
Boise State University
ScholarWorks
Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

9-1-2006

Covariance Searches for ncRNA Gene Finding
Jennifer A. Smith
Boise State University

This document was originally published by IEEE in Computational Intelligence and Bioinformatics and Computational Biology, 2006. Copyright
restrictions may apply. DOI: 10.1109/CIBCB.2006.330953

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boise State University - ScholarWorks

https://core.ac.uk/display/61743614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.boisestate.edu
http://scholarworks.boisestate.edu/electrical_facpubs
http://scholarworks.boisestate.edu/electrical_facpubs
http://scholarworks.boisestate.edu/electrical
http://scholarworks.boisestate.edu/electrical
http://dx.doi.org/10.1109/CIBCB.2006.330953

1-4244-0623-4/06/$20.00 ©2006 IEEE

Covariance Searches for ncRNA Gene Finding

Scott F. Smith, Senior Member IEEE
Department of Electrical and Computer Engineering

Boise State University
Boise, Idaho 83725-2075 USA

sfsmith@boisestate.edu

Abstract-The use of covariance models for non-coding

RNA gene finding is extremely powerful and also
extremely computationally demanding. A major reason for
the high computational burden of this algorithm is that the
search proceeds through every possible start position in
the database and every possible sequence length between
zero and a user-defined maximum length at every one of
these start positions. Furthermore, for every start position
and sequence length, all possible combinations of
insertions and deletions leading to the given sequence
length are searched. It has been previously shown that a
large portion of this search space is nowhere near any
database match observed in practice and that the search
space can be limited significantly with little change in
expected search results. In this work a different approach
is taken in which the space of starting positions, sequence
lengths, and insertion/deletion patterns is searched using a
genetic algorithm.

I. INTRODUCTION

Covariance models (CMs) are used to search nucleotide
databases for genes associated with new members of known
non-coding RNA (ncRNA) families. The model parameters
are estimated from a group of nucleotide sequences which
have been determined to be related. The estimated model is
then used to search for similar patterns in nucleotide databases
that ideally would include sequences of entire chromosomes.
The computational burden of parameter estimation is minor,
but that of database search is extremely large.

Covariance models can be thought of as an extension of
profile hidden Markov models (HMMs) [1]. The major
difference is that the CM can describe interactions between
positions in the sequence whereas the HMM can only describe
conservation at each sequence position individually. The CM
is said to have a context-free grammar in the Chomsky [2]
hierarchy of transformational grammars and the HMM is at
the next lower level with a regular grammar. The fact that an
HMM can be viewed as a restricted CM has been used to
design pre-filters that can remove portions of the database
from consideration by the CM [3]. Given the parameters and
score threshold for the CM search a set of parameters and
score threshold can be computed for an HMM that guarantees
that the HMM search will return sequence regions which are a
superset of those that would be returned by the CM. Since it is
much faster to score a sequence against an HMM than a CM,
the overall search is sped up by using an initial pass with the

HMM pre-filter followed by the full CM search. However,
even with pre-filtering the use of covariance models is
extremely slow. Without pre-filtering the use of a CM is
usually infeasible.

The need to model interactions between ncRNA sequence
positions, but not protein or protein-coding gene sequences,
comes from differences in the way the two evolve. Proteins
tend to have a fair amount of primary sequence conservation
at least in some portions of the sequence. When combined
with amino-acid substitution matrices [4-5] this primary
conservation becomes even more evident. Non-coding RNA
sequences also exhibit some level of primary sequence
conservation, but not nearly to the degree as proteins or
protein-coding genes. The function of the ncRNA molecule is
mostly determined by the intra-molecular base pairing
arrangement of its nucleotides. There is little evolutionary
pressure to conserve a particular base at a particular sequence
position as long as a compensating variation is made
elsewhere to maintain base pairing (hence the word covariance
in covariance model).

