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Abstract: Successful non-coding RNA gene searching requires examination  
of long-range intramolecular base pairing possibilities. This results in search 
algorithms with extremely long run times such that large-scale use of the 
algorithms often becomes computationally infeasible. Methods for the efficient 
search of the solution space are examined. A review of the standard  
dynamic-programming covariance model search algorithm is given.  
An analysis of the statistically probable regions of the search space is 
undertaken and a method of limiting the traditional dynamic-programming 
algorithm to this region is shown. An alternative search method using a Genetic 
Algorithm (GA) which favours the probable region of the search space is also 
given. 
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1 Introduction 

MOST of the literature on gene finding is focused on the search for protein-coding genes. 
These are portions of an organism’s genomic DNA sequence which specify the order  
of amino acids in the organism’s proteins. The DNA sequence is transcribed into 
messenger RNA (mRNA) which is later translated into protein at a ribosome.  
The translation uses the genetic code to convert three-nucleotide codons into amino acids. 
The purpose of the mRNA molecule is to transport information about the eventual amino 
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acid sequence from the chromosome storing the information to the ribosome producing 
the protein. 

There are many other types of RNA molecules which are also transcribed  
from the chromosomal DNA which do not carry protein coding information.  
These include transfer RNA (tRNA), ribosomal RNA (rRNA), RNA components  
of mixtures of protein and RNA called ribo-nucleo-proteins (RNPs), and many others 
(Gesteland et al., 2006). These RNA molecules which do not carry amino acid sequence 
information are known collectively as non-coding RNA (ncRNA) or functional RNA.  
The function of these RNA molecules depends directly on interaction of the molecule 
with other molecules in the cell (rather than indirectly through a protein product as is the 
case with mRNA). This direct interaction makes the shape of the ncRNA molecule 
important. The single most important determinant of the ncRNA molecule shape  
is its intermolecular base pairing pattern, also known as its secondary structure.  
The primary structure of the ncRNA molecule is the sequence of nucleotides (A, C,  
G, or U) along the molecular chain. 

The likelihood that a particular position in the ncRNA molecule will attach itself to 
another particular position in the same molecule (that the positions will base pair) 
depends on the nucleotides at the two positions. A (adenine) prefers to base pair with U 
(uracil) and G (guanine) prefers to base pair with C (cytosine), although the G-U base 
pair is also not uncommon. In all, there are 16 possible pairings which may have different 
likelihoods of forming a base pair either generically or when viewed from specific 
locations within the nucleotide chains of given ncRNA families. In the type  
of model used to search for genes of members of an ncRNA family in this paper, the data 
from known family members is used to estimate the probabilities of the 16 possible 
parings at individual positions. 

The fact that interactions between nucleotides of the ncRNA molecule that may be 
very far apart in the molecular sequence (but very near in physical proximity) are 
important makes searching for ncRNA genes more difficult. When searching for  
protein-coding genes, heavy use can be made of the tendency to primary structure 
conservation. There are often regions of the amino acid sequence that can not radically 
change without destroying the function of the protein. This is not the case with ncRNA, 
where compensating variations in nucleotides that do not interfere with base pairing are 
quite frequent. For example, two positions in the ncRNA sequence which are very distant 
in sequence position might be A–U in one family member and C-G in another family 
member. The simultaneous mutation of A to C and of U to G have maintained the ability 
of the two positions to base pair. The models that allow the capture of primary structure 
for protein homology search (such as profile hidden Markov models) are not sufficiently 
powerful enough to capture the necessary secondary structure information needed  
for ncRNA gene search. 

