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The M-superfamily of Conotoxins: A Review 

Reed B. Jacob and Owen M. McDougal 
Boise State University 

 
 

Abstract 

The focus of this review is the M-superfamily of Conus venom peptides.  Disulfide rich 
peptides belonging to the M-superfamily have three loop regions and the cysteine 
arrangement: CC-C-C-CC, where the dashes represent loops one, two, and three, 
respectively. Characterization of M-superfamily peptides has demonstrated that diversity in 
cystine connectivity occurs between different branches of peptides even though the 
cysteine pattern remains consistent. This superfamily is subdivided into five branches, M-1 
through M-5, based on the number of residues in the third loop region, between the fourth 
and fifth cysteine residues. M-superfamily peptides appear to be ubiquitous in Conus 
venom. They are largely unexplained in indigenous biological function and they represent 
an active area of research within the scientific community.   
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Introduction 
Throughout the world there exist both predator and prey. This distinction is apparent though sometimes misleading. 
Take for example marine snails of the genus Conus that are present across the oceans of the southern hemisphere 
[1].  These snails are slow moving animals that appear more prey than predator. However, they have evolved into 
effective predators through the development of venom consisting of biologically active peptides.  The venom is 
loaded into a hollow harpoon that the snail injects into the intended prey: fish, worms, or other snails [2]. The 
categories of cone snails based on prey preference are piscivorous (fish eating), molluscivorous (mollusk eating), 
and vermivorous (worm eating) [3]. The cone snail venom contains myriad peptide components significant to the 
survival of the organism with respect to hunting and defense against being eaten [4].  Interest by researchers in 
snails of the genus Conus began in the early nineteen seventies as evidence of their involvement in numerous human 
fatalities mounted [5]. Dr. Alan Kohn, an early pioneer in the study of hunter/prey relationship of cone snails, 
recognized that the venom of cone snails may possess therapeutic components [6].  During that time, Dr. Robert 
Endean and coworkers in Australia demonstrated that the venom of dissimilar species of cone snail contained a 
diversity of biologically active components. Dr. Baldomero (Toto) Olivera and coworkers at the University of Utah 
became the primary innovators of successful laboratory techniques in the study of venom components extracted 
from cone snails [7]. Foremost among these innovations was an avant-garde method of bio-assay using intracranial 
rather than intraperitoneal injection of toxin into subject mice. This new delivery method revealed greater sensitivity 
to individual peptides in fish and mouse studies than those from standard M-superfamily intraperitoneal injections 
[8]. This early research revealed the disulfide rich nature of the majority of peptide components from Conus snail 
venom.  The disulfide rich peptides became broadly defined as conotoxins [9]. 
 
From Conotoxins to Drugs. The intracranial injection method of conotoxin delivery into fish and mouse subjects 
allowed researchers to begin unraveling the complicated chemistry of the neurotoxic peptides and paving the path 
for therapeutic applications. The venom of any individual cone snail contains upwards of 100 different peptides; 
each with a distinctive role when injected into the target subject. It is the cumulative effect of the individual peptides 
that causes the venom to be deadly to the prey. Researchers called the collective effect of the venom a “cabal”, after 
unspecified covert groups organized to overthrow equally unspecified governments [10]. With different snails, 
researchers noted different cabals: the ‘lightning-strike cabal’, the ‘motor cabal’, and the ‘nirvana cabal’, named 
after the general set of reactions elicited by the overall effect of the venom on the test subject. The ‘lightning-strike 
cabal’ inhibits muscular contraction in prey due to a combination of paralytic peptides that act to block voltage-
gated Na+ and K+ channels; this has an effect similar to electrocution. The ‘motor cabal’ effectively inhibits the pre-
synaptic Ca2+ channels, post-synaptic nicotinic receptors and Na+ channels. The combination achieves total 
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inhibition of neuromuscular transmission [11]. The ‘lightning-strike’ and ‘motor’ cabals often work in conjunction. 
The ‘nirvana cabal’ diminishes the sensory circuitry of the prey by producing a euphoric effect [5].  This allows the 
snail to capture its prey in a net-like extendable stomach for consumption. Active research in the field of conotoxins 
involves the isolation, identification, and assessment of biological activity for individual peptides that possess the 
potential to be among the most potent and selective therapeutics ever studied.  
 
