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Neurobiology of Disease

Lack of Pathology in a Triple Transgenic Mouse Model of
Alzheimer’s Disease after Overexpression of the Anti-
Apoptotic Protein Bcl-2

Troy T. Rohn,1 Veera Vyas,1 Tatiana Hernandez-Estrada,2 Kathryn E. Nichol,2 Lori-Ann Christie,2 and Elizabeth Head2

1Department of Biology, Boise State University, Boise, Idaho 83725, and 2Institute for Brain Aging and Dementia, Department of Neurology, University of
California, Irvine, Irvine, California 92697

Alzheimer’s disease (AD) is characterized by the accumulation of plaques containing �-amyloid (A�) and neurofibrillary tangles (NFTs)
consisting of modified tau. Although A� deposition is thought to precede the formation of NFTs in AD, the molecular steps connecting
these two pathologies is not known. Previous studies have suggested that caspase activation plays an important role in promoting the
pathology associated with AD. To further understand the contribution of caspases in disease progression, a triple transgenic Alzheimer’s
mouse model overexpressing the anti-apoptotic protein Bcl-2 was generated. Here we show that overexpression of Bcl-2 limited caspase-9
activation and reduced the caspase cleavage of tau. Moreover, overexpression of Bcl-2 attenuated the processing of APP (amyloid
precursor protein) and tau and reduced the number of NFTs and extracellular deposits of A� associated with these animals. In addition,
overexpression of Bcl-2 in 3xTg-AD mice improved place recognition memory. These findings suggest that the activation of apoptotic
pathways may be an early event in AD and contributes to the pathological processes that promote the disease mechanisms underlying AD.
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Introduction
Apoptosis is a gene-directed suicidal mechanism that regulates
and controls cell death during development and maturation in a
variety of cell types (Vaux and Korsmeyer, 1999). In the CNS,
between 20 and 80% of neurons undergo apoptosis before adult-
hood, providing a pivotal role in molding the nervous system’s
final organization and function (Oppenheim, 1991). Although
critical for the final sculpting of the CNS during development, the
aberrant activation of apoptotic pathways has also been reported
in numerous neurodegenerative diseases, including Alzheimer’s
disease (AD) (LeBlanc, 2005). AD is characterized neuropatho-
logically by the accumulation of senile plaques composed pri-
marily of �-amyloid (A�) and neurofibrillary tangles (NFTs)
containing abnormally phosphorylated tau (Golde et al., 2006).
Several studies suggest that A� aggregates trigger subsequent
NFT formation and neurodegeneration (Hardy and Selkoe, 2002;
Golde et al., 2006). Although there is strong experimental sup-
port for the amyloid cascade hypothesis (Hardy and Selkoe, 2002;
Golde et al., 2006), the steps interconnecting A� with NFTs are

largely unknown. One possible link between A� and NFTs is the
activation of caspases, proteolytic enzymes responsible for the
proper execution of programmed cell death or apoptosis (Riedl
and Shi, 2004). Several studies have implicated the activation of
caspases and cleavage of amyloid precursor protein (APP) and
tau, which in turn may facilitate the production of A� as well as
promote NFT formation in AD (Gervais et al., 1999; Gamblin et
al., 2003; Rissman et al., 2004). These studies demonstrated the
presence of caspase cleavage products (CCPs) of tau, along with
associated markers of NFTs in the human AD brain, and sup-
ported the notion that NFT and A� may be interconnected
through a common caspase-mediated pathway.

To further understand the contribution of caspases in disease
progression, a transgenic Alzheimer’s mouse model overexpress-
ing the anti-apoptotic protein Bcl-2 was generated. Here, we
show that overexpression of Bcl-2 limited the degree of caspase
activation, prevented the formation of plaques and tangles, and
improved memory retention in AD mice. These findings suggest
that if one could selectively increase the levels or activity of Bcl-2
in neurons of AD patients, this could provide an effective means
of treating this disease.

Materials and Methods
Animals. The generation and characterization of 3xTg-AD mice have
been described previously (Oddo et al., 2003). To generate 3xTg-AD
mice that overexpress the anti-apoptotic protein Bcl-2, 3xTg-AD mice
harboring three known mutations, human APPSwe, human tauP301L, and
PS1M146V, were crossed with Tg mice that overexpress the human Bcl-2
gene in all postmitotic neurons (Martinou et al., 1994). Founder mice
that were Bcl-2 positive by PCR were further backcrossed to 3xTg-AD to
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generate F2 founder mice. Littermates that were negative for the human
Bcl-2 gene were used for comparison. Both 3xTg-AD mice and Bcl-2-
overexpressing (OE) mice were bred and maintained on a C57BL/6
background.

Genotyping of transgenic mice. Mice were genotyped by reverse
transcription-PCR amplification of tail DNA using published primer
sequences. For Bcl-2, the following primers were used: BTM1�, 5�-AT-
GAGCCTTGGGACTGTGAA-3�; BTM2, 5�-GAAGACTCTGCTCAG-
TTTGG-3�. A 400 bp band indicated a positive signal for the presence of
the Bcl-2 transgene. In addition, PCR amplification was performed using
published primer sequences for human tau and APP for 3xTg-AD mice
(LaFerla et al., 1995; Sugarman et al., 2002). For the PS1M146V gene, the
following primers were used: 5�-CACACGCAACTCTGACATGCA-
CAGGC-3� and 5�-AGGCAGGAAGATCACGTGTTCAAGTAC-3�.

