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ABSTRACT 

Late Sakmarian to early Artinskian (Early Permian) carbonate deposition was widespread in 

the marine intracratonic rift basins that extended into the interior of Eastern Gondwana from 

Timor in the north to the northern Perth Basin in the south.  These basins spanned about 20° 

of paleolatitude (approximately 35°S to 55°S). This study describes the type section of the 

Maubisse Limestone in Timor-Leste, and compares this unit with carbonate sections in the 

Canning Basin (Nura Nura Member of the Poole Sandstone), the Southern Carnarvon Basin 

(Callytharra Formation) and the northern Perth Basin (Fossil Cliff Member of the Holmwood 

Shale). The carbonate units have no glacial influence and formed part of a major depositional 

cycle that, in the southern basins, overlies glacially influenced strata and lies a short distance 

below mudstone containing marine fossils and scattered dropstones (perhaps indicative of sea 

ice). In the south marine conditions became more restricted and were replaced by coal 

measures at the top of the depositional sequence. In the north, the carbonate deposits are 

possibly bryozoan–crinoidal mounds; whereas in the southern basins they form thin laterally 

continuous relatively thin beds, deposited on a very low-gradient seafloor, at the tops of 

shale–limestone parasequences that thicken upward in parasequence sets. All marine 

deposition within the sequence took place under very shallow (inner neritic) conditions, and 

the limestones have similar grain composition.  Bryozoan and crinoidal debris dominate the 

grain assemblages and brachiopod shell fragments, foraminifera and ostracod valves are 

usually common. Tubiphytes ranged as far south as the Southern Carnarvon Basin, albeit 

rarely, but is more common to the north. Gastropod and bivalve shell debris, echinoid spines, 

solitary rugose corals and trilobite carapace elements are rare. The uniformity of the grain 

assemblage and the lack of tropical elements such as larger fusulinid foraminifera, colonial 
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corals or dasycladacean algae indicate temperate marine conditions with only a small increase 

in temperature to the north.

The depositional cycle containing the studied carbonate deposits represents a warmer 

phase than the preceding glacially influenced Asselian to early Sakmarian interval and the

subsequent cool phase of the "mid" Artinskian that is followed by significant warming during 

the late Artinskian–early Kungurian. The timing of cooler and warmer intervals in the west 

Australian basins seems out-of-phase with the eastern Australian succession, but this may be 

a problem of chronostratigraphic miscorrelation due to endemic faunas and palynofloras. 
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1. Introduction

Teichert (1939) proposed a connection between the Permian of Timor and coeval 

deposits in west Australian basins and suggested continuity between his “Westralian 

Geosyncline”, including what are now broadly termed the Canning, Southern Carnarvon and 

Perth Basins (Fig. 1), and the "Timor–East Celebes Geosyncline" now known as the Outer 

Banda Arc (Audley-Charles, 1968). Most early stratigraphic work on Timor suggested that 

the Permian limestones and associated volcanic units were tectonically allochthonous (e.g. 

Brouwer, 1942; Gageonnet and Lemoine, 1958; Audley-Charles, 1968; Carter et al., 1976; 

Brunnschweiler, 1978). By contrast, paleomagnetic studies (Chamalaun, 1977; Wensink and 

Hartosukohardjo, 1990) as well as a re-evaluation of Permian faunas and floras (Archbold, et 

al., 1982; Webster, 1998; Charlton et al., 2002; McCartain et al., 2006) and a better 

understanding of the tectonic makeup of present-day South East Asia (Hall and Sevastjanova, 

2012) have contributed to now almost general acceptance that the Timor Permian was 

deposited in a northern Gondwanan basin that was closely linked to basins along the present 

west Australian margin. These basins formed a broad belt, informally designated the East 

Gondwana interior rift system (Fig. 1; previously termed the "Western Australian Trough" by 

Wopfner, 1999), along which continental breakup took place during the Jurassic and Early 

Cretaceous to form the present Indian Ocean (Audley-Charles, 1983, 1984, 1988; Veevers, 

1988; Harrowfield et al., 2005; Heine and Müller, 2005; Ali et al., 2013). 

Earliest Permian deposition in the East Gondwana interior rift system included

glacially derived sediment, at least in the west Australian basins (Eyles and Eyles, 2000; 

Eyles et al. 2003; Eyles et al., 2006; Gorter et al., 2008; Mory et al., 2008). By the late 

Sakmarian and throughout the early Artinskian, there was no glacial influence throughout the 

rift system in the studied region and seas flooded as far south as the northern Perth Basin (see 
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Sections 3–7, herein).  At this time, carbonate deposits were widespread in Timor (Maubisse 

Formation; Charlton et al., 2002) whereas fine-grained siliciclastic facies including minor 

carbonates dominated west Australian onshore basins (Veevers and Wells, 1961; Playford et 

al., 1976; Hocking et al., 1987; Mory, 1991). The Lower Permian is very poorly known in 

offshore basins in Western Australia because it is deeply buried under thick Mesozoic 

successions. This paper sets out to document the primary composition of the limestone facies 

within the first post-glacial depositional sequence of the Lower Permian along the East 

Gondwana interior rift system, from Timor in the north to the northern Perth Basin in the 

south. Very little has been published on the composition of the original sediment forming the 

late Sakmarian–early Artinskian limestone units in these basins. Dixon and Haig (2004) 

presented a detailed account of the biogenic components of shale and interbedded limestone 

from the type section of the Callytharra Formation (Fig. 2) in the southern part of the 

Southern Carnarvon Basin (locality 7 of Fig. 1). Frank et al. (2012) provided a more general 

account of biogenic components from thin sections of selected levels within the same 

formation from three boreholes located near the margins of this basin. 

Our study provides the first detailed description of the Maubisse Formation at its type 

locality in Timor Leste (locality 1, Fig. 1), determines the composition and age of the 

limestone, and compares its composition with that of coeval limestones in west Australian 

basins further south in the East Gondwana rift system (localities 2–8, Figs. 1, 2). This 2000 

km transect brings new insights into the nature of the late Sakmarian–early Artinskian sea that

flooded the interior of eastern Gondwana following melting of continental ice sheets in this 

region and of the biota that produced extensive carbonate deposits. It also provides a greater 

appreciation of intracratonic climate gradients through mid- to high latitudes after one of the 

major ice ages in the Earth's history. The late Sakmarian–early Artinskian interval including 

the carbonate deposition documented here is apparently coeval with Glaciation P2 in the 
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eastern Australian Permian basins (Fielding et al., 2008a,b,c). Therefore a major conundrum 

exists as to why the west Australian phases of warming and cooling during the Early Permian 

seem to be out-of-phase with those reported from eastern Australia. 

2. Material and Methods

A type section was selected at Audley-Charles' (1968) type locality of the Maubisse 

Formation (sections 3, 4) and measured using an Abney Level and Jacob Staff, systematically 

sampled, and where accessible logged using a gamma-ray scintillometer at 0.25 m intervals. 

In Western Australian basins, the following type sections were measured and sampled: the 

Nura Nura Limestone in the Canning Basin; Callytharra Formation and Jimba Jimba 

Calcarenite in the Southern Carnarvon Basin; and Fossil Cliff Member of Holmwood Shale in

the Northern Perth Basin. In the Southern Carnarvon Basin additional outcrop sections were 

measured through the Callytharra Formation at Dead Man’s Gully and along the Lyndon 

River (see Appendix A; Supplementary Material), and a continuous core of the Nura Nura 

Limestone from the Canning Basin was studied. Although equivalent carbonate units are also 

known from the Bonaparte Basin, outcrops are ferruginized and no core from this basin is 

available. 

Limestone samples were slabbed and acetate peels made by etching the slabbed 

surface in 2 % hydrochloric acid for 3–4 minutes, flooding the dried etched surface with 

acetone, and placing a sheet of acetate paper on the surface before the acetone evaporated. 

Under transmitted light, acetate peels show the fine microstructure of biogenic carbonate 

grains, allowing identification of grains, matrix and cement. Because a large surface may be 

examined on the peel, a better appreciation of the composition of the limestone can be 

obtained from such peels than from smaller thin sections because larger surfaces can be 
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examined, and at considerably less cost and time. Thin sections were made of some of the 

samples from the Canning and Southern Carnarvon Basins. Continuous acetate peels were 

made of core from the Nura Nura Member, Canning Basin. The relative abundance of 

biogenic grain types was determined by DWH based on visual estimation (using consistent 

abundant, common and rare categories) from peels and thin sections using a transmitted light 

microscope. Samples from limestone beds at 10 m, 12 m, 15 m, 55 m, 68 m, 84 m, 90 m, 92 

m, 110 m, 112 m, 122 m, 155 m, 177 m, and 180 m in the section were processed for 

conodonts by digestion in ~7% acetic acid. However, none were found from 10 kg of rock. 

Outcrop gamma was attempted at the type section of the Maubisse Formation using a 

small scintillometer with measurements taken every 25 cm (apart from over covered intervals) 

to attempt to differentiate subtle cyclicity in the limestone. Only total gamma was measured 

incorporating emissions from K, U and Th. 