Conotoxin components in the venom target myriad receptor sites in the prey, a predatory tactic that has been adopted 
across mammalia, from “Caenorhabditis elegans to humans” [12]. Individual conotoxins range between 10-100 
amino acids in length [2].  The genus Conus contains over 700 species, representing a peptide library on the order of 
70,000 sequences.  Conotoxins represent extremely specific biological probes that offer researchers a tool to 
understand and differentiate between closely related receptors [13].  The simplicity of conotoxins has made them 
valuable in the advancement of neuroscience research and consequent drug development [14]. Conotoxins are 
difficult to isolate from the venom, but once sequenced and partially reduced, scientists have been able to synthesize 
and properly fold (disulfide bonds) synthetic peptides for their investigations.  Currently, only about 0.2% of the 
conotoxin peptide library has been cataloged [9, 15].  
 
Many diseases, such as epilepsy, Schizophrenia, Tourette’s Syndrome, Parkinson’s disease and sclerosis, are 
associated with improper functioning of signal channels. Conotoxin-based therapeutics have demonstrated great 
promise because they are relatively small, potent, selective antagonists and agonists of specific cell membrane 
channel proteins [16]. A wide range of companies, in Australia, Ireland, and the United States, are currently 
developing and testing drugs based on conotoxins and/or conotoxin molecular scaffolds. Examples of conotoxin 
derived drugs either in clinical trials or commercially available include ACV1 [17], AM336 [18], PrialtTM [15, 19-
23], CGX-1160, CGX-1007, and CGX-100 [24]. At this time the only conotoxin drug approved by the United States 
Food and Drug Administration for public use is Prialt. Prialt is a synthetic conopeptide derived from Conus 
magus used to treat chronic pain and is one of the most powerful pain therapeutics known to date [15]. Prialt is the 
trade name for ω-conotoxin MVIIA, an N-type calcium channel blocker.  This drug provides a non-addictive means 
to block pain in subject patients by inhibiting the source of pain transmission in nerve cells of the spinal cord. For 
this reason it is a desirable alternative to traditional opiate derivatives like morphine or codeine [25].  
 
An Introduction into the M-superfamily of Conotoxins: Members of the M-superfamily of conotoxins have been 
found in every Conus species tested to date [4]. Classification of this widely divergent superfamily is based on the 
general pattern derived from the number of residues contained in each of the three loop regions CC(X4-6)C(X4-

5)C(X1-5)CC, where X4-6 represents four to six amino acids in the first loop, X4-5 represents four to five amino acids 
in the second loop, and X1-5 represents one to five amino acids in the third loop [26]. M-superfamily peptides are 
further divided into 5 branches, labeled M-1 to M-5, based on the number of residues that exist in the third cystine 
loop between the fourth and fifth cysteine residues. A further delineation separates the five branches into the Mini-
M and Maxi-M conotoxins, where M-1 through M-3 are considered Mini-M’s and M-4/M-5 are Maxi-M’s (Figure 
1). This differentiation is based on the overall number of residues in the mature peptide. The Mini-M conotoxins all 
contain fewer than 22 residues, while the Maxi-M peptides contain more than 22 amino acids [13]. The Maxi-M (M-
4 and M-5) peptides are sub-grouped into µ-, ψ-, and κM-conotoxins based on their biological targets. The µ-
conotoxins block voltage-gated sodium channels, κM-conotoxins block voltage-gated potassium channels in muscle 
[2], and ψ-conotoxins block nicotinic acetylcholine receptors [26]. Members of the M-superfamily for which a 
target receptor is known are exclusively within the M-4 and M-5 branches with relatively little known about the 
biological receptors targeted by the Mini-M peptides.  It is known that the target receptor for the Mini-M peptides is 
different from that of the Maxi-M peptides [26]. 
 

-Figure 1- 
 

Mini-M’s: Interestingly, the Mini-M peptides demonstrate unique disulfide bond connectivity patterns, loop size 
variability, and unique 3D folding structure even within the same branch. The M-superfamily is the only 
superfamily where such diverse structure and cysteine connectivity is present, especially in the Mini-M’s, M-1 
through M-3.  
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M-1 branch: The lack of solid mechanistic evidence of activity and definitive target receptor has hampered the 
comprehensive publication of the Mini-M peptides.  Much of what is presently known of the M-1 branch has been 
through the study of conotoxins mr3e (from C. marmoreus) and tx3a (from C. textile).  Conotoxin mr3e has the 
disulfide connectivity Cys1-Cys5, Cys2-Cys4, and Cys3-Cys6 and its NMR-derived solution structure contains what 
authors described as a ‘double-turn’ motif [27, 28].  This is different than the ‘triple-turn’ motif described for M-1 
branch peptide tx3a [4, 29]. Thus, even though the disulfide connectivity pattern is the same for these two peptides, 
their secondary structures vary considerably.  Prior to this discovery, it was thought that once a structure was 
determined for a peptide family with the same disulfide pattern, the peptide scaffold was conserved for that family 
of peptides.  The unique secondary structure characteristics of mr3e and tx3a are suspected to be responsible for the 
observed difference in response to intracranial injection in mice with conotoxin mr3e causing no observable effect 
and tx3a inducing excitatory behavior [30].  This excitatory behavior is also observed for the M-2 branch peptide, 
mr3a [28]. The mr3a structure consists of the ‘triple-turn’ motif also observed for tx3a, but its backbone has a 
different cystine pattern. Figure 2 shows a comparison of the published structures, disulfide bond pattern, and 
sequences for mr3e, tx3a, and mr3a [27]. 