Scoring of covariance models is normally done using a
dynamic programming method. Regular-grammar-based
models such as the HMM and Smith-Waterman [6] use
dynamic programming by adding a symbol to one end of an
existing solution. In order to allow intra-molecular interaction,
the CM uses dynamic programming to add a symbol either to
one end or to both ends of an existing solution simultaneously.
The model also allows a bifurcation (joining) operation for
two contiguous existing solutions. This process is used to find
the scores for every starting position in the database sequence
and every possible length d from that starting position. In
order to make the calculation tractable, the search over lengths
from the starting position is limited to a user defined
maximum D. This maximum is normally chosen to be about
one and one-half to two times as large as the length of the
consensus sequence of the sequences used to build the CM.
Fitting a database sequence of length d to the CM can be done
using any number of insertions and deletions at any positions
in the sequence such that the net length matches that of the
model. The standard dynamic-programming method searches
all possibilities.

It has been noted that much of the search space for the
standard CM search is nowhere near any observed solution
[7]. In particular, the values of d searched at different phases
of the dynamic programming calculation are often very far
from those ever observed in practice. A reduction in
computational burden of a couple of orders of magnitude is

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

usually available by simply constraining this dimension of the
search. This paper takes a different approach, where the search
instead proceeds from scoring the ungapped (no insertions or
deletions) database sequence at each starting position with
length d exactly equal to the length implied by the model. The
search is then expanded about promising starting locations
through the addition and/or removal of insertions and/or
deletions in the database sequence. The hope is to find good
solutions much more quickly than the standard dynamic
programming solution method. An added benefit is that there
is no pre-defined cutoff D on allowed sequence lengths in the
database. Thus this method may potentially find remote
ncRNA family members with large net numbers of insertions
relative to the CM. The search is done with a genetic
algorithm (GA) since the shape of the fitness landscape is
largely unknown and therefore a search algorithm that can
avoid getting caught in possible local minima is desired.

The paper is organized as follows. In Section II, a very
short review of how covariance models are estimated and used
for database search is undertaken. The GA-based covariance
search (CS) algorithm is described in Section III and takes the
parameters of the CM as a starting point. A test of the CS on a
well-known ncRNA family is examined in Section IV.
Section V gives some concluding remarks.

II. COVARIANCE MODELS

Covariance models are described much more thoroughly in
Chapters 9 and 10 of [8]. The overview here is given so that
those unfamiliar with the structure of a CM can better
understand the differences between the standard scoring
method and the method of Section III.

A. Estimation of Covariance Model Parameters

The estimation of covariance model parameters can be
thought of as if it was a two-step process where first one
generates a multiple alignment of the known ncRNA family
sequences and then uses the multiple alignment to choose the
states of the model and calculate the model parameters. In
fact, the multiple alignment and parameter estimation are
usually done jointly, but for expositional purposes a two-step
process will be assumed here. Since the procedures for
generating multiple alignments are well known (see for
example [9]), they will not be presented here.

Given a multiple alignment, one can use a number of
metrics to decide whether a column of the alignment is a
conserved position or not. This metric could be as simple as
choosing columns with less than fifty percent gap characters
or something more complex involving the distribution over all
possible symbols. The conserved columns end up being
represented by symbol-emitting nodes in the final CM. In
addition to the multiple alignment, one needs an annotation of
the base pairing pattern of the columns (a secondary structure
annotation). This can be derived either from experiment or
from secondary structure prediction using, for example, the
dynamic-programming-based Zucker algorithm [10] or the
genetic-algorithms-based P-RnaPredict [11]. This pairing

information will determine whether the conserved column is
represented in the model as a single-symbol emitting node or a
paired-symbol emitting node.

Single-symbol emitting nodes come in two flavors, those
that emit a symbol on the left (5' end) of an existing solution
and those that emit a symbol on the right (3' end). These nodes
are referred to as L and R nodes respectively. The paired-
symbol emitting nodes are called P nodes and emit one
character on each end of an existing solution. There are also
three types of non-emitting nodes in covariance models: the
start (S) node, the end (E) node, and the bifurcation (B) node.
The CM can be represented as a binary tree with the root at
the top. The B node is found at all branch points in the tree.
The E node is found at the bottom of all terminal branches.
The S node is found at the root and every B node has two S
nodes for children. The non-emitting nodes allow the emitting
nodes to be structured into a tree and allow a place to add
additional sequence insertion points that do not fit
conveniently in the emitting nodes.