It is intended that the material we have acquired will form the bases for taxonomic 

studies of certain fossil groups (especially the bryozoans and foraminifera) and may prompt 

more detailed analysis of facies and limestone diagenesis. All material is housed in the 

collections at the University of Western Australia (Earth Science Museum) and the 

Geological Survey of Western Australia. Duplicates of samples from Timor are in the 

collections of the Institute of Petroleum and Geology of Timor-Leste. 

3. Overview of the Lower Permian stratigraphy of Timor

Although Permian studies of Timor have yielded a vast inventory of marine 

invertebrate fossils, its internal stratigraphy is poorly understood because of great structural 

complexity (Webster, 1998; Charlton et al., 2002; Meijer, et al., 2009). In West Timor, 

detailed mapping in 1937 by geologists from the University of Amsterdam grouped the 
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Permian to Mesozoic strata into two tectonostratigraphic divisions with "flysch facies" placed 

in the Kekneno series and carbonate and volcanic facies in the Sonnebait series (summarized 

by Brouwer, 1942). In eastern Timor, Gageonnet and Lemoine (1958) defined the “Série de 

Cribas” for a Permian mainly siliciclastic succession (equivalent to the Kekneno series) in the 

Cribas Anticline; and the Permian “Série de Maubisse” comprising a lower unit of 

metamorphic rocks (> 1000 m thick) and an upper unit, equivalent to the Sonnebait series, of 

shallow-marine carbonates (200–400 m thick) and volcanics (> 500 m thick). Although 

Audley-Charles (1968) designated the upper unit as the Maubisse Formation and selected a 

type locality in limestone cliffs southwest of the town of Maubisse (Fig. 3), he did not provide 

a stratigraphic log of the type section and his discussion of fossil assemblages and age appears 

to be derived from unspecified localities throughout Timor-Leste. Subsequent to the initial 

definition of the Maubisse Formation as a Permian unit, Triassic and younger rocks have also 

been assigned to this unit (e.g. Villeneuve et al., 2005). A detailed evaluation of the internal 

stratigraphy of the Maubisse Formation has been attempted only in eastern West Timor where 

“units” of apparent Sakmarian–Artinskian age have been described (unpublished study of 

Barkham summarized in Archbold and Barkham, 1989; Charlton et al., 2002; and Riding and 

Barkham, 1999). 

Many fossil assemblages reported from the Timor Permian contain stratigraphically 

mixed material (Webster, 1998; Charlton et al., 2002). Only a few Lower Permian localities, 

well positioned in terms of local lithostratigraphy, have been dated by conodonts, fusulinids, 

or ammonoids. These localities indicate, albeit tentatively, an uppermost Pennsylvanian to 

lowest Asselian limestone succession containing reef-buildups at the base associated with 

volcanics (Daydov et al., 2013). This is followed, at least in the upper Asselian and 

Sakmarian, by a dominantly sand–shale–volcaniclastic succession with some interbedded 

limestone units (ammonoid assemblages discussed by H.G. Owen in Charlton et al., 2002,
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based on collections made by P.R. Bird; conodont assemblages from the southwest Mutis 

region discussed by van den Boogaard, 1987; unpublished conodont occurrences of E. 

McCartain). A major change is suggested in the upper Sakmarian–lower Artinskian where 

thick limestone successions are recorded on the basis of limited conodont and brachiopod data 

(Archbold and Barkham, 1989; Nicoll and Metcalfe, 1998, based on collections made by S.T. 

Barkham; present study). These deposits probably represent the thickest carbonate 

accumulations in the Timor Permian. Isolated limestones containing the larger fusulinid 

Monodiexodina wanneri, either in monospecific assemblages or associated with Schwagerina 

brouweri may belong within the late Artinskian or Kungurian (Schubert, 1915; Thompson, 

1949; unpublished fusulinid occurrences determined by V. Davydov based on collections 

made by D. Haig).  Based on Leonova's (2011) assessment of the ammonoids, the Kungurian 

also includes the Bitauni beds (mainly red mudstone–marl) of West Timor (Charlton et al., 

2002) from which Van den Boogaard (1987) described conodonts.  Because of great structural 

complexity (Hamilton, 1979) and inadequate detailed mapping, a geological map showing the 

distribution of Permian stratigraphic units cannot be compiled at present and a detailed 

stratigraphic correlation chart is premature. 

4. Maubisse Limestone Type Area

4.1. Type area 

Audley-Charles (1968) selected a prominent limestone ridge (Fig. 4) to the southwest 

of Maubisse as the type locality of the “Maubisse Formation”. The ridge, which includes Fatu 

Rabi (or Mount Hatorobi), has a steep scarp on the south side and a more gentle dip slope 

(about 40°) to the north. It extends from 8.851393°S, 125.578010°E along strike, in places 
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displaced by high-angle faulting, as high cliffs to 8.854412°S, 125.562002°E and then as a 

lower ridge to about 8.853837°S, 125.554267°E. The total outcrop length along strike is ~2.6 

km (Fig. 5). High-angle faults obliquely cut the ridge and displace the crests by up to 500 m. 

A strike-parallel high-angle fault repeats the stratigraphic succession immediately south of the 

main ridge in less well-exposed outcrop.

The cliffs at the type locality are composed of a coherent limestone succession about 

180 m thick and not overturned (see 3.2). Audley-Charles (1968) also placed at least 500 m of 

basic volcanic rocks outcropping on the slopes of Mt Ramelau (Fig. 4A) as the upper part of 

the “Maubisse Formation”. This succession is not present at the type locality and a series of 

major faults, oblique to the limestone ridge, separate the limestone succession from rock units 

on the hills that lead to Mt Ramelau (Figs 4A, 5). There is no evidence to associate the 

volcanic succession on Mt Ramelau with a conformable stratigraphic unit above the limestone 

succession. As part of the refinement of lithostratigraphy in Timor, it is proposed to rename 

Audley-Charles’s “Maubisse Formation” as the “Maubisse Limestone” with the section we 

measured here on the limestone ridge as type section (see 3.2). 

The outcrop pattern of the Maubisse Limestone along the ridge (Fig. 5) indicates that 

the thickness of the formation may decrease towards the west and that the carbonate facies 

may be lenticular. Large limestone lenses are present elsewhere in Timor-Leste (e.g. the 

uppermost Gzhelian bioherm described by Davydov et al., 2013, from Kulau); and we found 

three lenticular Permian limestones on a prominent ridge about 3 km north–northwest of the 

type section of the Maubisse Limestone. 

4.2. Type section 
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The ridge is composed of a succession of massive to thick-bedded limestone. The 

western end of the steep ridge near the village of Maunlai is the most accessible place to 

examine the entire stratigraphic section (Fig. 4). Here detailed measurement of a continuous 

95 m section through part of the limestone succession is possible on a moderately steep slope 

adjacent to a fault-truncated section between 8.85486°S, 125.56278°E and 8.85422°S, 

125.56243°E. Immediately above, the cliff is too steep for detailed logging, and outcrop is 

discontinuous at the top of the succession on the ridge crest. Outcrop of the lower part of the 

succession, below the base of the measured section at 8.85486°S, 125.56278°E, also is 

discontinuous. Therefore thicknesses were estimated, from a stratigraphic cross-section, in the 

lower and upper parts of the succession (Fig. 6). 

The limestone at the type locality is estimated to be 180 m thick, whereas Audley-

Charles (1968, p. 43, 44) cited 400 m; Crostella and Powell (1975) 150 m; and Charlton et al. 

(2002, p. 725) 60 m based on an unpublished 1993 study by D.C. Hunter. The interval 

between 30 m and 62 m consists of massive limestone. Above this level, the succession is 

thick bedded with possible friable lithologies (perhaps mudstone) in covered intervals at 82–

84 m, 118–123 m, 125–128 m and at several higher levels that could not be logged accurately. 

In the upper part of the section, tabular thick bedding can be traced along the Maunlai ridge to 

the east of the type section. Geopetal structures in closed brachiopod shells in the upper part 

of the succession indicate that the section has not been overturned. The limestone succession 

overlies, with apparent conformity, an un-named volcaniclastic–siliciclastic succession that 

includes weathered basalt. These older rocks outcrop very poorly, but include an upper 

volcaniclastic unit (containing some basalt) that is about 30 m thick above grey shale. 

The northern dip slope of the main ridge marks the top of the limestone succession. 

The overlying friable succession has largely been removed by erosion (Fig. 4A), but small 

patches of weathered mudstone and some thin sandstone interbeds belonging to an un-named 
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formation are preserved above the limestone and a conformable contact is exposed at 

08.85255° S, 125.56293° E.

