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The M-superfamily of Conotoxins: A Review

Reed B. Jacob and Owen M. McDougal
Boise State University

Abstract

The focus of this review is the M-superfamily of Conus venom peptides. Disulfide rich
peptides belonging to the M-superfamily have three loop regions and the cysteine
arrangement: CC-C-C-CC, where the dashes represent loops one, two, and three,
respectively. Characterization of M-superfamily peptides has demonstrated that diversity in
cystine connectivity occurs between different branches of peptides even though the
cysteine pattern remains consistent. This superfamily is subdivided into five branches, M-1
through M-5, based on the number of residues in the third loop region, between the fourth
and fifth cysteine residues. M-superfamily peptides appear to be ubiquitous in Conus
venom. They are largely unexplained in indigenous biological function and they represent
an active area of research within the scientific community.
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Introduction

Throughout the world there exist both predator and prey. This distinction is apparent though sometimes misleading.
Take for example marine snails of the genus Conus that are present across the oceans of the southern hemisphere
[1]. These snails are slow moving animals that appear more prey than predator. However, they have evolved into
effective predators through the development of venom consisting of biologically active peptides. The venom is
loaded into a hollow harpoon that the snail injects into the intended prey: fish, worms, or other snails [2]. The
categories of cone snails based on prey preference are piscivorous (fish eating), molluscivorous (mollusk eating),
and vermivorous (worm eating) [3]. The cone snail venom contains myriad peptide components significant to the
survival of the organism with respect to hunting and defense against being eaten [4]. Interest by researchers in
snails of the genus Conus began in the early nineteen seventies as evidence of their involvement in numerous human
fatalities mounted [5]. Dr. Alan Kohn, an early pioneer in the study of hunter/prey relationship of cone snails,
recognized that the venom of cone snails may possess therapeutic components [6]. During that time, Dr. Robert
Endean and coworkers in Australia demonstrated that the venom of dissimilar species of cone snail contained a
diversity of biologically active components. Dr. Baldomero (Toto) Olivera and coworkers at the University of Utah
became the primary innovators of successful laboratory techniques in the study of venom components extracted
from cone snails [7]. Foremost among these innovations was an avant-garde method of bio-assay using intracranial
rather than intraperitoneal injection of toxin into subject mice. This new delivery method revealed greater sensitivity
to individual peptides in fish and mouse studies than those from standard M-superfamily intraperitoneal injections
[8]. This early research revealed the disulfide rich nature of the majority of peptide components from Conus snail
venom. The disulfide rich peptides became broadly defined as conotoxins [9].

From Conotoxins to Drugs. The intracranial injection method of conotoxin delivery into fish and mouse subjects
allowed researchers to begin unraveling the complicated chemistry of the neurotoxic peptides and paving the path
for therapeutic applications. The venom of any individual cone snail contains upwards of 100 different peptides;
each with a distinctive role when injected into the target subject. It is the cumulative effect of the individual peptides
that causes the venom to be deadly to the prey. Researchers called the collective effect of the venom a “cabal”, after
unspecified covert groups organized to overthrow equally unspecified governments [10]. With different snails,
researchers noted different cabals: the ‘lightning-strike cabal’, the ‘motor cabal’, and the ‘nirvana cabal’, named
after the general set of reactions elicited by the overall effect of the venom on the test subject. The ‘lightning-strike
cabal’ inhibits muscular contraction in prey due to a combination of paralytic peptides that act to block voltage-
gated Na* and K* channels; this has an effect similar to electrocution. The ‘motor cabal’ effectively inhibits the pre-
synaptic Ca** channels, post-synaptic nicotinic receptors and Na® channels. The combination achieves total
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inhibition of neuromuscular transmission [11]. The ‘lightning-strike’ and ‘motor” cabals often work in conjunction.
The ‘nirvana cabal’ diminishes the sensory circuitry of the prey by producing a euphoric effect [5]. This allows the
snail to capture its prey in a net-like extendable stomach for consumption. Active research in the field of conotoxins
involves the isolation, identification, and assessment of biological activity for individual peptides that possess the
potential to be among the most potent and selective therapeutics ever studied.

Conotoxin components in the venom target myriad receptor sites in the prey, a predatory tactic that has been adopted
across mammalia, from “Caenorhabditis elegans to humans” [12]. Individual conotoxins range between 10-100
amino acids in length [2]. The genus Conus contains over 700 species, representing a peptide library on the order of
70,000 sequences. Conotoxins represent extremely specific biological probes that offer researchers a tool to
understand and differentiate between closely related receptors [13]. The simplicity of conotoxins has made them
valuable in the advancement of neuroscience research and consequent drug development [14]. Conotoxins are
difficult to isolate from the venom, but once sequenced and partially reduced, scientists have been able to synthesize
and properly fold (disulfide bonds) synthetic peptides for their investigations. Currently, only about 0.2% of the
conotoxin peptide library has been cataloged [9, 15].