Antibody dilutions. Primary antibodies were diluted as follows: AT-100
(1:100; Pierce, Rockford, IL), AT8 (1:500, Pierce), PHF-1 (1:500), A�1– 42

(1:200; Biosource, Camarillo, CA), human Bcl-2, clone Bcl-2–100 (1:200;
Sigma, St. Louis, MO), anti-APP, clone 22C11 (1:1000; Millipore, Bil-
lerica, MA), polyclonal antibody to active caspase-3 (CM1; 1:500; BD
Biosciences PharMingen, San Jose, CA), �-actin rabbit polyclonal anti-
body (ab8227; 1:400; Abcam, Cambridge, MA), and anti-caspase-9, pro-
form and large active subunit, AB16969 [1:100 for immunohistochem-
istry (IH) and 1:250 for Western blotting (WB)] (Millipore). Two
different caspase cleavage site-directed antibodies to caspase-cleaved tau
were used: TauCCP (1:100; in-house rabbit polyclonal antibody) and
TauC3 (1:100 for IH and 1:500 for WB) (Millipore).

Tissue acquisition. Mice were anesthetized with pentobarbital and per-
fused with saline, and the brains were rapidly removed. Brains were
divided into hemispheres, and one hemisphere was sunk in 4%
phosphate-buffered paraformaldehyde, while the other hemisphere was
snap frozen at �50°C in isopentane. Mouse brains were mounted coro-
nally, sectioned serially at 50 �m on a vibratome, and stored for immu-
nohistochemistry. Frozen brain tissue was used for immunoblot and
ELISA analysis.

Immunohistochemistry and immunofluorescence. Free-floating 50-�m-
thick serial sections were used for immunohistochemical and immuno-
fluorescence studies as previously described (Mouser et al., 2006). Anti-
gen visualization was determined using ABC complex (ABC Elite
immunoperoxidase kit; Vector Laboratories, Burlingame, CA), followed
by DAB substrate (Vector Laboratories). For immunofluorescence stud-
ies, antigen visualization was accomplished using an Alexa Fluor 488-
labeled tyramide [green; excitation wavelength/emission wavelength
(Ex/Em) � 495/519] or streptavidin Alexa Fluor 555 (red; Ex/Em �
555/565), both from Invitrogen (Carlsbad, CA).

Western blot analysis. Sample preparation was according to Oddo et al.
(2003). Western blot analysis was performed using the One-Step Ad-
vanced Western mouse kit according to the manufacturer’s instructions
(GenScript, Piscataway, NJ). All samples were analyzed for protein con-
tent using the BCA assay (Pierce) to ensure equal protein loading. In
addition, Western blot analysis was performed using a �-actin antibody
(1:400) as a loading control.

ELISA of A�1– 40 and A�1– 42. A� was sequentially extracted from �17–
122 mg of frozen cortex and hippocampus in 0.1 M Tris, pH 6.8, with 1%
SDS and a protease inhibitor mixture (Roche, Indianapolis, IN) at 1 ml of
buffer/150 mg of wet weight tissue, sonicated, and centrifuged at 4°C at
100,000 � g for 1 h. The pellet was resuspended in 70% formic acid and
sonicated on ice. After centrifugation at 4°C at 100,000 � g for 1 h, the
supernatant was collected and assayed. Brain samples were run in tripli-
cate on ELISA plates coated with a monoclonal anti-A�1–16 antibody
(provided by Dr. William Van Nostrand, Stony Brook University, Stony
Brook, NY), and detection was by an in-house biotinylated anti-A�1– 40

and anti-A�1– 42 at 1:1000 followed by streptavidin HRP 1:4000. For
standards, A�1– 40 and A�1– 42 Ultra Pure, HFIP (Millipore catalog
#AG962 and #AG698, respectively) were used.

Behavior assessment. Assessment of cognition of three 24-month-old
3xTg-AD/Bcl-2-OE and three 3xTg-AD/Bcl-2-negative mice was accord-
ing to the procedure of Mumby et al. (2002). This procedure is a variation
of the novelty-preference paradigm involving familiarizing mice with
two different objects, each in a unique context, and exploratory prefer-

ence is measured in which both objects are presented in one of the two
contexts. Cognitively impaired animals will spend less time exploring the
object that was in a context different from that during familiarization
(Mumby et al., 2002). Individual mice (blind to experimenter) were
tested on three separate occasions, and the mean ratio was analyzed for
statistical differences using one-tailed Student’s t test. In one case, we
compared directly the performance of a single 3xTg-AD/Bcl-2-negative
mouse versus a 3xTg-AD/Bcl-2-positive mouse. These data were ana-
lyzed using a single-sample t test against chance values and the signifi-
cance is versus chance, not compared with each animal. We also pooled
data from n � 3 from each group (3xTg-AD/Bcl-2 positive or 3xTg-Ad/
Bcl-2 negative), and in this case p values represent significant differences
in performance between these two groups of animals.

