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Abstract-The use of covariance models for non-coding 

RNA gene finding is extremely powerful and also 
extremely computationally demanding. A major reason for 
the high computational burden of this algorithm is that the 
search proceeds through every possible start position in 
the database and every possible sequence length between 
zero and a user-defined maximum length at every one of 
these start positions. Furthermore, for every start position 
and sequence length, all possible combinations of 
insertions and deletions leading to the given sequence 
length are searched. It has been previously shown that a 
large portion of this search space is nowhere near any 
database match observed in practice and that the search 
space can be limited significantly with little change in 
expected search results. In this work a different approach 
is taken in which the space of starting positions, sequence 
lengths, and insertion/deletion patterns is searched using a 
genetic algorithm. 
 

I. INTRODUCTION 
 

Covariance models (CMs) are used to search nucleotide 
databases for genes associated with new members of known 
non-coding RNA (ncRNA) families. The model parameters 
are estimated from a group of nucleotide sequences which 
have been determined to be related. The estimated model is 
then used to search for similar patterns in nucleotide databases 
that ideally would include sequences of entire chromosomes.  
The computational burden of parameter estimation is minor, 
but that of database search is extremely large. 

Covariance models can be thought of as an extension of 
profile hidden Markov models (HMMs) [1]. The major 
difference is that the CM can describe interactions between 
positions in the sequence whereas the HMM can only describe 
conservation at each sequence position individually. The CM 
is said to have a context-free grammar in the Chomsky [2] 
hierarchy of transformational grammars and the HMM is at 
the next lower level with a regular grammar. The fact that an 
HMM can be viewed as a restricted CM has been used to 
design pre-filters that can remove portions of the database 
from consideration by the CM [3]. Given the parameters and 
score threshold for the CM search a set of parameters and 
score threshold can be computed for an HMM that guarantees 
that the HMM search will return sequence regions which are a 
superset of those that would be returned by the CM. Since it is 
much faster to score a sequence against an HMM than a CM, 
the overall search is sped up by using an initial pass with the 

HMM pre-filter followed by the full CM search. However, 
even with pre-filtering the use of covariance models is 
extremely slow. Without pre-filtering the use of a CM is 
usually infeasible. 

The need to model interactions between ncRNA sequence 
positions, but not protein or protein-coding gene sequences, 
comes from differences in the way the two evolve. Proteins 
tend to have a fair amount of primary sequence conservation 
at least in some portions of the sequence. When combined 
with amino-acid substitution matrices [4-5] this primary 
conservation becomes even more evident. Non-coding RNA 
sequences also exhibit some level of primary sequence 
conservation, but not nearly to the degree as proteins or 
protein-coding genes. The function of the ncRNA molecule is 
mostly determined by the intra-molecular base pairing 
arrangement of its nucleotides. There is little evolutionary 
pressure to conserve a particular base at a particular sequence 
position as long as a compensating variation is made 
elsewhere to maintain base pairing (hence the word covariance 
in covariance model). 

Scoring of covariance models is normally done using a 
dynamic programming method. Regular-grammar-based 
models such as the HMM and Smith-Waterman [6] use 
dynamic programming by adding a symbol to one end of an 
existing solution. In order to allow intra-molecular interaction, 
the CM uses dynamic programming to add a symbol either to 
one end or to both ends of an existing solution simultaneously.  
The model also allows a bifurcation (joining) operation for 
two contiguous existing solutions. This process is used to find 
the scores for every starting position in the database sequence 
and every possible length d from that starting position. In 
order to make the calculation tractable, the search over lengths 
from the starting position is limited to a user defined 
maximum D. This maximum is normally chosen to be about 
one and one-half to two times as large as the length of the 
consensus sequence of the sequences used to build the CM.  
Fitting  a database sequence of length d to the CM can be done 
using any number of insertions and deletions at any positions 
in the sequence such that the net length matches that of the 
model. The standard dynamic-programming method searches 
all possibilities. 

It has been noted that much of the search space for the 
standard CM search is nowhere near any observed solution 
[7]. In particular, the values of d searched at different phases 
of the dynamic programming calculation are often very far 
from those ever observed in practice. A reduction in 
computational burden of a couple of orders of magnitude is 

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:38 from IEEE Xplore.  Restrictions apply.



