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Abstract 
An accurate estimation of surface fluxes and evapotranspiration is critical in 
understanding the hydrological and meteorological processes linking the land and 
the atmosphere. Due to difficulties in obtaining extensive and timely field 
measurements, land surface and atmospheric models are widely employed in 
estimating such fluxes. This study focuses on testing the ability of Noah LSM to 
simulate the surface fluxes both in an uncoupled mode and coupled within an 
atmospheric model. An agricultural area in the Snake River Basin in Idaho and 
its surrounding natural vegetation regions are the study area. Two model 
improvements are tested in this investigation: modification to the calculations of 
the surface exchange coefficient and the addition of an irrigation scheme to 
increase available water to crop areas. Results show that these changes are 
significant factors in proper modeling of hydrological and atmospheric process, 
but improvements and additional calibration to different regions are still needed. 

 
1 Introduction 

 
Noah and Weather Research and Forecasting (WRF) are state of the science physically-distributed 
models used to investigate the land surface and atmospheric characteristics. Noah is already a part of 
WRF because the interactions between the atmosphere and earth are critical in accurately forecasting 
the weather. One of the two most important interactions is the exchange of heat and moisture between 
the surface and atmosphere. The diurnal fluctuations in temperature alter the balance between these 
two systems. Evapotranspiration (ET) which is the movement, or flux, of water returning to the air as 
evaporated water from moist surfaces or from within plants is one of the most complex but important 
variables to quantify either through models or through observing systems. 
 
Weather and land surface models account for soil moisture and provide useful information to quantify 
water movement and its management, under normal and extreme conditions including drought and 
flooding. To do so effectively, the models need to track the water balance of incoming rainfall versus 
water loss from ET, surface run off, and subsurface flow. This study focuses on a component of the ET 
loss but also adds an irrigation algorithm to the models as an additional source of incoming water in 
cropland areas. First, a change suggested by Chen and Zhang (2009) was added to the calculation of 
the exchange coefficient that couples surface vegetation to the atmosphere. Data from instrumented 
grass and shrub vegetation sites is used to measure and evaluate the effect as a general enhancement 
for all vegetation types. The site dominated by cheatgrass (Bromus tectorum) is near Raft River, Idaho 
and the other dominated by sagebrush (Artemisia tridentata) is near Hollister, Idaho. 
 
We investigate the effects of a n ewly added irrigation scheme in this paper to evaluate if this 
enhancement is useful to quantify the water balance in the Snake River basin. The physical formulation 
in the existing version of the model does not correctly represent the croplands in the semiarid region of 
southern Idaho, which has very little annual precipitation. Therefore irrigation, the main human 
induced change in the area, is incorporated into the existing LSM in order to obtain better estimates of 
both water and energy budget components. When enough water is available for ET, some of the 
incoming solar energy is converted to latent heat, which increases humidity, rather than sensible heat, 
which in turn increases air temperature. Water returning to the air as latent heat is no longer available 
for filling rivers and aquifers. 
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Wind speed is modeled using equations relating speed to an air height above a theoretical height near 
the ground, called z0m, where the speed is zero. Similarly, there is a theoretical height, called z0t which 
is usually below z0m, where the air temperature is the same as the ground surface. Calculating the heat 
flux depends on estimating z0t correctly because the distance the heat travels between differing air 
temperatures, affects the rate. Previous versions of WRF and Noah used a fixed parameter, based on 
empirical studies, to calculate z0t. This research uses a method described in Chen and Zhang (2009) 
which makes adjustments to z0t based on the height of the underlying vegetation. 
 

2 Methods 
 
2.1 Weather Research and Forecasting (WRF) model and Noah LSM 
 
Weather Research and Forecasting (WRF) is a state of the art weather forecasting model and is used 
for research and operational purposes. Simulation by WRF in the coupled land surface atmospheric 
conditions links the feedback processes more explicitly as the temperature and water movement 
occurring at and just below the ground's surface are dynamically linked. 
 
The High Resolution Data Assimilation System (HRLDAS v3.1) infrastructure is used to run the Noah 
LSM in the uncoupled mode at 4 km spatial resolution and one hourly temporal resolution with some 
changes. Noah v3.2 is used with the new equation related with the surface exchange coefficient. An 
irrigation scheme is introduced to improve the summertime fluxes over croplands.  
 
Both the coupled and uncoupled models use inputs from the North America Regional Reanalysis 
(NARR) data set. WRF uses two domains outside the area of interest to downscale the atmospheric 
data. All three domains are shown in Figure 1. For WRF, the large outermost domain, having 98 rows 
and 89 c olumns, uses 36 km grid cells to resolve the incoming NARR data within the model 
representation. The middle domain helps resolve orographic effects by using 12 km grid cells in 102 
rows and 114 columns. The innermost domain, which is the same for both the couple and uncoupled 
models, covers the main area of interest with 66 rows and 81 columns. Within WRF, the 4 km grid 
cells help resolve convective processes.  
 