Cerebral ischemia produced by middle cerebral artery occlusion. Brain
sections were generously provided to us by Dr. Sheng T. Hou (Experi-
mental NeuroTherapeutics Laboratory, National Research Council In-
stitute for Biological Sciences, National Research Council Canada, Ot-
tawa, Ontario, Canada). C57BL/6 mice (20 –23 g) were subjected to
middle cerebral artery occlusion (MCAO) as described previously (Hou
et al., 2006). Briefly, under anesthesia, mice were subjected to MCAO
using an intraluminal filament for 1 h. After 1 h of MCAO, the filament
was removed and blood flow was restored for 24 h, at which time animals
were killed. Mouse brains were perfused with 10% formalin in PBS, then
postfixed in 10% formalin for 4 h and cryoprotected overnight in phos-
phate buffer containing 30% sucrose at 4°C. After fixation, brains were
sectioned into 50 �m free-floating sections to be processed by immuno-
histochemistry. Ischemic infarct areas were identified by Hoechst stain-
ing as described previously (Hou et al., 2006).

FluoroJade C labeling. To assess for neurodegeneration, the fluorescent
dye, FluoroJade C (Millipore, catalog #AG325) was used on 24-month-
old 3xTg-AD animals and, as a positive control, MCAO mice. Staining
was as previously described by Bian et al. (2007). Briefly, fixed brain
sections were mounted and pretreated for 5 min in an 80% alcohol
solution containing 1% sodium hydroxide, followed by a 70% alcohol
and a distilled water wash for 2 min. Sections were then incubated for 10
min in a 0.06% potassium permanganate solution followed by rinsing in
distilled water for 2 min. Sections were then transferred into a 0.0001%
solution of FluoroJade C containing 0.1% acetic acid for 10 min. After
three successive washes in distilled water for 1 min, slides were dried,
dehydrated, and coverslipped with Depex.

Results
Reduction in caspase activation and the caspase cleavage of
tau in 3xTg-AD/Bcl-2-OE mice
To test the hypothesis that the activation of caspases plays an
important and early role underlying the disease mechanisms in
AD, we developed a novel transgenic mouse model of AD that
overexpressed the human anti-apoptotic protein Bcl-2 in post-
mitotic neurons. To accomplish this, we used transgenic mice
that harbor three known AD mutations: PS1M146V, APPSwe, and
tauP301L. These mice, termed 3xTg-AD mice, progressively de-
velop plaques and tangles in a manner that closely recapitulates
the disease process in the human AD brain (Oddo et al., 2003).
3xTg-AD mice were crossed with transgenic mice that specifically
overexpress human Bcl-2 in neurons of the CNS (Martinou et al.,
1994). Bcl-2 is an anti-apoptotic protein primarily expressed in
mitochondria and the outer nuclear membrane, which prevents
caspase-9 activation through an interaction with Apaf-1 (LeB-
lanc, 2003). The rationale for using Bcl-2 is that Bcl-2 represents
a critical convergence point that prevents the activation of the
intrinsic receptor pathway of apoptosis implicated in AD (Su et
al., 1996; Letai, 2005; Bredesen et al., 2006). Moreover, overex-
pression of Bcl-2 has been shown to prevent neuronal apoptosis
(Martinou et al., 1994) and delay symptom onset in a transgenic
mouse model of amyotrophic lateral sclerosis (Kostic et al.,
1997).

3xTg-AD mice were crossed with Bcl-2-OE mice, and progeny
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were aged to 6, 12, 18, or 24 months of age and analyzed. Figure 1
depicts the characterization of 3xTg-AD/Bcl-2-OE mice. As Fig-
ure 1A shows, 3xTg-AD/Bcl-2-OE mice were identified by PCR,
immunofluorescence confirmed the cytoplasmic expression of
Bcl-2 (Fig. 1B), and Western blot analysis revealed a single band
corresponding to the correct molecular weight for native human
Bcl-2 protein (Fig. 1B). The overexpression of Bcl-2 was con-
firmed in all age groups examined, and there were no changes in
expression with age.

In a first set of experiments, we examined mice for caspase
activation using antibodies for both caspase-9 and caspase-3. We
found a striking pattern of distribution for caspase-9 in the neo-
cortex: in 3xTg-AD/Bcl-2-OE mice, the expression of caspase-9
appeared primarily nuclear (Fig. 2C, arrows). This finding sup-
ports previous studies demonstrating the nuclear localization for

procaspase-9 (Ritter et al., 2000; Shimo-
hama et al., 2001). A similar pattern of ex-
pression was observed for age-matched
nontransgenic (NonTg) control mice, al-
though the nuclear labeling was more dif-
fuse and there was evidence for cytoplas-
mic staining in some neurons (Fig. 2A). In
contrast, for 3xTg-AD (Fig. 2B), promi-
nent cytosolic staining was observed for
caspase-9. These results were confirmed in
hippocampal sections after double-
labeling immunofluorescence experi-
ments using a nuclear label, propidium io-
dide (Fig. 2D–F). Western blot analysis
indicated the presence of the large active
domain for caspase-9 in 3xTg-AD/Bcl-2-
negative mice, which was largely absent in
NonTg controls or in 3xTg-AD/Bcl-2-OE
mice (data not shown). Collectively, these
results suggest that the activation of
caspase-9 and its subcellular redistribu-
tion is prevented in 3xTg-AD mice after
overexpression of Bcl-2. In addition, the
activation of caspase-3, a critical target for
caspase-9 cleavage and a known execu-
tioner caspase, was evident in the neocor-
tex and hippocampus of 3xTg-AD mice af-
ter application of an antibody to the active
domain of caspase-3 (Fig. 2G–L). In con-
trast, a general lack of staining was ob-
served in 3xTg-AD/Bcl-2-OE mice (Fig.
2 I,L).