Outcrop gamma run over the measured section reveals a series of 5–15 m thick cycles 

up to about 80 m in the section, presumably shoaling upward based on upward decreasing 

counts: discounting input from U and Th, cleaner intervals contain less K indicative of less 

clay and likely higher-energy facies. Above 80 m there is a moderate increase in the gamma 

count possibly suggestive of lower energy facies, although there is also some indication of 

shoaling upwards cycles, especially around 83–89 m and 107–113 m. The overall gamma 

profile can be interpreted as a series of progradational cycles up to about 80 m followed by 

retrogradational cycles, albeit irregular (Fig. 6). Because of difficulties in observing rock 

details on the cliff face, cyclicity was not apparent from visual inspection of the outcrop.  

4.3. Limestone composition 

Limestone beds within the section are entirely bioclastic and mainly packstone 

(Appendix A, Supplementary Materials; Fig. 6) but with variable grain density. In many beds 

the carbonate matrix is partially recrystallized. In a few beds, particularly between 110 m and 

130 m, thick radaxial isopachous cement surrounding bryozoans is present. Dolomite is 

common between 30 m and 50 m, probably associated with the oblique fault that exposes this 

part of the section. The limestone between 30 m and 47 m is brecciated, likely also due to the

fault. Although in many samples grains are bored resulting in fine branching tubes penetrating 

the periphery of skeletons perhaps formed by endolithic cyanobacteria (Flügel, 2004), there 

are no micritic envelops or cyanobacterial encrustations around grains. Ooids and peloids are 

absent. 
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Bryozoan fragments and crinoid debris dominate the grain assemblage (Fig. 6). 

Tubiphytes (Fig. 7A–C; following the terminology of Senowbari-Daryan, 2013) are absent in 

the basal part of the section, but are common above 55 m. Brachiopod debris, foraminifera, 

ostracod valves, gastropods, echinoid spines, trilobite carapace debris, fragments of bivalve 

shells with prismatic microstructure, and solitary rugose corals are rare components. Of these 

grain types, the bryozoans and foraminifera have the greatest potential for future taxonomic 

discrimination at genus and possibly species level. 

The bryozoans are present as slightly abraded sand-sized grains to larger, non-abraded 

fragments of colonies. A very low diversity bryozoan fauna from 30–50 m is composed 

almost exclusively by fragments of delicate colonies of the Order Fenestrata, dominated by 

Spinofenestella (Fig. 8K). Above, a higher diversity bryozoan assemblage, peaking around 60 

m and 120 m, is composed mainly of fragile colonies with fragments of more robust colonies 

largely restricted to the two maxima intervals. The fauna is mainly delicate and robust 

Fenestrata with common arborescent Cryptostomata as well as minor arborescent 

Trepostomata and Cystoporata. Encrusting taxa are generally rare. 

The foraminifera include calcivertellines (Order Miliolida; Fig. 9A1–A3) as the most 

common types, with rare simple Fusulinida including endothyraceans (Fig. 9D1), 

tetrataxaceans (Fig. 9E1–E2), lasiodiscids (Fig. 9F1–F2) and pseudoammodiscids (Fig. 9G1) 

but not in all samples. No larger Fusulinida were found. Specimens of the Order Lagenida 

(interpreted as in Groves et al., 2004) are the least abundant of the foraminifera and are 

recognized in only 7 of the 96 samples from the section. 

4.4 Age 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at
Palaeogeography, Palaeoclimatology, Palaeoecology, published by Elsevier. Copyright restrictions may apply. doi: 10.1016/
j.palaeo.2014.05.009



Although no conodonts were recovered from the type section, a sample from 320 m 

further west along the limestone ridge (Fig. 10A) yielded a Pa element fragment (Fig. 10B,C) 

identified as probably Vjalovognathus australis Nicoll and Metcalfe. Although endemic to 

southern cool-water successions, the species indicates a late Sakmarian–Artinskian age based 

on west Australian successions (Nicoll and Metcalfe, 1998), and has been identified 

previously from limestone of this age in West Timor (as Vjalovognathus shindyensis by van 

den Boogaard, 1987, according to Nicoll and Metcalfe, 1998, p. 454). 

No ammonoids were found in the limestone. Macrofossils extracted as free specimens 

from the limestone section include only poorly preserved brachiopods that remain to be 

identified. A small collection of slightly better preserved brachiopods from scree at 

8.85389°S, 125.56601°E immediately in front of the steep scarp of Maunlai ridge yielded 

incomplete specimens (lacking internal details) of probable Cimmeriella foordi (Etheridge). 

The species is known from the lower Callytharra Formation in the Southern Carnarvon Basin 

and the Fossil Cliff Member in the northern Perth Basin (see sections 6 and 7). Globally, 

confirmed occurrences of Cimmeriella are within the Sakmarian to lower Artinskian

(Archbold and Hogeboom, 2000) and have a distinctive bi-temperate distribution (defined as 

in Shi et al., 1995), in that its species appear to have been restricted to temperate middle-

latitude marine basins of both hemispheres. The genus is missing from true cold-water polar

environments such as the eastern Australian basins.

5. Canning Basin

5.1 Overview of Sakmarian–Artinskian sequence 
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Uppermost Carboniferous and Lower Permian deposits of the Canning Basin 

accumulated in a large interior rift along an axis trending southeast from the main north–south 

interior-rift system (Fig. 1). The Poole Sandstone forms an upper Sakmarian–lower 

Artinskian depositional sequence of shallow-marine to deltaic facies in the Canning Basin 

(Fig. 2; Guppy et al., 1958; Playford et al., 1975; Mory, 2010). At the base of the Poole 

Sandstone, a 10–15 m thick succession of fossiliferous calcareous quartz sandstone and rare 

limestone interbedded with friable fine-grained sandstone forms the Nura Nura Member 

(Guppy et al., 1958; Playford et al., 1975; Crowe and Towner, 1976; Mory, 2010). The 

underlying Grant Group is composed of a thick sandstone-dominated succession that is 

interpreted as either glacially influenced (Redfern and Millward, 1994) or as resulting from 

phases of local tectonic subsidence with some reworking of glacial sediment (Eyles and 

Eyles, 2000), although these interpretations are not mutually exclusive (Mory et al., 2008). 

The top of the Poole Sandstone is terminated by marine-flooding that resulted in deposition of 

the mud-dominated facies of the Noonkanbah Formation that is, at least in its upper part, 

Kungurian in age (Nicoll and Metcalfe, 1998). No glacial influence has been recorded within 

the sequence.

5.2 Composition of limestone in Nura Nura Member 

Limestone samples from two localities have been examined: the type area of the 

member in the inner Canning Basin (locality 3 on Fig 1; Appendix A, Supplementary 

Material); and the upper part of core 1 from 872.0 m to 877.06 m in the Perindi 1 exploratory 

well (locality 2 on Fig. 1; Appendix A, Supplementary Material) in the outer Canning Basin. 

The well lies closer to the main axis of the interior-rift system than the type area and contains 
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a thicker continuous limestone succession than in the type area, probably reflecting an 

increasing marine influence to the northwest in the basin. 

Exposure of the Nura Nura Member in the type area is limited and discontinuous. 

Indurated beds, which are interbedded with friable units that are not exposed, include mainly 

calcareous quartz sandstone that contains rare to abundant brachiopod debris. Other biogenic 

grains in these coarse-grained sandstone beds are rare and include foraminifera, bryozoan 

fragments, and ostracod valves. The wackestone packstone within the member contains a 

more diverse assemblage including abundant brachiopod debris, common ostracod valves, 

rare foraminifera, rare bryozoan fragments and encrustations on brachiopod valves, and very 

rare gastropods, bivalve shell fragments with prismatic microstructure and crinoid(?) plates. 

The brachiopod shells have been affected by minor cyanobacterial boring, but micritic 

envelopes are not developed around any grains. The foraminifera are mainly hemigordiopsids 

(Fig. 9B1–B3) with very rare calcivertellines and lagenids (probably Protonodosaria). The 

bryozoans include large free fragments and encrusting colonies of robust Cystoporata and 

Fenestrata. 

Core 1 from Perindi 1 includes a limestone section between 872.0 m to 877.06 m that 

lies at the base of the interpreted Poole Sandstone interval in this well (827–877 m according 

to Reeckmann and Mebberson, 1984). The limestone overlies grey shale, attributed to the 

Grant Group, and includes, in the basal section, large clasts of mudstone. The limestone is 

approximately 7.5 m thick based on the wireline logs, and in core 1 consists of centimetre-

scale interbeds of bryozoan-rich packstone–wackestone and intraclastic grainstone–rudstone 

(Fig. 11). Several very thin interbeds of fine-grained quartz sandstone–siltstone are present 

(Fig. 12). The biogenic material in the limestone is dominated by bryozoan fragments (Fig. 

12), with crinoids generally rare but common to abundant only in a few narrow intervals. 

Brachiopods are generally rare but persistent throughout the core, less persistent are 
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foraminifera and Tubiphytes (Fig. 7D,E), with very rare echinoid spines, bivalve fragments 

showing prismatic microstructure, ostracod valves, gastropods and solitary corals also present 

(Fig. 12). Cyanobacterial borings into skeletal material are minor, and no micritic envelopes 

are developed around any of the grains. Some of the intraclasts are Tubiphytes boundstone. 