The profile Hidden Markov Model (HMM) (Eddy, 1998) which may be used as part 
of protein gene search is an example of a regular grammar in the Chomsky (Chomsky, 
1959) hierarchy of transformational grammars. In order to model base pairing  
in a similar framework as an HMM, it is necessary to move up one level of the hierarchy 
to the context-free grammar. The other two even higher levels of the hierarchy, the 
context-sensitive and the unrestricted grammar, are rarely seen in biological sequence 
analysis. A common probabilistic model using the context-free grammar for ncRNA gene 
search is the covariance model (Eddy and Durbin, 1994) which has much the same 
flavour as the HMM. The covariance model will form the basis for the rest of this paper. 
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Efficient search for ncRNA genes will be presented as either a limitation of the search 
space in conjunction with the classical (dynamic programming) method of searching with 
the model or as a Genetic Algorithms (GA) search based on the same covariance model  
as the classical search method. 

The contention that the classical covariance model search is inefficient comes from 
observation of the actual distribution of ncRNA family members within the search space 
used by this method. The classical method requires the user to specify the maximum 
sequence length D of new members of the family which can be found. The processing 
time required for the search is proportional to aD + bD2, where the weights a and b 
depend on the particular model. The value D must be chosen large enough such that true 
family members with large net numbers of insertions are not missed, yet small enough to 
keep computation time reasonable. A major problem is that the parameter D is used for 
evaluation of every portion of the model. It will be shown that this leads to large parts  
of the search space being completely unrealistic. In addition, both the proposed limited 
classical search and the genetic algorithm search do not require the user to specify the 
parameter D. In the classical case, the data used to build the model guides the choice and 
in the genetic algorithm case, the fitness landscape itself determines where to search. 

The following section gives an overview of covariance models and the traditional use 
of dynamic programming for database search. Section 3 investigates the statistics  
of sequence length in different parts of the model. A simple redesign of the classical 
covariance model search algorithm that takes advantage of the search statistics to limit 
the search space is discussed in Section 4. The alternative GA search method is presented 
in Section 5. Finally, Section 6 gives some concluding remarks. 

2 Dynamic programming for non-coding RNA gene search  
with covariance models 

Covariance models (Durbin et al., 1998) are composed of nodes which can be arranged  
in the form of a binary tree. The root of the tree (the root start node) is normally shown  
at the top. There are six types of nodes, three of which are symbol emitting and three  
are silent. The silent nodes are used to give structure to the tree and place the emitting 
nodes in the proper orientation with respect to each other. The silent node types are  
end (E), bifurcation (B), and start (S). Each branch of the tree has an S node at the top  
and either a B or an E node at the bottom. B nodes have exactly two S nodes as children 
and E nodes have no children. S nodes come in three flavours, the root S node (of which 
there is only one), left child S nodes, and right child S nodes. The internal structure  
of the three S node flavours varies slightly as described below. 

All nodes between the S node at the top and the B or E node at the bottom of each 
branch are symbol emitting nodes. The emitting nodes are of three possible types,  
pair-emitting nodes (P), left-emitting nodes (L), or right-emitting nodes (R). The L and 
the R nodes are known as single-emission nodes since they emit one symbol while the P 
node emits two. Emitting nodes add to the subtree below them by placing a new symbol 
(nucleotide) on either the left (L node), right (R node), or both (P node) ends. The E node 
is a maker for the null sequence and gives a location to start building upon. Every node  
is given an index number with the root S node indexed at 0. For all nodes other than B 
nodes, a child node always has and index one greater than that of the parent. For B nodes 
the left child always has an index one greater than the B node. The right B-node child has 
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an index that results from a depth-first assignment of node numbers where the left path  
is always followed first. Figure 1 shows the icons that will be used for the different node 
types in the tree. In addition to the node index #, symbol-emitting nodes are labelled with 
the symbol with highest probability of emission (L node and R node) or symbol pair with 
highest probability of emission (P node), even though any symbol may be emitted. 