To determine whether the overexpres-
sion of Bcl-2 prevents the caspase cleavage
of tau, 6-month-old animals were exam-
ined using an antibody specific for the
C-terminal caspase cleavage of tau at as-
partic acid 421 (Rissman et al., 2004). Ap-
plication of this polyclonal antibody
(TauCCP) revealed no specific labeling in
NonTg animals (Fig. 3A), but labeling in
the cytoplasm of a subset of neurons and
apical dendrites in the CA1 region of the
hippocampus of 6-month-old 3xTg-AD
mice (Fig. 3B), which was largely limited to
portions of the apical dendrites in
6-month-old 3xTg-AD mice overexpress-
ing Bcl-2 (Fig. 3C). These same mice were

screened for the presence of tangle markers (AT8 and PHF-1),
both of which were negative, in line with previous studies indi-
cating that 3xTg-AD mice do not exhibit significant tangle for-
mation until 15–18 months of age (Oddo et al., 2003). Data illus-
trating TauCCP immunoreactivity as early as 6 months in
3xTg-AD mice are consistent with early caspase cleavage of tau
preceding overt tangle formation in the human AD brain (Riss-
man et al., 2004).

To determine whether caspase cleavage of tau was either pre-
vented or delayed in 3xTg-AD/Bcl-2-OE mice, experiments were
extended to include 12- (Fig. 3E–H) and 18-month-old animals
(Fig. 3I–L). In both age groups, caspase cleavage of tau was sig-
nificantly reduced or limited to apical dendrites after overexpres-
sion of Bcl-2 (Fig. 3E–L). To confirm the presence of caspase-
cleaved tau in this cohort, experiments were undertaken using a

Figure 1. Characterization of 3xTg-AD/Bcl-2-OE mice. A, 3xTg-AD mice were bred to Bcl-2-OE mice to generate F1 founder
mice. 3xTg-AD/Bcl-2-OE mice from this cross were than backcrossed with 3xTg-AD mice for the purpose of generating F2 founder
mice. The presence of the Bcl-2 transgene of F2 mice was confirmed by PCR using primer sequences for the human Bcl-2 gene
(arrow). As depicted, mice 1– 4 and 8 were identified as being positive for the human Bcl-2 transgene. B, Representative
immunofluorescence labeling in an 18-month-old 3xTg-AD/Bcl-2-OE mouse showing the cytoplasmic expression of Bcl-2 in the
cortex. Bottom left, Bcl-2 staining (green) with nuclear staining using Hoechst (blue). Bottom right, Western blot analysis con-
firming the presence of the human Bcl-2 protein.
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similar site-directed antibody to tau
(TauC3) developed by Gamblin et al.
(2003). Application of TauC3 revealed la-
beling of neurons in 12- and 18-month-
old 3xTg-AD mice within the CA1 region
of the hippocampus in a similar manner as
our TauCCP antibody (data not shown).

The presence of caspase-cleaved tau
and its prevention after overexpression of
Bcl-2 was confirmed by Western blot anal-
ysis of total brain extracts from 12-month-
old animals using the TauC3 antibody
(Fig. 3D). Immunohistochemical quanti-
fication indicated an age-dependent in-
crease in the number of TauCPP-positive
neurons in the CA1 region of the hip-
pocampus (Fig. 3M). It is noteworthy that
the presence of TauCCP-positive neurons
was also evident in the amygdala of 18-
month-old 3xTg-AD animals (data not
shown).

Accumulation of human pathological
tau and absence of tangle formation in
3xTg-AD/Bcl-2-OE mice
Because caspase cleavage of tau was largely
prevented in mice overexpressing Bcl-2,
we hypothesized that caspase-like activity
may play an important role in the turnover
and processing of tau. To examine this
possibility, we used an antibody against
human pathological tau (HT7). HT7 rec-
ognizes amino acids 159 –163 of normal
and PHF tau in human and bovine but
does not cross-react with rat or mouse tau
(Mercken et al., 1992). Using HT7, we
found that the extent of total pathological
human tau was significantly higher in
3xTg-AD mice overexpressing Bcl-2 (Fig.
4B) compared with 3xTg-AD mice alone
(Fig. 4A). Western blot analysis using HT7
indicated a significant increase in total human tau protein in
3xTg-AD/Bcl-2-OE mice compared with littermates that were
Bcl-2 negative (Fig. 4C). Quantification of Western blots con-
firmed an �2.5-fold increase in the accumulation of total tau in
3xTg-AD/Bcl-2-OE mice compared with 3xTg-AD/Bcl-2-
negative mice alone (Fig. 4D). In addition, despite the accumu-
lation of human pathological tau in 3xTg-AD/Bcl-2-OE mice, an
apparent lack of NFT pathology by AT8 (Fig. 4E–H) or by PHF-1
(Fig. 4 I–L) was observed compared with 3xTg-AD mice, suggest-
ing that the caspase cleavage of tau is a prerequisite for NFT
formation.