The matrix in the wackestone–packstone intervals has a clotted micritic texture in places. 

Delicate Fenestrata dominate among the bryozoans in the Perindi 1 core, with robust 

Fenestrata less conspicuous, and arborescent rhabdomesid Cryptostomata and Trepostomata 

(dyscritellids and stenoporids) subordinate. Outsize fragments of the hexagonellid 

Cystoporata (Evactinostella and Hexagonella) occur sporadically. 

Calcivertellines dominate the foraminiferal assemblage in Perindi 1. Among these, 

many Trepeilopsis morphotypes (Fig. 9A8) with matrix-filled central cavities are present 

together with Calcitornella morphotypes (Fig. 9A3) encrusting mainly bryozoan, crinoid and 

brachiopod debris. Lagenids are less common (mainly Protonodosaria), and tetrataxaceans 

(Fig. 9E3), endothyraceans (Fig. 9D2), pseudoammodiscids (Fig. 9G2–G3), and possible 

lasiodiscids (Fig. 9F3) are very rare. 

In outcrop the most diverse components of the macrofossil assemblage so far 

identified include 10 bryozoan species, 14 brachiopod species, 34 bivalve species, and 15 

gastropod species, with ammonoids, conulariids and plants also present (Skwarko, 1993). 

Crespin (1958) recorded four species of foraminifera from outcrop of the Nura Nura Member, 

including one Calcitornella, one Hemigordius, and two organic-cemented siliceous 

agglutinated foraminifera. A further two lagenid representatives were found in sub-surface 

sections of the member. 

5.3 Age 
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Metalegoceras clarkei Miller, Metalegoceras striatum Teichert, Thalassoceras wadei

Miller and Propopanoceras ruzhencevi Glenister and Furnish have been described from the 

type area of the Nura Nura Member (Miller, 1936; Teichert, 1942; Glenister and Furnish 

1961; Glenister et al., 1993). These ammonoids are regarded as belonging to the late 

Sakmarian (Leonova, 1998, 2011; Boiko et al., 2008). 

6. Southern Carnarvon Basin

6.1 Overview of Sakmarian–lower Artinskian sequence 

During the Early Permian an elongate depocentre formed along the eastern margin of 

the Southern Carnarvon Basin (Hocking et al., 1987; Mory and Haig, 2011) as a series of half 

grabens, extending south to the eastern edge of the northern Perth Basin (see 7.1; Fig. 1). The 

Sakmarian–early Artinskian depositional sequence (Fig. 13) was initiated by marine flooding 

following deposition of the glacially-influenced Lyons Group. From the basal beds, the 

sequence shows an overall progradational trend that is terminated by renewed marine-

flooding at the base of the Billidee Formation (here taken as the lower unit of the mainly 

upper Artinskian to Kungurian Byro Group which lies within the next major depositional 

sequence, Fig. 2). 

Deposition of sheet-like beds extending great distances took place on a very low-

gradient seafloor (Dixon and Haig, 2004; Haig, 2004; Mory and Haig, 2011). Beds are 

arranged in cycles that form shale to packstone/grainstone/quartz-sandstone units within the 

fully marine parts of the sequence (Fig. 14), and are interpreted as shoaling upward 

parasequences. Throughout most of the basin, the upper part of the sequence is made up of 

coarse-grained sandstone of the Wooramel Group ranging in origin from marginal-marine in 
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the north and at least partly fluvio-deltaic in the south. Within the sequence, limestone 

interbedded with mudstone or fine-grained sandstone characterises the Callytharra Formation 

(Condon, 1967; Hocking et al., 1987; Mory and Backhouse, 1997; Dixon and Haig, 2004; 

Frank et al., 2012). 

No glacial influence is present within the sequence. Frank et al. (2012, fig. 2) showed 

an interval of "glacial influence" corresponding to the Winnemea and Ballythanna Sandstones 

based apparently only on correlation to the High Cliff Sandstone in the Perth Basin. The latter 

unit lacks the criteria for glaciation outlined by Fielding et al. (2008b, p. 130–132) as 

discussed here in 7.1. 

6.2 Limestone composition 

Limestones of the Callytharra Formation were examined in four outcrop sections: 

1) a northernmost section adjacent the Lyndon River (Fig. 15; location 4 in Fig. 1);

2) about 72 km south in a composite section at Dead Man’s Gully (Figs. 14, 16; location 5 in

Fig. 1; Mory and Haig, 2011); 

3) a further 120 km south, in a section in the Jimba Jimba area, (Fig. 17; location 6 in Fig. 1;

Mory and Backhouse, 1997); and

4) in the type section of the Callytharra Formation, 113 km southeast of the Jimba Jimba

Anticline (Fig. 18; location 7 in Fig. 1; Dixon and Haig, 2004). 

Limestone low in the Callytharra Formation tends to be packstone in beds less than 50 

cm thick. Those in the upper depositional cycles are generally grainstone and may be up to 

1.5 m thick. Variable amounts of quartz and siliciclastic mud are present in the limestone 

beds. Quartz is particularly conspicuous in the interval from 40 m to 60 m in the Dead Man’s 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at
Palaeogeography, Palaeoclimatology, Palaeoecology, published by Elsevier. Copyright restrictions may apply. doi: 10.1016/
j.palaeo.2014.05.009



Gully section (Fig. 16) and may correlate with the Winnemea Sandstone Member in the Jimba 

Jimba area (Figs 13, 17).

Bryozoan fragments dominate the biogenic grain assemblage (Figs 15–18). Crinoids 

are common to abundant in many beds; and brachiopod debris is abundant to rare. Rare 

components of the assemblage include foraminifera, bivalve fragments with prismatic 

microstructure, ostracod valves, echinoid species, Tubiphytes, trilobite carapace debris, 

gastropods and solitary rugose corals. None of the grains have micritic envelopes and no 

cyanobacteria-encrusted grains are present. Ooids and microbialites are absent. In our 

material we did not find calcareous sponge spicules as reported by Frank et al. (2012) from 

subsurface sections of the Callytharra Formation. 

The Bryozoa include a high diversity fauna dominated by Fenestrata and rhabdomesid 

Cryptostomata. In the upper part of the Callytharra Formation, large colonies of hexagonellid 

Cystoporata are conspicuous (viz. Evactinostella and Hexagonella). The Foraminifera are 

dominated by calcivertellines and lagenids (mainly Protonodosaria). Among the 

calcivertellines, Trepeilopsis morphotypes (Fig. 9A9–10) with matrix-filled central cavities 

and Calcitornella morphotypes (Fig. 9A4–6) encrusting bryozoan, crinoid and brachiopod 

debris are present. Hemigordiopsids (Fig. 9B4–6) are less common, and meandrospirines 

(Fig. 9C1–2) are very rare and found only in the northern sections. Simple representatives of 

the Fusulinida are very rare and include mainly pseudoammodiscids (Fig. 9G4–G8). Although 

tetrataxaceans and endothyraceans were not found in our acetate peels or thin sections, very 

rare specimens have been recorded from friable interbeds in the Callytharra Formation 

(Crespin, 1958; Dixon and Haig, 2004). 

In addition to the groups identified here among the biogenic grains, tabulate corals, 

ammonoids, nautiloids, conulariids, annelids (Spirorbis), and plants have been reported from 

the formation (Skwarko, 1993). Among grains identified as crinoids, blastoids may also be 
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present as five species of this group have been identified from macrofossil remains. The most 

diverse macrofossil groups identified from the Callytharra Formation include 42 brachiopod 

species, 28 bryozoan species, 27 bivalve species, and 15 crinoid species (Skwarko, 1993). 

A diverse assemblage of foraminifera belonging to miliolids (calcivertellines, 

hemigordiopsids and meandrospirines), lagenids (ichthyolariids and syzraniids), and organic-

cemented siliceous agglutinated species have previously been recorded and illustrated from 

the Callytharra Formation (Crespin, 1958; Dixon and Haig, 2004). These came mainly from 

friable mudstone interbeds. 

6.3 Age 

Very few ammonoid specimens have been found in the Callytharra Formation and 

none from the type section. Uraloceras irwinense (Teichert and Glenister), Metalegoceras

sp., Mescalites sp., and Pseudohistoceras? spp. have been identified (Glenister and Furnish, 

1961; Cockbain, 1980; Glenister in Skwarko, 1993; Leonova, 1998; Mory and Haig, 2011). 

Uraloceras irwinense suggests a Sakmarian age although the genus is also known from the 

Artinskian (Leonova, 1998; 2011). Metalegoceras and Mescalites suggest a general 

Sakmarian–Artinskian age, but if the specimens from 60–70 m in the Dead Man’s Gully 

section also include Pseudohistoceras (as tentatively suggested by T. Leonova, pers. comm. 

to M. Dixon, 2005) then these would indicate an Artinskian age for this interval (based on 

generic ranges described by Leonova, 2011). Pseudohistoceras simile Teichert, recorded from 

the lower Wooramel Group above the Callytharra Formation (Cockbain, 1980), indicates an 

Artinskian age for that level (see discussion in Appendix B, Supplementary Materials). The 

overlying lower part of the Byro Group (including Billidee Formation) contains late 
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Artinskian ammonoids representative of Leonova's (2011) Neocrimites fredericksi–

Medlicottia orbignyana Zone (see Appendix B, Supplementary Materials). 