 
-Figure 2- 
 

M-2 Branch: There is limited published information describing members of the M-2 branch of the M-superfamily. 
The structure and sequence of conotoxin mr3a have been reported, but little is known about biological targets or 
action mechanisms for this and other M-2 peptides.  Conotoxin mr3a was determined to have a cystine connectivity 
of Cys1-Cys6, Cys2-Cys4, and Cys3-Cys5 [28, 30] and a three dimensional structure best described as a ‘triple-turn’ 
motif [4]. To date, this connectivity belongs exclusively to the M-2 branch peptides. Additionally, there appear to be 
similarities between the M-2 branch and the Maxi-M peptides. A resemblance between the prepropeptide sequences 
for the immature conotoxins has been reported. The M-2 and M-4/M-5 branches have a common-size signal peptide 
(25 residues) in addition to a high degree of homology in the first eight residues for that signal peptide, 
MMSKLGVL [30]. It has further been described that the M-2 peptide mr3a elicits a strong excitatory response in 
mice at nanomolar quantities upon intracranial injection [4]. This finding supports the notion that members of the 
M-2 branch peptides are significant and functional snail venom components with the potential to be used as a means 
of discovering the possible existence of uncharacterized receptors.   
 
M-3 Branch: The cystine pattern and structural characteristics of M-3 branch peptides have not been reported to 
date. Current knowledge of these peptides is limited to sequence comparisons with other branch families of the M-
superfamily. A study exploring similarities to other families noted that both M-1 and M-3 peptides are rich in acidic 
residues, as opposed to basic residues in M-2 and M-4 [30]. cDNA studies were performed to further investigate the 
similarities between the M-1 and M-3 branches. From this, a new phylogenetic tree was constructed in which M-1 
and M-3 conotoxins have “a closer relationship, falling in the same tree branch” [30]. The signal peptide and pro-
peptide region of the immature toxins appear to be highly conserved; evidence that the M-1 and M-3 branch 
peptides are evolutionarily related. This close relationship does not appear between any other branch families in the 
M-superfamily [30]. A few recently reported examples of M-3 peptides are: reg12a (GCCOOQWCGODCTSOCC) 
[1], Tx3.5 (RCCKFPCPDSCRYLCC(nh2)) [26], and Qc3.1 (ACCDPDWCDAGCYDGCC) [27]. Most M-3 family 
peptides are discovered by PCR amplification of cDNA [27]. Peptide sequencing allows for characterization into the 
M-3 branch based on the cysteine pattern and three amino acid residues in the third loop.   
 
Maxi-M’s: The Maxi-M peptides are divided into the M-4 and M-5 branches of the M-superfamily based on their 
primary sequence.  These peptides are further separated into the κM-, ψ-, and µ-conotoxins based on their molecular 
targets consisting of potassium, nicotinic acetylcholine, and sodium receptors, respectively [4, 5]. The M-4 branch 
consists of all published κM- and ψ- conotoxins in addition to about one third of the µ-conotoxins, (Figure 3) while 
the M-5 branch consists of only µ-conotoxins to date.  It is also interesting to note that the Maxi-M, κM-, ψ-, and µ-
conotoxins are found mostly in fish-hunting Conus species, whereas the Mini-M peptides appear in the venom of the 
mollusk and worm-hunting cone snails [28, 29]. The Maxi-M peptides induce paralysis in prey, while the M-1, M-2, 
and M-3 branch (Mini-M) peptides generally cause an excitatory physiological response [4]. This difference may be 
attributed to the feeding preferences of the snail. The fish-hunting cone snails paralyze their fast moving prey before 
consumption, while worm- or snail-hunting cone snails rely on spasmodic response to drive the prey from its shelter. 
Characteristic differences for the Maxi-M peptides versus the Mini-M’s can be summarized as: a longer primary 
sequence (22-24 a.a. vs <20), a known molecular target (K+, nACh, Na+ receptors), and a common and distinctive 
cystine pattern (Cys1-Cys4, Cys2-Cys5, Cys3-Cys6) [27, 31-33]. Until the more recent characterization of the Mini-



 
 

4 
 

This is an author-produced, peer-reviewed version of this article.  The final publication is available at www.springerlink.com. Copyright 
restrictions may apply. DOI: 10.1007/s00018-009-0125-0. 