Accumulation of human APP and lack of extracellular
deposits of A� in 3xTg-AD/Bcl-2-OE mice
Because of the prominent role for caspase-like activity on tau
turnover, we investigated whether a similar effect occurred with
the APP. APP is a substrate for caspase-3-mediated cleavage,
which may contribute to A� formation, synaptic loss, and the
behavioral changes associated with AD (Gervais et al., 1999; Lu et
al., 2000; Zhao et al., 2003; Galvan et al., 2006). Because of a
putative role for caspase cleavage in the processing of APP, we
hypothesized that overexpression of human Bcl-2 in 3xTg-AD

mice may lead to a decrease in the processing of APP as well as
extracellular deposition of A�. As an initial approach, cortical
sections were processed using anti-A� monoclonal antibody
(mAb) 1560 (clone 6E10). This antibody is known to react with
both the A� peptide and with full-length APP (Oddo et al., 2006).
Surprisingly, in 12-month-old animals, intense intracellular cy-
toplasmic and dendritic labeling was observed in 3xTg-AD/Bcl-
2-OE compared with 3xTg-AD mice (Fig. 5A–C). A similar find-
ing was observed in 18-month-old animals, and in this case
extracellular deposits were evident in 3xTg-AD mice (Fig. 5D–F).
To determine whether the increase in intraneuronal staining was
caused by A� or APP, cortical sections were next stained with
22C11, which is specific for the full-length APP protein. As
with mAb 1560, there was an increase in intraneuronal label-
ing with 22C11 in two different 3xTg-AD/Bcl-2-OE mice com-
pared with 3xTg-AD mice (Fig. 5G–I). These data suggest that
the increase in staining observed with mAb 1560 is largely a result
of an increased intracellular accumulation of APP and not A�.
We confirmed the higher protein levels of APP in 3xTg-AD/Bcl-
2-OE mice by Western blot analysis using 22C11 (Fig. 5J).

If overexpression of Bcl-2 leads to a decrease in APP process-
ing, then we hypothesized that there would be a decrease in the

Figure 2. Reduced caspase-9 and caspase-3 activation in 3xTg-AD mice after overexpression of Bcl-2. A–C, Representative
staining in the cortex of a NonTg mouse (A), 12-month-old 3xTg-AD mouse (B), and 12-month-old 3xTg-AD/Bcl-2-OE mouse (C)
after application of a polyclonal antibody to caspase-9 (1:100). Although the majority of labeling was cytoplasmic for 3xTg-AD
mice, labeling was nuclear for 3xTg-AD/Bcl-2-OE mice (arrows; C). D–F, Immunofluorescence double labeling of the hippocampus
with the nuclear stain propidium iodide (red) with caspase-9 (green) indicated that caspase-9 immunoreactivity was primarily
cytoplasmic in 3xTg-AD mice (D) and nuclear in 3xTg-AD/Bcl-2-OE mice (E, F ). G–L, Representative active caspase-3 staining
(CM-1 antibody; 1:500) in the hippocampus (G–I ) and cortex (J–L) indicated the presence of labeled neurons in 3xTg-AD mice (H,
K ), which was largely absent in 3xTg-AD mice overexpressing Bcl-2 (I, L). Representative staining is shown from a total of n � 4
animals for each cohort. Scale bars, 10 �m.
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level of A�1– 42. We tested this hypothesis using an A�1– 42-
specific antibody. As shown in Figure 5L, lower levels of intracel-
lular A�1– 42 were detected in 3xTg-AD mice overexpressing
Bcl-2 relative compared with 3xTg-AD mice (Fig. 5K). We also
confirmed a reduction in insoluble A�1– 42 and A�1– 40 by ELISA
in formic acid extracted cortical samples from 18-month-old an-
imals. Insoluble A�1– 42 and A�1– 40 were reduced in 3xTg-AD/
Bcl-2-OE mice (44.45 pM/mg A�1– 42; 5.17 pM/mg A�1– 40) rela-
tive to 3xTg-AD mice (262.65 pM/mg A�1– 42; 11.04 pM/mg A�1–

40) animals. Overall, these results suggest a significant role for
caspase-like proteolytic activity in the processing of APP and
production of A�. Further, despite the fact the protein levels of
APP were significantly higher in 3xTg-AD/Bcl-2-OE mice versus
3xTg-AD mice, there was no evidence for extracellular plaques in
these mice.

Improved cognition in 3xTg-AD/Bcl-2-OE mice despite a lack
of neurodegeneration
Experiments were extended to include 24-month-old mice over-
expressing Bcl-2 and compared with 3xTg-AD littermates that
were Bcl-2 negative. Confirmation of Bcl-2 expression was con-
firmed using a human-specific antibody to Bcl-2 (Fig. 6A),
whereas no labeling of Bcl-2 was seen in an age-matched
3xTg-AD littermate (Fig. 6B). Detection of extracellular deposits
of A� was evident in the 24-month-old 3xTg-AD mouse that was
negative for human Bcl-2 protein (Fig. 6D,F, arrows). However,

there was no evidence of extracellular deposits of A� in a 24-
month-old 3xTg-AD/Bcl-2-OE mouse, although intracellular A�
remained unaffected or was slightly elevated (Fig. 6C,E). These
same two mice were behaviorally assessed before being killed, and
there was a clear improvement place recognition memory of the
3xTg-AD mice overexpressing Bcl-2 versus chance (Fig. 6G). Sta-
tistical analyses were performed by single-sample t tests against
chance values (0.5 or 50%, indicated by line). The average time
spent exploring the novel location over the entire 3 min testing
period for the 3xTg-AD/Bcl-2-positive mouse was 0.77 � 0.12
SEM versus 0.29 � 0.04 SEM for the 3xTg-AD/Bcl-2-negative
mouse. Based on these results, the average time spent exploring
the novel location was significantly greater than chance only in
the Bcl-2-overexpressing mouse ( p � 0.016). Pooled behavioral
data from three different 3xTg-AD/Bcl-2-positive and Bcl-2-
negative mice indicated a significant improvement in place rec-
ognition memory in 3xTg-AD/Bcl-2-positive mice compared
with 3xTg-AD littermates that were Bcl-2 negative (Fig. 6H).