Conodonts have not been recorded from any of the sections of Callytharra Formation 

studied here. However, in the upper part of the formation about 14 km north of locality 5 (Fig. 

1), Nicoll and Metcalfe (1998) found a limited assemblage that was attributed to their 

Mesogondolella bisselli–Sweetobnathus inornatus Zone, including Vjalovognathus australis,

known also in the Maubisse Limestone in Timor and considered to be late Sakmarian to 

Artinskian. 

7. Northern Perth Basin

7.1 Overview of upper Sakmarian–lower Artinskian sequence 

In the broader northern Perth Basin (Mory and Iasky, 1996) the Irwin River area is the 

southern-most of the contiguous Permian depocentres that trend south from the eastern part of 

the Southern Carnarvon Basin (Fig. 1). The depocentres are bounded on the east and west by 

major faults and, in part, by Proterozoic basement highs to the west. Coeval facies in the 

southern Perth Basin are non-marine. 

The upper Sakmarian–lower Artinskian depositional sequence (Fig. 13) has an overall 

progradational trend from fully marine at the base to non-marine at the top. The lower 500 m 

of the section is composed mainly of marine mudstone (Holmwood Shale of Clarke et al., 

1951). A thin calcareous mudstone unit in the lower part of the mudstone succession 

containing a monospecific assemblage of large ammonoids (Juresanites), has been designated 

the Beckett Member (Playford et al., 1976). Near the top of the Holmwood Shale 

discontinuous nodular limestone beds and highly fossiliferous friable sandy mudstones form 
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the Fossil Cliff Member (Clarke et al., 1951; Playford et al., 1976). Shoreface to marginal-

marine facies of the High Cliff Sandstone progrades over the Holmwood Shale and is a

transitional unit between the Holmwood Shale and the Irwin River Coal Measures in the

uppermost part of the sequence (Mory and Haig, 2011).

The sequence lacks unambiguous evidence for glaciation (following criteria outlined 

by Fielding et al., 2008b). The rare discontinuous conglomeratic horizons in sandstone in the 

upper part of the High Cliff Sandstone type section (see Eyles et al., 2006) cannot be 

interpreted as dropstones but may be reworked older glacial material transported to the 

depositional site by debris flows. The type section is 3 km west of the Darling Fault that 

bounds the basin and was active during the Early Permian creating a depocentre west of the 

Yilgarn Precambrian Craton.

7.2. Limestone composition in Fossil Cliff Member 

Nodular limestone from the Fossil Cliff Member was examined from two localities, 

7.5 km apart (8 on Fig. 1) including the upper part of the type section of the Holmwood Shale 

(designated by Playford et al., 1976) and the type section of the Fossil Cliff Member. 

Limestone samples from the latter section are quartz-rich and include abundant brachiopod 

and bryozoan debris, and less common crinoidal plates, foraminifera and ostracods. In the 

upper part of the Holmwood Shale type section, the limestone usually has a siliciclastic mud 

matrix and contains abundant bryozoan fragments, brachiopod debris, foraminifera, crinoid 

plates, ostracod valves, and gastropods. 

Foraminifera in the limestone samples are dominated by calcivertellines (Fig. 9A7, 11, 

12), with less common hemigordiopsids (Fig. 9B7, 8) and lagenids (ichthyolariids and 

syzraniids). Organic-cemented siliceous agglutinated species and tetrataxids were previously 
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recorded and illustrated from friable beds of the Fossil Cliff Member by Crespin (1958) and 

Foster et al. (1985). Among the bryozoan grains observed in the nodular limestone, delicate 

Fenestrata are abundant; and arborescent Cryptostomata and robust Fenestrata are also 

conspicuous. Trepostomata (mainly encrusting taxa) are rare and Cystoporata have not been 

observed. Among the diverse macrofossil assemblage listed by Skwarko (1993) from the 

Fossil Cliff Member are five species of solitary-rugose and tabulate corals, five species of 

Bryozoa, 18 species of Brachiopoda, 40 species of Bivalvia, 19 species of Gastropoda, four 

species of nautiloids, one ammonoid, one trilobite, and three crinoid species. 

7.3. Age 

The ammonoid Juresanites is present at two levels in the lower Holmwood Shale and 

in the upper of these, it is found with Uraloceras. This association indicates a Sakmarian age 

for the lower Holmwood Shale (Glenister and Furnish, 1961; Leonova, 1998, 2011). A single 

specimen described as Metalegoceras kayi Glenister, Windle and Furnish (1973) from the 

Fossil Cliff Member is most similar to M. distale Ruzhencev, which is considered late 

Sakmarian (Glenister and Furnish, 1961; Boiko, et al., 2008). 

8. Limestone Comparison

8.1 Age and sequence development

The available biostratigraphic evidence suggests that the late Sakmarian – early 

Artinskian is represented in each section of our study. The Maubisse Limestone probably 

represents the thickest single carbonate accumulation in the Permian of Timor, and is bounded 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at
Palaeogeography, Palaeoclimatology, Palaeoecology, published by Elsevier. Copyright restrictions may apply. doi: 10.1016/
j.palaeo.2014.05.009



by volcaniclastic–siliciclastic units. Because the latter are, at present, poorly known, the 

position of the Maubisse Limestone within a broader depositional sequence is uncertain. The 

Australian sections show similarity in sequence development. Each sequence in the Southern 

Carnarvon and northern Perth Basins overlies units considered to exhibit some glacial 

influence. In the lower part of the sequence at each locality, calcareous marine beds are 

present. General progradational trends are recognized at each locality, and transition to 

marginal-marine or non-marine strata at the top of the sequence. In addition there is a 

consistent north–south trend of decreasing marine influence in the upper beds. There is no 

evidence (e.g. dropstones) for glacial sedimentation at any of the localities within the 

sequence. Marine flooding terminates the sequence with overlying marine shale at most 

localities. In the Merlinleigh and Irwin sub-basins, the overlying beds contain dropstones 

indicating amelioration of climate. 

The problems with precise correlation of the sections include: (1) scarcity of 

conodonts in all formations studied; (2) absence of recoverable ammonoids in the type section 

of the Maubisse Formation and their great rarity in the Australian sections; and (3) the lack of 

age-diagnostic fusulinids in any section. Correlation of the Australian sections essentially 

depends on rare ammonoids. Because the record is so poor, no phylogenetic series of 

ammonoids can be recognized in the Australian successions that could test such assumptions 

made, for example, by Boiko et al. (2008) and their age implications. Therefore, even the 

discrimination between Sakmarian and Artinskian in the study region must be viewed with 

reservation (see discussion in Appendix B, Supplementary Materials). However, the 

biostratigraphic control for the studied sections is much stronger than for the upper Sakmarian 

to lower Artinskian deposits of eastern Australia which lack ammonoids and are correlated 

using endemic brachiopod faunas and palynofloras (Fielding et al. 2008b; Waterhouse and 

Shi, 2013).  
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8.2. Stratigraphic patterns 

The Maubisse Limestone type section has an almost continuous ~180 m thick 

succession of limestone beds with few siliciclastic interbeds. Stratigraphically continuous 

limestone is also apparent in the short interval cored in Perindi 1, the most northern of the 

Australian sections examined here and that closest to the axis of the East Gondwana rift 

system. In contrast, limestone beds at the localities in the more restricted southern basins are 

mainly less than 1 m thick and interbedded within thicker friable mudstone units in a cyclic 

pattern. In the upper parts of the limestone sections, the mudstone to limestone cycles 

prograde forming units, several metres thick, containing several amalgamated limestone beds 

(Fig. 14).

The Maubisse Limestone type section and the Perindi 1 section may represent broad 

very shallow-marine bryozoan-dominated mound deposits. Outcrop of the Maubisse 

Formation near its type locality (Figs. 4, 5) suggest lateral changes in thickness, perhaps 

indicating a large lenticular body. The balance between carbonate build-up and available 

accommodation remained almost constant during deposition. This implies any subsidence 

contemporaneous with build-up negated eustatic effects and kept the depositional surface in 

the uppermost neritic zone (see 8.2). There may have been significant topographic relief 

between mounds and adjacent basinal areas but this cannot be ascertained on present data. 

However, the variety of Sakmarian–Artinskian carbonate facies in the Bisnain area of West 

Timor (Archbold and Barkham, 1989; Charlton et al., 2002) supports this hypothesis. 

In the inner Canning Basin (locality 3, Fig. 1) and in the Southern Carnarvon Basin, 

the depositional cyclicity indicates that water depths periodically changed. Here the carbonate 

deposits, which form the tops of cycles, were sheet-like detrital accumulations over a very 
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shallow, low relief, seafloor (Dixon and Haig, 2004). Slight imbalances between subsidence 

and eustatic change during deposition may have produced the cyclic pattern. 