M peptides, it was believed that the Maxi-M disulfide bond pattern was the archetype of the entire M-superfamily; a 
commonality observed in other conotoxin superfamilies. It has recently been demonstrated that the disulfide bonds 
are significant structural and electrostatic elements involved in the interaction of conotoxins with the ligand binding 
domain of receptor ion channels [34]. The electrostatic properties of the sulfur atoms in the disulfide bonds 
contribute to conotoxin agonist and antagonist activity toward a class of biological receptors that have recently been 
classified as the Cys-loop superfamily of receptors [35].  
 

-Figure 3- 
 

The Cys-loop superfamily receptors have been found in nicotine acetylcholine receptors and play a role in the 
transmission of nerve impulses, specifically in central and peripheral nervous tissue, and neuromuscular junctions, 
which control muscle contraction [36]. The structure of the Cys-loop receptors is largely comprised of β-sheets and 
α-helices responsible for the transmission of action potentials across cell membranes. It is supposed that the α-
helical region of the Cys-loop receptors is responsible for the initiation of the action potential [35].  Regulation of 
these receptors is vital to the well-being of the organism; and it appears that conotoxins have evolved to target this 
class of receptors. 

 
M-4 Branch: The M-4 branch is defined by 4 residues in the third loop region of the primary sequence between 
Cys4 and Cys5 (CC(X4-6)C(X4-5)C(X4)CC). The M-4 branch κM- and ψ-conotoxins were the first conotoxins for 
which a disulfide bond pattern was determined and ψ-PIIIE was the first M-superfamily peptide for which a three 
dimensional structure was determined by NMR spectroscopy.  Thus the M-4 peptides serve as a structure model for 
all ψ-conotoxins.   
 
κM-Conotoxins: κM-conotoxins are antagonists of K+ ion channels.  In conotoxin nomenclature, the κ refers to 
activity toward K+ ion channels and the M indicates that the peptide belongs to the M-superfamily.  The only 
published κM-conotoxin at this time is κM-RIIIK, with the primary sequence: 
LOSCCSLNLRLCOVOACKRNOCCT(nh2).  This peptide was isolated and characterized from the venom of C. 
radiatus [31].  Its biological target was determined to be the “Shaker” channel and the similar mammalian Kv1.2 K+ 
channel [33]. The “Shaker” channel was first identified from Drosophila.  Applied stimulus to induce rapid muscle 
contraction caused the fly to “shake” [37-39].  The inhibition of the channel protein responsible for the shaking 
affect was then selectively inhibited confirming the existence of what is now referred to as the “shaker” channel.  
This channel was further classified as a potassium voltage-gated channel allowing for the identification of 
subsequent similar channels in numerous species. κM-RIIIK has the highest demonstrated affinity for TSha1 (Trout 
Shaker Channel 1), a Shaker K+ channel from rainbow trout (Onchorychus mykiss) [33, 31, 40]. In comparison with 
the O-superfamily conotoxin, κ-PVIIA, [41-42] and other venom components targeting the Shaker channel, κM-
RIIIK appears to function uniquely; it does not have the characteristic κ-conotoxin functional dyad consisting of 
hydrophobic amino acids [32]. The proposed mechanism of κ-conotoxins is to use the hydrophobic dyad structure to 
plug the Shaker channel pore.  In contrast, κM-RIIIK inhibits the Shaker channel by forming a ring that occludes the 
channel pore by acting as a surface lid rather than an intercalating plug in the channel [31-33, 42]. The amino acids 
essential for the K+ channel binding of κM-RIIIK appear to be: Leu1, Arg10, Lys18, and Arg19 [32]. The 
significance of these amino acids was identified based on mutational analysis comparison with µ-conotoxin GIIIA 
[32]. The structure and function characterization of κM-RIIIK provides a new backbone model on which future 
pharmacological treatments may be derived. 
 