Given the intact memory in 3xTg-AD/Bcl-2-OE mice, we hy-
pothesized that there would be less neurodegeneration, so we
assessed neurodegeneration in 24-month-old mice by using Flu-
oroJade C staining. FluoroJade C is a fluorescent dye that detects
neuronal degeneration in a number of different animal models
and displays a high degree of sensitivity and specificity (Bian et al.,
2007; Slikker et al., 2007). In addition, FluoroJade C has been
found to stain all degenerating neurons regardless of the specific

Figure 3. Reduced caspase cleavage of tau in 3xTg-AD mice after overexpression of Bcl-2. A–C, CA1 labeling in the hippocampus was evident in 6-month-old 3xTg-AD mice after application of
an antibody specific for caspase-cleaved tau, TauCCP (Rissman et al., 2004) (B). No labeling was evident in age-matched NonTg mice (A), and it was limited to parts of the apical dendrites in 3xTg-AD
mice overexpressing Bcl-2 (C). E–H, Immunohistochemical labeling with TauCCP in the CA1 region of 12-month-old animals. In NonTg mice, no specific labeling was observed (E), whereas neuronal
CA1 labeling was evident within the cytoplasm and apical dendrites of 3xTg-AD mice (F ). Significantly reduced labeling with TauCCP that was also limited primarily to the apical dendrites was
observed in 3xTg-AD/Bcl-2-OE animals (G, H ). D, Confirmation by Western blot analysis that overexpression of Bcl-2 prevents the caspase cleavage of tau in 12-month-old 3xTg-AD/Bcl-2-negative
(littermates to Bcl-2-OE mice) mice relative to NonTg animals. Western blot analysis was performed using a monoclonal antibody to caspase-cleaved tau (Gamblin et al., 2003) (Tau C3, 1:500). Tau
C3 recognized a band (�50 kDa) corresponding to caspase-cleaved tau in 3xTg-AD mice, which was largely prevented after the overexpression of the human Bcl-2 protein. D, Top, Western blot with
an actin antibody, which served as a loading control. I–L, Intense TauCCP CA1 labeling was seen in 18-month-old 3xTg-AD mice (I ), which appeared to be confined within cytoplasmic inclusion
bodies (arrows; J ). A paucity of staining with TauCCP was observed in two different 18-month-old 3xTg-AD mice that overexpressed Bcl-2 (K, L). Representative staining is shown from a total of n �
4 animals for each cohort. Scale bars, 10 �m. M, Immunohistochemical quantification of labeled TauCCP neurons in the CA1 region of the hippocampus indicated an age-dependent increase in the
number of positive neurons (n � 3; �SD).
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insult or mechanism of cell death (necrosis and apoptosis)
(Schmued et al., 2005). To confirm the utility of FluoroJade C as
a specific marker for neurodegeneration, immunofluorescence
experiments were undertaken using tissue sections from mice
subjected to MCAO as described previously (Hou et al., 2006).
This animal model of ischemia has the advantage that the isch-
emic infarct is confined to one side of the brain, leaving the other
side intact and damage free. Application of FluoroJade C to
MCAO brain sections revealed widespread neuronal labeling on
the side of the brain subjected to ischemia (supplemental Fig. 1,
available at www.jneurosci.org as supplemental material),
whereas there was no labeling on the contralateral side of the
brain (supplemental Fig. 1, available at www.jneurosci.org as
supplemental material). These data indicate that FluoroJade C
can be used as a specific marker for neurodegeneration in mouse
brain. Experiments were then performed on 24-month-old
3xTg-AD/Bcl-2-positive and -negative mice. In general, there
was a complete lack of specific labeling with FluoroJade C in any
of the animal groups examined, including age-matched NonTg
controls (data not shown), 3xTg-AD/Bcl-2-negative, and 3xTg-
AD/Bcl-2-positive mice (supplemental Fig. 1, available at www.j-
neurosci.org as supplemental material). In addition to a lack of
staining in the cortex, there was no labeling of FluoroJade C in the
hippocampus of any of the mice examined (data not shown).
These experiments were repeated in 18-month-old animals with
similar results. Our findings using FluoroJade C support recent
stereological analyses in areas CA1 and CA3 of the hippocampus
and entorhinal cortex (both total and layer II, III, and V specific)

indicating no significant loss of neurons or volume between
3xTg-AD mice and NonTg mice at 3 or 20 months of age (F. M.
LaFerla, personal communication). Thus, the findings suggesting
an improvement in cognition after overexpression of Bcl-2 can-
not be explained by the ability of Bcl-2 to afford protection from
neurodegeneration.