In the Irwin River area, the paucity of limestone throughout the Holmwood Shale 

implies more restricted marine conditions with large freshwater influx into the basin, bringing 

an abundant supply of mud derived from a previously glaciated landscape. The thickness of 

the Sakmarian–Artinskian succession is greater than in the Merlinleigh Sub-basin to the north 

indicating varying accommodation along the Early Permian rift.

8.3. Limestone composition 

Overall, the biogenic component of the limestone is similar through all basins. 

Bryozoan debris dominates the grain assemblage and is accompanied by common crinoidal 

plates, less common brachiopod debris, and rare foraminifera, ostracods, fragments of bivalve 

shells with prismatic microstructure, gastropods, echinoid spines, trilobite carapace 

fragments, and solitary rugose corals. Tubiphytes is present in variable abundance at all 

localities except in the marginal marine type section of the Nura Nura Member in the inner 

Canning Basin and in the Irwin River area, the southern most of the basins studied (Fig. 19).

Absent from the limestone at each locality are grains with micritic envelops (cortoids), 

cyanobacterial encrustations, peloids, ooids, oncoids, and microbialites.

Much more taxonomic study is needed on the Bryozoa in order to make comparisons 

between those assemblages. The megaloscopic hexagonellid cystoporata so conspicuous in 

the Western Australian basins (viz. Evactinostella and Hexagonella) appear to be totally 

absent from the type section of the Maubisse Limestone in Timor. This probably is due to 

differences in ecological setting as described in 8.2.

Significant similarities in foraminiferal assemblages exist between the Maubisse 

Limestone and localities 2 and 4–7 in the south (Fig. 19). No complex fusulinids are present 
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and the assemblages are dominated by calcivertellines. Among the latter are Trepeilopsis

morphotypes with matrix-filled central cavities suggesting, as Dixon and Haig (2004) 

deduced, that these tests were attached to algal macrophytes that decayed either before or 

shortly after burial. Simple fusulinids, including endothyraceans, tetrataxaceans and 

pseudoammodiscids extend far south, whereas lasiodiscids are confined to the northern 

localities. 

Tubiphytes was previously recorded from upper Sakmarian limestone in West Timor 

(Riding and Barkham, 1999, as Shamovella) associated with a bryozoan–crinoid dominated 

assemblage. It is here recorded for the first time in west Australian upper Sakmarian–lower 

Artinskian limestone as far south as the southern end of the Southern Carnarvon Basin 

(locality 7, type section of Callytharra Formation). 

8.4 Paleobathymetry 

Stemmerik’s (1997) paleobathymetric model for Permian cool-water carbonate facies 

in northern Pangea, based on a modern analogue along the southern Australian shelf, does not 

apply to the carbonate accumulations studied here. Temperate carbonate deposits on the 

narrow passive-margin shelves of south and southwest Australia, described by James et al. 

(1992, 1999), are influenced by high-energy open shelf conditions with a deep (<100 m) 

storm-wave base. By contrast the studied carbonate accumulations were deposited within 

Sakmarian–Artinskian intracratonic basins that were, at least in the Southern Carnarvon and 

northern Perth Basins, narrow, very shallow seaways with a very shallow storm-wave base 

(Haig, 2003, 2004; Dixon and Haig, 2004). The detrital sheet-like carbonate deposits at the 

tops of shale to limestone cycles probably accumulated above the shallow storm-wave base. 
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Indirect evidence for organisms that required photosynthesis to live is provided by 

borings attributed to cyanobacteria, probably representing holdfasts for filamentous types 

growing on skeletal debris, and in the central cavities in the encrusting miliolid foraminifera 

Trepeilopsis that may reflect algal macrophytes around which the coils of Trepeilopsis 

encrusted. The presence of such photosynthetic organisms indicates water depths probably in 

the inner neritic zone (Dixon and Haig, 2004). The dominance of large encrusting 

porcellaneous calcivertellines among the foraminifera also indicates very shallow water based 

on modern encrusting porcellaneous foraminifera with similar growth forms (e.g. the 

nubeculariids in the south-west Australian inner neritic zone; Semeniuk 2000, 2001). 

9. Comparison with eastern Australian succession

The Early Permian basins of eastern Australia lay at the margin of eastern Gondwana 

(Fielding et al., 2008b, fig. 3B) in contrast to the west Australian basins that lay in the interior 

of Gondwana along the east Gondwana interior rift system.  No intracratonic seaway crossed 

the continent to connect eastern and west Australian basins. Even though basins in 

Queensland and New South Wales were positioned at the same 45°–60°S paleolatitudes as the 

Southern Carnarvon and Perth Basins in Western Australia, the basins on each side of the

continent were subjected to different oceanographic influences with eastern Australian basins 

adjacent hinterland areas with much greater topographic relief (along earlier Paleozoic 

orogenic belts). The Permian of Tasmania was deposited at a paleolatitude of about 70°S 

(James et al., 2009, fig. 1B). 

Fielding et al. (2008a,b,c, 2010) defined four glaciations separated by non-glacial 

intervals in the Permian of eastern Australia. Based on their time scale, the upper Sakmarian 

to lower Artinskian interval studied here apparently corresponds to glaciation P2 in eastern 
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Australia (although Waterhouse and Shi, 2013, fig. 4, suggested that there may be a problem 

with the chronostratigraphic position of P2). The stage correlations for the eastern Australian 

P2 formations were based on endemic brachiopod zones and palynofloras, and Fielding et al. 

(2008a,b, 2010) did not explain the levels of uncertainty in these correlations. 

James et al. (2009) recognized no carbonate units in P2. Below P2 in the non-glacial 

interval above Asselian to early Sakmarian P1, limestone is represented in the Lower 

Parmeener Supergroup in Tasmania (Rogala et al., 2007; James et al., 2009; Fielding et al., 

2010; Reid, 2010; Isbell et al., 2013). In the correlation advanced by Fielding et al. (2008a,b), 

this limestone was placed in the middle Sakmarian and includes argillaceous rudstone, 

floatstone and grainstone with thick-shelled bivalves and brachiopods and bryozoans as the 

main components, and minor crinoid debris. The bioclastic assemblage contrasts with the 

dominance of bryozoa and crinoids in the western Australian carbonate deposits of late 

Sakmarian to early Artinskian age. The Tasmanian limestone facies also contain abundant 

dropstones and include spiculitic limestone preserved in phosphatic nodules. Crespin (1958) 

recognized that the foraminifera from this level in Tasmania were similar to those from the 

Fossil Cliff Member, Callytharra Formation and Nura Nura Member of Western Australia, 

but lack endothyraceans, tetrataxaceans, and pseudoammodiscids present in Western 

Australia (this study). Tubiphytes has not been found in the Sakmarian limestone in Tasmania, 

but is present in the Callytharra Formation of Western Australia (see 6.2).  Based on 

sedimentological and paleontological differences, it appears that the Sakmarian limestone in

Tasmania was deposited in much cooler water than the west Australian late Sakmarian–early

Artinskian deposits. 

The late Artinskian to early Kungurian interval between glaciations P2 and P3 was the 

time of significant carbonate deposition in the eastern Australian basins (Fielding et al., 

2008a,b; James et al., 2009; Clapham and James, 2012, fig. 7). The chronostratigraphic 
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correlation is supported by one radiometric date (Roberts et al., 1996) and rare ammonoids 

that Leonova (2011) regarded as Kungurian. The biogenic component of the carbonate 

lithofacies recorded by James et al. (2009) includes bryozoans, brachiopods, bivalves, 

crinoids, sponge spicules, tabulate corals, solitary rugose corals, gastropods, porcellaneous 

foraminifera including mainly Calcitornella (wrongly classified as "porcellaneous 

endothyrids" by James et al., 2009, p. 129) and hyaline foraminifera (lagenids). Minor 

Tubiphytes was found in limestone from the northern-most basin studied by James et al. 

(2009).  In general terms, the composition of the upper Artinskian–lower Kungurian 

limestone facies in eastern Australia resembles that of the Callytharra Formation in the 

Southern Carnarvon Basin. 

No significant carbonate units are known from the late Artinskian to early Kungurian 

interval in Western Australian Basins. As outlined in Figs. 2, 13 and Appendix B 

(Supplementary Materials), during this time siliciclastic facies with prominent mud–sand 

cyclicity were deposited (viz. lower Byro Group in the Southern Carnarvon Basin, lower 

Carynginia Formation in the northern Perth Basin, and lower Noonkanbah Formation in the 

Canning Basin). In Timor, we have recently found fusulinid limestones that may belong 

within this time interval. The lowermost Byro Group and lowermost Carynginia Formation 

contain scattered dropstones indicating cool-water conditions where sea ice was present. 