Many diseases, such as epilepsy, Schizophrenia, Tourette’s Syndrome, Parkinson’s disease and sclerosis, are
associated with improper functioning of signal channels. Conotoxin-based therapeutics have demonstrated great
promise because they are relatively small, potent, selective antagonists and agonists of specific cell membrane
channel proteins [16]. A wide range of companies, in Australia, Ireland, and the United States, are currently
developing and testing drugs based on conotoxins and/or conotoxin molecular scaffolds. Examples of conotoxin
derived drugs either in clinical trials or commercially available include ACV1 [17], AM336 [18], Prialt™ [15, 19-
23], CGX-1160, CGX-1007, and CGX-100 [24]. At this time the only conotoxin drug approved by the United States
Food and Drug Administration for public use is Prialt™. Prialt™ is a synthetic conopeptide derived from Conus
magus used to treat chronic pain and is one of the most powerful pain therapeutics known to date [15]. Prialt™ is the
trade name for o-conotoxin MVIIA, an N-type calcium channel blocker. This drug provides a non-addictive means
to block pain in subject patients by inhibiting the source of pain transmission in nerve cells of the spinal cord. For
this reason it is a desirable alternative to traditional opiate derivatives like morphine or codeine [25].

An Introduction into the M-superfamily of Conotoxins: Members of the M-superfamily of conotoxins have been
found in every Conus species tested to date [4]. Classification of this widely divergent superfamily is based on the
general pattern derived from the number of residues contained in each of the three loop regions CC(X4.)C(Xs.
5)C(X15)CC, where X, represents four to six amino acids in the first loop, X,.5 represents four to five amino acids
in the second loop, and X, represents one to five amino acids in the third loop [26]. M-superfamily peptides are
further divided into 5 branches, labeled M-1 to M-5, based on the number of residues that exist in the third cystine
loop between the fourth and fifth cysteine residues. A further delineation separates the five branches into the Mini-
M and Maxi-M conotoxins, where M-1 through M-3 are considered Mini-M’s and M-4/M-5 are Maxi-M’s (Figure
1). This differentiation is based on the overall number of residues in the mature peptide. The Mini-M conotoxins all
contain fewer than 22 residues, while the Maxi-M peptides contain more than 22 amino acids [13]. The Maxi-M (M-
4 and M-5) peptides are sub-grouped into p-, y-, and kM-conotoxins based on their biological targets. The p-
conotoxins block voltage-gated sodium channels, kM-conotoxins block voltage-gated potassium channels in muscle
[2], and w-conotoxins block nicotinic acetylcholine receptors [26]. Members of the M-superfamily for which a
target receptor is known are exclusively within the M-4 and M-5 branches with relatively little known about the
biological receptors targeted by the Mini-M peptides. It is known that the target receptor for the Mini-M peptides is
different from that of the Maxi-M peptides [26].

-Figure 1-

Mini-M’s: Interestingly, the Mini-M peptides demonstrate unique disulfide bond connectivity patterns, loop size
variability, and unique 3D folding structure even within the same branch. The M-superfamily is the only
superfamily where such diverse structure and cysteine connectivity is present, especially in the Mini-M’s, M-1
through M-3.



This is an author-produced, peer-reviewed version of this article. The final publication is available at www.springerlink.com. Copyright
restrictions may apply. DOI: 10.1007/s00018-009-0125-0.

M-1 branch: The lack of solid mechanistic evidence of activity and definitive target receptor has hampered the
comprehensive publication of the Mini-M peptides. Much of what is presently known of the M-1 branch has been
through the study of conotoxins mr3e (from C. marmoreus) and tx3a (from C. textile). Conotoxin mr3e has the
disulfide connectivity Cys1-Cysb, Cys2-Cys4, and Cys3-Cys6 and its NMR-derived solution structure contains what
authors described as a ‘double-turn’ motif [27, 28]. This is different than the ‘triple-turn’ motif described for M-1
branch peptide tx3a [4, 29]. Thus, even though the disulfide connectivity pattern is the same for these two peptides,
their secondary structures vary considerably. Prior to this discovery, it was thought that once a structure was
determined for a peptide family with the same disulfide pattern, the peptide scaffold was conserved for that family
of peptides. The unique secondary structure characteristics of mr3e and tx3a are suspected to be responsible for the
observed difference in response to intracranial injection in mice with conotoxin mr3e causing no observable effect
and tx3a inducing excitatory behavior [30]. This excitatory behavior is also observed for the M-2 branch peptide,
mr3a [28]. The mr3a structure consists of the ‘triple-turn’ motif also observed for tx3a, but its backbone has a
different cystine pattern. Figure 2 shows a comparison of the published structures, disulfide bond pattern, and
sequences for mr3e, tx3a, and mr3a [27].