Figure 1 shows a portion of the multiple alignment for the
U12 snRNA. Only a small portion of the multiple alignment
columns are shown. This ncRNA family will be discussed
more fully in Section IV. The consensus sequence and
consensus secondary structure are shown near the bottom of
the figure. Those columns without a gap symbol (.) as the
consensus symbol will be assigned to an emitting node (L, R,
or P) in the CM. Those with an unpaired symbol (-) in the
consensus secondary structure will be assigned to either an L
or an R node and those with a paired symbol (< or >) will be
assigned as a pair to a P node. The < symbol means that the
other sequence position of the pair is to the right and the
symbol > that the other position of the pair is to the left. It is
often (but not always) the case that an unpaired node can be
assigned to either an L or and R node. By convention, the L
node is always chosen if either type node is possible.

The use of < and > for secondary structure notation is
unambiguous only because pseudoknots have been ruled out.
If the structure to be modeled actually contains a pseudoknot,
then the model builder must choose to ignore some of the base
pairing information and label some of the columns as unpaired
that are actually paired. This results in loss of information in
the model and therefore some loss of model power. Luckily,
most ncRNA families do not contain pseudoknots. The
inability to handle pseudoknots comes from using a context-
free grammar rather than the next higher level in the Chomsky
hierarchy (a context-sensitive grammar). The additional
complexity of a general context-sensitive grammar would
make computation of the model scores infeasible.

The node structure tree of the multiple alignment fragment
shown in Figure 1 is given in Figure 2. The node labels shown
in the boxes correspond to the "CM nodes" listing at the
bottom of Figure 1. Three dots in the tree are an abbreviation
that means there are a sequence of nodes of the same type with
consecutive node numbers that are not shown. A triangle on
the side of a box indicates that a symbol is emitted on the
given side of a node. The triangles are labeled with the
consensus nucleotide for the emission. The L and R nodes are

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

in fact capable of emitting any nucleotide and the P nodes are
capable of emitting any pair of nucleotides. The labeling
simply shows that nucleotide emitted with highest probability.
The alignment fragment shown in Figure 1 is the portion on
the 5' (left) end of the alignment and the actual U12 alignment
continues far to the right. Only the left half of the second stem
(P30-P33) is shown which is why these nodes have been
labeled with a question mark in Figure 2. Any additional
conserved columns enclosed between the left half-stem shown
and the right half-stem (not shown) would follow below node
P33 in the tree. Additional stems (sequences of P nodes) to the
right of the alignment column associated with the right half of
P30 would require additional bifurcations somewhere above
B3. The full U12 tree requires four bifurcations.

 UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACAACU
 AGCCUCAAA....CUUAAGGG.UAAGGAAAAUAAUGAUU more
 UGCCUUAAA....AUUAUAAG.UAAGGAAAAUAAUGAUU to
 UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU right
 UGACUUA.A....CUU...AGCUAAGGAAAAUAAUGGUU not
 UGCCUUAAA....AUUAUAAG.UAAGGAAAAUAAUGAUU shown
 GGUAUUAAGAGUUCUUAUGAG.UAAGGAAAAUAACGAUU
 UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU
 UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU
 UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU
 UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU
 UGUCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU
 UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU
 UGUCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU

 consensus:
 --<<<<<--....--------.>>>>>--------<<<<
 UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU

 CM nodes:
 LLPPPPPLL....LLLLLLLL.PPPPPLLLLLLLLPPPP
 11 11111111 222222223333
 125678901 23456789 98765234567890123

Fig. 1. Multiple alignment fragment for CM example.

The node structure of the CM describes the model

consensus, but it is also necessary to allow database sequences
with insertions and deletions relative to the consensus. This is
accomplished by the internal organization of the CM nodes.
CM nodes are composed of one or more internal states. Each
node has a state which mirrors the consensus function of the
state, so L nodes contain an L state and P nodes contain a P
state, etc. Insertion is allowed by having extra L and/or R
states within some node types. For instance, all L nodes have
one L state for the consensus left emission (called a match left
or ML state) as well as an extra L state than can be visited
multiple times allowing one or more insertions (called an
insert left or IL state). The transition probabilities into IL
states are assigned such that there is a score penalty for
visiting the IL state when compared to choosing a path that
does not visit the insertion state. There are also delete states
(D states) added to the emitting nodes to allow the match state
to be bypassed.

