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An Iterated Pseudospectral Method for
Functional Partial Differential Equations

J. Mead B. Zubik-Kowal

December 1, 2003

Abstract. Chebyshev pseudospectral spatial discretization preconditioned
by the Kosloff and Tal-Ezer transformation [10] is applied to hyperbolic and
parabolic functional equations. A Jacobi waveform relaxation method is then
applied to the resulting semi-discrete functional systems, and the result is a
simple system of ordinary differential equations £U*!(t) = MU (t) +
f(t,UF). Here M, is a diagonal matrix, k is the index of waveform relax-
ation iterations, UF is a functional argument computed from the previous
iterate and the function f, like the matrix M,, depends on the process of
semi-discretization. This waveform relaxation splitting has the advantage of
straight forward, direct application of implicit numerical methods for time
integration (which allow use of large time steps than explicit methods). An-
other advantage of Jacobi waveform relaxation is that the resulting systems of
ordinary differential equation can be efficiently integrated in a parallel com-
puting environment. The Kosloff and Tal-Ezer transformation preconditions
the matrix M,, and this speeds up the convergence of waveform relaxation.
This transformation is based on a parameter a € (0, 1], thus we study the
relationship between this parameter and the convergence of waveform relax-
ation with error bounds derived here for the iteration process. We find that
convergence of waveform relaxation improves as « increases, with the greatest
improvement at o = 1 if the spatial derivative of the solution at the bound-
aries is near zero. These results are confirmed by numerical experiments, and
they hold for hyperbolic, parabolic and mixed hyperbolic-parabolic problems
with and without delay terms.

Keywords: Hyperbolic, parabolic, functional equations, Chebyshev pseu-
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dospectral method, Kosloff Tal-Ezer transformation, waveform relaxation,
homogeneous Neumann boundary conditions.

1 Introduction

In this paper we study numerical solutions to the linear non-homogeneous

initial boundary value problem with functional term
au(m t) o u(z t)+cau(3: t)+g(z, t,ugy), -L<z<L, 0<t<T
J— = €—— J— j—

ot ) Ox2 ) oz ) g\x, 1, Uz t) ), >4 > Ly >4,
u(z,t) = folz,t), —-10<t<0, -L<z<L.

Choices for ¢ and € have vastly different behavior, i.e € = 0 is the hyperbolic
one-way wave equation, ¢ = 0 is the parabolic heat equation, while both € # 0
and ¢ # 0 is the parabolic advection-diffusion equation. Different types of
boundary conditions are required for the two cases € # 0 and € = 0. For the
parabolic case (e # 0) there are two boundary conditions

’U,(Zl:L, T) = f:l:(t)a

while for the hyperbolic case (¢ = 0) there is one boundary condition

u(L;t) = f4(1).

Here, 9 > 0, L > 0 and 7" > 0 are given constants, f, and fi. are
given initial and boundary functions while the function u(,y for (z,t) €
[—L, L] x [0,T] is defined by

Uy (T) = u(z,t+7), T€[-T0,0], (1.1)

and g : [—L, L] x[0,T] x C([—70,0], R) — R is a continuous function. Equa-
tion (1.1) includes, for example, integro-differential equations

D at) = e )+ e Dula ) + 5ot [ ulwt+r)dr),  (1L2)
g u(@:t) = ez zu(z, cqu(a, g(z,t, 7T0u3:, 7)dT), .

and delay equations

0 0?

0 ~
&u(x, t) = ewu(a:, t) + c%u(a:, t)+g(z, t,u(z,t — 1)) (1.3)

2
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cp [16, Section 3]. Here, g : [—L, L] x[0,T] xR — R is a continuous function.
If g is given in (1.2) or (1.3) then the function g is

g(z,t,v) = g(x, t, " v(s)ds),

—7
or
g(-’E, t,?)) = f](x,t, U(t - TO))

respectively with v € C([—7ok,0],R). Functional problems like (1.1) are
used to model cancer cells in human tumors, see [1]. For other applications
in population dynamics we refer the reader to [5].

We study the Chebyshev pseudospectral spatial discretization of (1.1)
[7] with the Kosloff and Tal-Ezer transformation [10], together with Jacobi
waveform relaxation methods for time integration [2], [3]. The Chebyshev
Pseudospectral method is chosen because (1) it has high accuracy, and (2)
when used with waveform relaxation, iterations converge more quickly than
when finite differences [16]. Waveform relaxation methods are chosen because
(1) they are efficient in parallel computing environments, and (2) they allow
direct application of implicit methods for integration in time.