Figure 1 Covariance model node icons 

 

The arrangement of the covariance model tree can be determined from a multiple 
alignment of the member sequences from which the model is to be estimated.  
The consensus columns of the multiple alignment are those which are ‘normally’ present. 
Sequences that have a nucleotide in a non-consensus column are assumed to have it due 
to an ‘unusual’ insertion in the sequence with respect to the family. Sequences that do not 
have a nucleotide in a consensus column are assumed to not have it due to an ‘unusual’ 
deletion of that position relative to the family. The definitions of ‘normally’ and ‘unusual 
are not precise, but a common way of defining a column as a consensus column is if  
one-half or more of the sequences in the multiple alignment have a nucleotide in that 
column. 

The generation of a multiple alignment from groups of sequences is outside the scope 
of this paper, but good discussions on multiple alignment can be found in Mount (2001) 
and Eidhammer et al. (2004). Loosely speaking, nucleotide positions in the same column  
of different sequences come from related parts of the two sequences with possible 
insertions and/or deletions in either sequence with respect to a common ancestral 
sequence. 

In order to form a covariance model, it is also necessary that the multiple alignment 
be annotated with secondary structure. Each column should be listed as either  
non-consensus, unpaired consensus, paired columns also need notation as to which other 
column they base pair with. If one makes the assumption that there are no pseudoknots, 
then a simple notation using the symbols ‘.’, ‘–’, ‘<’, and ‘>’ in each column completely 
specifies the secondary structure. Pseudoknots are a structural feature that are important 
in a few ncRNA families, but which are absent in most. The standard covariance model 
can not represent pseudoknots, so the simple secondary structure notation used here is not 
limiting. If the ncRNA family actually contains a pseudoknot, then a somewhat less 
powerful, but usually still useful model can be formed with no pseudoknot simply  
by ignoring some of the true base pairings and treating some of the multiple alignment 
columns as if they were unpaired. 

Figure 2 shows an example of a multiple alignment with secondary structure 
annotation. This alignment will be used to construct an example covariance model tree in 
the text that follows. The example is the alignment of the 14 sequences in the U12 
ncRNA family from the Rfam database (Griffiths-Jones et al.,2005). The alignment  
is broken into two halves in order to fit on the page with the left half at the top  
of the figure and the right half at the bottom. The last two lines of the alignment are the 
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consensus sequence and the secondary structure respectively. When the secondary 
structure has a ‘.’ symbol, it is a non-conserved column and does not appear as a node in 
the model. A ‘–’ means the column is single emission and will end up being an L or an R 
node. A ‘<’ and matching ‘>’ represent a P node, where matching is the normal nesting 
used for parenthesis. The consensus sequence shows the most probable symbol  
to be emitted (L and R nodes) or most probable pair of symbols (P node).  
The first five ‘<’ symbols and the first five ‘>’ form a group know as a stem (labeled 
‘stem 1’ in the figure). The P nodes of a stem will appear together in the same branch of 
the covariance model tree. Stems can appear sequentially in the alignment or they may be 
nested inside other stems. This pattern of sequential vs. nested stems is what determines  
the organisation of the binary tree for the covariance model. The single emitting nodes 
between the first five ‘<’ and first five ‘>’ (marked with a ‘–’) are known as a hairpin 
loop and hairpin loops can always be represented by a series of L nodes. They could also 
be represented by many different mixes of L and R nodes, but covariance models always 
default to using L nodes when either L or R is possible in order to make the models 
unique representations of a given multiple alignment. It is not always possible to use an L 
node for single emission and therefore R nodes are available. 

Figure 2 Example multiple alignment with secondary structure annotation (U12 family) 

 

The reason for calling the five-base-pair group a stem in the text above can be seen more 
clearly with the help of the secondary structure diagram in Figure 3. The base pairs are 
shaded grey in this diagram. Even though stem 4 is interrupted with an interior loop, this 
does not cause branching and will therefore be treated as a single stem for the purposes  
of this paper. Since there are five hairpin loops, one at the end of each stem, there will be 
five E nodes in the model tree. Immediately above the E nodes will be a series of L nodes 
representing the nucleotides of the hairpin loop and above the L nodes will be a series  



   

 

   

   
 

   

   

 

   

    Efficient non-coding RNA gene searches through classical 47    
 

    
 
 

   

   
 

   

   

 

   

       
 

of P nodes representing the stem. In stem 4, the series of P nodes will be interrupted with 
L and R nodes to represent the interior loop. 

