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Abstract-A genetic algorithm is proposed as an alternative to
the traditional linear programming method for scoring
covariance models in non-coding RNA (ncRNA) gene searches.
The standard method is guaranteed to find the best score, but
it is too slow for general use. The observation that most of the
search space investigated by the linear programming method
does not even remotely resemble any observed sequence in real
sequence data can be used to motivate the use of genetic
algorithms (GAs) to quickly reject regions of the search space.
A search space with many local minima makes gradient decent
an unattractive alternative. It is shown that a fixed-length
representation for alignment of two sequences taken from the
protein threading literature can be adapted for use with
covariance models.

I. INTRODUCTION

The search for genes associated with functional non-
coding RNA (ncRNA) molecules requires an algorithm that
recognizes the conservation of base pairs in the RNA
molecule even when there is little conservation in the
primary sequence. Homology search algorithms such as
BLAST [1], FASTA [2], Smith-Waterman [3], and hidden
Markov models [4], can not accommodate these long range
interactions. The hidden Markov model (HMM) approach
can be extended from the use of a regular grammar which
can not describe base pairing to a context-free grammar [5]
which can. Such an extended model is often referred to as a
covariance model (CM).

While a CM has the power to find ncRNA genes that an
HMM can not, the computational burden of a CM is to great
for it to be of use in most circumstances. DNA sequence
databases are normally pre-filtered to find regions where a
finding a gene of a given ncRNA family appears more
probable. One method for doing this is to ignore base
pairing and to start with an HMM constructed from a
multiple alignment of the know members of ncRNA family
[6]. This method risks losing sensitivity when the
evolutionary distance between the known family members
and the true unknown family member is large. A more
recent method shows how to construct an HMM and choose
a threshold such that no sensitivity is lost [7]. Even with

this advance, the CM operating on the reduced database is
still too slow for most purposes.

Interest in searching for ncRNA genes has increased in
recent years as it has become increasingly apparent that
many catalytic and regulatory functions depend directly on
RNA molecules that are not translated into protein [8].
These ncRNA molecules may work either in isolation or as
part of a complex of ncRNA and protein molecules.
Examples of functional RNA participation include
telomerase [9], small nucleolar RNA (snoRNA) [10],
transfer RNA (tRNA) [11], and microRNA [12]. New
ncRNA classes and families are being found at a very rapid
rate.

Covariance models are composed of a binary tree of
nodes associated with the consensus structure of the ncRNA
family. Each of the nodes contains between one and six
internal states. When scoring a covariance model against a
database sequence, each state of the model is evaluated for
every combination of starting location within the database
sequence and subsequence length beyond the starting
location. In order to make the calculation feasible,
subsequence lengths searched are limited to an upper bound
chosen by the user. This upper limit needs to be at least as
long as the consensus sequence and is normally chosen to
be considerably longer than the longest known ncRNA
family member. Computational time required to score the
model is proportional to this choice of subsequence length
upper limit.

Investigation of the subsequence lengths actually
observed in DNA databases indicates that deviations in
subsequence length for true positives from the subsequence
length obtained when fitting the consensus sequence are
generally very small. This implies that a significant
acceleration of the CM model may be possible if the
solution search focuses in the region of small subsequence
length deviations. It is difficult and time consuming for an
expert to determine the upper and lower bounds that should
be applied to each state evaluation. This would also remove
length outliers entirely from consideration. An algorithm
which can avoid getting trapped in the local minima of the
score function, yet focus its search in the most likely region
of small subsequence length deviations could speed the
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search considerably. A genetic algorithm (GA) is a good
candidate for this task.

The paper is organized as follows. A short introduction
to covariance models is given in section II. Section III
investigates the subsequence length usage of two ncRNA
families from different classes of ncRNA. The method for
representing the alignment of the query sequence to the CM
along with mutation operators and choices of initial
population is described in section IV. Concluding remarks
appear in section V.