-Figure 2-

M-2 Branch: There is limited published information describing members of the M-2 branch of the M-superfamily.
The structure and sequence of conotoxin mr3a have been reported, but little is known about biological targets or
action mechanisms for this and other M-2 peptides. Conotoxin mr3a was determined to have a cystine connectivity
of Cys1-Cys6, Cys2-Cys4, and Cys3-Cys5 [28, 30] and a three dimensional structure best described as a ‘triple-turn’
motif [4]. To date, this connectivity belongs exclusively to the M-2 branch peptides. Additionally, there appear to be
similarities between the M-2 branch and the Maxi-M peptides. A resemblance between the prepropeptide sequences
for the immature conotoxins has been reported. The M-2 and M-4/M-5 branches have a common-size signal peptide
(25 residues) in addition to a high degree of homology in the first eight residues for that signal peptide,
MMSKLGVL [30]. It has further been described that the M-2 peptide mr3a elicits a strong excitatory response in
mice at nanomolar quantities upon intracranial injection [4]. This finding supports the notion that members of the
M-2 branch peptides are significant and functional snail venom components with the potential to be used as a means
of discovering the possible existence of uncharacterized receptors.

M-3 Branch: The cystine pattern and structural characteristics of M-3 branch peptides have not been reported to
date. Current knowledge of these peptides is limited to sequence comparisons with other branch families of the M-
superfamily. A study exploring similarities to other families noted that both M-1 and M-3 peptides are rich in acidic
residues, as opposed to basic residues in M-2 and M-4 [30]. cDNA studies were performed to further investigate the
similarities between the M-1 and M-3 branches. From this, a new phylogenetic tree was constructed in which M-1
and M-3 conotoxins have “a closer relationship, falling in the same tree branch” [30]. The signal peptide and pro-
peptide region of the immature toxins appear to be highly conserved; evidence that the M-1 and M-3 branch
peptides are evolutionarily related. This close relationship does not appear between any other branch families in the
M-superfamily [30]. A few recently reported examples of M-3 peptides are: regl2a (GCCOOQWCGODCTSOCC)
[1], Tx3.5 (RCCKFPCPDSCRYLCC(nh2)) [26], and Qc3.1 (ACCDPDWCDAGCYDGCC) [27]. Most M-3 family
peptides are discovered by PCR amplification of cDNA [27]. Peptide sequencing allows for characterization into the
M-3 branch based on the cysteine pattern and three amino acid residues in the third loop.

Maxi-M’s: The Maxi-M peptides are divided into the M-4 and M-5 branches of the M-superfamily based on their
primary sequence. These peptides are further separated into the kM-, y-, and p-conotoxins based on their molecular
targets consisting of potassium, nicotinic acetylcholine, and sodium receptors, respectively [4, 5]. The M-4 branch
consists of all published «M- and - conotoxins in addition to about one third of the p-conotoxins, (Figure 3) while
the M-5 branch consists of only p-conotoxins to date. It is also interesting to note that the Maxi-M, kM-, y-, and p-
conotoxins are found mostly in fish-hunting Conus species, whereas the Mini-M peptides appear in the venom of the
mollusk and worm-hunting cone snails [28, 29]. The Maxi-M peptides induce paralysis in prey, while the M-1, M-2,
and M-3 branch (Mini-M) peptides generally cause an excitatory physiological response [4]. This difference may be
attributed to the feeding preferences of the snail. The fish-hunting cone snails paralyze their fast moving prey before
consumption, while worm- or snail-hunting cone snails rely on spasmodic response to drive the prey from its shelter.
Characteristic differences for the Maxi-M peptides versus the Mini-M’s can be summarized as: a longer primary
sequence (22-24 a.a. vs <20), a known molecular target (K*, nACh, Na" receptors), and a common and distinctive
cystine pattern (Cys1-Cys4, Cys2-Cys5, Cys3-Cys6) [27, 31-33]. Until the more recent characterization of the Mini-
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M peptides, it was believed that the Maxi-M disulfide bond pattern was the archetype of the entire M-superfamily; a
commonality observed in other conotoxin superfamilies. It has recently been demonstrated that the disulfide bonds
are significant structural and electrostatic elements involved in the interaction of conotoxins with the ligand binding
domain of receptor ion channels [34]. The electrostatic properties of the sulfur atoms in the disulfide bonds
contribute to conotoxin agonist and antagonist activity toward a class of biological receptors that have recently been
classified as the Cys-loop superfamily of receptors [35].