Figure 3 Example secondary structure diagram (U12 family) 

 

The resulting covariance model tree is shown in Figure 4. In Figure 4a only the portion  
of the tree associated with stem 2 and stem 3 is shown. Multiple consecutive nodes of the 
same type have been collapsed into a single node and labelled with a range of node 
numbers. For example, Figure 4(a) shows a single node labelled ‘L 45–50’ which is 
really six L nodes in the true covariance model tree in a vertical line with L 45 on top and 
L 50 on the bottom. Figure 4(b) shows an even more condensed version of the overall 
model tree. In this figure, the node number ranges in the boxes list the indices of the 
symbol emitting nodes in the branch (L, R, or P) with no indication of which types of 
emitting nodes are in the branch. 

Figure 4 Example covariance model tree: (a) fragment representing stems 2 and 3  
and (b) condensed representation of full tree 

 
 (a) 

 
 (b) 
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The covariance model tree only shows the consensus secondary structure and consensus 
emission symbols. However, real ncRNA genes have insertions and deletions with 
respect to the consensus sequence. In order to make insertions and deletions, the model 
nodes have an internal state structure with between one and six internal states, depending 
on the node type. There are four types of silent states: start (S), end (E), bifurcation (B), 
and delete (D). There are three types of symbol-emitting states: left (L), right (R),  
and pair (P). Some nodes have two symbol-emitting states of the same type, so the role  
of the state is usually further denoted by adding a M (for match) and I (for insert) before 
the state type, so these states are given as IL, IR, ML, MR, or MP (there are no IP states). 
Whether the role of a state is to match or to insert, its implementation is identical.  
All of the connections between states have state transition probabilities and all of the 
symbol-emitting states have emission probabilities for each possible symbol or pair  
of symbols. These probabilities are estimated from the observed frequency of occurrence 
in the multiple alignment plus pseudocounts to avoid zero probabilities. 

The node type with the most complicated internal state structure, the P-type node, is 
shown in Figure 5. Specifically, Figure 5 shows the internal structure of a P-type node 
labelled with the emissions associated with node P 37 in stem 2 of the U12 example 
above. The portion of the state structure associated with the consensus is the MP state, 
which emits a G-C pair with highest probability. If a database sequence does not contain 
this pair at all, then the D state will be visited. If only the right half of the pair is in the 
database sequence, then the MR state is visited and similarly the ML state  
is visited if only the left half of the pair is present in the database. The IL and IR states 
allow any number of additional symbols to be emitted before the consensus pair is 
emitted. The fat arrows in the figure indicate multiple state transitions into or out  
of the node. State transition probabilities for the path through the MP state only should be 
the highest. The degree to which other transition probabilities are lower than the 
consensus path depends on the data in the multiple alignment. 

Figure 5 Internal state structure of a P-type node 

 

Once a covariance model has been estimated, it may be used for database search. 
Estimation of the model is a rather trivial computational burden, but database search with 
the model requires computational resources that are often more than what is available. 
The classical way to do this database search is with the CYK algorithm, which is based 
on dynamic programming. The algorithm progresses through the database sequence one 
sequence position at a time. Each sequence position is taken as a potential ending 
position of a gene in the ncRNA family of the covariance model. At each ending position, 
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the model is evaluated for every possible sequence length extending up to that ending 
position in the range 0 to some user-specified maximum D. The parameter D is chosen to 
be larger than the consensus sequence length. The model tree is evaluated for every 
database ending position j and for every sequence length d in [0, D] by processing the 
states starting at the end states and working up toward the root start state. 