The parameters of a covariance model include all of the
state transition probabilities between states and all of the
emission probabilities for symbol-emitting states.
Conceptually, these could be found from the multiple
alignment by counting the frequency of occurrence of each

event in the alignment. For instance, the four emission
probabilities assigned to A, C, G, and U respectively in the
ML state of node L1 could be found by observing that there is
one A, no C, one G, and 12 Us in the first alignment column.
In order to avoid an infinite score penalty if the database
sequence were to actually contain a C in that position, a
pseudo-count is normally added. The probability calculation
then proceeds as if the counts had been 2, 1, 2, and 13 for A,
C, G, and U respectively. This results in probabilities of 2/18,
1/18, 2/18, and 13/18 assigned to the four emission
probabilities. The actual values used in the models are
logarithms of probabilities so that the scoring program can add
log probabilities rather than multiply linear probabilities. The
emission probabilities are also often corrected for nucleotide
composition bias. Transition probabilities could be generated
by observing the frequency with which the alignment
sequences visit the various states by observing the insertions
and deletion in the multiple alignment with respect to the
consensus.

Fig. 2. Node structure of example CM fragment.

B. CM Database Scoring Using Dynamic Programming

Given a database sequence that may be very long compared
with the potentially embedded ncRNA gene, one would like to
know the probability that each nucleotide position is part of
the ncRNA family of interest. Such a set of scores can be
determined by dynamic programming by starting at the end
nodes at the bottom of the CM tree and working up toward the
root start node (S0). The maximum score over all examined
sequence lengths of the root start state inside the root start
node is the overall score for the given start position in the
database sequence with respect to the CM. The end nodes
contain only a single state called an end or E state. The E
states simply set the score to 0 for all sequences of length 0

C

A

A

S0
L1

B3

U

S4 S21
P5

L10

E20

G L22 A

C

G

U

P9 U

L2 G

●
●
●

L19

●
●
●

P6-P8

L11-L18

G

L29

●
●
●

P30

P33
●
●
●

●
●
●

?

?

L23-L28

P31-P32

conserved columns to
right of alignment shown

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

and minus infinity for all sequences longer than 0. Moving up
the tree additional nucleotides are added on the right and/or
left ends of the existing solution represented by the subtree
below the node being evaluated. The result is a calculation of
a score at every state for every possible start position and
every possible number of nucleotides extending from the start
position. In order to make this tractable, a maximum extension
length D is chosen beyond which scores are not calculated.

III. COVARIANCE SEARCH

It has been previously observed that a large portion of the

search space covered buy the dynamic programming method
(all start locations and all lengths up to D at each of these
locations) is nowhere near any sequence observed in practice
[7]. One way to speed up CM search is to limit the search
sequence length at each model state to a region around the
length of the consensus sequence segment represented by the
subtree below the given state. This reduces the search space in
the sequence length dimension, but still requires the same
amount of computation at every start position. This work takes
a different approach based on a genetic algorithm (GA) that
focuses the computational effort on regions of the search
space with both promising start positions and sequence
lengths.

A. Representation

In order to use a GA with crossover, it is convenient to have
a fixed length representation of how a subsequence of the
database is to be fit to the CM. Such a representation already
appears in the protein threading literature as presented by
Yadgari et al [12]. This representation uses a vector of non-
negative numbers with length equal to the model length. A
vector of all ones implies that the database subsequence is to
be aligned with the model with no insertions or deletions. An
entry of 0 anywhere in the vector means that the database has
no symbols assigned to the given model location (the database
has a deletion at this position with respect to the model). An
entry of two or more means that one or more symbols from the
database are inserted to the right of the model position.