Waveform relaxation error bounds derived in [16] show that the conver-
gence of waveform relaxation schemes is faster if the schemes are applied to
ODE:s or functional ODEs systems with matrices whose entries are of smaller
magnitude than if the same schemes are applied to systems with matrices
whose entries are larger. For this reason we use the Kosloff and Tal-Ezer
transformation which “preconditions” the Chebyshev pseudospectral matrix,
making most of the entries smaller, and in addition, making the eigenvalues
with large magnitude smaller. One would therefore expect, and we will show,
that the convergence of waveform relaxation applied to the preconditioned
matrices is faster than with the Chebyshev pseudospectral matrices which
are not treated by the Kosloff and Tal-Ezer transformation.

Waveform relaxation methods for pseudospectral semi-discrete systems
have been studied in [14], [3], [16] and [9]. The only work where the Kosloff
and Tal-Ezer transformation was applied was in [3]. In that paper they
solved the homogeneous heat equation with constant coefficients, while here
we solve hyperbolic, parabolic and mixed equations, with non-constant coef-
ficients and with functional terms. In addition, in [3], the parameter in the
Kosloff and Tal-Ezer transformation was chosen as a function of N, the num-
ber of grid points in the spatial domain, while here we will show results from
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a wider range of parameter choices. We derive the conclusion that the rate
of convergence increases with increasing o € (0, 1], for all types of problems
mentioned above, and our conclusion is confirmed by numerical experiments.
We must emphasize, however, that choosing o = 1 is optimal only in the case
where the spatial derivative of the solution at the boundaries is near zero.
This is a reasonable assumption considering that in many applications, es-
pecially those involving diffusion, where the solution tends to zero. Consider
the following physical models all of which have solutions with zero spatial
derivatives specified at the boundaries [15]: A vibrating string that is free
to move transversally without resistance, heat conduction where the object
through which the heat is flowing is perfectly insulated, electric potential
in a cylinder that is sealed to prevent the current from flowing across the
boundary, or fluid velocity that is zero at the boundaries.

The organization of the paper is the following. The pseudospectral spatial
discretization for (1.1) is given in Section 2. Section 3 describes the Kosloff
and Tal-Ezer transformation. The waveform relaxation method for the re-
sulting semi-discrete systems is presented in Section 4 and error bounds are
introduced. Section 5 presents results from numerical experiments. We end
with some concluding remarks in Section 6.

2 Pseudospectral spatial discretization for func-
tional problem (1.1)

We apply the process of pseudospectral semi-discretization with the Chebyshev-
Gauss-Lobatto points z; = —L cos(mi/N), i =0,..., N. Let u;(t) = u(x;, t),
then the pseudospectral spatial discretization gives the following system of
functional ODEs

N-1
L) = X du+e Y ol (w)
j=1 j=sign(e)
e [0 (1) + A £ (2)] (2.4)

+c [sign(e)dz(,o f-(t) + d,(}]z,f+ (t)] , 0< t<T,
uz(t) = fO(xht)? _TOS tSTa i:Sign(6)7 <. ':N -1

Here, D) = [dg,lj)]f‘fj:o and D [d ] _o are the pseudospectral differen-
tiation matrices of the first and second order respectively, based on the grid
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points {z;}Y ¢, cp. eg. [4], [7]. The functional argument (u;), for 0< ¢t <T
is defined by
(wi)e(T) =wi(t +7), —19 <7 <0.

To have the system (2.4) written in a matrix form we introduce the notations

U(t) = (usign( )(t) y UN— l(t))T fO( ) = (fO(xsign(e)a ): . -;fO(xN lat))Ta

(2 (1 l
[d ,]) i\; 117 [d ) ]\; 151gn(5)7 &( ) = [d51gn(5 . dN 1 O) 7(2 5)
4N = [ ',dS’vll,N)T, I=12

g(t: Ut) = (g(xsign(e): L, (Usign(e))t)a s ,g(fola 12 (uNfl)t))T-

Now the problem (2.4) can be written in the following form
ZU() = [D? + DV UM +3(t,0) + e [f-(0dy” + £ (0)dy]

+e[sign(e) f()dy” + £ ()dy)], 0<t<T, (2.6)
Ut) = fot), —m<t<O0.

dt

In the next section we describe the Kosloff and Tal-Ezer transformation ap-
plied to (2.6).