Discussion
In AD, A� deposition is accompanied by the gradual replacement
of the neuronal cytoskeleton with insoluble NFTs. NFTs are in-
tracellular fibrillary structures composed of aggregations of
paired helical filaments (PHFs), which are made up of abnor-
mally phosphorylated and truncated tau (Chun and Johnson,
2007). Although the diagnosis of AD is dependent on the extent
of accumulation of senile plaques and NFTs (Mirra et al., 1991),
the exact relationship between these two neuropathological
markers remains unknown. According to the A� hypothesis, A�
deposition precedes NFT formation, suggesting that A� may be
the earliest event that triggers all subsequent downstream molec-
ular events leading to neuronal death and synaptic loss (Golde et
al., 2006). Several studies have now suggested that the putative
link between A� and NFTs may be the activation of caspases and
cleavage of tau, a microtubule-associated protein (Rohn et al.,
2002; Gamblin et al., 2003; Rissman et al., 2004). In AD, tau
undergoes aberrant phosphorylation and cleavage by caspases,
modifications that are thought to contribute to the dysfunction
and degeneration of neurons (Chun and Johnson, 2007). How-
ever, to date, direct evidence demonstrating that caspase cleavage

Figure 4. Overexpression of Bcl-2 in 3xTg-AD mice leads to an accumulation of human pathological tau and reduction in the number of tangles. A, B, Representative staining within the
hippocampus is shown after application with anti-tau (HT7; 1:400). 3xTg-AD mice overexpressing Bcl-2 (B) showed an enhanced intraneuronal labeling of human tau compared with 3xTg-AD mice
alone (A). C, Western blot analysis of total mouse brain lysates from 12-month-old animals showed increased levels of human tau in 3xTg-AD/Bcl-2-OE mice compared with 3xTg-AD/Bcl-2-negative
littermates. C, Top, Western blot with an actin antibody, which served as a loading control. D, Densitometry analysis from three independent experiments (�SD) to quantify the enhanced levels of
human tau in 3xTg-AD/Bcl-2-OE mice. A 2.5-fold increase in the levels of human tau was evident in 3xTg-AD mice overexpressing Bcl-2. E–G, Representative immunohistochemical staining with AT8
indicated a lack of positive neurons in 3xTg-AD/Bcl-2-OE mice (F, G). H, Immunohistochemical quantification for AT8 (n � 2; �SD). I–L, Similar results were obtained after application of a PHF-1
antibody. Representative staining is shown from a total of n � 4 animals for each cohort. Scale bars, 10 �m.
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of tau as an interlinking step between A� and NFTs in AD is
lacking. The goal of the present study was to examine whether
inhibition of caspases after overexpression of Bcl-2 prevents tan-
gle alterations in a triple transgenic mouse model of AD.

Overexpression of Bcl-2 prevented the activation of caspase-9
and caspase-3 and limited the degree of caspase cleavage of tau in
6-, 12-, and 18-month-old 3xTg-AD mice. These data suggest

that the caspase cleavage of tau may be a critical event in the
evolution of tangle pathology. An additional finding of the
present study was the accumulation of both human tau and APP.
Thus, our results implicated caspase-like activity in the process-
ing of APP and tau. The processing of APP into A� represents one
of the earliest known steps in the disease process, and much focus
in this regard has been centered on the secretases (�, �, and �)

Figure 5. Overexpression of Bcl-2 leads to an accumulation of APP in 3xTg-AD mice. A–C, Immunohistochemical analysis in a representative 12-month-old 3xTg-AD mouse (A) or in two different
3xTg-AD mice overexpressing Bcl-2 (B, C) using monoclonal antibody 1560 (clone 6E10). The 3xTg-AD mouse showed immunolabeling for APP limited to the cytoplasm of cortical neurons (A). In
contrast, intense staining was observed in the neocortex in animals overexpressing Bcl-2, with an apparent accumulation of APP within the cytoplasm and apical dendrites (B, C). D–F, We extended
these results to older, 18-month-old animals. In older animals, extracellular deposits of A� could be observed in 3xTg-AD mice along with a concomitant decrease in intracellular immunoreactivity
(D). In mice overexpressing Bcl-2, immunoreactivity to antibody 1560 was confined within cortical neurons (E, F ), and no extracellular deposits were observed. To determine whether intracellular
labeling represented primarily APP or A�, we used the anti-APP specific antibody 22C11. In 3xTg-AD mice overexpressing Bcl-2, there was stronger immunoreactivity to 22C11 in the neocortex (H,
I ) compared with 3xTg-AD mice alone (G). J, Western blot and semiquantitative analysis of 12-month-old animals using the anti-APP antibody, 22C11 (1:1000) confirmed the higher levels of APP
in 3xTg-AD/Bcl-2-OE mice compared with NonTg controls or 3xTg-AD/Bcl-2-negative mice. K, L, We next used an antibody specific for A�1– 42 and found that intracellular A� immunoreactivity is
much higher in neurons within the neocortex of a representative 12-month-old 3xTg-AD mouse (K ) then was found in 3xTg-AD/Bcl-2-OE mice (L). Representative staining is shown from a total of
n � 4 animals for each cohort. Scale bars, 10 �m.
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(Wilquet and De Strooper, 2004). Our data suggest that caspases
may also contribute to the processing of APP, because overex-
pression of Bcl-2 led to an accumulation intracellular APP but a
prevention of the extracellular deposition of A� in 3xTg-AD
mice. Together with the results concerning tau, these findings
provide novel fundamental mechanisms governing the turnover
of important neuronal proteins involved in the pathogenesis of
AD. Whether or not caspases play a physiological role in the
normal turnover of tau and APP is a highly speculative but inter-
esting question as more and more studies are identifying non-
apoptotic functions for this class of enzymes (Yan et al., 2001;
Rohn et al., 2004; Launay et al., 2005).