II. COVARIANCE MODELS

Covariance models can be estimated from a multiple
alignment of sequences from a family of ncRNAs. The
alignment needs to be annotated with structure information
showing the intermolecular base pairing between
nucleotides of the single-stranded RNA. The method does
not model pseudoknots in the consensus structure, so some
of the base pairing information in pseudoknotted ncRNA
families is lost. A more complete description of covariance
models may be found in [13].

A. Model Nodesfrom Consensus Sequence and Structure
Each emitting node of the CM is associated with either a

consensus base pair or a consensus unpaired base in the
structure-annotated multiple alignment of the ncRNA
family. Figure 1 shows an example with five organisms.
Alignment columns with few non-gap symbols are assigned
a "." in the consensus structure and sequence and are not
associated with any node in the CM. The ">" and "<"
symbols indicate two consensus columns which tend to base
pair, where the ">" is the nucleotide closer to the 5' end (the
left base) and "<" is the nucleotide closer to the 3' end (the
right base). Even though these symbols are not indexed, it
is always possible to tell which go together since
pseudoknots are not allowed. Column 4 and column 7 are
base paired in the figure since there are no intervening base
pair symbols. Columns 3 and 8 are base paired since they
enclose a set of base pairs with no unpaired base paring
symbols. The "-" symbol indicates that a column is
associated with a position that does not base pair. The
consensus structure for the family is determined either by
experiment or RNA secondary structure prediction
algorithms such as [14].

Organism 1
Organism 2
Organism 3
Organism 4
Organism 5
Consensus:
Structure
Sequence

AUGG.ACCAAG.GUCAGACU
CUGAACUCCAGCGUCCGACU
CGG..GUCCCG.GA.AUU..
C.GAACUCG.G.GGUCAGACU
CUCA.UUGUAG..UUA.ACU

CUGA.CUCCAG.GUCAGACU

Fig. 1. A structure-annotated multiple alignment.

The binary tree of the CM nodes for the model generated
from the multiple alignment in Figure 1 is shown in Figure
2. Start (S), bifurcation (B), and end (E) nodes do not emit
any symbols and are used only to form the tree structure for
the three types of emitting nodes. The pair (P) nodes are
associated with two paired consensus columns of the
multiple alignment. Columns 4 and 7 in Figure 1 become
the P node with index 8 in Figure 2. The P8 node is labeled
with "AU" in Figure 2 to indicate that the consensus
symbols of the pair are A on the left and U on the right.
The left (L) and right (R) nodes indicate that an unpaired
consensus symbol is to the left or right of the consensus
subsequence represented by the nodes below it in the tree.
For instance, the LI node is associated with the first column
of the multiple alignment and is labeled with a C since this
is the consensus symbol at that position. There are
situations where either an L or an R node could be used and
by convention the L node is always used in these cases.

U

C

AG

A

C

Fig. 2. Covariance model tree associated with structure-annotated
multiple alignment.

The covariance model is a statistical model, so each of
the nodes is associated with a set of probabilities for
emitting each of the symbols. There are four emission
probabilities associated with each of A, C, G, and U for the
single emission L and R nodes and sixteen probabilities for
each possible pair of emitted nucleotides in the P node. The
node labels are simply the symbol or pair of symbols with
the highest probability. The emitting nodes also allow for
the possibility that the consensus symbol is omitted and the
possibility that one or more symbols is inserted between it
and the symbols of its children. The internal structure of
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the nodes which handles insertions and deletions relative to
the consensus structure is described in Subsection B below.

Figure 3 shows how the consensus sequence and
structure of the ncRNA family can be drawn in the form of
a secondary structure diagram. The CM needs a bifurcation
since the consensus secondary structure has two stems. The
structure to the upper left of the bifurcation is captured in
the left branch of the CM tree and the to lower right in the
right branch of the tree. The exception to this is that the
first and last columns of the multiple alignment are in the
main stem of the CM tree since they are outside of all the P
nodes. The two positions circled with the dashed line in
Figure 3 are associated with the P8 node of the covariance
model. The first nucleotide (5' end) is the consensus C
symbol associated with the LI node and the last nucleotide
(3' end) is the consensus U symbol associated with the R2
node.

