-129 

pexs-human lfch 485-518 

iek-human lclr 225-258 
iefs human lek 300-333 

PnbS-human I ktO 351-384 

pex5-human lfch 451-484 

id-human lelw 4-37 
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are then converted to upper case and the interior residue 
sequence letters to lower case using the Matlab code 
available at [IO]. The twelve sequences corresponding to 
known structures in the Pfam multiple alignment file are 
then moved to the top of the file and are converted to upper 
or lower case based on the results of the previous step. A 
second Matlab program (also available at [lo]) is used to 
score the test sequence and calculate level of significance. 

Figures 1 and 2 show the estimated conservation weights 
using mC (fuzzy), and the linear combination of mQ and mT 
respectively. The fuw-based conservation estimator 
places significantly more weight on four of the amino acid 
positions (20, 27, 28, and 30) which have consensus 
residues of A, A, L, and L respectively. 

E. Protein Sequence Scores 
The number of occurrences of each of the twenty possible 

amino acids is counted at each of the 34 multiple alignment 
positions. A pseudocount of one is added to each count,to 
avoid taking a log of zero and having the non-observance of 
a particular residue at a particular position absolutely rule 
out accepting a sequence with that residue at that position. 
The resulting counts are divided by the total number of 
sequences (574) and a base-two log taken. Since there may 
be gaps in the multiple alignment, the sum of the amino acid 
counts might not equal the total number of sequences. The 
result is the unweighted PSSM. 

O ~ , , , , , , , , , , , , , , , , , . . , . . . . . . . . . . . , , ,  
-mm"k';;r-wz 

Multiple Alignment Location 

Fig. I. Conscrvation weights using fuzzy estimator 

2.5 

0 4 !  , , , m , , , , , , , , , , , , , , , , , , , , , , , , , , ,  
-mmzr-';;-g$ 

Multiple Alignment Location 

Fig. 2. Conservation weights using lintat. estimator 

The unweighted PSSM in now multiplied by the weights 
for each of the 34 positions determined from the 
conservation estimates above. The test sequence is then 
scored against each of the three PSSM. This is done by 
adding PSSM values for each position corresponding to the 
residue at that position in the test sequence. 

C. Signifcance of the Scores 
The process in parts A and B above is repeated 20 times 

with a new test sequence randomly selected from the 563 
sequences of unknown structure each time. The resulting 
three PSSM are slightly different each time due to the 
removal of a new test sequence and the reinsertion of the 
old test sequence, but with 575 sequences total the 
difference is very small. Since there is a new test sequence, 
the estimate of the score under the null hypothesis is 
different each time. 

For each of the 20 runs, the significance level (in hits) 
generated using the fuzzy and linear estimates of 
conservation and without weighs is calculated. The 
significance levels from each of the 20 runs is then used to 
calculate the sample mean and variance. The sample means 
are reported in Table 11. The non-linear fuzzy combination 
appears to outperform the other methods. 

To determine if the significance level results could 
reasonably be expected from pure chance a t-test of the 
mean difference between significance levels is undertaken 
[I I]. The mean difference between fuzzy and linear and the 
mean difference between fuzzy and unweighted is 
examined. In each case the null hypothesis is that the mean 
difference is zero and the altemative hypothesis is that the 
mean difference is positive. The null hypothesis can he 
rejected at the 99% confidence level if the t-statistic is 
greater than 2.54, where the number of degrees of freedom 
is 19. Table I1 shows that there is at least a 99% chance that 
the fuzzy estimator returns a score significance higher than 
the other estimators in the population. 

The data used to generate the results in Table I1 are 
shown in Table Ill. The first column shows the protein 
name of the randomly selected sequence and the residue 
location within the protein. The rightmost three columns 
show the significance levels of the scores using the fuzzy, 
linear, and unweighted (flat) PSSM respectively. 

TABLE I1 
PERFORMANCE ON TPR DOMAIN 

parsmeter Value 
Domain Structures I 2  ~~ 

Domain Sequences 575 
Test Sequcnccs 20 
Mean Significancc Diffcrcnce: (units of bits) 

Fuzzy-Linear 3.94 
Fuzzy-Unweightcd 8.84 

Fuzzy-Linear 7.37 

99% Contidcnce 2.54 

1-SWtistics: 

Fuzzy-Unweighted 10.52 
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TABLE Ill 
INDIVIDUAL TPR SIGNIFICANCE LEVELS (BITS) 