The WRF V3.2.1 model setup uses 38 vertical grid cells of varying heights, with the lowest having an 
average height of 36m. Other WRF parameterization details include:  Lin microphysics scheme, 
RRTMG shortwave and longwave schemes, ETA similarity surface layer scheme, Noah land surface 
scheme, MYJ PBL scheme, Grell 3D ensemble cumulus scheme, two way nesting, positive definite 
advection, and simple diffusion. 
 
The main WRF simulations spanned March 1, 2010 through September 30, 2010.  The Noah LSM was 
run at hourly time steps from January 2009 through September 2010 leaving the first 12 months as a 
spin up period (Chen et al., 2007). Simulated surface fluxes and soil moisture data was used for the 
analysis. The common fields shared by both coupled and uncoupled modes are land use, soil types, 
elevation, land-water masks and monthly vegetations fields. 
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2.2 Irrigation Scheme 
 
Both sprinkler and surface flooding are common irrigation methods in the modeled area. Although the 
human behavior and equipment of actual irrigation is very complex and diverse, the implemented 
irrigation scheme is designed to have some characteristics of both. Only the grid cells having a land 
use classified as irrigated cropland are subjected to irrigation. There are three adjustable parameters: 1) 
minimum percentage of soil moisture (MinPCT), which serves as an irrigation trigger, 2) the start date 
of the irrigation season, and 3) the end date. The second soil layer (10-40cm deep) is used to trigger 
irrigation rather than the thinner top layer, which is prone to quick drying in the summer. The second 
layer’s available soil moisture is compared to the minimum soil moisture (MSM) to determine if 
irrigation is required. MSM is defined by: 

 
MSM = (SMCREF-SMCWLT) * MinPCT + SMCWLT 
 

Where SMCREF is soil’s reference moisture capacity and SMCWLT is the wilting point. The dates 
May 1st through September 15th were chosen for the irrigation season based on estimated crop water 
use data from AgriMet weather stations.  
 
First, it is decided if the current simulation date is within the irrigation season and if the grid is 
classified as irrigated cropland. Then the second soil layer’s available soil moisture is compared with 
MSM. And if too low, the top layer is brought up to the soil’s maximum moisture capacity, the 
saturation level, as done by Adegoke et al. (2003) and Evans and Zaitchik (2008) even though there are 
some other differences between the methods. The minimum percentage (MinPCT) used in this study is 
50%, which is a recommended for many crops as the depletion level at which to start irrigation. 
Saturating the top layer allows some water to flow to the soil layers below. Application inefficiencies 
such as runoff, wind drift, and evaporation are not estimated with this scheme and adequate water is 
assumed to be available.  
 
 
 
 
 

Figure 1. Outlines of the 3 WRF 
domains (on left; outermost domain is 
the figure box) and uncoupled Noah 
domain (on right; outlined by inner 
box) which is the same as the WRF 
inner domain. 
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Surface Exchange Coefficient 
 

The surface exchange coefficient, Ch, which uses the aerodynamic and thermal roughness lengths, is an 
important parameter in LSMs because it affects the heat transfer between the land surface and the 
atmosphere. Several studies have found that the Noah LSM tends to overestimate sensible heat flux 
with the existing Ch equations (Chen et al., 2010; Hogue et at., 2005; LeMone et al., 2008). Within 
Noah, the thermal roughness length, z0t, is first calculated according to Zilitinkevich (1995) as 

 
 z0t = z0m * exp (-k Czil √Re) 
 

where z0m is the aerodynamic roughness length based on the vegetation category, k is the von Karman 
constant, and Czil has a constant value of 0.1 in the existing model. The new formulation for Czil, as 
proposed by Chen and Zhang (2009), is used here and derives Czil from the aerodynamic roughness 
length, z

0m
, of the vegetation type:   

 
 Czil = 10 (-0.4 * z0m /0.07) 
 

Derived Czil using the above equation is always higher than the default value 0.1. Mean value of Czil for 
April is 0.25 which is reduced to a mean value of 0.14 for July but still higher than 0.1. Using z0m, z0t, 
and current atmospheric conditions, WRF and Noah LSM calculate the surface exchange coefficient. 
Figure 3 shows the variation of log Ch using the new equation for Czil in WRF and Noah models with 
the new formula when compared with observations at the Hollister (HL) shrub land and Raft River 
(RR) grassland sites. 

 
Figure 3. Changes in the exchange coefficient, Ch, with new Czil formulation. 