3 Grid transformation for the functional prob-
lem (2.6)

We consider the Kosloff and Tal Ezer grid transformation y = g,(z) where the
Chebyshev grid z; = —L cos(mi/M) is stretched by the parameter dependent,
continuous transformation g, : [-L, L] — [—L, L]:

sin !(ax)

Y= go(x) = 0<a<l. (3.7)

sin ()’
As a — 0 the grid approaches the Chebyshev grid, while as a — 1 the grid
approaches an equally spaced grid.

In order to solve a given partial differential equation in variable u(y, t),
on the transformed grid, the grid values u(y;,t) must be used to obtain
values for the spatial derivatives of u of any order. This is accomplished
via repeated application of the chain rule to re-express spatial derivatives of

5
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u(y,t) in terms of spatial derivatives of u(z,t) with respect to z, yielding,
for example, for the first order derivative

du o 1 S
a\”t/) =0

[10]. Here the entries dg;) are still the entries of the matrix DM, which
approximate the first order differential operator on the Chebyshev grid. On
the stretched grid, the operator D() is replaced by D) = AW D) where
AWM is a diagonal matrix with entries

1 sin ! (a)y/1 — o222
e (01—

g5 (xx) «

Note that Afj,j increases from O(1/N) at k = 0, to O(1) for k£ at the middle
of the matrix, and then decreases back to O(1/N) for k = N.

The operators for higher order derivatives are obtained in a similar fash-
ion, [10, 13]. Here we will need the second order derivative operator

d2
dy?

Q

(AD2DE) _ 4@ p®) (3.9)
= Dg)

where D@ is the second order operator for the original grid, and A® is the
diagonal matrix with entries

2

AR = g (20)/(gh(@n))® = (5in7" () s

We note that this operator (3.9) is not equivalent to (A® D)2,

The more severe scaling with o tending to 1 permits the use of larger
time steps in explicit schemes, however, in the limit, at o = 1, we are left
with a high order interpolant on an equally spaced grid. It is well known
that this causes Runge phenomenon, and if one were to input a near equally
spaced grid into Fornberg’s algorithm [7] to calculate the derivative (3.8) or
(3.9) the approximation would be unstable.

Alternatively, we view the transformation as preconditioning the Cheby-
shev pseudospectral derivative matrices with matrices A®), for example, in
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the first derivative calculation. The only potential problem with this view-
point is that when o = 1, the matrix A®) has entries Agp = Ayny = 0, and
the homogeneous Neumann boundary conditions

0 0
—u(—1,t) = —u(l,t) =0
—u(-1,8) = —u(1,t) =0,
are imposed on the solution u. In this work this is not a problem because
the spatial derivative of the solution is nearly zero at the endpoints. We will
show that in this case, choosing o = 1 is optimal for both convergence and
accuracy.

The Kosloff and Tal-Ezer transformation gives new matrices and vectors

DY), DY), dizos iy Ay Al (3.10)

which we use for (2.6). Note here that we use the convention that a = 0
gives the matrix form at the Chebyshev points.

4 Waveform relaxation for (2.6)

We simplify the system (2.6) by splitting each of the matrices 5&”, l=1,2
into two matrices: .
DY =401 BO =12 (4.11)

In this section we consider waveform relaxation schemes based on the general
splitting (4.11) and derive an error bound for such general schemes. In the
next section we will study Jacobi waveform relaxation schemes based on the
following special splitting

Ag) — diag(ﬁg)), Bg) = 5&” — diag(ﬁg))- (4.12)

Since the matrices AY are diagonal, the resulting systems of differential
equations can be integrated in a parallel computing environment. Let

Ay = €eAD 4 Al (4.13)
B, = eBY® +cB.

Then solutions U(t) to the system (2.6) can be approximated by succes-
sive iterates U¥(t) computed according to the following waveform relaxation

J. MEAD & B.ZUBIK-KOWAL in APPLIED NUMERICAL MATHEMATICS
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scheme

d ~ -
—U*H(t) = AU (t)+BuU(t)+34(t, UY)

dt
e [f- (s + Fr ()R] (4.14)
+c [sign(e)f, (t)%lzy + f+ (t)cz(ﬁ)a] , 0<t<T,
URL(t) = fot), —mo <t <0.

Here, kK = 0,1,..., and U°(#) is an arbitrary starting function. If the ma-
trix AY is diagonal (Jacobi waveform relaxation), then each equation of the
system (4.14) can be solved independently by a different processor.