Although numerous studies have implicated caspases and ap-

optosis as a major pathway of cell death in AD (Culmsee and
Landshamer, 2006), our results suggest that the activation of ap-
optotic pathways may be an early event in AD and an important
contributor to the disease process. Our findings support a recent
study demonstrating the upregulation of Bcl-2 in APP transgenic
mice, which was associated with neuroprotection (Karlnoski et
al., 2007). Interesting, in this study the authors used APP � PS1
transgenic mice, in which previous studies have shown that A�-
induced neurodegeneration is limited (Karlnoski et al., 2007). In
fact, the limited degree of neurodegeneration in this particular
animal model may now be explained by an apparent increase in
Bcl-2 expression in amyloid-containing brain regions (Karlnoski
et al., 2007). Together with our study, these findings suggest that
if one could selectively increase the levels or activity of Bcl-2 in
neurons of AD patients, this could provide an effective means of
treating this devastating disease. It seems unlikely, however, that
one could develop pharmaceutical compounds that selectively
activate Bcl-2 in neurons and not in other cell types such as glial
cells, where overexpression could lead to tumor formation. Fur-
thermore, Bcl-2 would be unable to distinguish “good” apoptosis
versus “bad” apoptosis, and the possibility for numerous side
effects would be a foreseeable outcome after the application of
such an inhibitor of apoptosis.

A final outcome of the present study was the demonstration
that overexpression of Bcl-2 led to improved cognition in terms
of memory retention in 3xTg-AD mice. The improved cognition
associated with overexpression of Bcl-2 is intriguing and based on
the FluoroJade C studies cannot be explained simply by prevent-
ing neurodegeneration. In fact, very little if any neurodegenera-
tion was detected in 24-month-old 3xTg-AD mice in the presence
or absence of Bcl-2. Our findings support recent stereological
analyses in areas CA1 and CA3 of the hippocampus and entorhi-
nal cortex, indicating no significant loss of neurons or volume
between 3xTg-AD mice and NonTg mice at 3 or 20 months of age
(LaFerla, personal communication). How then Bcl-2 is improv-
ing cognition in the present study is unknown, but may be related
to actions of Bcl-2 independent of its classic role in apoptosis. For
example, recent studies have suggested that Bcl-2 family mem-
bers can influence synaptic activity, mitochondrial fission, and
mitochondrial electrophysiology (Cheng et al., 2006). With re-
gards to synaptic transmission, Jonas et al. (2003) showed that
injection of the Bcl-2 family member, Bcl-xL, into nerve termi-
nals enhanced postsynaptic responses by modulating mitochon-
drial membrane conductance. This action of Bcl-xL occurred
independently of its well known role as anti-apoptotic molecule,
suggesting that Bcl-2 family members may have other non-
apoptotic functions in mature neurons. Previous studies have
demonstrated age-related synaptic dysfunction in 3xTg-AD
mice, including long-term potentiation deficits (Oddo et al.,
2003). Thus, the possibility exists that overexpression of Bcl-2
in 3xTg-AD mice improves cognition through an action that is
independent of its classic role as an anti-apoptotic protein by
preserving or enhancing synaptic function. Future studies ex-
amining synaptic dysfunction in 3xTg-AD after overexpres-
sion of Bcl-2 should clarify this question. In conclusion, our
results provide direct evidence that caspase activation may
link A� with NFTs and that caspases may play a role in the
processing and turnover of both tau and APP. Thus, therapeu-
tics designed to stimulate the activity of Bcl-2 within neurons
of the AD brain may provide an effective means for stopping
the progression of this disease.

Figure 6. Assessment of memory retention in 3xTg-AD mice overexpressing Bcl-2. A, C, E,
Representative staining from a 24-month-old 3xTg-AD/Bcl-2-OE mouse. B, D, F, Representative
staining from a 24-month-old 3xTg-AD/Bcl-2-negative littermate mouse. A, B, Cortical sections
stained for Bcl-2 using a monoclonal antibody to human Bcl-2 (1:200). C–F, The mAb 1560
anti-A� antibody (1:400) was incubated with tissue sections and immunolabeled extracellular
A� deposits in 3xTg-AD/Bcl-2-negative mice (D, F, arrows) that were absent in 3xTg-AD/Bcl-
2-OE mice (C, E). Scale bars: A, B, E, F, 10 �m; C, D, 20 �m. G, The same two mice used for
pathological analysis were tested for place recognition memory retention before being killed.
The 3xTg-AD mouse overexpressing human Bcl-2 showed superior place recognition, touching
the object in the novel location more frequently on each of 3 testing minutes. H, Pooled results
(n � 3 3xTg-AD/Bcl-2 positive; n � 3 3xTg-AD/Bcl-2 negative; �SEM) including data from the
two animals in G, indicating that Bcl-2 overexpressors explored the novel location significantly
more than littermates that were Bcl-2 negative ( p � 0.008 for total touch ratio and p � 0.02
for total time ratio).
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