The overall score for each ending position is the best score taken over all sequence 
lengths d for the root start state. The individual state transition probabilities and emission 
probabilities are converted to log likelihood ratios before the search algorithm is run,  
so scoring involves summation and maximum operations and the result can be interpreted 
as a log likelihood ratio. More formally, the CYK algorithm is: 

for j = 0 to L, d = 0 to min(D, j), v = M to 0 { 

case type(v) is 

E: if d = 0 then s(j,0,v) = 0; else s(j,d,v) = –Infinity 

D or S: s(j,d,v) = max(over children c)[s(j,d,c) + trans(c,v)] 

L: if d = 0 then s(j,0,v) = –Infinity; else s(j,d,v) =  

emit(l,v) + max(over children c) [s(j,d  1,c) + trans(c,v)] 

R: if d = 0 then s(j,0,v) = –Infinity; else s(j,d,v) = emit(r,v) + max(over children 
c) [s(j – 1,d – 1,c) + trans(c,v)] 

P: if d < 2 then s(j,d,v) = –Infinity; else s(j,d,v) =  

emit(l,r,v) + max(over children c) [s(j-1,d-2,c) + trans(c,v)] 

B: s(j,d,v) = max(over k in 0 to d) [s(j-k,d-k,lc) + s(j,k,rc)] 

} 

The algorithm loops over all ending positions j, sequence lengths d, and state indices v to 
evaluate the score s(j, d, v), where the length of the database sequence is L, the maximum 
search length is D, and the number of states is M + 1. E states set the score  
to 0 if the evaluation sequence is null and –∞ if not (since a non-null sequence is not 
possible at an end state). D and S states are treated identically and simply find the best 
child score plus transition score to the state over all immediate children of the state c.  
L states seek to add a symbol to the left end of the sequence passed up from each child, 
so the appropriate child scores are for sequences of length one less (d – 1), but with the 
same end position j. Since an L state adds a symbol, the resulting sequence must be at 
least of length 1, so the score is set to –∞ for d = 0. R states add a symbol to the right,  
so the appropriate child state scores are for length one less (d – 1) and end position one 
less (j – 1). The result of an R state must be a sequence of length at least one, so the score 
is set to –∞ for d = 0. P states add a symbol to each end, so child scores are for length two 
less (d – 2) and end position one less (j – 1). P states must result in a sequence of length  
at least two, so the score is set to –∞ for d < 2. The B state concatenates two sequences 
such that the overall sequence length is d and ends at j and the score is maximised.  
All possible right sequence lengths k are tried, where the left sequence must be of length 
d – k to make the overall sequence length d. 
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The CYK algorithm uses –∞ as a marker for impossible situations (actually,  
the largest negative value that the processor can represent is normally used) and this 
value never shows up as the solution since it always enters into a maximum calculation 
with some possible situation which has a log likelihood ratio greater than –∞ (guaranteed 
since pseudocounts eliminate any probabilities exactly equal to 0). It would be possible  
to also use –∞ as an estimated score for any very improbable situation rather than 
actually calculating the large negative score. This –∞ will also not show up as the final 
answer since some more probable path through the model will take its place. It is only 
necessary that the situation be improbable enough that it does not actually appear as a 
true family member that one seeks in the database, in which case the family member will 
not be found. This is precisely what is done in what follows when the search space is 
limited for the classical algorithm and a child score is not available since it was deemed 
too improbable to bother calculating. 

3 Probable regions of the gene search space 

The standard way to search for non-coding RNA genes using a covariance model  
is to investigate every possible end position in each of the database sequences and every 
possible sequence length between 0 and a maximum length D. This is done by calculating 
the best score for every end position and sequence length at every state in the model. 
Dynamic programming is employed such that the best score for a position, length, and 
state is found as the best among increments to the best scores of a state’s children.  
This is possible since the best scores at the child nodes are independent of the increments 
(transition and emission probabilities). If dynamic programming could not be used, then 
the calculation would be infeasible for any realistic model and database sizes. Even with 
dynamic programming, the computational burden of database search with covariance 
models is still extremely large. 

