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Expect the unexpected  
when teaching probability
Karen Koellner, Mary Pittman, and Jonathan L Brendefur suggest that probability poses a 
challenge for both teachers and learners

I ntroduction

Probability has recently made its way into many 
textbook series and standards documents 

(NCTM, 2000; NGA, 2010). When students engage 
in probability problem solving many unexpected 
situations can arise due to the counterintuitive nature 
of probability concepts. These situations can be 
difficult for students and challenging for teachers to 
analyse during teaching. Recently, as facilitators of 
a Mathematics Science Partnership grant workshop 
on probability, we had the opportunity to engage 
middle school teachers in professional development 
workshops as well as in their classrooms. In this 
article, we discuss a rich probability task used with 
these teachers along with two scenarios that represent 
challenging aspects of probability for students, and 
challenging teaching. In these two scenarios, we 
explain the underlying probabilistic concepts that 
proved difficult for students. For each probability 
challenge, we discuss how the process of analysing 
student thinking can inform teaching strategies that 
may guide student conceptual development. 

The Problem

We selected the Maze Problem to use in our 
professional development workshop because it is 
a classic compound event problem that enables 
exploration in both experimental and theoretical 
probability. This classic problem can be found in many 
problem solving books as well as in the Middle Grades 
Mathematics Project (Phillips, Lappan, Winter, & 
Fitzgerald, 1986) and Connected Mathematics Project 

Curriculum (Lappan, Fey, Fitzgerald, Friel, and Phillips; 
1998, p. 41) (see figure 1)

The problem includes a variety of concepts 
fundamental to probability, including, but not limited 
to: 1 experiment, 2 trial, 3 outcome, 4 event, 5 
randomness, 6 expected value, 7 the law of large 
numbers, 8 mutual exclusivity, and, 9 equiprobability - 
See Table 1. 

This classic problem is typically presented with a story 
that has to do with placing a coveted person, or object, 
in Room A or in Room B. Students are asked to make 
a conjecture as to which room the person or object  
are more likely to end up in: Room A or Room B.  
The Connected Mathematics Project (CMP) 7th grade 
unit What Do You Expect? (Lappan, Fey, Fitzgerlad, 
Friel, and Phillips, 1998 p. 41-43), includes a variation 
of this problem, see Figure 1. 

Experiment A situation involving chance
Trial Performance of an experiment
Outcome A possible result of a probability experiment
Event An outcome or any combination of outcomes
Randomness Any trial is random if it is both unpredictable and independent from the outcomes 

of any prior trail
Expected Value Expected value is the predicted value of an event based on the probability of each 

outcome. Theoretical expected value is the sum of all possible random events of 
an experiment multiplied by their probability.

The Law of large 
numbers

The law of large numbers is a theorem which states; 
… as you increase the number of random trials of an experiment the results will 
approach the theoretical expected value 

Mutually exclusive Two events are mutually exclusive when they cannot occur at the same time. 
Equiprobability If each outcome of an experiment has the same chance of occurring then the 

outcomes have equiprobability, i.e., they are equally likely 

Table 1. Some fundamental probability skills embedded in the Maze Problem

Figure 1
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The problem asks students: 

1	 to decide whether when they were playing the 
computer game, Deep in the Dungeon, in which 
room would they put the treasure to have the best 
chance of beating Zark? 

2	 to find a way to simulate the computer game  
Deep in the Dungeon using chance devices.

3	 to play the simulation 20 times with a partner and to 
record the room that Zark ends and  for each trial to 
record the room in which Zark will be at the end.

4	 to determine the experimental probability that Zark 
ends up in Room A and the probability that Zark will 
end up in Room B. 

A Common Student Solution 

One way students engage in this problem is to first 
determine which room they think the treasure will be in. 
Possible conjectures might include: 

•	 Room A because it is smaller, 

•	 either room because they both have 3 pathways, 
or

•	 Room B because the lowest path goes  
right to that room. 