ψ-Conotoxins: The M-4 branch of the M-superfamily contains three examples of ψ-conotoxins that have been 
labeled ψ-PIIIE, ψ-PIIIF, and ψ-PrIIIE [43-45]. These ψ-conotoxins contain the same disulfide connectivity as the 
rest of the M-4 branch [43]. Similar to the κ- and κM- association, ψ-conotoxins function at the nicotinic 
acetylcholine receptors (nAChRs) that were previously determined to be the site of activity for the αA-conotoxins 
[43-47].  αA-Conotoxins are much smaller (<20 amino acids) and only contain two disulfide bonds [44].  
 
In 1997, ψ-PIIIE became the first ψ-conotoxin to be described in literature.  This peptide was isolated from the 
venom of C. purpurascens and was reported to have the amino acid sequence: 
HOOCCLYGKCRRYOGCSSASCCQR(nh2) [43]. It was further discovered that C. purpurascens inhibits muscle 
nAChRs using a combination of ψ-PIIIE and αA-PIVA [43].  The binding of ψ-PIIIE to nAChRs in muscle was 
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determined to occur at a ligand binding site complementary to that identified for αA-conotoxins [43, 46-47].  
Significant to the discovery of ψ-PIIIE was the identification of the novel ligand binding site on muscle nAChRs.  
Thus, ψ-PIIIE served as a useful tool to characterize a new target for therapeutic drug development, and increase 
understanding of the Cys-loop superfamily of receptors.  
 
ψ-PIIIF was reported in 2003, a component of the venom of C. purpurascens with the sequence: 
GOOCCLYGSCROFOGCYNALCCRK(nh2) [45]. Though also a ψ-conotoxin, PIIIF is ~50 times less potent than 
ψ-PIIIE in blocking both mice and elasmobranch nAChRs [45]. The difference in functionality is thought to be due 
to the amino acids of the third loop region. In ψ-PIIIE the third loop consists primarily of small polar residues 
(SSAS), while in ψ-PIIIF the third loop consists of bulkier residues (YNAL) that collectively form a less polar 
region of the peptide.  The variation in amino acid composition has led researchers to hypothesize that polarity and 
steric bulk in the third loop are the significant factors for the observed deviation in binding and activity of these 
peptides to nAChRs [45]. 
 
ψ-Conotoxin PrIIIE isolated from the venom of Conus parius has the sequence, 
AARCCTYHGSCLKEKCRRKYCC(nh2) [44]. ψ-PrIIIE is approximately 28 times more potent than ψ-PIIIE at 
inhibiting nAChRs (IC50 = ~250 nM for ψ-PrIIIE as compared to ~7,000 nM for ψ-PIIIE) [44]. Whereas ψ-PIIIE-F, 
and ψ-PrIIIE all inhibit fish nAChRs, only ψ-PrIIIE is active as a non-competitive inhibitor of mice skeletal muscle 
nAChRs [44].  This is significant as the mouse model is used to predict thereputic activity in humans.  
 
M-4 µ-Conotoxins: µ-Conotoxins belong to both the M-4 and M-5 branches of the M-superfamily.  These 
conotoxins differ only in the number of residues in the third loop region and are similar in their common activity as 
antagonists of voltage-gated sodium channels (VGSCs). VGSCs control the electron potential across neuron and 
excitable muscle cell membranes [48]. These VGSCs are Nav1.1 – Nav1.9 based on their α-subunit sequence and 
further organized according to their sensitivity to tetrodotoxin (TTX).  VGSCs are classified as either TTX-S, for 
sensitive, and TTX-R, for resistant, depending on their overall degree of inhibition by tetrodotoxin [49-50]. All nine 
VGSCs are inhibited by TTX but those with IC50 values in the nanomolar range constitute the TTX-S VGSCs 
(Nav1.1-4, Nav1.6, and Nav1.7), and the VGSCs that have IC50 values in the micromolar range are considered TTX-
R (Nav1.5, Nav1.8 and Nav1.9) [34, 48-49, 51-55]. The TTX-S VGSCs function in either neuronal communication 
(Nav1.1, Nav1.2-3, and Nav1.6-7) [49, 56] or skeletal muscle control (Nav1.4) [48-49].  Researchers have determined 
the connection between VGSCs and the symptoms caused by many diseases including neuropathic pain, arrhythmia, 
epilepsy, stroke, and bipolar disorder [48, 57]. For example, neuropathic pain originates from the TTX-R channels 
Nav1.8 and Nav1.9 [58-60]. 
 