For use in covariance models, one element of the
representation vector will be assigned to each conserved
column of the multiple alignment (in order from left to right).
Single-emission nodes (L and R) are associated with a single
vector element and P nodes are associated with two vector
elements. An additional element is added to the vector which
is a non-negative integer representing the start position within
the database sequence.

B. Scoring

Given a representation vector and the parameters of a CM, a
database sequence may be scored as follows. The location of
the database symbol to be matched to a consensus column of
the model is given by S + sum(1:C) - 1, where S is the start
location and C is the conserved column number. The sum(a:b)
operation adds up to vector elements starting at element a and
ending at element b. For unpaired columns, the database

symbol is used as an index to select one of four log match
probabilities to add to the score. For paired columns, the
database symbol is found for both columns of the pair and the
two symbols index one of 16 match probabilities for addition
with the score. The score is initially set at zero and the
additions take place for each unpaired column and each pair of
columns.

The transition probability for the path through the delete
state compared to the path through the match state represents a
node-dependent deletion penalty. The representation vector is
scanned for zeros and the penalties associated with the
location of the zeros are applied to the score. The transition
probability of the path through both match state and insert
state relative to that of the match state alone represents an
insertion penalty for a single insertion. The transition
probability of the path which visits the insert state twice and
the match state once relative to the match state once is the two
insertion penalty. Visiting the insert state more than once
requires making a self-loop transition which has a fixed
transition probability, hence the insertion penalties are affine
with the penalty for the first insertion possibly different than
the second, but all subsequent additional penalties the same.
The representation vector is scanned for values greater than
one and the associated penalties applied.

C. Genetic Algorithm

An initial population for the GA is found by searching all
start positions in the database sequence and calculating the
score for the ungapped alignment of the database to the model
at each position. The start positions with the highest scores are
selected for the initial population. The representations for the
initial population are therefore each a vector of all ones
concatenated with a high-scoring start position. It is often the
case that several high-scoring upgapped alignments are found
in close proximity since insertions or deletions near the center
of the model will result in good matches to one model part and
then the other model part as the database sequence is brought
into alignment with the two pieces. Since the mutation
operation described below will allow for small movements in
the start position, two initial population individuals in close
proximity in start position are likely to converge to the same
solution. In order to get more initial diversity, the initial
population selection works from the highest score down and
skips over high-scoring starting positions that are within a
user-specified distance of a higher-scoring starting position.
In the results in the next section, a constant population size of
100 and a start position distance minimum of 3 worked well.

Subsequent generations are selected by keeping top scorers
unchanged (elitism) and using both crossover and mutation.
Since the database sequence might be as long as an entire
chromosome, there may be many members of the ncRNA
family in a single database sequence. In order to keep multiple
high-scoring local maxima in the search space alive, a fairly
large number of elite are retained unchanged. These elite are
also selected such that they are not too close together in
starting position. The same method that was used in selecting
the initial population is used to select the elite to retain. A

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

minimum distance of 3 was used to retain 30 elite in the test
results in the next section.

Crossover is accomplished by random uniform selection of
a crossover point in the representation. The fixed length
representation assures that the insertion/deletion pattern swap
is associated with the same multiple alignment columns in
both parents. Crossover is expected to be a very useful
operation in this application since even a casual look at almost
any ncRNA multiple alignment makes clear that similar
insertion/deletion patterns occur in several family members in
the same region. This is often true in multiple regions even
though the set of family members in the relation may differ.
This is an example of the GA being more than simply inspired
by biology, but rather a reasonable model of the true
underlying process generating the data to be searched.