-Figure 3-

The Cys-loop superfamily receptors have been found in nicotine acetylcholine receptors and play a role in the
transmission of nerve impulses, specifically in central and peripheral nervous tissue, and neuromuscular junctions,
which control muscle contraction [36]. The structure of the Cys-loop receptors is largely comprised of 3-sheets and
a-helices responsible for the transmission of action potentials across cell membranes. It is supposed that the a-
helical region of the Cys-loop receptors is responsible for the initiation of the action potential [35]. Regulation of
these receptors is vital to the well-being of the organism; and it appears that conotoxins have evolved to target this
class of receptors.

M-4 Branch: The M-4 branch is defined by 4 residues in the third loop region of the primary sequence between
Cys4 and Cys5 (CC(X4.6)C(X4.5)C(X4)CC). The M-4 branch kM- and y-conotoxins were the first conotoxins for
which a disulfide bond pattern was determined and y-PIIIE was the first M-superfamily peptide for which a three
dimensional structure was determined by NMR spectroscopy. Thus the M-4 peptides serve as a structure model for
all y-conotoxins.

xM-Conotoxins: kM-conotoxins are antagonists of K* ion channels. In conotoxin nomenclature, the x refers to
activity toward K" ion channels and the M indicates that the peptide belongs to the M-superfamily. The only
published kM-conotoxin at this time is  kM-RIIK, with  the primary  sequence:
LOSCCSLNLRLCOVOACKRNOCCT(nh2). This peptide was isolated and characterized from the venom of C.
radiatus [31]. Its biological target was determined to be the “Shaker” channel and the similar mammalian K,1.2 K*
channel [33]. The “Shaker” channel was first identified from Drosophila. Applied stimulus to induce rapid muscle
contraction caused the fly to “shake” [37-39]. The inhibition of the channel protein responsible for the shaking
affect was then selectively inhibited confirming the existence of what is now referred to as the “shaker” channel.
This channel was further classified as a potassium voltage-gated channel allowing for the identification of
subsequent similar channels in numerous species. kM-RIIIK has the highest demonstrated affinity for TShal (Trout
Shaker Channel 1), a Shaker K* channel from rainbow trout (Onchorychus mykiss) [33, 31, 40]. In comparison with
the O-superfamily conotoxin, k-PVIIA, [41-42] and other venom components targeting the Shaker channel, kM-
RIIK appears to function uniquely; it does not have the characteristic k-conotoxin functional dyad consisting of
hydrophobic amino acids [32]. The proposed mechanism of k-conotoxins is to use the hydrophobic dyad structure to
plug the Shaker channel pore. In contrast, k<M-RIIIK inhibits the Shaker channel by forming a ring that occludes the
channel pore by acting as a surface lid rather than an intercalating plug in the channel [31-33, 42]. The amino acids
essential for the K* channel binding of xM-RIIIK appear to be: Leul, Argl0, Lys18, and Argl9 [32]. The
significance of these amino acids was identified based on mutational analysis comparison with p-conotoxin GIIA
[32]. The structure and function characterization of kM-RIIIK provides a new backbone model on which future
pharmacological treatments may be derived.

w-Conotoxins: The M-4 branch of the M-superfamily contains three examples of y-conotoxins that have been
labeled y-PIIIE, w-PlIIF, and w-PrllIE [43-45]. These y-conotoxins contain the same disulfide connectivity as the
rest of the M-4 branch [43]. Similar to the k- and kM- association, y-conotoxins function at the nicotinic
acetylcholine receptors (nAChRs) that were previously determined to be the site of activity for the a/A-conotoxins
[43-47]. aA-Conotoxins are much smaller (<20 amino acids) and only contain two disulfide bonds [44].

In 1997, w-PIIIE became the first y-conotoxin to be described in literature. This peptide was isolated from the
venom of C. purpurascens and was reported to have the amino acid  sequence:
HOOCCLYGKCRRYOGCSSASCCQR(nh2) [43]. It was further discovered that C. purpurascens inhibits muscle
nAChRs using a combination of y-PIlIE and aA-PIVA [43]. The binding of yw-PIlIE to nAChRs in muscle was
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determined to occur at a ligand binding site complementary to that identified for a.A-conotoxins [43, 46-47].
Significant to the discovery of y-PIIIE was the identification of the novel ligand binding site on muscle nAChRs.
Thus, y-PIIIE served as a useful tool to characterize a new target for therapeutic drug development, and increase
understanding of the Cys-loop superfamily of receptors.

y-PIIF was reported in 2003, a component of the venom of C. purpurascens with the sequence:
GOOCCLYGSCROFOGCYNALCCRK(nh2) [45]. Though also a w-conotoxin, PIIIF is ~50 times less potent than
y-PIIE in blocking both mice and elasmobranch nAChRs [45]. The difference in functionality is thought to be due
to the amino acids of the third loop region. In y-PIIIE the third loop consists primarily of small polar residues
(SSAS), while in y-PIIIF the third loop consists of bulkier residues (YNAL) that collectively form a less polar
region of the peptide. The variation in amino acid composition has led researchers to hypothesize that polarity and
steric bulk in the third loop are the significant factors for the observed deviation in binding and activity of these
peptides to NAChRs [45].

