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Abstract 

Active traffic management aims to dynamically manage congestion based on existing and predicted traffic conditions.  A challenge
in this is that it is not usually possible to process data in real-time and use the output in control algorithms or in traveler information 
systems.  A solution to this is to predict the traffic state based on assessments of current and past measurements.  The work described 
in this paper develops an adaptive forecasting method to predict traffic speeds using dynamic linear models with Bayesian inference 
from a priori distributions.  This study incorporates speeds collected from radar based sensors and validates the results with data 
collected from Bluetooth traffic monitoring technology. The highly adaptive model is confirmed with estimated traffic speeds 
during inclement weather and multiple incidents. 

© 2014 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of Elhadi M. Shakshuki. 
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Nomenclature 

x t  State vector 
y t   Observation vector 
Gt Known state matrix
Ft Design matrix of known values of independent variables
wt, vt Independent white noise sequences 
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a t Predict ion mean of  s tate  vector  
Rt Predict ion var iance of  s ta te  vector  
f t One-step-ahead forecast  mean 
Q t One-step-ahead forecast  var iance 
m t Fil ter  mean 
Ct Fil ter  variance 
Kt Kalman gain 

1. Introduction 

Intelligent Transportation Systems (ITS) make possible the collection of large amounts of data but methodological 
gaps exist in its processing and deployment in the context of driver information or control measures.  Many solutions 
have been proposed to predict the traffic state and can be broadly categorized as non-parametric, parametric, and 
hybrid methods.1,10 In general, parametric methods require the parameters of traffic flow models to be estimated off-
line and assume the underlying model process is fixed. Variations in traffic due to incidents, weather, and fluctuating 
traffic dynamics can adversely affect the performance of such models. The proposed model is capable of forecasting 
speeds online and is adaptive to sudden changes in traffic due to traffic variations. Forecasting of traffic speeds was 
achieved with Kalman recursions that were employed in a dynamic state-space model framework where parameters 
of the state are permitted to change with time. The work reported here on adaptive speed estimation is a part of a bigger 
project, which will use the forecasts in a ramp metering control scheme. 

1.1. Outline of the paper 

The remainder of this paper is organized as follows. The next section presents the problem statement. Section 3 
explains dynamic linear models in the state-space framework, Kalman recursions, and a description of the data 
collection. Section 4 contains the results for speed forecasts for the radar collected time-mean speeds, validation results 
from Bluetooth based space-mean speeds, and a demonstration of the adaptive capabilities. Section 5 contains 
concluding remarks and suggestions for further work. 

2. Problem statement 

The need to forecast traffic speeds with an adaptive tuner arose from a challenge in processing real-time traffic data 
for a ramp metering application. Many ramp metering schemes attempt to maximize throughput by metering to a 
predetermined optimal occupancy or maximum capacity level. This suffers from the fact that capacity is known to not 
be a fixed value and the optimal measure of it may change under a wide range of conditions. An ongoing area of 
research is investigating the stochastic nature of freeway capacity and breakdowns.3,4 This type of research have been 
applied to ramp metering algorithms (Stratified Zone Metering; Minnesota and COMPASS Ontario, Canada) by 
modifying them to incorporate the breakdown probability in the control scheme. Modifications have included 
adjusting the metering rates based on the maximum capacity prior to the onset of breakdown. However, this does not 
yield a system that is adaptive to the random fluctuations observed in traffic.  

Because capacity is a random quantity that is difficult for practitioners to determine and apply in real-world settings, 
speeds is used as a measure for the quality of flow. Thus, a solution to the ramp metering problem is to minimize the 
disturbance of the traffic stream observed through the variance of speeds. The method proposed in this study is a 
stochastic modeling approach that is adaptive to conditions (e.g. driver behaviors, adverse weather, incidents, etc.) 
and is applied in an on-line manner, yielding real-time forecasts. 

In this study, speeds collected from radar based sensors are forecasted and compared to Bluetooth collected speeds. 
The adaptive capabilities of the model was verified during inclement weather in which multiple accidents occurred. 
The modeling approach is an improvement of previous work10 by introducing time-varying parameters in a polynomial 
structure.
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3. Methodology 

The state-space framework considers a time series as the output of a dynamic system perturbed by random 
disturbances and ones in which parameters are allowed to vary over time.2 For this reason, state-space models are also 
called dynamic linear models. A Kalman filter is an optimal recursive data processing algorithm, meaning that 
predictions are based on only the previous time-step’s prediction and the filter does not require all previous data to be 
stored and reprocessed with new measurements. The filter is optimal in the sense that it minimizes the variance of the 
estimation error at each iteration process. When the next measurement is taken, the algorithm calculates a correction 
of the state prediction using the new measurement along with the error covariance. The recursive algorithm uses only 
the current measurement and error covariance allowing for low computational cost and on-line forecasting. 