 
 

usually available by simply constraining  this dimension of the 
search. This paper takes a different approach, where the search 
instead proceeds from scoring the ungapped (no insertions or 
deletions) database sequence at each starting position with 
length d exactly equal to the length implied by the model. The 
search is then expanded about promising starting locations 
through the addition and/or removal of insertions and/or 
deletions in the database sequence. The hope is to find good 
solutions much more quickly than the standard dynamic 
programming solution method. An added benefit is that there 
is no pre-defined cutoff D on allowed sequence lengths in the 
database. Thus this method may potentially find remote 
ncRNA family members with large net numbers of insertions 
relative to the CM. The search is done with a genetic 
algorithm (GA) since the shape of the fitness landscape is 
largely unknown and therefore a search algorithm that can 
avoid getting caught in possible local minima is desired. 

The paper is organized as follows. In Section II, a very 
short review of how covariance models are estimated and used 
for database search is undertaken. The GA-based covariance 
search (CS) algorithm is described in Section III and takes the 
parameters of the CM as a starting point. A test of the CS on a 
well-known ncRNA family is examined in  Section IV.  
Section V gives some concluding remarks. 
 

II. COVARIANCE MODELS 
 

Covariance models are described much more thoroughly in 
Chapters 9 and 10 of [8]. The overview here is given so that 
those unfamiliar with the structure of a CM can better 
understand the differences between the standard scoring 
method and the method of Section III. 
 
A. Estimation of Covariance Model Parameters 

The estimation of covariance model parameters can be 
thought of as if it was a two-step process where first one 
generates a multiple alignment of the known ncRNA family 
sequences and then uses the multiple alignment to choose the 
states of the model and calculate the model parameters. In 
fact, the multiple alignment and parameter estimation are 
usually done jointly, but for expositional purposes a two-step 
process will be assumed here. Since the procedures for 
generating multiple alignments are well known (see for 
example [9]), they will not be presented here. 

Given a multiple alignment, one can use a number of 
metrics to decide whether a column of the alignment is a 
conserved position or not. This metric could be as simple as 
choosing columns with less than fifty percent gap characters 
or something more complex involving the distribution over all 
possible symbols. The conserved columns end up being 
represented by symbol-emitting nodes in the final CM. In 
addition to the multiple alignment, one needs an annotation of 
the base pairing pattern of the columns (a secondary structure 
annotation). This can be derived either from experiment or 
from secondary structure prediction using, for example, the 
dynamic-programming-based Zucker algorithm [10] or the 
genetic-algorithms-based P-RnaPredict [11]. This pairing 

information will determine whether the conserved column is 
represented in the model as a single-symbol emitting node or a 
paired-symbol emitting node. 

Single-symbol emitting nodes come in two flavors, those 
that emit a symbol on the left (5' end) of an existing solution 
and those that emit a symbol on the right (3' end). These nodes 
are referred to as L and R nodes respectively. The paired-
symbol emitting nodes are called P nodes and emit one 
character on each end of an existing solution. There are also 
three types of non-emitting nodes in covariance models:  the 
start (S) node, the end (E) node, and the bifurcation (B) node.  
The CM can be represented as a binary tree with the root at 
the top. The B node is found at all branch points in the tree.  
The E node is found at the bottom of all terminal branches.  
The S node is found at the root and every B node has two S 
nodes for children. The non-emitting nodes allow the emitting 
nodes to be structured into a tree and allow a place to add 
additional sequence insertion points that do not fit 
conveniently in the emitting nodes. 

Figure 1 shows a portion of the multiple alignment for the 
U12 snRNA. Only a small portion of the multiple alignment 
columns are shown. This ncRNA family will be discussed 
more fully in Section IV. The consensus sequence and 
consensus secondary structure are shown near the bottom of 
the figure. Those columns without a gap symbol (.) as the 
consensus symbol will be assigned to an emitting node (L, R, 
or P) in the CM. Those with an unpaired symbol (-) in the 
consensus secondary structure will be assigned to either an L 
or an R node and those with a paired symbol (< or >) will be 
assigned as a pair to a P node. The < symbol means that the 
other sequence position of the pair is to the right and the 
symbol > that the other position of the pair is to the left. It is 
often (but not always) the case that an unpaired node can be 
assigned to either an L or and R node. By convention, the L 
node is always chosen if either type node is possible. 