In this paper we study how the convergence of the iteration scheme (4.14)
depends on the parameter o. Therefore, we shall study the error

e (t) = U*(t) = U(1).

Let || - || be an arbitrary vector norm or the induced matrix norm. For an
arbitrary matrix M we define

u(M) = lim I +eM]|| —1

e—0Tt €

the logarithmic norm of the matrix M, where I is an identity matrix. To
derive an error bound for €*(¢) we need the following.

Assumption 4.1 Suppose that there exists a positive constant v such that
15, U) — g, Uy)|| < vmax{||U(T) =U(7)|| : t =70 < 7 < t} (4.15)

fort € [0,T), U,U € C(|—m,T), RN=58)) and §(t,U,;) defined in (1.2) or
(1.3).

The error bound for €*(¢) is given in the following theorem.

Theorem 4.2 Suppose that Assumption 4.1 is satisfied. Then

TPy LA By e :
e < S [k A ds max (), (416)

fort € [0,T].
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Proof: Subtracting (2.6) (with the matrices and vectors specified in (3.10) )
from (4.14) gives

1) — AR + AR 1) = [BY) + eBOIH ) + (0, UF) — 30, V).
(4.17)

Using the notation (4.13), multiplying (4.17) by e~4at from the left-hand

side, integrating from 0 to ¢ and then multiplying the resulting equation by

eAe? again from the left-hand side gives

t ~ ~
Fr(t) = /0 gAalt=9) (Baek(s) +G(s,UF) — §(s, US)) ds. (4.18)
From (4.18) and Assumption 4.1 we have
t ~
k+1 D] u(Aa)(t—s) k
e @ < (1Ball+v) [ 30 macek(r) s, (4.19)
From (4.19) we have (4.16) for £ = 0. We now suppose (4.16) for £ — 1

and using (4.19) prove (4.16) for k. From (4.19) and from (4.16) with £ + 1
replaced by k£ we have

(| Ball + »)*+!
(k—1)!

t ~ z ~
e L (1)]| < / el Aa)(t-2) / 1A g5 qy max [|e0(7)|)-
0 0 <7<t

(4.20)

Since . i B . B
/ e/,a(Aa)(tfz) / Slcflep,(Aa)sdst — % / Skeu(Aa)st’
0 0 0

(4.16) follows from (4.20), which finishes the proof. O

We study the error bound (4.16) with A, and B, defined by (4.13) as
a function of the waveform relaxation iteration index £ in Figure 1, and
as a function of the parameter « in the Kosloff and Tal-Ezer transforma-
tion in Figure 2, when N = 32. The problem in both Figures is posed on
[—10,10] %[0, 1] and the error bounds are computed at t = 1. Results from the
problem without delay are not shown because even though the error bounds
are smaller, the results are similar to results from the delay case shown here.
For the delay term we choose the value v = 5 for the functions g from the
family which satisfies the Lipschitz condition, Assumption 4.1.

In Figure 1 the error bounds from the hyperbolic problem (e = 0, ¢ = 1),
the parabolic problem (e = 1, ¢ = 0), and the mixed problem (¢ = ¢ = 1) are

9
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shown. In each of the graphs « is held fixed, and the three lines represent
a = 0,0.9,1. We see significant improvement in convergence of waveform
relaxation when o = 0.9 and o« = 1. Convergence is obtained with o = 0,
however it takes more iterations, i.e. k£ > 300 for the Chebyshev case. We
also note that the diffusive part of the mixed hyperbolic-parabolic problem
dominates the error bound.

In Figure 2 we plot the error bound as a function of a € [0, 1] for three
different iteration indices: £ = 100,120, 140. We show results from only the
hyperbolic and parabolic problems because, as in Figure 1, the results from
the mixed problem are similar to the results from the parabolic problem.
In the parabolic problem it appears as though the error is increasing for
increasing iteration index & when o < 0.7. This is because for these values
of a, and when 100 < k£ < 140, there is a “hump” in the error bound, as
seen in Figure 1. On the other hand, when o > 0.7, the error as a function
of k is strictly decreasing at £ = 100. In the hyperbolic problem the error
as a function of k is strictly decreasing at £ = 100 for all values of «, thus
the curves are uniform. More importantly, we conclude from Figure 2 that
for all cases (hyperbolic, parabolic, mixed, no delay, and with delay), and
for fixed k, the error bounds are decreasing as « increases with the fastest
convergence of waveform relaxation at o = 1.