3.1. State-space framework 

State-space models can be used for modelling univariate non-stationary time series that allow for natural 
interpretation as a result of trend and seasonal (periodic) components.5,6,8  The state-space local level model is a time 
series where observations can be modelled as random fluctuations around a stochastic level (described by a random 
walk). Traffic speeds were modeled with a stochastic local level model with seasonal components in the ‘R’ language 
and environment for statistical computing.9

The main tasks for the given state-space model were to make inferences on the unobserved traffic state and predict 
future observations based on part of the observation sequence. The main advantage of Bayesian inference is the 
prediction result is a posteriori distribution rather than a single-value, thus allowing one to quantify the reliability of 
the results.10 Estimation and forecasting are solved by computing conditional distributions of the traffic state, given 
the available information.  In dynamic state-space models, the Kalman filter provides the formulas for updating our 
current inference on the state vector xt as new data yt become available; that is for passing from the filtering density5,6,7

p(x t |y 1 ,…,y t) to p(x t + 1 |y 1 ,…,y t) .  

3.2. Bayesian inference 

Formulating reasonable assumptions about the dependence structure of time series can be made based on explicit 
use of prior information from data.  It is common practice to use conjugate priors where a family of densities is said 
to be conjugate to the model if, whenever the prior belongs to that family, so does the posterior.8 Bayes formula, in 
the framework of dynamic linear models, allows for the recursive one-step-ahead forecast of the posteriori
distributions of the state vector solved by the Kalman filter. 

3.3. Kalman recursions for the dynamic linear model 

Let us denote Dt as the information provided by the first t observations, y1,…,yt and it is assumed x 0  ~  N(m 0 ,C 0) .  
The Kalman filter allows us to compute the predictive and filtering densities recursively as new information becomes 
available starting from x 0 |D 0  ~ N(m 0 ,C 0)  given the state equation7,11:

1t t t tx G x w    (1) 

based on measurements yt, according to the observation equation: 

t t t ty F x v (2)

Where, Gt and Ft are known matrices and wt and vt are independent white noise sequences with Cov(wt )  = Wt

and Cov(v t)  =  Vt .   
The state predictive density x t |D t - 1  ~  N(at ,Rt)  (a priori):  
where 
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1tt tGa m (3)

and

1t t t t
T
tR G C WG (4)

One-step-ahead predictive density of y t |D t - 1  ~ N( f t ,Q t) : 
where 

t t tf F a (5)

and

T
t t t t tRQ F F V (6)

Filtering density of x t |D t  ~ N(m t ,Ct) (a posteriori): 
where 

( )t t t t t tm a K y F a (7)

and

t t t t tC R K F R (8)

The predicted state estimate is also known as the a priori state estimate because it does not include information 
from the current time step.  In the measurement update stage, the prediction is combined with the current observation 
information to refine the state estimate and is known as the a posteriori state estimate. The expression for mt is 
intuitively the estimation-correction where the filter mean is equal to the prediction mean at plus a correction based 
on how much the new observation differs from its prediction. The weight of the correction term is given by the Kalman 
filter gain: 

1QT
t t t tK R F (9)

which is the adaptive coefficient and can be regarded as an information tuner.1,4

3.4. Data collection 

High-resolution (5-minute aggregate) data: volume, occupancy, vehicle classification, and average lane speed were 
collected on Interstate-84 (I-84) near the Meridian Road interchange in Meridian, Idaho. Radar based 
(SmartSensor105™ from Wavetronix) sensing devices were chosen to capture the data from November 11 through 
November 14 in 2013.  Permanent installations of traffic monitoring equipment based on Bluetooth technology are in 
place throughout sections of I-84 and were used for validation.  The Bluetooth devices collects and time-stamps media 
access control (MAC) addresses from Bluetooth devices in vehicles traveling on a road and, by matching these 
addresses collected at the two end points, can yield travel times and speeds between those points.  

The radar based sensors, which collected time-mean speeds, were placed at the midpoint of a 4-mile route between 
two Bluetooth devices that captured the space-mean speeds. 
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4. Results 

  The present model is based on the idea that the observations yt of the traffic are incomplete and a noisy function 
of the unobservable state process xt, which we can only observe through noisy measurements. According to equations 
(1) and (2), a polynomial dynamic linear model with stochastic level and seasonal components was constructed for 
speed predictions. The speeds collected from the radar and Bluetooth devices can be seen in Figure 1. 