y-Conotoxin ~ PrllIE  isolated from the venom of Conus parius has the  sequence,
AARCCTYHGSCLKEKCRRKYCC(nh2) [44]. w-PrllIE is approximately 28 times more potent than y-PIIIE at
inhibiting NAChRs (ICsy = ~250 nM for y-PrllIE as compared to ~7,000 nM for y-PIIIE) [44]. Whereas y-PIIE-F,
and y-PrllIE all inhibit fish nAChRs, only y-PrllIE is active as a non-competitive inhibitor of mice skeletal muscle
nAChRs [44]. This is significant as the mouse model is used to predict thereputic activity in humans.

M-4 p-Conotoxins: p-Conotoxins belong to both the M-4 and M-5 branches of the M-superfamily. These
conotoxins differ only in the number of residues in the third loop region and are similar in their common activity as
antagonists of voltage-gated sodium channels (VGSCs). VGSCs control the electron potential across neuron and
excitable muscle cell membranes [48]. These VGSCs are Na,1.1 — Na,1.9 based on their a-subunit sequence and
further organized according to their sensitivity to tetrodotoxin (TTX). VGSCs are classified as either TTX-S, for
sensitive, and TTX-R, for resistant, depending on their overall degree of inhibition by tetrodotoxin [49-50]. All nine
VGSCs are inhibited by TTX but those with ICs, values in the nanomolar range constitute the TTX-S VGSCs
(Na,1.1-4, Na,1.6, and Na,1.7), and the VGSCs that have 1Cs, values in the micromolar range are considered TTX-
R (Na,1.5, Na,1.8 and Na,1.9) [34, 48-49, 51-55]. The TTX-S VGSCs function in either neuronal communication
(Na,1.1, Na,1.2-3, and Na,1.6-7) [49, 56] or skeletal muscle control (Na,1.4) [48-49]. Researchers have determined
the connection between VGSCs and the symptoms caused by many diseases including neuropathic pain, arrhythmia,
epilepsy, stroke, and bipolar disorder [48, 57]. For example, neuropathic pain originates from the TTX-R channels
Na,1.8 and Na,1.9 [58-60].

u-Conotoxins have been investigated as therapeutic drugs because of their potency and ability to differentiate
between distinct VGSCs. The first u-conotoxins isolated from the venom of Conus geographus were u-GlIIA, B,
and C. These peptides were shown to be active in blocking skeletal muscle VGSCs [54], specifically Na,1.4, while
having a much lower affinity toward neuronal VGSCs. The activity of conotoxin p-GII1A toward the inhibition of
Na,1.4 VGSCs was shown to be dependent on Arg™ in the primary sequence (R in bold):
RDCCTOOKKCKDRQCKOQRCCA-(nh2) [54, 61]. Substitution of this Arg residue (Arg'®) three amino acids
removed from the third Cys residue (i.e. loop two) results in the inactivation of the peptide. This is a testament to
the specificity and usefulness of conotoxins as tools to understand ligand to receptor activity.

More recent discoveries have led to the identification, characterization, and publication of 18 u-conotoxins to date.
The 7 p-conotoxins belonging to the M-4 branch are: GIHIA-C [49, 37], PIIIA [49, 51], TIIIA [49], and SxIIIA-B
[62]. The remaining 11 p-conotoxin belong to the M-5 branch: SIIIA [48, 55], KIIIA [55], CHIA, CnllIA-B, MIIIA
[63], SHIB [58], SmIIIA [64], and BulllA-C [12]. u-Conotoxin PIIIA blocks both muscle and neuronal TTX-S
VGSCs [53, 56, 65]. u-Conotoxin PIIIA was found to have an I1Cs value of 2 uM in tests involving mammalian
CNS Type Il muscle channels [53]. This represents an inhibition that is upwards of 50 times greater that that
observed for p-conotoxin GIIA [51]. u-PIHA is also effective in blocking neuronal channels (Na,1.2) albeit with
lower affinity than muscle VGSCs [63]. u-PIIA has a pICs, of 6.8 (where plCso = -logICsp) in binding studies with
Na,1.4 skeletal muscle VGSCs [37, 52, 66-67]. While Na,1.4 skeletal muscle VGSCs serve as the model system for
muscle cell antagonist activity, the Na,1.2 VGSCs serve as the standard test receptor for neuronal VGSCs (Figure
4).
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-Figure 4-