10
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Figure 1: Error bounds (4.16) as functions of the iteration index k£ with
N = 32.
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Figure 2: Error bounds (4.16) as functions of o with N = 32.
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In the next section we present the errors ||e*(¢)|| for extensive numerical
data obtained by applying (4.14) with the Jacobi splitting (4.12) for the

matrices D2, DU with o € [0,1]. It will be shown that the errors ||e*(¢)]|

e «
behave like their error bounds (i.e. they decrease as « increases).

5 Numerical experiments

In this section we present results of numerical experiments for the following
test problem

2
g—?(ac,t) = e%(m,t)+c%(x,t)—uu(m,t—70)+g(:v,t), —L<z<L, 0<t<T,
u(xL,t) = f+(t), 0<t<T, (5.21)

u(z,t) = folz,t), —1<t<0, -L<z<L.

We select the right-hand side function g(z,t), and the initial and boundary
functions fo(z,t) and fi(¢), in such a way that the solution of the problem is
known exactly and equal to u(z,t) = texp(—=?). We choose L = 10, thus the
boundary functions are fi(t) = texp(—L?) (nearly zero), and we integrate
until 77 = 1. Asin Section 4 we consider six problems: the advective-diffusive
problem (e = ¢ = 1), the diffusive problem (e = 1, ¢ = 0) and the hyperbolic
problem (e = 0, ¢ = 1) each with =0 and 7 =0 (non-delay case) and with
v=>5 and 1=0.1 (delay case).

The waveform relaxation scheme (4.14) for the problem (5.21) is written
in the following form

%U’““(t) = AU )+ B Uk () —vU*(t — 7o) +g(t)+ f(t), 0<t<T,
_ 5.22
UL (t) = folt), -1 <t<0. (5.22)
Here,

g(t) = (g(xsign(e)a t)a e ag(xN—la t))Ta
F(t) = e[f-)doa+ fr@)d0L] + ¢ [sign(e) [ ()b + f1 ()R] -
The initial function f, is defined in (2.5). If the matrices A, and B, are

defined by (4.13), then (5.22) is Jacobi waveform relaxation scheme which
we use for our numerical experiments.

13
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To integrate the systems (5.22) in time we use the BDF3 method with
the time step nAt = 1.0. Integration of the systems (5.22) results in the
approximations Ui’fn ~ U;(nAt), n =1,2,.... We study the errors

ef(nAt) = max |UF —u(z;, nAt)| (5.23)
1=0,...,N—1 ’
measured at nAt = 1 which can be compared with their upper bounds (4.16)
plotted in Figures 1 and 2.

In Figure 3 we present the errors (5.23) as functions of the iteration
index k, when N = 32 and for « = 0, = 0.9, and o« = 1. The upper
bound for this error curve is shown in Figure 1, and the actual errors are
expectedly much smaller than their bounds. However, similar to the bounds,
we do see that the error curve corresponding to o = 0 has a larger “hump”
(compared to o = 0.9, 1), and that it decays more slowly. Since the errors
(5.23) include not only the waveform relaxation error, but also the spatial
and time discretization errors, the curves in Figure 3 become horizontal lines
after a given number of iterations, which we define by £,,,,. The fact that
the error curves become horizontal after k,,,, indicates that the waveform
relaxation errors are smaller than the spatial and time discretization errors,
thus the horizontal lines represent the spatial and time discretization errors.

As predicted in Figure 1 the number k,,,; in each picture of Figure 3
is the largest for & = 0, smaller for « = 0.9 and the smallest for o = 1.
We denote these numbers by £,,42(0), kmaz(0.9), kmaz(1), Tespectively. The
number ky,q.(1) is about three times smaller than k.4, (0) in case of parabolic
and mixed problems. For hyperbolic problem the number k(1) is about
four times smaller than £,4.(0).

In Figure 4 we plot the errors (5.23) as functions of «, two of which
can be compared with the error bounds plotted in Figure 2. Errors from
the problem without a delay term are also plotted in Figure 4 since we see
different behavior than with the delay term. The three lines in each of the
six cases represent the errors at three iteration indices kyaz(0), Kmaz(0.9),
kmaz(1). Note that each of these iteration indices are different for each of the
six problems.