The use of < and > for secondary structure notation is 
unambiguous only because pseudoknots have been ruled out.  
If the structure to be modeled actually contains a pseudoknot, 
then the model builder must choose to ignore some of the base 
pairing information and label some of the columns as unpaired 
that are actually paired. This results in loss of information in 
the model and therefore some loss of model power. Luckily, 
most ncRNA families do not contain pseudoknots. The 
inability to handle pseudoknots comes from using a context-
free grammar rather than the next higher level in the Chomsky 
hierarchy (a context-sensitive grammar). The additional 
complexity of a general context-sensitive grammar would 
make computation of the model scores infeasible. 

The node structure tree of the multiple alignment fragment 
shown in Figure 1 is given in Figure 2. The node labels shown 
in the boxes correspond to the "CM nodes" listing at the 
bottom of Figure 1. Three dots in the tree are an abbreviation 
that means there are a sequence of nodes of the same type with 
consecutive node numbers that are not shown. A triangle on 
the side of a box indicates that a symbol is emitted on  the 
given side of  a node. The triangles are labeled with the 
consensus nucleotide for the emission. The L and R nodes are 
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in fact capable of emitting any nucleotide and the P nodes are 
capable of emitting any pair of nucleotides. The labeling 
simply shows that nucleotide emitted with highest probability.  
The alignment fragment shown in Figure 1 is the portion on 
the 5' (left) end of the alignment and the actual U12 alignment 
continues far to the right.  Only the left half of the second stem 
(P30-P33) is shown which is why these nodes have been 
labeled with a question mark in Figure 2. Any additional 
conserved columns enclosed between the left half-stem shown 
and the right half-stem (not shown) would follow below node 
P33 in the tree. Additional stems (sequences of P nodes) to the 
right of the alignment column associated with the right half of 
P30 would require additional bifurcations somewhere above 
B3. The full U12 tree requires four bifurcations. 

 
   UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACAACU 
   AGCCUCAAA....CUUAAGGG.UAAGGAAAAUAAUGAUU  more 
   UGCCUUAAA....AUUAUAAG.UAAGGAAAAUAAUGAUU  to 
   UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU  right 
   UGACUUA.A....CUU...AGCUAAGGAAAAUAAUGGUU  not 
   UGCCUUAAA....AUUAUAAG.UAAGGAAAAUAAUGAUU  shown 
   GGUAUUAAGAGUUCUUAUGAG.UAAGGAAAAUAACGAUU 
   UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU 
   UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU 
   UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU 
   UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU 
   UGUCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU 
   UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU 
   UGUCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU 

 
   consensus: 
   --<<<<<--....--------.>>>>>--------<<<< 
   UGCCUUAAA....CUUAUGAG.UAAGGAAAAUAACGAUU 
 
   CM nodes: 
   LLPPPPPLL....LLLLLLLL.PPPPPLLLLLLLLPPPP 
          11    11111111      222222223333 
   125678901    23456789 98765234567890123 

 
Fig. 1. Multiple alignment fragment for CM example. 

 
The node structure of the CM describes the model 

consensus, but it is also necessary to allow database sequences 
with insertions and deletions relative to the consensus.  This is 
accomplished by the internal organization of the CM nodes.  
CM nodes are composed of one or more internal states.  Each 
node has a state which mirrors the consensus function of the 
state, so L nodes contain an L state and P nodes contain a P 
state, etc. Insertion is allowed by having extra L and/or R 
states within some node types. For instance, all L nodes have 
one L state for the consensus left emission (called a match left 
or ML state) as well as an extra L state than can be visited 
multiple times allowing one or more insertions (called an 
insert left or IL state). The transition probabilities into IL 
states are assigned such that there is a score penalty for 
visiting the IL state when compared to choosing a path that 
does not visit the insertion state. There are also delete states 
(D states) added to the emitting nodes to allow the match state 
to be bypassed. 