Higher in the lower Byro Group, brachiopods indicate warming conditions reaching a 

maximum in the Bulgadoo–Cundlego sequence (Fig. 13, Appendix B, Supplementary 

Materials) where there is an influx of Tethyan genera (Archbold and Shi, 1995).  Therefore, 

although there are no carbonate deposits in the Western Australian basins, there is 

correspondence with the eastern Australian succession in a warm latest Artinskian–early 

Kungurian interval. The siliciclastic content of the west Australian basins probably reflects a 
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greater influx (at least periodically) of sediment-laden freshwater into the shallow seas (Haig, 

2003, 2004) that was climatically driven. 

Within the Asselian to early Kungurian interval in both eastern and western Australian 

successions, two cool to cold phases are recognized separated by a warmer interval, and 

followed by a final warm phase (Fig. 20). The initial cold phase and the final warm phase are 

synchronous in both regions (viz. Asselian–early Sakmarian and late Artinskian–early 

Kungurian, respectively). Differences are with chronostratigraphic correlations of (1) the late 

Sakmarian–early Artinskian warmer phase identified in the west Australian succession and 

the interval between glaciations P1 and P2 in eastern Australia; and (2) the subsequent cool 

phase in west Australia and glaciation P2 in eastern Australia. Perhaps non-glacial P1–P2 

phase corresponds to the Ist post-glacial depositional cycle we recognize in the west

Australian succession (Figs. 2,13) and which we consider from ammonoid evidence to be late 

Sakmarian to early Artinskian. Glaciation P2 may correspond to the cool interval represented 

at the base of the Byro Group and the basal Carynginia Formation that we place in the "mid" 

Artinskian (see Fig. 13; Appendix B, Supplementary Material). The eastern Australian basins 

may have been influenced by alpine glaciation and therefore experienced more pronounced 

and prolonged glacial episodes than those that affected west Australian basins.  However, 

although glacioeustacy may have influenced depositional cyclicity in the west Australian 

basins (e.g. Southern Carnarvon Basin studies by Lever, 2004, for the Roadian Kennedy 

Group and Haig, 2003, for the Kungurian Quinnanie Shale) there is no evidence for fluvial 

incision anywhere in the post-Lower Sakmarian succession that would indicate abrupt 

lowering of sea-level.  

10. Discussion
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This study has examined inner neritic limestone deposited in an interior rift system 

trending approximately north to south for about 2000 km through a paleolatitudal range from 

about 35°S to higher than 55°S (following Li and Powell, 2001). These Sakmarian–Artinskian 

carbonate deposits are dominated by heterozoan elements (following the classification of 

James, 1997), and indicate temperate marine conditions. Tropical elements such as larger 

fusulinids, colonial rugose corals, and dasycladacean algae are absent as are cortoidal grains, 

cyanobacteria-encrusted grains, ooids, oncoids, and microbialites. The dominance of miliolid 

species among the foraminiferal assemblage, with calcified skeletons of bryozoans, 

brachiopods and echinoderm groups (which together indicate salinity tolerances of 30–50 psu; 

Mossadegh et al., 2009) and the absence of common metahaline–hypersaline indices such as 

cortoids, cyanobacteria-encrusted grains, ooids and microbialites indicate normal salinity 

conditions during limestone deposition. 

The problematic group Tubiphytes (as interpreted by Senowbari-Daryan, 2013) has 

been found as far south as about 55°S paleolatitude in the interior-rift system (in the southern 

part of the Southern Carnarvon Basin), and smaller fusulinids belonging to the 

endothyraceans, tetrataxaceans and pseudoammodiscids also have an extended north–south 

range (Fig. 19). An aspect of Tubiphytes physiology apparent from our material was the 

ability of this organism to secrete its microgranular skeleton in the very fine interstices within 

the lattice of crinoid columnals (e.g. Fig. 7B), a feature also shown by calcivertelline 

foraminifera (e.g. Fig. 9A5).

Oxygen-isotope paleothermometry on brachiopod shells from the Callytharra 

Formation in the Southern Carnarvon Basin indicates cool temperate conditions <10°C 

(Compston, 1960; Korte et al., 2008; Frank et al., 2012; Mii et al., 2012). Korte et al. (2008) 

indicated a 9–12°C gradient between <30°S and 45–65°S paleolatitude, which is less than the 

modern equivalent gradient of about 15°C. The biogenic grain composition in limestones over 
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the 35°–55° paleolatitude range examined here also indicates a low temperature gradient. The 

lack of tropical indicators in the most northern locality (Maubisse Limestone type section) 

suggests a paleotemperature of <18° C (the modern lower limit of coral–algal reef 

development along the present west Australian coast; Hatcher, 1991).

The absence of any reports of Tubiphytes and fusulinids such as endothyraceans, 

tetrataxaceans and pseudoammodiscids in Sakmarian–early Artinskian deposits from eastern 

Australia, suggests that water temperatures in the East Gondwana interior-rift system were 

higher than those in the epeiric seas of eastern Australia. Based on marine invertebrates, but 

in particular the brachiopods, Archbold and Shi (1995, 1996) recognized a Westralian 

biogeographic province for the late Sakmarian–Artinskian comprising faunas, including 

warm-water elements, from the Perth, Carnarvon and Canning Basins as well as from New 

Guinea (West Papua), Timor, and other blocks now within southern Asia. Coeval faunas from 

eastern Australia were distinguished as the Austrazean Province and regarded as indicative of 

extremely cold-water conditions (Archbold, 2000, 2001). 

Reid and James (2010) recognized similarities between the Australian bryozoan 

faunas and those from high northern paleolatitudes. Shi and Grunt (2000) described a similar 

correspondence among the brachiopods. Lower Permian biogenic carbonates formed by 

heterozoan assemblages, similar to those studied here, are present within the intracratonic 

basins of northern Pangea (Beauchamp and Desrochers, 1997; Stemmerik, 1997). Tubiphytes

is also present in some of the bryozoan-dominated limestones in these high-latitude northern 

basins. However, cold-water spiculitic facies, similar to those described by Ehrenberg et al. 

(2001) and Beauchamp and Baud (2002) from northern Pangea, have not been found in the 

Timor–west Australian basins. 

11. Conclusions
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The studied late Sakmarian–early Artinskian carbonate deposits accumulated in

shallow seas that extended far into the interior of eastern Gondwana and show no glacial 

influence. The biogenic components of the sediment, which dominate the deposits, suggest 

temperate conditions with a low north to south temperature gradient. In more open-marine 

parts of the interior-rift system, carbonate mounds seem to have developed forming thick 

limestone successions, whereas in the more southerly basins sheet-like detrital carbonate 

deposits developed periodically in restricted waters above a very shallow storm-wave base. 

The temperate late Sakmarian to early Artinskian interval represented in basins of the 

east Gondwana interior rift system may be equivalent to the non-glacial interval between 

glaciations P1 and P2 in eastern Australia, but further consideration of the chronostratigraphic 

correlation is required. The subsequent cool phase observed in the "mid" Artinskian of the 

west Australian basins may be equivalent to the more expansive and longer P2 glaciation in 

eastern Australia, but this correlation also requires further investigation. 
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Figure Captions 

Fig. 1. Map of the western part of present-day Australian continent showing relevant 

sedimentary basins, extent of known late Sakmarian–early Artinskian marine deposition, and 

study sites (labelled 1 to 8); and a schematic reconstruction of north-eastern Gondwana during 

the Early Permian (modified from Harrowfield et al., 2005). 

Fig. 2. Correlation chart showing Lower Permian units in the northern Perth Basin, Southern 

Carnarvon Basin, Canning Basin and Timor. Localities are shown on Fig. 1. Studied units are 

highlighted and correlations are explained in text and Appendix B.  FCM, Fossil Cliff 

Member; CF, Carrandibby Formation; BS, Ballythanna Sandstone; WS, Winnamea 

Sandstone; JJCM, Jimba Jimba Calcarenite Member; BF, Billidee Formation; NNM, Nura 

Nura Member. 

Fig. 3. SRTM image of Timor (compiled from NASA US Shuttle Radar Topography Mission 

images) showing the location of the type area of the Maubisse Limestone and the other 

important Lower Permian sites: 1, Mt Bissori–Mt Aubeon area near Pualaca, Timor-Leste; 2, 

Kula area, Timor-Leste; 3, Maubisse Limestone type locality (present study), Timor-Leste; 4, 

Somohole locality, West Timor; 5, Bisnain area, West Timor; 6, Bitauni area, West Timor; 7 

Basleo area, West Timor; 8, Kapan area, West Timor; 9, Kekneno area, West Timor. The 

inset map shows present-day Timor as part of the non-volcanic Outer Banda Arc. 

Fig. 4. Type area of Maubisse Limestone. A, limestone cliffs (central right of image) 

designated by Audley-Charles (1968) as type locality for the “Maubisse Formation” (= 

Maubisse Limestone of present study), as viewed toward southwest from Maubisse Pousada; 
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with Mt Ramelau, the highest peak in Timor, in the background. B, limestone ridge viewed 

toward north from the Aitutu–Hato Builico road, showing the position of the measured 

section selected here as type section of the Maubisse Limestone. C, outcrop of type section of 

the Maubisse Limestone, in the vicinity of Maunlai. 