µ-Conotoxins have been investigated as therapeutic drugs because of their potency and ability to differentiate 
between distinct VGSCs. The first µ-conotoxins isolated from the venom of Conus geographus were µ-GIIIA, B, 
and C.  These peptides were shown to be active in blocking skeletal muscle VGSCs [54], specifically Nav1.4, while 
having a much lower affinity toward neuronal VGSCs. The activity of conotoxin µ-GIIIA toward the inhibition of 
Nav1.4 VGSCs was shown to be dependent on Arg13 in the primary sequence (R in bold): 
RDCCTOOKKCKDRQCKOQRCCA-(nh2) [54, 61]. Substitution of this Arg residue (Arg13) three amino acids 
removed from the third Cys residue (i.e. loop two) results in the inactivation of the peptide.  This is a testament to 
the specificity and usefulness of conotoxins as tools to understand ligand to receptor activity.   
 
More recent discoveries have led to the identification, characterization, and publication of 18 µ-conotoxins to date. 
The 7 µ-conotoxins belonging to the M-4 branch are: GIIIA-C [49, 37], PIIIA [49, 51], TIIIA [49], and SxIIIA-B 
[62]. The remaining 11 µ-conotoxin belong to the M-5 branch: SIIIA [48, 55], KIIIA [55], CIIIA, CnIIIA-B, MIIIA 
[63], SIIIB [58], SmIIIA [64], and BuIIIA-C [12]. µ-Conotoxin PIIIA blocks both muscle and neuronal TTX-S 
VGSCs [53, 56, 65]. µ-Conotoxin PIIIA was found to have an IC50 value of 2 µM in tests involving mammalian 
CNS Type II muscle channels [53].  This represents an inhibition that is upwards of 50 times greater that that 
observed for µ-conotoxin GIIIA [51]. µ-PIIIA is also effective in blocking neuronal channels (Nav1.2) albeit with 
lower affinity than muscle VGSCs [63]. µ-PIIIA has a pIC50 of 6.8 (where pIC50 = -logIC50) in binding studies with 
Nav1.4 skeletal muscle VGSCs [37, 52, 66-67]. While Nav1.4 skeletal muscle VGSCs serve as the model system for 
muscle cell antagonist activity, the Nav1.2 VGSCs serve as the standard test receptor for neuronal VGSCs (Figure 
4).   



 
 

6 
 

This is an author-produced, peer-reviewed version of this article.  The final publication is available at www.springerlink.com. Copyright 
restrictions may apply. DOI: 10.1007/s00018-009-0125-0. 

 
-Figure 4- 
 
More recently, µ-conotoxin TIIIA was isolated from the venom of Conus tulip.  The primary sequence for this 
peptide contains the characteristic and functionally relevant positively charged basic amino acid Arg (or Lys), three 
amino acids removed from the third Cys residue (i.e. loop two), next to an acidic and negatively charged amino acid 
(Glu15) [49]. This is unusual as the sequences of previous µ-conotoxins contained the Arg (or Lys) neighbored by 
either Gln, Arg, or Trp [49]. µ-TIIIA inhibits VGSCs from both neuronal (Nav1.2) and skeletal muscle (Nav1.4), 
with a preference for Nav1.4 VGSCs. Mutation of Glu15 to Ala in the TIIIA peptide, changed the biological target 
preference from skeletal muscle Nav1.4 VGSCs to neuronal Nav1.2 [49].  This is an example of the value of 
conotoxins as selective probes to develop structure activity relationship models for closely related receptors.  Single-
site mutation on the conotoxin scaffold provided a better understanding of the size and electrostatic topography of 
the ligand required to differentiate between receptor types. 
 
µ-Conotoxins SxIIIA and SxIIIB demonstrate high affinity for muscle Nav1.4 VGSCs [62]. While little has been 
described in the literature regarding these recently reported µ-conotoxins, the process used to identify their disulfide 
connectivity made use of a novel technique referred to as rapid disulfide bridge mapping [62]. This procedure 
introduces isotope labeled cysteine residues during cloning, then uses nuclear magnetic resonance (NMR) 
spectroscopy to identify the connectivity of the labeled peptides and rapidly determine bridge order. When 
synthesizing SxIIIA, the first three cysteines were uniformly 15N and 13C enriched, while the remaining three 
cysteine residues were labeled with a 70:30 mix of (14N/12C):(15N/13C) [62]. The use of NMR to differentiate the 
cystine pattern is an efficient approach that may lead to the characterization of many additional conotoxins that are 
so far known only by sequence because of insufficient native sample quantities for confirmation of correct folding of 
synthetic peptide.   
  
M-5 Branch: The M-5 branch of the M-superfamily differs from those preceding it by containing five residues in 
the third cysteine loop between cysteines four and five. All known M-5 conotoxins are µ-conotoxins [27]. 
 