Mutation is a bit more complicated than is usual in a GA. It
is desirable to allow the positional window onto the database
sequence being examined to shift its start position as well as
its length and internal insertion/deletion pattern. This can be
done by simply treating the start position element of the
representation vector like any other element. However, this
element would be mutated very infrequently relative to the
internal shifts if the consensus sequence was very long.
Rather than just increasing the mutation probability of the start
position element, the start position is modified along with the
internal insertion/deletion one-half of the time.

 no mutation
 data: UGCCUUAAAUUAUGAGUAAGGAAAAUAACAACU
 model: UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAU
 mutation pt: *

 insert - no start change
 data: UGCCUUAAAUUAUGAGUAAGGAAAAUAACAACU
 model: UGCCUUAAAC.UUAUGAGUAAGGAAAAUAACGAU
 delete - no start change
 data: UGCCUUAAA.UUAUGAGUAAGGAAAAUAACAACU
 model: UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAU

 insert - compensating start change
 data: UGCCUUAAAUUAUGAGUAAGGAAAAUAACAACU
 model: UGCCUUAAAC.UUAUGAGUAAGGAAAAUAACGAU

 delete - compensating start change
 data: UGCCUUAAA.UUAUGAGUAAGGAAAAUAACAACU

 model: UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAU

Fig. 3. The four mutation cases (unchanged portion of
alignment underlined).

Figure 3 shows the idea behind this mutation strategy.

There are four cases: insertion, deletion, insertion with
compensating start shift, and deletion with compensating start
shift. The first and second cases keep the database
subsequence to the left of the mutation point aligned with the
model the same way as before the mutation while shifting the
database subsequence to the right of the mutation point with
respect to the model. The two compensated start point cases
shift the left subsequence while keeping the right subsequence
fixed with respect to the model. These mutation cases are
applied with equal probability in the results section.
Mutations take the form of incrementing or decrementing a
value by 1, where the mutation is abandoned if the vector

element would become negative (since only non-negative
values are meaningful).

IV. U12 SNRNA SEARCH

As a test case the GA-based covariance search proposed in
the preceding section was run against a database containing
the fourteen known members of the U12 small nuclear RNA
(snRNA) family available at the Rfam website [13-14]. The
U12 functional RNA molecule is part of the minor
spliceosome used to remove introns from pre-mRNA. It has a
function similar to that of the U2 snRNA in the major
spliceosome, but the two families have quite different
sequences. The Rfam (RNA family) accession number
RF00007 indicates that it is one of the oldest known non-
coding RNAs. The consensus length of the U12 family is 149.
The CM was estimated from 7 "seed" sequences taken from
the literature (1 in chicken, 1 in mouse, and 5 in human) and
used to find an additional 7 family members (all in mouse).

A database sequence of length 15880 bases was constructed
which contains all fourteen U12 sequences with several
randomly selected ncRNA sequences from other families
interspersed between each U12 sequence and the next. The
covariance search was run for 1000 generations with a
population size of 100 and other parameters as described in
Section III.C. Table I shows the results. The "true start"
column of the table shows where the first nucleotide of the
family member sequence taken from Rfam is located in the
constructed sequence. "Start found" indicates the start location
of highest-scoring individual in the final generation that was
in close proximity (within 20) of the true start. The score rank
gives the placement of the individual in a ranked list of scores
of the final generation and the associated score follows in the
next column. Finally the EMBL accession number of the
sequence and sequence position numbers where Rfam
originally found the ncRNA family member is given.

Of the fourteen true family members embedded in the test
sequence, twelve were found. Ten sequences were located
exactly and two others where found to within 2 and 8 bases
respectively. The top five ranked representations were distinct
family members. All of the top 28 individuals are either listed
in the table or had a start position with one place of the ones
listed in the table. The others are not really false positives,
they are just minor variants found in the last round from
mutation and crossover.

The scores of the 100 individuals in the final generation are
shown in Figure 4. There is a significant drop at about the
38th individual from around 80 to about 50. The scores have
units of bits, so these scores are far above anything that is
likely to be produced by a random matching of sequences. It
is likely that the cutoff score for declaring a database sequence
region to be a hit would be no more than 80, so all 12
sequences found in Table I would likely also be found in a
search of a much larger database.