Fig. 5. Google Earth image of type area of Maubisse Limestone showing major high-angle 

faults and the extent of the formation. Note an apparent decrease in thickness to the west 

(bedding dips remain constant). 

Fig. 6. Stratigraphic log of the type section of the Maubisse Limestone showing the relative 

abundance of biogenic grain types. The pelmatozoans are mainly crinoids but may include 

blastoids. 

Fig. 7. Examples of Tubiphytes from studied sections. Scale bars = 1 mm. A–C from 

Maubisse Limestone type section, Timor-Leste, acetate peels; A, UWA165806; B, 

UWA165846, note skeletal material (brown) from Tubiphytes in interstices of lattice of 

crinoid plate and compare with Fig. 9A5; C, UWA165826, note infilled bored branching 

tubes, probably formed by filamentous cyanobacteria, along periphery of specimen. D, E

from Nura Nura Member, outer Canning Basin, Perindi 1, core 1, acetate peels; D, 875.86 m; 

E, 875.69 m. F–J from Callytharra Formation, Southern Carnarvon Basin; F, thin section, 

UWA158898; G, thin section, UWA158898; H, acetate peel, UWA165865; I, thin section, 

UWA127873; J, thin section, UWA127873. See Appendix A (Supplementary Materials) for 

detailed locality information. 
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Fig. 8. Bryozoans from the type section of the Maubisse Limestone, Timor-Leste, viewed in 

acetate peels. Scale bars = 0.5 mm. A, Streblotrypa minutula Bassler 1929, UWA165834. B,

Fistulipora sp., UWA165839. C, Dyscritella (?) sp., UWA165838. D, Dyscritella (?) sp., 

UWA165828. E, Streblotrypa minutula Bassler 1929, UWA165777. F, Sulcoretepora sp.,

UWA165842. G, Goniocladia laxa (?) Bassler 1929, UWA165826. H, Fenestella orientalis

(?) Bassler 1929, UWA165761. I, Penniretipora sp., UWA165830. J, Dyscritella (?) sp., 

UWA165827. K, Spinofenestella sp., UWA165777. See Appendix A (Supplementary 

Materials) for detailed locality information. 

Fig. 9. Examples of foraminifera from the Orders Miliolida and Fusulinida from studied 

sections. Classification follows Loeblich and Tappan (1987).  Scale bars = 0.1 mm. A1–A12,

representatives from the Subfamily Calcivertellinae. A1–A7, Calcitornella morphotypes. A1–

A2 from Maubisse Limestone type section, Timor-Leste, acetate peels; A1, UWA165840; A2, 

UWA165851. A3 from Nura Nura Member, outer Canning Basin, acetate peel, UWA165856, 

Perindi 1, core 1 at 872.62 m. A4–A7 from Callytharra Formation, Southern Carnarvon 

Basin; A4, acetate peel, UWA165868; A5, thin section, UWA127902, note foraminiferal 

skeletal material (dark brown) in interstices of lattice of crinoid plate and compare with Fig. 

7B; A6, thin section, UWA127852. A7 from nodular limestone in upper Holmwood Shale, 

northern Perth Basin, acetate peel, UWA165918. A8–A12, Trepeilopsis morphotypes. A8 

from Nura Nura Member, outer Canning Basin, acetate peel, UWA165856, Perindi 1, core 1 

at 876.44 m. A9, A10 from Callytharra Formation, Southern Carnarvon Basin; A9, thin 

section, UWA165911; A10, thin section, UWA127873. A11, A12 from nodular limestone in 

upper Holmwood Shale, northern Perth Basin, acetate peels; A11, UWA165921; A12, 

UWA165922. B1–B8, representatives of the Family Hemigordiopsidae. B1–B3 from Nura 

Nura Member, inner Canning Basin, acetate peels, UWA165855. B4–B6 from Callytharra 
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Formation, Southern Carnarvon Basin; B4, acetate peel, UWA165866; B5, B6, thin sections, 

UWA127900. B7, B8 from nodular limestone in upper Holmwood Shale, northern Perth 

Basin, acetate peels, UWA165922. C1, C2, representatives of the Subfamily 

Meandrospirinae; from Callytharra Formation, Southern Carnarvon Basin; C1, thin section, 

UWA158906; C2, thin section, UWA158907. D1, D2, representatives of Superfamily 

Endothyracea. D1 from Maubisse Limestone type section, Timor-Leste, acetate peel, 

UWA165839. D2 from Nura Nura Member, outer Canning Basin, thin section, UWA165856, 

Perindi 1, Core 1 at 873.85 m. E1–E3, representatives of the Superfamily Tetrataxacea. E1, 

E2 from Maubisse Limestone type section, Timor-Leste, acetate peels; E1, UWA165832; E2, 

UWA165846. E3 from Nura Nura Member, outer Canning Basin, thin section, UWA165856, 

Perindi 1, Core 1 at 875.88 m. F1, F2, ?F3, representatives of the Family Lasiodiscidae. F1, 

F2 from Maubisse Limestone type section, Timor-Leste, acetate peels; F1, UWA165826; F2, 

UWA165832. F3 from Nura Nura Member, outer Canning Basin, thin section, UWA165856, 

Perindi 1 core 1 at 872.80 m. G1–G8, representatives of the Family Pseudoammodiscidae. G1 

from Maubisse Limestone type section, Timor-Leste, acetate peel, UWA165824. G2, G3 

from Nura Nura Member, outer Canning Basin, Perindi 1, Core 1; G2, thin section (GSWA) 

at 875.88 m; G3, acetate peel, UWA165856, at 874.36 m. G4–G8 from Callytharra Formation, 

Southern Carnarvon Basin; G4, thin section, UWA158906; G5, thin section, UWA158907; 

G6, acetate peel, UWA165865; G7, thin section, UWA127903; G8, thin section, 

UWA127878. See Appendix A (Supplementary Materials) for detailed locality information.

Fig. 10. Conodont fragment from Maubisse Limestone, Timor-Leste and outcrop from which 

it was recovered. A, outcrop at 8.85534°S, 125.56025°E, 320 m west along limestone ridge 

from type section of Maubisse Limestone. The sampled level is marked by arrow.  B, C,

conodont Pa fragment of Vjalovognathus; B, lateral view; C, oral view; SEM images. On oral 
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view note discrete denticles with rounded cross-section suggesting that this element belongs 

with Vjalovognathus australis Nicoll and Metcalfe (1998). Bar scale is 0.5 mm. 

Fig. 11.  Photo of acetate peel of segment from Perindi 1, core 1, showing thin layers of 

rudstone containing lithoclasts of mainly packstone alternating with layers of 

wackestone/packstone. 

Fig. 12. Stratigraphic log of Perindi 1, core 1, showing relative abundance of biogenic grain 

types. 

Fig. 13. Summary chart of Sakmarian–Artinskian depositional sequences in Southern 

Carnarvon and northern Perth Basins showing formations, key fossil occurrences, and 

palaeobathymetric and climatic trends. Numbered items are explained in Appendix B. 

Fig. 14. Log of typical high-order depositional cycles (parasequences) within the Callytharra 

Formation in the upper part of the Dead Man's Gully section (Fig. 16) plus photograph 

showing outcropping limestone beds at the tops of cycles.  Friable siliciclastic rocks that form 

a major part of the succession are poorly exposed.   

Fig. 15. Stratigraphic log of the Callytharra Formation, Lyndon River area, showing relative 

abundance of biogenic grain types. 

Fig. 16. Stratigraphic log of the Callytharra Formation, Dead Man's Gully area, showing 

relative abundance of biogenic grain types. 
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Fig. 17. Stratigraphic log of the Callytharra Formation, Jimba Jimba area, showing relative 

abundance of biogenic grain types. 

Fig. 18. Stratigraphic log of the type section of Callytharra Formation showing relative 

abundance of biogenic grain types. 

Fig. 19.  Summary of the distributions of foraminiferal groups belonging to the Orders 

Miliolida and Fusulinida and of Tubiphytes at the upper Sakmarian–lower Artinskian 

localities studied here within the East Gondwana interior rift system. Associated foraminifera 

belonging to species with organic-cemented agglutinated siliceous tests and to the Order 

Lagenida are well known in the Southern Carnarvon and northern Perth Basins (Crespin, 

1958; Foster et al., 1985; Palmieri, 1993; Dixon and Haig, 2004), but rare at localities 1–3.

Fig. 20. Discrepancies in timing of cold to warm intervals of the Early Permian recognized in 

the west Australia basins (see evidence outlined in this study) and eastern Australian basins 

(Fielding et al., 2008 a,b,c).
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Highlights 

• North to south comparison shows similar dominance of bryozoan-crinoidal debris.

• Tropical biogenic components are absent; Tubiphytes is present far south.

• Temperate conditions with very gradual N–S temperature gradient are suggested.

• Discrepancies between west and east Australian successions may be miscorrelation.
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