M-5 µ-Conotoxins: The µ-conotoxins within the M-5 branch are: SmIIIA [64], SIIIA [48, 55], KIIIA [55], CIIIA, 
CnIIIA-B, MIIIA [63], SIIIB [58] and BuIIIA-C [12]. ).  In contrast to the M-4 branch µ-PIIIA and µ-GIIIA that 
inhibit TTX-S VGSCs, µ-SmIIIA is an antagonist of TTX-R VGSCs [64]. Although SmIIIA inhibits TTX-R 
channels, it does not differentiate well between them (Nav1.5, Nav1.8, and Nav1.9) [66].  
 
µ-Conotoxins SIIIA and KIIIA are antagonists of TTX-R channels similar to the M-4 peptide µ-SmIIIA.  
Interestingly, the size of the first loop varies between µ-SmIIIA (five amino acids) to µ-SIIIA (three residues) and 
finally µ-KIIIA (one residue) [48, 55]. The diversity in the number of amino acids in the first loop was an indication 
to researchers that the second and third loop regions contained the necessary structural and electrostatic 
characteristics for the peptides to be active toward inhibiting TTX-R VGSCs. This was confirmed in a study that 
removed the first loop of µ-KIIIA and showed that the remainder of the peptide retained efficacy toward the 
inhibition of TTX-R VGSCs.  The modified µ-KIIIA provided a smaller yet equally effective model from which 
synthetic mimetics are being explored as pharmacological therapeutics [34].   
 
Based on sequence comparison from the last two loop regions of µ-SmIIIA, KIIIA, and SIIIA, four new µ-
conotoxins, CnIIIA-B, CIIIA, and MIIIA were discovered and reported in 2006 [63]. As expected, these more recent 
µ-conotoxins inhibited TTX-R VGSCs. Despite their sequence similarity to one another, they were found to inhibit a 
divergent set of TTX-R channels, indicating the importance of the amino acid constituents within these peptides.  
Thus, it was determined that the secondary structures of the second and third loop regions of µ-SmIIIA, KIIIA, and 
SIIIA are significant for binding to TTX-R channels. This was tested by a comparison study of these three 
conotoxins with µ-CnIIIA, µ-CIIIA, and µ-MIIIA, which yielded a consensus sequence of 

CCWCRDHCSXXCC R
Q

A
S

R
Kn )(

indicating the three significant amino acids present in the second and third 
loops, that are responsible for differentiating between the TTX-R channels [63].  Common to these µ-conotoxins is 
the conservation of Arg in the second loop, usually in the same sequence position (third residue past Cys) [37, 48-
49, 51, 55, 58, 62-64], further validating the significance of Arg in VGSC inhibition first reported for µ-GIIIA.  
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A similar effect, as reported with µ-TIIIA, was observed for µ-conotoxins SIIIA and SIIIB where µ-SIIIA differs 
from µ-SIIIB by a single residue change in the third loop that results in SIIIB preferentially targeting Nav1.4 
(muscle) to Nav1.2 (neuron), while SIIIA prefers neuronal VGSCs [58].  
 
The M-superfamily peptides have advanced the methods used to identify novel peptides belonging to the M-5 
branch based on exogene analysis.  A study by Mandë Holford at the University of Utah presented the structure of a 
new sodium channel blocking conotoxin extracted from C. bullatus, BuIIIA [12], which also shows an affinity for 
muscle VGSCs Nav1.4. µ-BuIIIA was identified and characterized by the isolation of exogenes which are the genes 
responsible for the mediation of biotic interactions between organisms [12]. Once isolated, these genes were 
compared with the genes of different cone snail species. The phylogenetic information resultant from this gene 
comparison approach was incorporated into a general strategy aimed at the discovery of new classes of peptides 
[12]. This technique led to the discovery of the C. bullatus µ-conotoxins, BuIIIA, BuIIIB, and BuIIIC. It is thought 
that this approach to conotoxin detection will expedite the characterization and reporting of novel peptides 
previously not identifiable by traditional means. After all, it was the sequence comparison of many M-superfamily 
peptides containing five amino acids in the third loop that resulted in the M-5 branch appearing in the literature in 
2009. 
 