The parameters of a covariance model include all of the 
state transition probabilities between states and all of the 
emission probabilities for symbol-emitting states.  
Conceptually, these could be found from the multiple 
alignment by counting the frequency of occurrence of each 

event in the alignment. For instance, the four emission 
probabilities assigned to A, C, G, and U respectively in the 
ML state of node L1 could be found by observing that there is 
one A, no C, one G, and 12 Us in the first alignment column.  
In order to avoid an infinite score penalty if the database 
sequence were to actually contain a C in that position, a 
pseudo-count is normally added. The probability calculation 
then proceeds as if the counts had been 2, 1, 2, and 13 for A, 
C, G, and U respectively.  This results in probabilities of 2/18, 
1/18, 2/18, and 13/18 assigned to the four emission 
probabilities. The actual values used in the models are 
logarithms of probabilities so that the scoring program can add 
log probabilities rather than multiply linear probabilities. The 
emission probabilities are also often corrected for nucleotide 
composition bias. Transition probabilities could be generated 
by observing the frequency with which the alignment 
sequences visit the various states by observing the insertions 
and deletion in the multiple alignment with respect to the 
consensus. 

 

 
Fig. 2. Node structure of example CM fragment. 

 
B.  CM Database Scoring Using Dynamic Programming 

Given a database sequence that may be very long compared 
with the potentially embedded ncRNA gene, one would like to 
know the probability that each nucleotide position is part of 
the ncRNA family of interest. Such a set of scores can be 
determined by dynamic programming by starting at the end 
nodes at the bottom of the CM tree and working up toward the 
root start node (S0). The maximum score over all examined 
sequence lengths of the root start state inside the root start 
node is the overall score for the given start position in the 
database sequence with respect to the CM. The end nodes 
contain only a single state called an end or E state. The E 
states simply set the score to 0 for all sequences of length 0 
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and minus infinity for all sequences longer than 0. Moving up 
the tree additional nucleotides are added on the right and/or 
left ends of the existing solution represented by the subtree 
below the node being evaluated. The result is a calculation of 
a score at every state for every possible start position and 
every possible number of nucleotides extending from the start 
position. In order to make this tractable, a maximum extension 
length D is chosen beyond which scores are not calculated. 
 

III. COVARIANCE SEARCH 
 
It has been previously observed that a large portion of the 

search space covered buy the dynamic programming method 
(all start locations and all lengths up to D at each of these 
locations) is nowhere near any sequence observed in practice 
[7]. One way to speed up CM search is to limit the search 
sequence length at each model state to a region around the 
length of the consensus sequence segment represented by the 
subtree below the given state. This reduces the search space in 
the sequence length dimension, but still requires the same 
amount of computation at every start position. This work takes 
a different approach based on a genetic algorithm (GA) that 
focuses the computational effort on regions of the search 
space with both promising start positions and sequence 
lengths. 
 
A. Representation 

In order to use a GA with crossover, it is convenient to have 
a fixed length representation of how a subsequence of the 
database is to be fit to the CM. Such a representation already 
appears in the protein threading literature as presented by 
Yadgari et al [12]. This representation uses a vector of non-
negative numbers with length equal to the model length. A 
vector of all ones implies that the database subsequence is to 
be aligned with the model with no insertions or deletions. An 
entry of 0 anywhere in the vector means that the database has 
no symbols assigned to the given model location (the database 
has a deletion at this position with respect to the model). An 
entry of two or more means that one or more symbols from the 
database are inserted to the right of the model position. 

For use in covariance models, one element of the 
representation vector will be assigned to each conserved 
column of the multiple alignment (in order from left to right).  
Single-emission nodes (L and R) are associated with a single 
vector element and P nodes are associated with two vector 
elements. An additional element is added to the vector which 
is a non-negative integer representing the start position within  
the database sequence. 
 
B. Scoring 

Given a representation vector and the parameters of a CM, a 
database sequence may be scored as follows. The location of 
the database symbol to be matched to a consensus column of 
the model is given by S + sum(1:C) - 1, where S is the start 
location and C is the conserved column number. The sum(a:b) 
operation adds up to vector elements starting at element a and 
ending at element b. For unpaired columns, the database 

symbol is used as an index to select one of four log match 
probabilities to add to the score. For paired columns, the 
database symbol is found for both columns of the pair and the 
two symbols index one of 16 match probabilities for addition 
with the score. The score is initially set at zero and the 
additions take place for each unpaired column and each pair of 
columns. 