SequcneeiResidues Fuzzy Linear Flat 
cya3_rhimel455-488 93.32 89.97 82.72 
q43468l4 1 5 4 8  91.77 89.55 92.10 
pppS_rat!96-129 90.19 89.43 84.32 
0512281809-842 88.24 82.90 81.18 
pex5gican1450-483 100.61 94.82 94.32 
0820391334.369 111.60 103.66 99.1 I 
solr_claabll33-l66 88.43 85.49 78.97 
nuc2~schpol499-532 94.81 93.16 90.90 
~9064713 16-349 100.06 94.29 85.83 
c27-yeasU540-573 101.43 101.97 99.08 
p74 1231124-157 98.46 96.60 90.75 
p7432 Ill 93-226 93.04 89.68 81.13 
yct3-marpo172- I OS 101.28 99.40 91.39 
rapc-bacsd223-256 94.07 90.82 84.20 
02617611 in-151 106.53 99.42 95.96 
ogt I-ratl2 15-248 90.71 86.06 80.06 
ppp5-mousel28-61 102.26 93.45 88.85 
ncl-humadl89-222 83.74 79.35 75.45 
klcl-humani377-410 86.40 82.68 74.34 
ctr9 yeasl/21x-251 98.79 94.24 88.26 

VI. TPR MODEL APPLIED TO NON-TPR PROTEWS 

A random selection of one protein sequence from each of 
the nineteen other “top twenty” families in the Pfam 
database is selected and scored against the three TPR 
models of the previous section. Every possible subsequence 
of 34 characters from the entire protein sequence (not just 
the subsequence that forms the domain of the family) is 
scored against the TPR PSSM models. The highest 
significance score from any 34-character subsequence is 
retained. 

Since the highest score significance is retained for each 
protein, the scores are expected to follow an extreme value 
distribution [9] where the expected score significance 
increases with the log of the number of residues in the 
protein. The maximum score significances for each protein 
are divided by the log of the sequence size to normalize this 
size-dependent effect. 

The difference between the fuzzy-based significance and 
the linear-combination-based significance is taken as well as 
the difference between the fuzzy-based significance and the 
unweighted significance. The mean significance differences 

TABLE IV 
PERFORMANCE ON NON-TPR DOMAIN 

Parameter ValUe 
Test Sequences 19 
Mean Significance Difference: (units of bits) 

Fuzzy-Linear -2.06 
Fuzzy-Unweighled - I  .48 

Fuuy-Linear -3.80 
Fuzzy-Unweighted -2.33 

97.5% Confidence 2.10 

1-Statistics: 

TAR1 F \i . . .- __ . 
INDIVIDUAL NON-TPR SIGNIFICANCE LEVELS 

Sequence (Size) Family Furzy Lln. Flat 
env hvIbI(856) eo120 14.13 16.40 1 4 ~ x 1  ~~ ~ ~ ~~ 

&h_drome(993) &2h2 9.37 8.91 9.31 
q9h069(2.?5) ItT 14.40 16.71 17.13 
ym40_marpo(502) wt 11.23 11.44 12.47 
pol_omvvs(l086) rvp 15.40 16.59 14.90 
cyb-ascsu(365) cytoochrom-b-n 16.04 18.40 17.99 
q9zem4( 1049) wd40 13.64 18.65 17.71 
q01484(3924) ank 9.60 11.27 10.11 
coxl-hanwi(535) cox1 12.68 14.36 13.38 
nu2mapili(333) oxidored-ql 10.94 17.01 17.32 
petd_chleu(l60) cytochrom-b-c 17.05 16.90 14.85 
nike_ecoli(268) abc-tran 16.81 16.97 15.35 

rbl-anap(488) mbisco-large 13.38 14.03 14.61 
rbl-cyapa(475) rubisca-largc_n 13.59 14.95 12.97 
q31377(246) ig 10.67 14.15 17.00 
080524(705) PP’ 20.06 23.96 22.91 
057059(986) rvl-thumb 11.52 11.27 10.30 
polg hcvbk(3010) hcv nsl 10.57 18.67 17.54 

mk04_hum(557) pkinase 19.72 19.28 18.34 

are reported in Table IV. It is desirable that these score 
significances be low since they represent rejection of non- 
family proteins. In both cases, the mean significance of the 
fuzzy-based score is lower. The 1-statistics show that the 
mean difference between the fuzzy-based score significance 
and the non-fuzzy-based score significance is negative at 
the 97.5% confidence level. The fuzzy-based conservation 
weights therefore result in lower rates of false-positives as 
well as lower rates of false-negatives (Section V). 

The 19 randomly selected sequences are shown in Table 
V along with their size (total number of residues) and the 
Pfam family to which they have been assigned. The 
rightmost three columns of the table show the size- 
normalized significance scores obtained from each of the 
three PSSM models. The family with the worst rejection 
performance (PPR) is the most closely related of the 19 
families tested to the TPR family. The significance scores 
are positive in all cases. This is lo be expected since existing 
biological proteins are more closely related than randomly 
generated amino acid sequences. Randomly generated 
amino acid sequences should have a mean significance 
score of zero by definition. However, randomly generated 
proteins on average are not biologically stable and many 
proteins from different families may be very remotely 
evolutionarily related. 