More recently, u-conotoxin TIHIA was isolated from the venom of Conus tulip. The primary sequence for this
peptide contains the characteristic and functionally relevant positively charged basic amino acid Arg (or Lys), three
amino acids removed from the third Cys residue (i.e. loop two), next to an acidic and negatively charged amino acid
(Glu™) [49]. This is unusual as the sequences of previous p-conotoxins contained the Arg (or Lys) neighbored by
either GIn, Arg, or Trp [49]. u-TIHA inhibits VGSCs from both neuronal (Na,1.2) and skeletal muscle (Na,1.4),
with a preference for Na,1.4 VGSCs. Mutation of Glu™ to Ala in the TIIIA peptide, changed the biological target
preference from skeletal muscle Na,1.4 VGSCs to neuronal Na,1.2 [49]. This is an example of the value of
conotoxins as selective probes to develop structure activity relationship models for closely related receptors. Single-
site mutation on the conotoxin scaffold provided a better understanding of the size and electrostatic topography of
the ligand required to differentiate between receptor types.

p-Conotoxins SxINA and SxI11B demonstrate high affinity for muscle Na,1.4 VGSCs [62]. While little has been
described in the literature regarding these recently reported p-conotoxins, the process used to identify their disulfide
connectivity made use of a novel technique referred to as rapid disulfide bridge mapping [62]. This procedure
introduces isotope labeled cysteine residues during cloning, then uses nuclear magnetic resonance (NMR)
spectroscopy to identify the connectivity of the labeled peptides and rapidly determine bridge order. When
synthesizing SxIIIA, the first three cysteines were uniformly N and *3C enriched, while the remaining three
cysteine residues were labeled with a 70:30 mix of (**N/*2C):(**N/**C) [62]. The use of NMR to differentiate the
cystine pattern is an efficient approach that may lead to the characterization of many additional conotoxins that are
so far known only by sequence because of insufficient native sample quantities for confirmation of correct folding of
synthetic peptide.

M-5 Branch: The M-5 branch of the M-superfamily differs from those preceding it by containing five residues in
the third cysteine loop between cysteines four and five. All known M-5 conotoxins are p-conotoxins [27].

M-5 g-Conotoxins: The p-conotoxins within the M-5 branch are: SmIIIA [64], SIIIA [48, 55], KIIIA [55], CIIIA,
CnllIA-B, MIIIA [63], SHIB [58] and BulllA-C [12]. ). In contrast to the M-4 branch u-PIIIA and p-GlIIA that
inhibit TTX-S VGSCs, pu-SmIIIA is an antagonist of TTX-R VGSCs [64]. Although SmIIIA inhibits TTX-R
channels, it does not differentiate well between them (Na,1.5, Na,1.8, and Na,1.9) [66].

u-Conotoxins SIHIA and KIIIA are antagonists of TTX-R channels similar to the M-4 peptide p-SmillA.
Interestingly, the size of the first loop varies between p-SmlllA (five amino acids) to p-SIHIA (three residues) and
finally u-KII1A (one residue) [48, 55]. The diversity in the number of amino acids in the first loop was an indication
to researchers that the second and third loop regions contained the necessary structural and electrostatic
characteristics for the peptides to be active toward inhibiting TTX-R VGSCs. This was confirmed in a study that
removed the first loop of u-KIIIA and showed that the remainder of the peptide retained efficacy toward the
inhibition of TTX-R VGSCs. The modified p-KIIA provided a smaller yet equally effective model from which
synthetic mimetics are being explored as pharmacological therapeutics [34].

Based on sequence comparison from the last two loop regions of p-SmillA, KIIA, and SIHA, four new p-
conotoxins, Cnlll1A-B, CIIIA, and MIIIA were discovered and reported in 2006 [63]. As expected, these more recent
p-conotoxins inhibited TTX-R VGSCs. Despite their sequence similarity to one another, they were found to inhibit a
divergent set of TTX-R channels, indicating the importance of the amino acid constituents within these peptides.
Thus, it was determined that the secondary structures of the second and third loop regions of p-SmillA, KIlIA, and
SIA are significant for binding to TTX-R channels. This was tested by a comparison study of these three
conotoxins  with  p-CnlllA, p-CHIA, and p-MIIIA, which vyielded a consensus sequence of

R AR
CC(X”)CSX «WCRDH; QCC indicating the three significant amino acids present in the second and third

loops, that are responsible for differentiating between the TTX-R channels [63]. Common to these p-conotoxins is
the conservation of Arg in the second loop, usually in the same sequence position (third residue past Cys) [37, 48-
49, 51, 55, 58, 62-64], further validating the significance of Arg in VGSC inhibition first reported for u-GIIIA.
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A similar effect, as reported with p-TIIA, was observed for p-conotoxins SIHIA and SIHIB where u-SIHA differs
from p-SIIB by a single residue change in the third loop that results in SIIIB preferentially targeting Na,1.4
(muscle) to Na,1.2 (neuron), while SIIA prefers neuronal VGSCs [58].