The transition probability for the path through the delete 
state compared to the path through the match state represents a 
node-dependent deletion penalty. The representation vector is 
scanned for zeros and the penalties associated with the 
location of the zeros are applied to the score. The transition 
probability of the path through both match state and insert 
state relative to that of the match state alone represents an 
insertion penalty for a single insertion. The transition 
probability of the path which visits the insert state twice and 
the match state once relative to the match state once is the two 
insertion penalty. Visiting the insert state more than once 
requires making a self-loop transition which has a fixed 
transition probability, hence the insertion penalties are affine 
with the penalty for the first insertion possibly different than 
the second, but all subsequent additional penalties the same.  
The representation vector is scanned for values greater than 
one and the associated penalties applied. 
 
C. Genetic Algorithm 

An initial population for the GA is found by searching all 
start positions in the database sequence and calculating the 
score for the ungapped alignment of the database to the model 
at each position. The start positions with the highest scores are 
selected for the initial population. The representations for the 
initial population are therefore each a vector of all ones 
concatenated with a high-scoring start position. It is often the 
case that several high-scoring upgapped alignments are found 
in close proximity since insertions or deletions near the center 
of the model will result in good matches to one model part and 
then the other model part as the database sequence is brought 
into alignment with the two pieces. Since the mutation 
operation described below will allow for small movements in 
the start position, two initial population individuals in close 
proximity in start position are likely to converge to the same 
solution. In order to get more initial diversity, the initial 
population selection works from the highest score down and 
skips over high-scoring starting positions that are within a 
user-specified distance of a higher-scoring starting position.  
In the results in the next section, a constant population size of 
100 and a start position distance minimum of 3 worked well. 

Subsequent generations are selected by keeping top scorers 
unchanged (elitism) and using both crossover and mutation.  
Since the database sequence might be as long as an entire 
chromosome, there may be many members of the ncRNA 
family in a single database sequence. In order to keep multiple 
high-scoring local maxima in the search space alive, a fairly 
large number of elite are retained unchanged. These elite are 
also selected such that they are not too close together in 
starting position. The same method that was used in selecting 
the initial population is used to select the elite to retain. A 
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minimum distance of 3 was used to retain 30 elite in the test 
results in the next section. 

Crossover is accomplished by random uniform selection of 
a crossover point in the representation. The fixed length 
representation assures that the insertion/deletion pattern swap 
is associated with the same multiple alignment columns in 
both parents. Crossover is expected to be a very useful 
operation in this application since even a casual look at almost 
any ncRNA multiple alignment makes clear that similar 
insertion/deletion patterns occur in several family members in 
the same region. This is often true in multiple regions even 
though the set of family members in the relation may differ.  
This is an example of the GA being more than simply inspired 
by biology, but rather a reasonable model of the true 
underlying process generating the data to be searched. 

Mutation is a bit more complicated than is usual in a GA. It 
is desirable to allow the positional window onto the database 
sequence being examined to shift its start position as well as 
its length and internal insertion/deletion pattern. This can be 
done by simply treating the start position element of the 
representation vector like any other element. However, this 
element would be mutated very infrequently relative to the 
internal shifts if the consensus sequence was very long.  
Rather than just increasing the mutation probability of the start 
position element, the start position is modified along with the 
internal insertion/deletion one-half of the time. 
 
   no mutation 
   data:  UGCCUUAAAUUAUGAGUAAGGAAAAUAACAACU 
   model: UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAU 
   mutation pt:    * 

   insert - no start change 
   data:  UGCCUUAAAUUAUGAGUAAGGAAAAUAACAACU 
   model: UGCCUUAAAC.UUAUGAGUAAGGAAAAUAACGAU 
   delete - no start change 
   data:  UGCCUUAAA.UUAUGAGUAAGGAAAAUAACAACU 
   model: UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAU 

   insert - compensating start change 
   data:   UGCCUUAAAUUAUGAGUAAGGAAAAUAACAACU 
   model: UGCCUUAAAC.UUAUGAGUAAGGAAAAUAACGAU 

   delete - compensating start change 
   data:  UGCCUUAAA.UUAUGAGUAAGGAAAAUAACAACU 

 model:  UGCCUUAAACUUAUGAGUAAGGAAAAUAACGAU 

Fig. 3. The four mutation cases (unchanged portion of 
alignment underlined). 

 
Figure 3 shows the idea behind this mutation strategy.  