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

TABLE I
ALRORITHM PERFORMANCE ON U12 GENES

True
Start

Start
Found

Score
Rank

Score Accession Number /
Nucleotide Positions

446 none - - L43844.1/2-149
1039 1039 10 150.1 AC087420.4/142608-142466
2475 2477 21 136.0 AC112938.11/234142-

234291
3858 3858 11 150.1 AL591952.9/131760-131611
6096 6096 18 139.0 AL669944.8/2483-2625
7406 7406 5 162.8 AC133939.4/22042-22191
8196 none - - AC132590.3/81080-80927
8880 8880 13 148.4 AL772347.6/146375-146226
9705 9705 1 165.9 L43843.1/2-150
10774 10774 4 165.1 L43846.1/332-480
11624 11624 9 155.6 J04119.1/2-150
12428 12436 28 118.4 L43845.1/358-512
13493 13493 3 165.5 Z93241.11/76642-76790
14615 14615 2 165.9 AL513366.11/57717-57871

-100

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90

Rank

Sc
or

e
(lo

g)

Fig. 4. Scores of individuals in final generation.

Figure 5 shows the database starting location value in each

individual's representation in the final generation, where the
individuals have been resorted in ascending order of starting
location value. It is clear from the plot that the GA has
converged on solutions close to the twelve starting values
found in Table I. There are no individuals searching anywhere
near the two missed locations (446 and 8196). There is a
general (but not perfect) trend towards having more
individuals searching around those positions where the highest
scores have already been found, which is to be expected.
However, the method used to maintain position diversity
during elite selection appears to work since the population
does not appear to converge around a single location.

The mean values over the 100 individuals of the final
generation at each conserved multiple alignment position are
shown in Figure 6. Of particular note is the spike at alignment
column 103, where the mean representation vector value is 1.6
in a region surrounded with much less activity. The multiple
alignment of the fourteen sequences from Rfam shows that
five of the sequences have an insertion relative to the
consensus of length one after column 103. The algorithm has
found this division point exactly even though it only has
access to the unaligned sequences. Two of the sequences

(starting at 12428 and 14615 in the database sequence) have
an insert of length 6 after position 33 relative to the consensus
(while the other 12 have no insertion). There is some evidence
that the GA is discovering this with the mean value of 1.09 for
positions 26, 27, and 28 (just a bit too far left). The score for
the U12 family member at 14615 seems to be using this since
the start position is dead on, but the best start position of
12436 rather than the true start of 12428 indicates that the start
is being shifted to absorb the extra symbols rather than the
insert for this family member. There is a fair amount of
activity in the multiple alignment to the left of position 33 and
this shows in the mean representation value in Figure 6. Mean
representation values in this region do not match too well with
the activity in the multiple alignment. This may be due to the
fact that getting the correct number of insertions and deletions
near the middle of the sequence is more critical for getting a
high score than it is near the ends. For example, if the database
sequence has a single insertion at the half way point, then an
ungapped alignment can only match half the sequence. If a
single insertion appears at the next to last nucleotide, only a
single position can not be aligned with an ungapped
alignment.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20 40 60 80 100 120

Sorted Individual

St
ar

t P
os

iti
on

Fig. 5. Sorted start positions of individuals in final

generation.

Figure 7 shows the mean score at each generation of the

best thirty individuals. The GA looks like it has mostly
converged after about the 600th generation. Since there are
thirty individuals retained at each generation as the elite, one
might wonder why this curve is not monotonically increasing.
If the algorithm was not designed to also maintain start
position diversity, this curve would in fact be monotonic. The
negative variations are an artifact of new, slightly better,
solutions coming into the elite that displace two existing
members of the elite by having a start position between the
two.

The code for the covariance search was written in Matlab
for ease of prototyping. If the code was converted into C it
would be expected to run at least as fast and probably much
faster. Even though the implementation is likely not very
efficient, it took about 100 seconds to run 1000 generations
with 100 individuals on the 15880 base dataset. For
comparison, the U4, U5, and U6 covariance models of 137,

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

118, and 106 consensus length respectively were found to take
1258, 1081, and 563 days of CPU time to run against an 8-
gigabase database on a Pentium machine similar to the one
used in this study [3]. The covariance search code has already
run 2.7 times as fast as the standard code on the U4 model.
Since the U12 model is of length 149, it is likely to take even
longer than U4 to run with the standard code. The standard
code (Infernal) [15] is a well tuned compiled C program and is
not likely to get much more efficient. The code for the
proposed algorithm is no where near optimized. It is also
likely that using a stopping criterion would significantly
reduce the required number of generations.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 21 41 61 81 101 121 141

Alignment Column

M
ea

n
El

em
en

t V
al

ue

Fig. 6. Mean representation element values in final generation.