Uncharacterized M-superfamily conotoxins: A new branch of the M-superfamily has been described in the 
literature that is homologus in signal sequence to other M-superfamily branches, but differs in cysteine order. The 
two conotoxins in this new category are Vx2 and Im6.1 [9, 15]. A study performed at the Shanghai Institute of 
Biological Sciences led to the publication of conotoxin Vx2. Their report demonstrated the commonality between 
cDNA and mRNA for conotoxin Vx2 and the M-4 branch peptides µ-GIIIA and µ-GIIIB. Out of the 25 amino acid 
residues comprising the signal sequences for Vx2 and the µ-GIIIA-C there was only a difference in two residues: 
Leu9 was substituted by Val; and Met23 was replaced by Leu [9]. These differences are considered to be within an 
acceptable margin of variance to allow Vx2 to be characterized as an M-superfamily peptide.  However, experts in 
the field disagree with this assignment because of the unique cysteine order in mature Vx2 (Table 1). M-superfamily 
peptides all have the characteristic cysteine arrangement of CC-C-C-CC while that of Vx2 is CCC-C-C-C [9].  
 
Conotoxin Im6.1, isolated from the venom of Conus imperialis, was placed in the same neoteric category of the M-
superfamily as Vx2.  Like Vx2, Im6.1 shows a similar cDNA and mRNA signal sequence consistent with other 
members of the M-superfamily. However, Im6.1 has the cysteine arrangement of C-C-CC-C-C with the disulfide 
connectivity C1-C4, C2-C5, and C3-C6 [15]. The biological targets of Vx2 and Im6.1 are yet to be identified. 

 
-Table 1- 
 

Conclusion: The M-superfamily of conotoxins is arguably the most diverse of all the conotoxin superfamilies yet 
characterized.  Five branches of this family have been definitively categorized with conotoxins Vx2 and Im6.1 
demonstrating signal sequences consistent with the M-superfamily, yet with unique cysteine and cystine patterns.  
The study of the M-superfamily has been pivotal in increasing understanding of conotoxins and their specific 
receptors. Through study of the Maxi-M conotoxins, the µ-, κM-, and ψ-conotoxins have been characterized with 
their respective targets (Na+, K+, and nAChR).  The Maxi-M peptides that constitute the M-4 and M-5 branches have 
defined disulfide connectivity and known target receptors.   
 
The smaller Mini-M conotoxins of the M-1 and M-2 branches not only differ in cystine order form the Maxi-M 
peptides, but also from each other.  This is unique to the M-superfamily and has led to the interesting discovery that 
conotoxins with different cystine pattern can have similar structures even when they belong to different branches of 
the superfamily.  This is observed with the structures of the M-1 peptides mr3e and tx3a having dissimilar structure, 
while the M-2 peptide mr3a has a similar three dimensional structure to the M-1 peptide tx3a.  This serves as 
another unique feature to the M-superfamily.  The uncharacterized disulfide pattern, unknown molecular target, and 
yet to be determined structural information for M-3 peptides offer many potential rewards for researchers. 
 
 
Although much remains unknown regarding the M-superfamily of peptides, especially the Mini-M branches, the 
scientific advancement that has occurred through the study of these peptides has been significant.  The study of 
Maxi-M conotoxins has involved the use of original techniques leading to the advancement in structure activity 
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relationship comprehension for neuronal and muscular molecular targets.  Research on the M-superfamily peptides 
has led to the development of new instruments, probes, and laboratory techniques that are broadly applicable to 
other fields of science.  A specific example is the use of isotopic enrichment of cysteine side chains to characterize 
cystine arrangement by NMR.  This technique can be applied to any disulfide rich peptide or protein to reduce the 
time required for structure determination and connectivity elucidation.  Secondly, the use of exogene phylogeny 
comparison can be used across the genus Conus to identify and characterize peptides that would otherwise not be 
possible by traditional means.  
 
The M-superfamily of conotoxins has displayed unique characteristics that have allowed for the development of 
therapeutic treatments and increased knowledge of receptors responsible for pain and sensory transmission. In 
summary, there remains much work to be done in this field. 
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FIGURE LEGENDS 
Figure 1. A flowchart of the organization of the M-superfamily with known disulfide 

connectivity shown for each branch (M-1 – M-5). 

Figure 2. Structures of Mini-M peptides of the M-1 and M-2 branches. Depicted are the 

‘Double-turn’ motif of mr3e (M-1) and the ‘Triple-turn’ of tx3a (M-1) and mr3a (M-2).  

Figure 3. Structures of the M-4 branch sub-categories κM-, μ-, and ψ-conotoxins. Explanations 

of highlighted residues are described in the text. 

Figure 4. Known binding efficacy for μ-conotoxins toward muscle voltage gated sodium 

channels (VGSCs) and Neuronal VGSCs. 

 

TABLE LEGEND 

Table 1. A summary of known M-superfamily branches, cysteine patterns, disulfide 

arrangements, representative sequences, three dimensional structures, and references.   
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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