There are four cases: insertion, deletion, insertion with 
compensating start shift, and deletion with compensating start 
shift. The first and second cases keep the database 
subsequence to the left of the mutation point aligned with the 
model the same way as before the mutation while shifting the 
database subsequence to the right of the mutation point with 
respect to the model. The two compensated start point cases 
shift the left subsequence while keeping the right subsequence 
fixed with respect to the model. These mutation cases are 
applied with equal probability in the results section.  
Mutations take the form of incrementing or decrementing a 
value by 1, where the mutation is abandoned if the vector 

element would become negative (since only non-negative 
values are meaningful). 
 

IV. U12 SNRNA SEARCH 
 

As a test case the GA-based covariance search proposed in 
the preceding section was run against a database containing 
the fourteen known members of the U12 small nuclear RNA 
(snRNA) family available at the Rfam website [13-14]. The 
U12 functional RNA molecule is part of the minor 
spliceosome used to remove introns from pre-mRNA. It has a 
function similar to that of the U2 snRNA in the major 
spliceosome, but the two families have quite different 
sequences. The Rfam (RNA family) accession number 
RF00007 indicates that it is one of the oldest known non-
coding RNAs.  The consensus length of the U12 family is 149.  
The CM was estimated from 7 "seed" sequences taken from 
the literature (1 in chicken, 1 in mouse, and 5 in human) and 
used to find an additional 7 family members (all in mouse). 

A database sequence of length 15880 bases was constructed 
which contains all fourteen U12 sequences with several 
randomly selected ncRNA sequences from other families 
interspersed between each U12 sequence and the next. The 
covariance search was run for 1000 generations with a 
population size of 100 and other parameters as described in 
Section III.C. Table I shows the results. The "true start" 
column of the table shows where the first nucleotide of the 
family member sequence taken from Rfam is located in the 
constructed sequence. "Start found" indicates the start location 
of highest-scoring individual in the final generation that was 
in close proximity (within 20) of the true start. The score rank 
gives the placement of the individual in a ranked list of scores 
of the final generation and the associated score follows in the 
next column. Finally the EMBL accession number of the 
sequence and sequence position numbers where Rfam 
originally found the ncRNA family member is given. 

Of the fourteen true family members embedded in the test 
sequence, twelve were found. Ten sequences were located 
exactly and two others where found to within 2 and 8 bases 
respectively. The top five ranked representations were distinct 
family members. All of the top 28 individuals are either listed 
in the table or had a start position with one place of the ones 
listed in the table. The others are not really false positives, 
they are just minor variants found in the last round from 
mutation and crossover. 

The scores of the 100 individuals in the final generation are 
shown in  Figure 4. There is a significant drop at about the 
38th individual from around 80 to about 50. The scores have 
units of bits, so these scores are far above anything that is 
likely to be produced by a random matching of sequences.  It 
is likely that the cutoff score for declaring a database sequence 
region to be a hit would be no more than 80, so all 12 
sequences found in Table I would likely also be found in a 
search of a much larger database. 
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TABLE I 
ALRORITHM PERFORMANCE ON U12 GENES 

True 
Start 

Start 
Found 

Score 
Rank 

Score Accession Number / 
Nucleotide Positions 

446 none - - L43844.1/2-149 
1039 1039 10 150.1 AC087420.4/142608-142466 
2475 2477 21 136.0 AC112938.11/234142-

234291 
3858 3858 11 150.1 AL591952.9/131760-131611 
6096 6096 18 139.0 AL669944.8/2483-2625 
7406 7406 5 162.8 AC133939.4/22042-22191 
8196 none - - AC132590.3/81080-80927 
8880 8880 13 148.4 AL772347.6/146375-146226 
9705 9705 1 165.9 L43843.1/2-150 
10774 10774 4 165.1 L43846.1/332-480 
11624 11624 9 155.6 J04119.1/2-150 
12428 12436 28 118.4 L43845.1/358-512 
13493 13493 3 165.5 Z93241.11/76642-76790 
14615 14615 2 165.9 AL513366.11/57717-57871 
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Fig. 4. Scores of individuals in final generation. 

 
Figure 5 shows the database starting location value in each 

individual's representation in the final generation, where the 
individuals have been resorted in ascending order of starting 
location value. It is clear from the plot that the GA has 
converged on solutions close to the twelve starting values 
found in Table I. There are no individuals searching anywhere 
near the two missed locations (446 and 8196). There is a 
general (but not perfect) trend towards having more 
individuals searching around those positions where the highest 
scores have already been found, which is to be expected.  
However, the method used to maintain position diversity 
during elite selection appears to work since the population 
does not appear to converge around a single location. 