 
3 Results 

 
3.1 Effects of Irrigation  
 
In Figure 4, the spatial plots from the uncoupled Noah simulations illustrate the pattern of monthly ET 
totals for the area of interest, both with and without irrigation. The increased ET in crop areas, which 
are generally along the river curving across the center of the plots, is made possible by water from the 
newly implemented irrigation scheme. Some additional ET is even seen in months before the irrigation 
begins, apparently from soil moisture remaining from the previous growing season. The most dramatic 
contrast occurs in the hot summer months when the natural vegetation areas have dried out, but the 
irrigated areas have available water for both direct evaporation from the soil and for plant transpiration. 
For an example, in July average monthly total ET for cropland grid cells was increased to 199 mm in 
the Noah LSM and to 118 mm in WRF using the irrigation scheme. The same without irrigation was 
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30 mm for Noah LSM and 100 m m for WRF. Table 1 shows the monthly total ET averaged for 
cropland grid cells from March to September. 
 
Non-irrigated   Irrigated-Noah LSM  Irrigated- WRF 

     
 

      
 

      
 

      
 

 
Figure 4. Spatial plots of evapotranspiration over the inner domain of the study area 
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Table1. Mean monthly total evapotranspiration of cropland grid cells in millimeters 
 
 Noah 

Non-Irrigated 
Noah 

Irrigated 
WRF 

Non-Irrigated 
WRF  

Irrigated 
March   27.30686     34.87301     26.24666     26.27751 
April   49.14288     60.55764     47.59344     47.93052 
May   75.24857     98.59694     75.21595     76.02143 
June   87.67767   149.08010     99.34651   101.74130 
July   29.84670   198.94850   100.36070   118.50350 
August   13.51829   157.76580     52.66610     90.56921 
September    9.842969      84.21098     18.71877     49.11565 
 
 
3.2 Surface Energy Balance Analysis 
 
Sensible heat flux and latent heat flux were analyzed with the observed data at Raft River and 
Hollister. According to the time series plots (not shown here), the models capture the diurnal trend, but 
over the grasslands at Raft River, they tend to overestimate SH under summer conditions while 
underestimating SH over the shrub lands at Hollister during spring. With the use of new Czil, error in 
sensible heat at both sites is reduced in Noah runs while WRF shows both reduced and increased error 
as shown in Figure 5. As an example, mean observed sensible heat flux at Hollister was 69 Wm-2. 
Using the new formulation for Czil, the sensible heat flux was reduced from 84 Wm-2 to 61 Wm-2 for 
WRF while the reduction for Noah LSN was from 87 Wm-2 to 70 Wm-2. In the case of latent heat flux, 
WRF shows reduced error in all months at Hollister but increased error at Raft River. Error has been 
reduced in the spring months in Noah LSM but in the summer, June shows increased error with the 
new equation. 
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Figure 5. Root mean squared error of latent and sensible heat fluxes compared against the observations 
with default value and the new values of Czil. 
 
3.3 Soil Moisture Content 
 
WRF simulations were run both with and without a five month wintertime spin-up period. 
Atmospheric models are much more computationally expensive than uncoupled LSMs so reducing 
simulation time before the period of interest is beneficial. For the time period and the cropland location 
used for analysis, the soil moisture data provided by NARR for March 2010 is very similar to the soil 
moisture calculated after simulating a winter of snow accumulation and melt. The differences are 
quickly reduced as the models converge when the snow cover depletes during the late spring season. 
 
Even though the uncoupled Noah simulation resolves to similar top layer soil moisture content in early 
March 2010, it quickly diverges, becoming drier. This was unexpected and may either be caused by 
NARR's temperatures which are warmer than those computed by WRF or caused by the lower soil 
layers being drier and allowing quicker percolation downward. Both models arrived at soil moisture 
noticeably lower than the field capacity for the soil type, even during March when root uptake by 
plants is minimal (Figure 6). 
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Figure 6. Volumetric moisture content at the first soil level 

 
4 Conclusions 

 
Use of the new formulation for the coefficient Czil, as introduced by Chen and Zhang(2009), for use in 
the Zilitinkevich (1995) equation improved the calculation of the surface and atmosphere coupling 
strength, even though the calculated error of sensible and latent heat exhibits different patterns, 
depending on the month. In order to partition the incoming energy accurately, deriving this exchange 
coefficient for the vegetation types that are typical to Idaho proved critical. 
 
Representation of human induced changes in cropland areas via the irrigation scheme, improved the 
estimation of surface energy balance components, primarily evapotranspiration and sensible heat flux 
during the growing season. Such improvements will be crucial for current and future research of 
hydrology processes in this area. 
 
Our investigation also revealed that improvements made to the existing WRF model are also helpful in 
distinguishing the evolution of boundary layer across the Snake River Basin that are partly influenced 
by the advection from the surrounding dry, semi-arid regions of Western Idaho and Eastern Oregon. 
Accurate characterization of diurnal fluctuations in the boundary layer depth serves to quantify 
precipitation feedbacks influenced by evapotranspiration from the irrigated areas of the Snake River 
Basin. 
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