In Figure 4 it again appears (as in Figure 2) that for many of the problems,
larger error occurs with larger iteration index, for certain values of o. This
again is due to the “hump” in the error before it decreases as a function of
k. The fact that the solid line is nearly horizontal in all graphs in Figure
4 indicates that by k4.(0), i.e. by the time waveform relaxation with the
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Chebyshev pseudospectral method converges, most choices of @ < 1 have
previously converged. The solid line decreasing near o« = 1 indicates that the
accuracy of the solution is better with these choices of «.

In each of the graphs in Figure 4 the dotted and dot-dashed lines (which
were plotted for ky,.(0.9), kmaz(1), respectively) join the solid lines (plotted
for kiaz(0)) at certain points a* (each line has a different point «*). For a >
o the corresponding lines are covered by the solid lines. The dotted lines for
a < o (with o which correspond to them) show that the numbers k,,,,(0.9)
are too small for the iteration process to make the waveform relaxation errors
smaller than the spatial and time discretization errors. In other words, for
these choices of & < a* and k < ka2 (0.9) the errors (5.23) as functions of
k are still during their humps before reaching their constant levels. Similar
phenomena happen for dot-dashed lines. Our concluding remarks for Figure
4 are that for increasing «, we see decreasing error at fixed iteration index
k, with the best accuracy at o = 1.

It is widely believed that a should be chosen as a function of NV, so in
Figure 5 we hold « fixed and show errors with different values of N. Results
in 5 are with the extreme values of parameter choices: o = 0 (on the left) and
a =1 (on the right). Results from the non-delay case are omitted because
they are similar to the delay case, while results from the mixed problem are
omitted because they are similar to the parabolic problem.

Our conclusions do not change, given the results in Figure 5. What we
do see there is that in all cases it takes longer for waveform relaxation to
converge as N increases, but when it does converge, the error is smaller with
larger N. This is because the larger the value of N, the more ill-conditioned
the derivative matrices. In addition, since the transformation smooths the
Chebyshev differentiation matrix, the accuracy of the solution with a = 1
is significantly better in the beginning iterations. Not only does the choice
a = 1 converge more quickly, the overall error is also orders of magnitude
smaller.
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Figure 3: Solution errors (5.23) as functions of the iteration index & with
N = 32.
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Figure 4: Solution errors (5.23) as functions of « with N = 32.
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Figure 5: Solution errors (5.23) as functions of iteration index k& with oz = 0
(left) and o =1 (right).
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6 Concluding remarks

The Chebyshev pseudospectral spatial discretization with the Kosloff and
Tal-Ezer transformation [10] was applied to hyperbolic, parabolic, and mixed
hyperbolic-parabolic differential-functional problems. The resulting semi-
discrete system was solved by the Jacobi waveform relaxation method, thus
the equations of the system were separated in such a way that each of them
can be solved by a different processor in parallel. We studied the relation-
ship between the convergence of the Jacobi waveform relaxation scheme and
the parameter « in the transformation. In addition, we derived a new error
bound for the waveform relaxation method, which says that waveform relax-
ation converges more quickly as « increases from 0 to 1. Numerical results
from hyperbolic, parabolic, and mixed hyperbolic-parabolic functional equa-
tions with and without delay terms confirm that as o increases, waveform
relaxation converges faster. Numerical results also show that the errors in
the solution decrease as « increases with the best accuracy and fastest con-
verge occurring at @ = 1 when the solution has zero spatial derivatives at
the boundaries.

The Kosloff and Tal-Ezer transformation is typically used to allow larger
time steps in explicit schemes for the solution of partial differential equations.
Choosing oo = 1 allows the largest time step, but it also amounts to approxi-
mating the derivative with high order interpolant on an equally spaced grid,
so traditionally o = 1 is not chosen. However, if we view this transformation
as preconditioning the Chebyshev pseudospectral differentiation matrices,
and the solution has zero derivative values at the boundaries, choosing o = 1
not only results in the fastest convergence of waveform relaxation, but also
results in the most accurate solution with waveform relaxation.

It was previously shown that the waveform relaxation error bounds and
convergence are better with the Chebyshev pseudospectral method than with
finite differences [16]. In [3] it was shown for the heat equation that the
Kosloff and Tal-Ezer transformation can improve the convergence of wave-
form relaxation when « is chosen as a function of N. Here, for hyperbolic,
parabolic and mixed functional equations we derive error bounds for wave-
form relaxation with the Kosloff and Tal-Ezer transformation and determine
that choosing o = 1 is optimal when the solution has zero spatial derivatives
at the boundaries.
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