Figure 1. Radar and Bluetooth measured speeds. 

The proposed model was calibrated using five-minute average speeds collected from the radar based equipment 
located at the Meridian interchange. The computed five-minute one-step-ahead forecasts are shown in Figure 2.  

Figure 2. Radar measured five-minute one-step-ahead forecasts. 

The radar dataset was used to train the model due to its high resolution and a matching rate12 of 99% compared to 
that of Bluetooth’s reported 5-7% average.13 Plots of the one-step-ahead forecasts reveal that the model tuned early 
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and had good performance. As seen in the second plot in Figure 2, the first recurrent congestion conditions occur 
between 7:25 AM and end at approximately 8:30 AM (from time index 377 and 389). The third plot of Figure 2, time 
index (TI) 665 – 680, corresponds to a peak hour AM congestion period from 7:00 to 8:40, the following day. Another 
period of congestion appears at TI 702 and continues intermittently through TI 737. The final plot shows a shorter 
phase for the AM congestion period occurring from 7:35 to 8:10 (TI 955 – 962) on Thursday November 14th.

4.1. Case study 

  To validate the model, speeds recorded from the Bluetooth devices between 12:00 AM, November 11 through 
November 12:00 AM, 14 were forecasted.  Two Bluetooth devices were used to record the “driver perceived” actual 
travel times which were used to find the space-mean speeds. The observations recorded from the Bluetooth sensors 
have many time periods with missing observations.  As seen in the five-minute observations in Figure 3, the model 
performed exceptionally well in spite of the missing observations. The second plot in Figure 3 displays the first 
recurrent congestion conditions beginning at 7:25 AM and ending at 8:30 AM (TI 375 – 390). 

Figure 3. Bluetooth validation one-step-ahead forecasts. 

The third plot of Figure 3, TI from approximately 665 – 680, corresponds to a peak hour AM congestion period 
from 7:00 to 8:40, the following day. The final plot shows a shorter phase for the AM congestion period occurring 
from 7:35 to 8:10 on Thursday, November 14th. This plot demonstrates the models ability to perform well in spite of 
30 missing observations in the period between TI’s 900 and 980.  
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4.2. Adaptive capabilities  

A series of crashes due to inclement weather caused a 44 vehicle crash on January 9, 2014 along a one-mile stretch 
of westbound I-84 in the study area.  Bluetooth sensors captured data during this time and five-minute average speeds 
collected from 6 AM to 4 PM were used to demonstrate the adaptive capabilities of the model.  The 120 observation 
period is particularly incomplete with 42 missing observations.  As seen in Figure 4, over one-third of the missing 
observations were estimated reasonably well and the model was able to adapt to speed variations greater than 45 miles 
per hour occurring in two time-steps as seen in the third plot of Figure 4 between TI 96 – 97.  Fluctuations in the one-
step ahead forecasts in the absence of measured data, for example as seen between TI 3 – 8, 27 – 39, and 27 – 30, 
reflect the daily seasonal trends captured by the model.  

Figure 4. Bluetooth measured one-step-ahead forecasts during incident. 

5. Conclusion 

This paper developed a model for online adaptive speed estimation. To capture the dynamics of traffic, the traffic 
state was modeled using a dynamic linear model with its predictions performed by Kalman recursions.  Plots of the 
models output show that it tuned relatively early and had good performance despite fluctuating levels of traffic.  The 
third and fourth plot of Figure 3 demonstrate this with 25 and 30 missing observations, respectively. In addition, 
forecasted speeds are compared from radar and Bluetooth based sensors. 

The methodology presented has been shown to adapt to abrupt changes in speeds due to incidents and weather as 
demonstrated in Figure 4. Speed variability greater than 45 miles per hour occurring between two time-periods, TI 96 
– 97, was processed by the model in the absence of measurements. This recursive estimation scheme uses only the 
previous time step error covariance and current measurement in an on-line application that is capable of operating in 
the absence of missing data. 

The Bayesian dynamic linear model presented in this paper is suitable for online speed and travel-time predictions. 
It has been shown that the model is capable of adapting to recurrent and non-recurrent traffic conditions and is able to 
cope with noisy and incomplete observations often measured by roadway sensors. This work can be expanded by 
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incorporating an offline smoother for robust assessments of the behavior of the system. The highly adaptive capability 
of this model will in future work be incorporated into a ramp metering control scheme.  
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