P~~~8<AS Bifurcation (B3)
GC
U- /

/G c

CA A

L17

Fig. 3. Secondary structure diagram of consensus sequence.

B. Internal States ofModel Nodes
The need to allow consensus symbols to be deleted and

non-consensus symbols to be inserted is handled by the
internal state structure of each node. The nodes consist of
two possible tiers of states. The 1st (upper) tier handles the
description of the consensus and the possibility that it is
deleted. The 2nd (lower) tier handles the possibility that
additional symbols are emitted between the consensus

symbols of the node and the consensus symbols of a child
node.

From every state in next higher node

Fig. 4. Internal states of a P-type node.

Figure 4 shows the internal state structure of the most
complicated type of the node, the P node. The upper tier
includes a match pair (MP) state which is the consensus
describing part of the node. It emits the sixteen possible
combinations of symbols each with its own probability. If
the database sequence does not contain the consensus pair at
all, the delete (D) state is visited. If only the left nucleotide
of the pair is present, the match left (ML) state is visited and
this state emits each of the four possible symbols with its
own probability. The match right (MR) state is used when
only the right half of the consensus pair is present. The
insert left (IL) and insert right (IR) states are used to add
non-consensus symbols inside of the consensus pair, but
immediately adjacent to the pair. The self loops on the IL
and IR states allow more than one insertion. Figure 4 is
drawn with "UA" next to the MP5 state since this P node is
specifically the P5 node from the CM model tree. All nodes
of a given type are structurally the same, only the
probabilities associated with emissions and transitions
between states differ. The thick lines in the figure indicate
that there are multiple transitions possible in or out of a
state coming from or going to states in another node.

C. Covariance Model Scoring and Subsequence Lengths
Every state in the CM is evaluated for every possible

subsequence of the database sequence. In order to keep the
computation tractable, only subsequences of length less
than or equal to a maximum length D are computed. The
score at each node v is denoted y(v, j, d) and depends on the
scores of the node's child states, the start position of the
subsequence j and the length of the subsequence d. If
insertions and deletions were not allowed relative to the
consensus sequence, there would be only one state in each
node and the only value of d needed for evaluation of that
state would be the length of the consensus sequence
represented by the node and all of the tree below the node.
So, deviations in d from the consensus length at the state are
due to net accumulated insertions and deletions at the state
and all nodes below. The computational complexity of
scoring the model is proportional to LD where L is the
length of the database sequence and D is the maximum
allowed subsequence length. The choice of D is
traditionally the same for all states and must be chosen to be
at least as large as the length of the consensus sequence. To
this is added a guess as to the maximum number of
insertions net of deletions that might occur in unknown
family members. If the number of d values searched by
each state could be reduced, then the computational
complexity could be reduced by a factor equal to the ratio of
D to the average number of d evaluations in each of the
states.

III. OBSERVED SUBSEQUENCE LENGTHS

Two ncRNA families from different classes of ncRNA
will be examined to show that large deviations from
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consensus subsequence length are rare for true positives in
real DNA sequence data. The two families are taken from
the Rfam database [6] and investigation of other families in
the database indicates that the conclusions drawn from these
two families is representative of most Rfam database
families.

The first example is the miR-9 microRNA family (Rfam
accession number RF00237) [12, 15-17]. There are five of
these sequences taken from literature sources which form
the seed population on which the CM is based. Searching a
large DNA database using HMM pre-filtering and then
using the CM yields another 18 putative family members.
The average length of these sequences is 61 nucleotides. A
condensed structure tree of the miR-9 CM is shown in
Figure 5. It can be seen that the "tree" has no branches
since this microRNA precursor (like microRNA precursors
in general) has only a single stem structure. There are more
than 45 microRNA families out of the approximately 500
ncRNA families in Rfam, so this example is not an atypical
case. The compressed tree representation in Figure 5 omits
showing S, B, and E nodes and groups multiple nodes of the
same type into a single node. For example, the top node of
Figure 5 implies that there are three L nodes at the top of
the model and they have node numbers 1, 2, and 3 in the
CM model file downloaded from the Rfam site.