VII. OTHER DOMAIN FAMILY TARGETS 

The characteristics of domains in the Pfam top twenty are 
listed in Table VI. The number of sequences and the 
number of sequences with known structure within the hand- 
curated “seed” family are shown in columns two and three. 
The four families with ten or more known structures are 
marked with an asterisk (LRR, WD40, Ank, and TPR). 
There is potential difficulty in classifying new 
sequences into these four 
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TABLE VI 
PFAM TOP-20 DOMAIN CHARACTERIZATION 

Familv Number Number Perceni Averaee 
Name Sequence Struct. Identity Length 
m120 24 0 56 154 .. 
Zf-CZh2 I97 8 36 23 

cvtochrom b n 8 0 69 152 ~- 
id40  1923 23* 20 39 
ank 1181 50' 27 30 
COX1 24 I 47 227 

cyloehrom-b-c 9 0 74 89 

pkinase b l  b 23 219 

Nbisco_lurge_n I7 2 83 117 

oxidored-ql 33 0 29 22 I 

abc-tran 63 1 26 184 

Nbisco-large 17 2 1 9  282 

tpr 515 12* 18 34 
ig 91 h 21 64 
ppr 560 0 20 33 
nrt-thumb 42 0 88 50 
hcv nsl 10 0 45 74 

families since they all have low sequence identity (26, 20, 
27, and 18 percent) and are rather short (24, 39, 30, and 34 
amino acids) as can he seen from the last two columns of 
the table. 

The analysis from Section V applied to the TPR domain 
is also applied to the LLR, WD40, and Ank domains, with 
the results shown in Table VI1. With the exception of the 
WD40 fuzzy versus unweighted case, the fuzzy gives a 
higher mean significance difference at the 99% confidence 
level. The WD40 fuzzy versus unwieghted case is 
statistically significant at the 95% confidence level. 

VIII. PERFORMANCE 

The algorithms were run on an 800 MHz Pentium I11 
using Matlab version 6 release 13. There are two tasks for 
which performance measures are of interest, the CPU time 
required to obtain the score significance level given that the 
PSSM for a family has already been calculated and the CPU 
time required to obtain the PSSM for the family in the first 
place. The performance of these algorithms probably could 
be increased significantly since no attempt has been made to 
optimize the code and recoding in a language such as C is 
likely to speed up the calculations. 

For a test sequence with 60 residues and using 1000 
reshuffles of the test sequence to obtain a score significance 
level 4.05 seconds of CPU time was required. More than 
99% of this time is spent calculating the scores of the 1000 
reshuffled versions of the test sequence. If performance of 
the algorithm is an issue, analysis of the minimum number 
of reshuffles needed to get an acceptable result should be 
undertaken. The required CPU time is very close to linear in 

both number of reshuffles and test sequence length. There 
are 7459 families in Pfam as of June 2004. Estimating that 
about one fourth of the Pfam entries have enough known- 
structure members for the method of this paper and that the 
average family has a PSSM with about 200-300 residues 
means that ahout eight hours of CPU time is needed to 
search all possible families. Using a faster computer, some 
reduction in number of reshuffles, and recoding in a more 
efficient language should allow this time to he reduced to 
well under an hour. 

Calculating the PSSM for a protein family with 1180 
sequences of aligned length 60 and with 36 of the structures 
known requires 1.6 seconds of CPU time. For a known 
structure of length 508 residues, it takes 0.31 seconds of 
CPU time to find the surface residues and the required time 
is nearly linear in number of residues. Finding the surface 
residues for the example above would therefore take about 
1.3 seconds of CPU time for a total of 2.9 seconds to find 
the PSSM. Recalculating the PSSM for all the possible 
Pfam entries would therefore take a fraction of a day. 

IX. CONCLUSIONS 

The introduction of non-linearity into the estimation of 
conservation weights for PSSM scoring seems to improve 
performance versus linear estimation or non-weighted 
scoring. The fuzzy-based conservation estimator generates a 
PSSM score with greater sensitivity (lower false negative) 
and greater specificity (lower false positive) than the 
equally-weighted linear conservation estimator or 
unweighted scoring when applied to the TPR, LLR, WD40, 
and Ank protein families. 

While the results of adding structural information to the 
sequence information in this manner are'promising, it is 
only applicable to those protein families that have a 
significant number of members with structures that have 
been determined. As the number of structures in the Protein 
Data Bank increases the desirability of including this 
structural information in models for classifying new protein 
sequences into protein families will increase. 

TABLE VI1 
PERFORMANCE ON LLR. WD40. AND ANK 

Parameter Value 

LLRFuzzy-Linear 29.16 
LLR Fuzzy-Unweighted 28.60 

WD40 Fuzzy-Linear 25.44 

Ank Fuwy-Lincar 20.4h 

Mean Significance Difference: (units a i  bits) 

WD40 Fuzzy-Unweighted 3.96 

Ank Fuzzy-Unweighted 3.89 
1-Statistics: 

LLR Fuzzy-Linear 21.36 
LLR Fuzzy-Unwcightcd 11.43 

WD40 Fuay-Linear 19.21 

Ank Furzy-Lincar 17.19 
WD40 Fuzzy-Unweighled 2.08 

Ank Fuzzy-Unweighted 3.04 
99% Confidence 2.54 
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