The M-superfamily peptides have advanced the methods used to identify novel peptides belonging to the M-5
branch based on exogene analysis. A study by Mandé Holford at the University of Utah presented the structure of a
new sodium channel blocking conotoxin extracted from C. bullatus, BulllA [12], which also shows an affinity for
muscle VGSCs Na,1.4. u-BulllA was identified and characterized by the isolation of exogenes which are the genes
responsible for the mediation of biotic interactions between organisms [12]. Once isolated, these genes were
compared with the genes of different cone snail species. The phylogenetic information resultant from this gene
comparison approach was incorporated into a general strategy aimed at the discovery of new classes of peptides
[12]. This technique led to the discovery of the C. bullatus p-conotoxins, BulllA, BulllB, and BulllC. It is thought
that this approach to conotoxin detection will expedite the characterization and reporting of novel peptides
previously not identifiable by traditional means. After all, it was the sequence comparison of many M-superfamily
peptides containing five amino acids in the third loop that resulted in the M-5 branch appearing in the literature in
20009.

Uncharacterized M-superfamily conotoxins: A new branch of the M-superfamily has been described in the
literature that is homologus in signal sequence to other M-superfamily branches, but differs in cysteine order. The
two conotoxins in this new category are Vx2 and Im6.1 [9, 15]. A study performed at the Shanghai Institute of
Biological Sciences led to the publication of conotoxin Vx2. Their report demonstrated the commonality between
cDNA and mRNA for conotoxin Vx2 and the M-4 branch peptides pu-GIIA and p-GlIIB. Out of the 25 amino acid
residues comprising the signal sequences for Vx2 and the u-GIIIA-C there was only a difference in two residues:
Leu9 was substituted by Val; and Met23 was replaced by Leu [9]. These differences are considered to be within an
acceptable margin of variance to allow Vx2 to be characterized as an M-superfamily peptide. However, experts in
the field disagree with this assignment because of the unique cysteine order in mature VVx2 (Table 1). M-superfamily
peptides all have the characteristic cysteine arrangement of CC-C-C-CC while that of Vx2 is CCC-C-C-C [9].

Conotoxin Im6.1, isolated from the venom of Conus imperialis, was placed in the same neoteric category of the M-
superfamily as Vx2. Like Vx2, Im6.1 shows a similar cDNA and mRNA signal sequence consistent with other
members of the M-superfamily. However, Im6.1 has the cysteine arrangement of C-C-CC-C-C with the disulfide
connectivity C1-C4, C2-C5, and C3-C6 [15]. The biological targets of VVx2 and Im6.1 are yet to be identified.

-Table 1-

Conclusion: The M-superfamily of conotoxins is arguably the most diverse of all the conotoxin superfamilies yet
characterized. Five branches of this family have been definitively categorized with conotoxins Vx2 and Im6.1
demonstrating signal sequences consistent with the M-superfamily, yet with unique cysteine and cystine patterns.
The study of the M-superfamily has been pivotal in increasing understanding of conotoxins and their specific
receptors. Through study of the Maxi-M conotoxins, the u-, kM-, and y-conotoxins have been characterized with
their respective targets (Na*, K*, and nAChR). The Maxi-M peptides that constitute the M-4 and M-5 branches have
defined disulfide connectivity and known target receptors.

The smaller Mini-M conotoxins of the M-1 and M-2 branches not only differ in cystine order form the Maxi-M
peptides, but also from each other. This is unique to the M-superfamily and has led to the interesting discovery that
conotoxins with different cystine pattern can have similar structures even when they belong to different branches of
the superfamily. This is observed with the structures of the M-1 peptides mr3e and tx3a having dissimilar structure,
while the M-2 peptide mr3a has a similar three dimensional structure to the M-1 peptide tx3a. This serves as
another unique feature to the M-superfamily. The uncharacterized disulfide pattern, unknown molecular target, and
yet to be determined structural information for M-3 peptides offer many potential rewards for researchers.

Although much remains unknown regarding the M-superfamily of peptides, especially the Mini-M branches, the
scientific advancement that has occurred through the study of these peptides has been significant. The study of
Maxi-M conotoxins has involved the use of original techniques leading to the advancement in structure activity
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relationship comprehension for neuronal and muscular molecular targets. Research on the M-superfamily peptides
has led to the development of new instruments, probes, and laboratory techniques that are broadly applicable to
other fields of science. A specific example is the use of isotopic enrichment of cysteine side chains to characterize
cystine arrangement by NMR. This technique can be applied to any disulfide rich peptide or protein to reduce the
time required for structure determination and connectivity elucidation. Secondly, the use of exogene phylogeny
comparison can be used across the genus Conus to identify and characterize peptides that would otherwise not be
possible by traditional means.