Because this is a compound event, students need to 
be able to determine the probability of each pathway 
going into the two separate rooms. Thus, students 
can set up an experiment to simulate the Deep in the 
Dungeon game in different ways depending on the 
chance device(s) they select to use. A chance device 
is a probability tool used to set up the simulation or 
experiment to determine the outcome of each event 
such as a spinner or dice. For example, a group of 
students might decide to use a spinner at the first 
junction in the maze, the first event. The spinner 
would be the chance device that would ensure that the 
determination at that junction is random and fair. For 
example, using a spinner, students might say that if 
they spin a 1, or spin a 2 they will go left, if they spin a 
3 or they spin a 4 they will go straight, and if they spin 
a 5 or a 6 then they will go right. Using this situation, 
if they spin a 5 they will go right and therefore directly 
into Room B, see Figure 1. 

However, if they spin a 1 or a 2 they will go left. This 
brings the player to another junction in the maze 
where there are two options. In creating the simulation 
students will need to use another chance device to 
determine the outcome of another event that is both 
random and fair. Students might decide to use a penny 
as the chance device to determine if they are going 
to go right or left. If they flip a heads on the penny, 
they will go right and a tails they will go left. This will 
determine which room, A or B, they will end up in for 
this trial. This provides an example of how students 
could set up an experiment to simulate Deep in the 
Dungeon and determine experimental probability. 
Other chance devices in addition to pennies and 
spinners could be used in a classroom such as dice,  
or playing cards. 

Students then run trials using the experiment they 
designed with different chance devices at each 
juncture (event) in the maze so that the experiment is 
both random and fair. Discussions around the law of 
large numbers are typical at this point. Students keep 
track of results and share findings with the class. The 
combined trials would be used to determine a “whole 
class” experimental probability. 

Implementation of the problem

As part of our professional development, teachers 
designed lessons to teach the maze problem to their 
students specifically focused on meeting the needs 
of the students in their classes. Teachers considered 
the learning goal, the mathematical focus, how to set 
up the lesson, the specific needs of their students, 
the development of the mathematical ideas, and how 
to close the lesson. Teachers considered a variety of 
teaching strategies for this lesson. For example, one 
sixth grade teacher created a maze on the field at her 
school using chalk, so students could kinaesthetically 
experience the maze. Students moved through the 
maze, and at each designated juncture, they stopped 
and used their chance devices to determine which 
way they would move next. Several other teachers 
put students in groups to set up experiments and 
used different levels of scaffolding and constraints 
to teach the problem. One strategy was to leave the 
problem quite open ended and to carefully observe 
student activity, then to pull the class back together 
frequently to capitalize on critical moments related to 
the mathematics and to the challenging aspects of 
setting up a probability experiment. Other teachers 
scaffolded the lesson by teaching concepts in the 
setup, development, and closure phases of the lesson. 

Regardless of the teaching strategies employed, 
student misconceptions tended to appear in most 
classrooms. Two of these typical situations are 
presented in the following section along with a 
discussion of the probabilistic concepts. We also 
discuss several teaching strategies to support student 
development in these areas. 

Scenario Number 1

A group of students are setting up an experiment 
for The Maze problem. They decide to label the 
terminating part of each path with numbers 1 through 
to 6 respectively, and then to use a die to determine 
which path to travel.

Probability Concepts 

The misconception identified in this scenario is that 
students are identifying each path as being equally 
likely. LeCoutre (1992) identified this phenomenon 
in his work as “misunderstanding of equiprobability.” 
Students with an equiprobability bias assume all 
outcomes of an event are equally likely regardless 
of the compound events or junctures throughout the 
maze. In the scenario above, students believe that 
each of the six terminating paths is equally likely.  
The students have used this idea to create an 
experiment to verify this misconception.  
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Additionally, the task is a compound event problem, 
which means that when students set up their maze 
experiment, they need to set up different random and 
fair experiments at each juncture. The students in this 
scenario did not recognise that each juncture required 
a different number of choices because of their current 
understanding that each path was equally likely.