The mean values over the 100 individuals of the final 
generation at each conserved multiple alignment position are 
shown in Figure 6. Of particular note is the spike at alignment 
column 103, where the mean representation vector value is 1.6 
in  a region surrounded with much less activity. The multiple 
alignment of the fourteen sequences from Rfam shows that 
five of the sequences have an insertion relative to the 
consensus of length one after column 103. The algorithm has 
found this division point exactly even though it only has 
access to the unaligned sequences. Two of the sequences 

(starting at 12428 and 14615 in the database sequence) have 
an insert of length 6 after position 33 relative to the consensus 
(while the other 12 have no insertion). There is some evidence 
that the GA is discovering this with the mean value of 1.09 for 
positions 26, 27, and 28 (just a bit too far left). The score for 
the U12 family member at 14615 seems to be using this since 
the start position is dead on, but the best start position of 
12436 rather than the true start of 12428 indicates that the start 
is being shifted to absorb the extra symbols rather than the 
insert for this family member. There is a fair amount of 
activity in the multiple alignment to the left of position 33 and 
this shows in the mean representation value in Figure 6. Mean 
representation values in this region do not match too well with 
the activity in the multiple alignment. This may be due to the 
fact that getting the correct number of insertions and deletions 
near the middle of the sequence is more critical for getting a 
high score than it is near the ends. For example, if the database 
sequence has a single insertion at the half way point, then an 
ungapped alignment can only match half the sequence. If a 
single insertion appears at the next to last nucleotide, only a 
single position can not be aligned with an ungapped 
alignment. 
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Fig. 5. Sorted start positions of individuals in final 

generation. 
 
Figure 7 shows the mean score at each generation of the 

best thirty individuals. The GA looks like it has mostly 
converged after about the 600th generation. Since there are 
thirty individuals retained at each generation as the elite, one 
might wonder why this curve is not monotonically increasing.  
If the algorithm was not designed to also maintain start 
position diversity, this curve would in fact be monotonic. The 
negative variations are an artifact of new, slightly better, 
solutions coming into the elite that displace two existing 
members of the elite by having a start position between the 
two. 

The code for the covariance search was written in Matlab 
for ease of prototyping. If the code was converted into C it 
would be expected to run at least as fast and probably much 
faster. Even though the implementation is likely not very 
efficient, it took about 100 seconds to run 1000 generations 
with 100 individuals on the 15880 base dataset. For 
comparison, the U4, U5, and U6 covariance models of 137, 
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118, and 106 consensus length respectively were found to take 
1258, 1081, and 563 days of CPU time to run against an 8- 
gigabase database on a Pentium machine similar to the one 
used in this study [3]. The covariance search code has already 
run 2.7 times as fast as the standard code on the U4 model.  
Since the U12 model is of length 149, it is likely to take even 
longer than U4 to run with the standard code. The standard 
code (Infernal) [15] is a well tuned compiled C program and is 
not likely to get much more efficient. The code for the 
proposed algorithm is no where near optimized.  It is also 
likely that using a stopping criterion would significantly 
reduce the required number of generations. 
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Fig. 6. Mean representation element values in final generation. 
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Fig. 7. Mean score of best 30 solutions by generation. 
 
The Matlab source code and the example database are 

available on the web at [16]. 
 

V. CONCLUSIONS 
 

The proposed GA-based covariance search algorithm takes 
advantage of the fact that the standard dynamic programming 
algorithm for database search using covariance models 
calculates a large fraction of its scores in regions of the search 

space that are highly unlikely. Previous work has shown how 
to reduce the inefficiency of this search in the sequence length 
dimension, but has done nothing to concentrate computational 
effort about any particular point in the database position 
dimension. This paper corrects that deficiency by using a 
genetic algorithm.  The results on a single ncRNA family 
(U12) look promising. However, much work remains to be 
done.  More functional RNA families need to be explored to 
determine whether these results really are general. Also, no 
attempt has yet been made to fine tune the parameters, such as 
population size, stopping criteria, numbers of elite retained, or 
level of mutation and crossover when creating new 
individuals. Finally, the GA-based method has not yet been 
compared to other possible search algorithms such as 
simulated annealing or simple hill climbing. 
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