The M-superfamily of conotoxins has displayed unique characteristics that have allowed for the development of
therapeutic treatments and increased knowledge of receptors responsible for pain and sensory transmission. In
summary, there remains much work to be done in this field.
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FIGURE LEGENDS
Figure 1. A flowchart of the organization of the M-superfamily with known disulfide

connectivity shown for each branch (M-1 — M-5).

Figure 2. Structures of Mini-M peptides of the M-1 and M-2 branches. Depicted are the
‘Double-turn’ motif of mr3e (M-1) and the “Triple-turn’ of tx3a (M-1) and mr3a (M-2).

Figure 3. Structures of the M-4 branch sub-categories kM-, u-, and y-conotoxins. Explanations
of highlighted residues are described in the text.

Figure 4. Known binding efficacy for u-conotoxins toward muscle voltage gated sodium

channels (VGSCs) and Neuronal VGSCs.

TABLE LEGEND
Table 1. A summary of known M-superfamily branches, cysteine patterns, disulfide

arrangements, representative sequences, three dimensional structures, and references.
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Figure 3
-Conotoxin
Muscle VGSC Neuronal VGSC  Reference
pIC,, for Na 1.4 pIC,, for Na 1.2

8.2 - SulllA (2008) TGKKGS- A* —— Unpublished [64]

8.2 - SxIIIB (2008) 7 TGKKGS-- A — Unpublished [64]

8.0 «———  TIAQ2007)  RHGECKGOKG--- . _ 7.4 [49]
M-4 Branch 7.3 -« GIIC(1985) RDECTOOKK--- * ——»  No effect [37, 53]
7.2 - GIIB(1985) RDECTOORK--- * R 5.9 [37, 53]
7.1 <——  GIIIA((1985) RDECTOOKK--- * 5.1 [37, 53]
6.8 «—— PHIA(1998) ZRLECGFOKS--- —_— 6.5 [51, 53]

8.6 «———  SIIB (2008) INCENGG-=--- _— 8.3 [58]

7.7 «———  SIIA (2005) ZINBENGG----- —_— 8.0 (58]

6.7 «———  KIIA (2005) N--ooo-- o o 7.7 [34)

6.3 <———  BulllB(2009) VGERCCKNGKRG-- * —— Unpublished [12]

6.3 «———  BulllC (2009)  IVDRCCNKGNGKRG * — Unpublished [12]

M-5Branch 6.2 <—— BulllA (2009) VTDRECK GKRE--- - —> Unpublished [12]
~6.14 <«—— SmllA (2002) ZREENGRRG--- — Unpublished [63, 66]

5.0 «———  CIIIA (2006) GRECEGPNG--- u e 5.0 [63]

4.3 <«———  CnllIA (2006) GREEDVPNA---€SG E— 5.0 [63]

4.3 «———  CalllB (2006) ZGEEGEPNL--- ROQ —— 5.0 [63]

No effect «———  MIILA (2006) ZGCENVPNG---€5G —  Not tested [63]

O = trans-4-hydroxyproline 7 = Pyroglutamic acid * = C-terminal amidation
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Figure 4
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Table 1
Tx3a CCSWDVCDHPSCTCCG A 4,15
- [‘ ..I . >
M-1 | §6-C-C-GC | 1p3 CCEPQWCDGACDCCS 27,30, 15
Mr3e VCCPFGGCHELCYCCD* 27.28.30.15
Mr3a GCCGSFACRFGCVOCCY 29,15
Mini-M | M-2 | cc-c-c-cc - < R -
g | regl2g CCMALCSRYHCLPCC 1,15
Tx3b CCPPVACNMGCKPCC* X (30 26,15
Regl2a GCCOOQWCGODCTSOCC 1,15
M-3 | o | V4 GCCEPDWCDSGCDDGCC Unknown 15
Tx3.5 RCCKFPCPDSCRYLCC* Rogida 26,15
GIIIA | RDCCTOOKKCKDRQCKOQRCCA* H, ; 14,15
M-4 | €C-C-F-CC 1 A | RHGCCKGOKGCSSRECROQHCC* A__ﬂf‘ﬁ/Tt 15
e
RIIK |LOSCCSLNLRLCOVOACKRNOCCT* GmA 33,15
SmillA|  ZNCCNGGCSSKWCRDHARCC* Ll id 12,34, 15
M-5 | cC-c CC 4 - L
Maxi-M KIIA CCNCSSKWCRDHSRCC* 12,34, 15
axi- : &
BulllA| VIDRCCKGKRECGRWCRDHSRCCGRR | = 12
CErs-CC v WIDPSHYCCCGGGCTDDCVNC U“'::“z“’ﬂ 9,15
X<
Unknown — Unknown -
C-C-CC-C-C| Im6.1 | TCOPYYONDGKVCCPEYPTCGDSTGKLICVRVTD Imé.1 15

O = rrans-4-hydroxyproline  Z = Pyroglutamic acid * = (C-terminal amidation
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