Teaching strategies 

When teachers recognise that this situation is 
occurring in their class there are options or teaching 
strategies to help students make sense of both the 
related probability concepts of equiprobability and 
compound events. One option would be to have a 
discussion about whether each of the terminating 
paths is equally likely. This discussion should lead 
students backwards to discuss the difference between 
a compound event problem and a simple event 
problem. The teachers we worked with suggested 
that a conversation about what a real maze looks like 
might be an effective strategy. They suggested asking 
students to think of the maze in the problem as an 
actual corn maze, as some teachers did when they 
taught the problem. If students imagined they were at 
the start of the corn maze they would not be able to 
see the terminating points of each path. Therefore, this 
conversation scaffolds the understanding of compound 
versus simple events. Another suggestion is to ask 
students to consider which path they would take if they 
rolled a five on the dice. This question encourages 
students to realise that they do not have a satisfactory 
answer because they have to figure out whether they 
would go right, left, or straight ahead from the starting 
juncture. This conversation should be a good lead into 
compound events.

Scenario Number 2

In a classroom, a teacher did not specify the number of 
trials for each group of students to run.  One group ran 
only one trial and determined Room A was most likely.  
Another group ran twenty trials and determined that 
Room A and Room B were equally likely.

Probability Concepts 

The main probabilistic concepts addressed in this 
scenario are the law of large numbers and sample size. 
The conceptual idea is that the more trials you run 
the closer you will be able to estimate the theoretical 
probability. The students in this scenario may have the 
misconception originally identified by Konold (1991; 
1993) called the outcome approach. Students that only 
ran one trial, and used this approach to probability, 
believe they need to predict what will happen on the 
next trial of an experiment rather than what is likely to 
occur, or what will occur most often after numerous 
trials. Students holding this misconception might not 
realise a need for performing more than one trial. 
Moreover, Konold’s research suggests students with 
this misconception would feel comfortable making a 
decision based on only one trial. 

Teaching strategies

Appropriate strategies to support student development 
of the law of large numbers include considering the 
following questions: 

1	 Does one trial provide you with enough 
information to make a decision? 

2	 Why stop at 20 trials? How many trials should 
we conduct in order to have a large  sample size 
for an accurate estimation?

These questions appear consistent with the 
mathematical concepts and can support students 
developing ideas about sample space. Other problems 
or activities can also support student understanding of 
the sample size and the law of large numbers. 

Many of the teachers we worked with expressed 
difficulty with how to address misconceptions 
surrounding the effects of sample size. This is 
not surprising as the finding is well established in 
mathematics education research (e.g., Tversky 
and Kahneman, 1982). In addition, student 
misunderstandings regarding sample size are 
notoriously difficult to modify and it is important not to 
underestimate the difficulty in helping students to see a 
need for a large sample size. One way to help support 
the development of this concept is to use computer 
software with either a penny or dice simulator. This 
allows students to conduct hundreds, or thousands, 
of trials of flipping a penny. A graph of each result is 
displayed and students can observe the percentages 
of the number of heads and tails that have occurred. 
These percentages move toward being equally likely 
and toward the theoretical probability. These problems 
provide instant data and help students experiment and 
determine what happens to the data the more trials 
they run. 

Discussion

Probability can be difficult for students to learn, 
and to make sense of, due to its counterintuitive 
nature. Exploring the Maze problem provided many 
opportunities for teachers to engage collaboratively in 
discussions about student development of probability 
concepts related to experimental probability, together 
the unexpected situations that can arise when teaching 
probability lessons. By exploring the two scenarios of 
actual challenges that students encountered, teachers 
in our professional development were able to plan, to 
anticipate, and to teach a variety of probability lessons 
with more ease. 

The process of working collaboratively with other 
teachers to plan, teach, and to debrief this problem 
can open up numerous conversations about the 
fundamental ideas of probability, the ways students 
talk and think about the concepts, and the best ways 
to move students forward. We encourage 
readers to try the Maze problem with a 
small group of teachers to plan lessons 
using this rich problem, to anticipate student 
responses, and to reflect on their teaching. 
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