K 1-3
4-6D

<I 7-21>
<l 22-23
24-25D

<l 26-29>
<l30-43

Fig. 5. Organization of the miR-9 (PF00237) model.

Table I shows the usage of subsequence lengths for each
of the 23 family members for all states in the model listed
by the number of the node that contains them. The high
node numbers in this single-branch tree are near the end
node and represent rather short consensus subsequences and
the low node numbers are near the root start node and
represent subsequences closer to the full consensus
sequence. From the table we see that the first three L nodes
above the E node (nodes 41, 42, and 43) have a symbol
present in each of the 23 family sequences (no "." in the
multiple alignment column). So, the consensus
subsequence lengths are 1, 2, and 3 and the actual
subsequence lengths are 1, 2, and 3 for all family members
for nodes 43, 42, and 41 respectively. This results in the
entry 23 under the 0 deviation column of Table I.

TABLE I
SUBSEQUENCE LENGTH DEVIATIONS FOR MIR-9 FAMILY

Nodes -2 -1 0 +1 +2 +3 +4
43-41 23
40 1 1 12

39-37 7 4 1 1 1
36-34 8 3 11 1
33-29 8 3 11 1
28-27 8 3 11 1
26-1 8 3 11 1

The standard CM subsequence length upper limit D for
this model used by Rfam is 100. Therefore the standard
CM solution method searches length deviations between -1
and +99 for node 43, between -2 and +98 for node 42, and
between -3 and +97 for node 41. The numbers in Table I
indicate that the actual subsequence usage clusters near a
deviation of 0, so large deviations are highly improbable. It
would be possible to try to have a state-dependent upper
and lower length cutoff, but this poses at least two
problems. The first is that a large amount of effort is
involved in determining good cutoffs for every state in
every model. More importantly, it would be necessary to
abandon all hope off finding outliers. In Table I we see that
one true family member of miR-9 exhibits significantly
more insert activity than the others (all of the 1 entries on
the right side of the table are from a single sequence). If
this sequence had not been in the initial model-building set,
then we would be tempted to set the subsequence length
cutoffs at -2 and 0 deviation for all states. The outlier
sequence then would likely not be found. A better solution
would be to not rule out rare subsequence lengths entirely,
but instead just spend much less effort on them.

41I
2-7 >

K 12-14 D 23-48 KJ63-701
KJ15-20 KJ49-54> KJ71-81>

J 55-60 KJ 82-88

Fig. 6. Organization ofthe RyeB (PF00111) model.

The second example is the RyeB small RNA (Rfam
accession number RFOO1 1) [18]. Five of these sequences
form the seed family used to train the CM and ten more
were found using the CM in database search. The average
sequence length of RyeB ncRNA family members is 100.
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Figure 6 shows the structure of the CM for the family. This
model has three stem structures, so the model tree exhibits
branching (unlike the miR-9 model or microRNA precursor
models in general). The RyeB model is part of a class of
many small RNA models with similar branching patterns.

Table II shows the subsequence length usage of the RyeB
example. Even though the model is quite different, the
usage pattern is similar with most family members clustered
very near 0 length deviation. The standard D value used for
the RyeB model is 150, so nodes adjacent to E nodes (nodes
20, 60, and 88) will search subsequences with deviations
between -1 and +149 even though in all cases the actual
deviation is seen to be 0. Examination of other ncRNA
family models leads to the conclusion that this clustering
about 0 deviation is a general phenomenon and not limited
to the two examples given or to the two classes of models to
which they belong.

TABLE II
SUBSEQUENCE LENGTH DEVIATIONS FOR RYEB FAMILY

Nodes -2 -1 0 +1 +2 +3 +4
88-81 15
80-63 12 3
60-58 15
57 1 14

56-24 1 14
23 1 1 13
20 15

19-15 14 1
14-12 11 14
7-1 2 10 3

IV. REPRESENTATION FOR MODEL ALIGNEMENT

A fixed-length representation for the alignment of a two
sequences was presented in [19] for use in protein sequence
three-dimensional structure prediction using threading.
Here it is shown that this representation can be adapted for
use in covariance models. Methods for choosing an initial
population that focuses the search on regions of likely
solutions and mutation operators are also presented.