60

70

80

90

100

110

120

130

140

150

160

1 101 201 301 401 501 601 701 801 901 1001

Generation

M
ea

n
Sc

or
e

Fig. 7. Mean score of best 30 solutions by generation.

The Matlab source code and the example database are

available on the web at [16].

V. CONCLUSIONS

The proposed GA-based covariance search algorithm takes
advantage of the fact that the standard dynamic programming
algorithm for database search using covariance models
calculates a large fraction of its scores in regions of the search

space that are highly unlikely. Previous work has shown how
to reduce the inefficiency of this search in the sequence length
dimension, but has done nothing to concentrate computational
effort about any particular point in the database position
dimension. This paper corrects that deficiency by using a
genetic algorithm. The results on a single ncRNA family
(U12) look promising. However, much work remains to be
done. More functional RNA families need to be explored to
determine whether these results really are general. Also, no
attempt has yet been made to fine tune the parameters, such as
population size, stopping criteria, numbers of elite retained, or
level of mutation and crossover when creating new
individuals. Finally, the GA-based method has not yet been
compared to other possible search algorithms such as
simulated annealing or simple hill climbing.

ACKNOWLEDGMENT

The project described was supported by NIH Grant Number
P20 RR016454 from the INBRE Program of the National
Center for Research Resources.

REFERENCES

[1] S. Eddy, "Hidden Markov Models," Current Opinion in Structural
Biology, 6, pp. 361-365, 1996.
[2] N. Chomsky, "On Certain Formal Properties of Grammars," Information
and Control, 2, pp. 137-167, 1959.
[3] Z. Weinberg and W. Ruzzo, "Faster Genome Annotation of Non-coding
RNA Families Without Loss of Accuracy," Int. Conf. on Research in
Computational Molecular Biology, pp. 243-251, 2004.
[4] S. Henikoff and J. Henikoff, "Amino Acid Substitution Matrices from
Protein Blocks," Proceedings of the National Academy of Sciences, 89, pp.
10915-10919.
[5] M. Dayhoff, "Survey of New Data and Computer Methods of Analysis," in
Altas of Protein Sequence and Structure, 5, National Biomedical Research
Foundation, 1978.
[6] T. Smith and M. Waterman, "Identification of Common Molecular
Subsequences," Journal of Molecular Biology, 147, pp. 195-197, 1981.
[7] S. Smith, "Acceleration of Covariance Models for Non-coding RNA
Search," International Conference on Bioinformatics and Computational
Biology, in press, 2006.
[8] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis, Cambridge University Press, 1998.
[9] D. Mount, Bioinformatics: Sequence and Genome Analysis, Cold Spring
Harbor Laboratory Press, 2001.
[10] M. Zucker, "Computer Prediction of RNA Structure," Methods in
Enzymology, 180, pp. 262-288, 1989.
[11] K. Wiese, A. Hendriks, A. Deschênes, and B. Youssef, "Significance of
Randomness in P-RnaPredict - A Parallel Algorithm for RNA Folding," IEEE
Congress on Evolutionary Computation, 2005.
[12] J. Yadgari, A. Amir, and R. Unger, "Genetic Threading," Constraints 6,
pp. 271-292, 2001.
[13] Rfam website, http://rfam.wustl.edu.
[14] S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S. Eddy
“Rfam: An RNA Family Database,” Nucleic Acids Research, Vol. 31, No. 1,
pp. 439-441, 2003.
[15] Infernal Users Guide, http://www.genetics.wustl.edu/eddy/infernal/.
[16] Source Code and Database for GA-based Covariance Search, http://
coen.boisestate.edu/ssmith/BioHW/CompCode/GACM/GACM.htm.

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

	Boise State University
	ScholarWorks
	9-1-2006

	Covariance Searches for ncRNA Gene Finding
	Jennifer A. Smith

	tmp.1242703333.pdf.GLyjR