The representation uses a string of non-negative integers
of length equal to the consensus sequence of the CM. If a

position in the string holds the integer 0, then the consensus

nucleotide does not exist in the query sequence (a delete).
If a position holds the integer 1, then a query symbol is to
be matched to the CM node. For integers greater than 1, a

query symbol is being matched, and additional query
sequence symbols are inserted to the right. The number of
inserted symbols is one less than the integer. In the case of
L and R nodes, an integer larger than 0 implies that the ML
or MR state of the node is visited. In the case of P nodes,
two positions in the string need to be larger than 0 to visit
the MP state. The ML or MR state is visited if only one of
the two P node positions has an integer greater than 0.

In the protein threading case, we need to make sure that
the sum of the integer values is equal to the length of the
query sequence. The equivalent to the query sequence
length in covariance models is the d value for the root S
state score. In the linear programming approach, we want
to search over all values of d between 1 and D. In the
genetic algorithms approach, we can search all subsequence
lengths simultaneously, so we do not need to constrain the
sum of the integer values in the representation. This has the
additional advantage of not needing to specify a cut-off
length D in advance as is necessary for the linear
programming method. For protein threading, it is necessary
to choose a pair of representation positions and change the
two values such that the sum of the changes is zero when
mutating. Crossover is even more difficult since the child
strings must be corrected to keep the integer sum constant.
Neither of these problems is an issue in the application to a
CM.

The analysis of Section III showed that most of the
observed deviations from the consensus subsequence length
are small. As a result, we expect the ultimate solution to be
an individual with a representation not too far from the
integer string with all entries equal to 1. To obtain a faster
solution, it is recommended that the initial population
contain at least one individual that is exactly the string of all
1 and that many other initial individuals be limited
mutations of the string of all 1.

It is further noted from inspection of the ncRNA family
members that inserts and deletes relative to the consensus
occur in groups. A mutation of a single position in the
integer string already takes care of generating runs of inserts
at a given sequence position. To allow autocorrelation in
deleted positions, mutations to 0 should be applied to a
contiguous range of integer string positions. Both the
statistical distribution of the number of 0 positions and the
non-zero point mutation values should be estimated from
the multiple alignment data.

In addition to autocorrelation in deletions and insertions
across positions, the probability of insertion and deletion at
each position varies greatly. The observed frequency of
insertions and deletions in the ncRNA family multiple
alignment can be used to generate a position-specific
mutation operation. The autocorrelated and position-
specific mutation operator should be used for both initial
population generation and for subsequent evolution.

V. CONCLUSIONS

We have seen that there is a large amount of probabilistic
order to the search space examined by covariance models
used for ncRNA gene finding. Linear programming
methods enumerate the entire search space and hence are
very slow (but are guaranteed to find the best solution).
Many of the solutions evaluated by linear programming are
of exceedingly small probability. However, putting tight
constraints on the search space is difficult and risks missing
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a few outlier true solutions. The proposed GA solution
method does not limit the potential search space (in fact it
increases it by not introducing a hard upper limit on
subsequence size). The GA solution gains performance by
probabilistically focusing on the most probable portions of
the search space leading to an algorithm which will find
nearly the best score in many fewer solution evaluations.

It should be noted that the output of the GA search can
also be used as a pre-filter to a full linear programming CM
search. Since the GA may produce a suboptimal score, the
threshold for accepting a subsequence as a family member
of the ncRNA family could be set lower than usual and the
family members found could be rescored using the full CM
to get exact scores. The full CM would run on a very small
subset of the original data and therefore the computational
requirements may be tenable.

Further research in this area clearly includes quantifying
the tradeoffs between computation time and score accuracy.
It is also hoped to investigate searching over both positionj
and subsequence length d simultaneously (rather than just d
as presented in this paper). This could have the advantage
of rejecting segments of the query sequence with little hope
of scoring well in favor of increased effort in proximity of
high scoring positions.
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