This section investigates the portion of the search space in the sequence length 
dimension that is observed to contain solutions for ncRNA families in practice. The focus 
will be at the node rather than state level, since this is the level at which there  
is a one-to-one correspondence with multiple alignments. To use this information at the 
state level, one assumes that all states inside a node experience the same distribution  
of sequence lengths associated with best scores as the overall node. This is exactly true  
of all states except the insert states. With the exception of very long observed insertions, 
the assumption is also very good for the insert states. To guard against problems with 
insert states and long insertions, a superset of observed lengths from the insert state’s 
own node and the node of its children (all the insert state’s children are always in the 
same node) can be used. 

Figure 6(a) (parts a and b) show the portion of the sequence length dimension  
of the search space which is used by solutions that lead to the best score for database 
positions that are associated with true family members of the U12 ncRNA family.  
Only symbol-emitting nodes are shown, but silent node statistics can be inferred from 
those of the silent node’s parents and children. Each node’s row of the figure has  
161 boxes associated with the possible sequence lengths in the range 0 to 160 (D was 
chosen to be 160 when the Rfam database was generated). The inside of the box is black 
if any family member uses that length in the given node to generate the best score.  
If the best scores of all the remaining boxes had been set to –∞ instead of being 
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calculated, the overall scores for every true positive position would remain unchanged 
and the score for every false position would be less than or equal to the score  
of the standard method. 

Figure 6 Search space usage: (a) U12 nodes 1 – 64 and (b) U12 nodes 67 – 124 

 
 (a) 

 
 (b) 
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The search space in Figure 6(b) has been arranged with length deviation rather than 
sequence length on the x–axis in order to make the clustering of the true solutions more 
clear. Length deviation is defined here as the sequence length of the true solution  
at a node minus the consensus sequence length at a node. The consensus sequence length 
at a node is found from that portion of the consensus sequence which is represented  
by the subtree for which the node is the root. Similarly, the solution length at a node  
is the portion of the database sequence which has generated the best score at the node 
which will form a portion of the best score for the overall model. Nonzero length 
deviations are the result of insertions net of deletions in the partial database sequence 
fitted to the model subtree rooted at the node. 

In the U12 example shown, there is never a length deviation greater than 6 in 
magnitude even though the standard solution method searches deviations as large as 159.  
This clustering of solutions very close to zero length deviation is not at all unique to U12, 
but rather quite widespread in the Rfam database families. Figure 7 shows histograms  
of length deviations for all emitting nodes in four ncRNA families. Even though length 
deviations in the traditional search space extend well beyond those shown in the figure, 
there is no situation in any of the four cases where those deviations were associated with 
the best score in practice. In the histograms, the counts for 0 length deviation have been 
omitted since they make the other counts hard to read. The average sequence lengths  
of 149 (U12), 61 (miR-9), 100 (RyeB), and 94 (snoR41) are a good approximation  
to the consensus sequence length and the maximum search length D would be chosen 
greater than these values. In all cases the observed length deviations are tightly packed 
about 0 deviation. This fact will be used to motivate the search space limitations for the 
classical and the genetic search algorithms discussed in the following two sections. 

Figure 7 Length deviation histogram: (a) U12; (b) RyeB; (c) miR-9 and (d) snoR41 

 
 (a) 

 
 (b) 
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Figure 7 Length deviation histogram: (a) U12; (b) RyeB; (c) miR-9 and (d) snoR41 (continued) 

 
 (c) 

 
 (d) 

4 Limiting the search space for the classical algorithm 

The classical method for searching nucleotide databases for ncRNA genes using 
covariance models is to employ dynamic programming and to search sequence lengths in 
the range [0, D] at every state. This method already limits the search space to genes with 
overall length no more than D. The maximum search length parameter D is chosen based 
on the observed lengths of known genes and there is no guarantee that unknown genes  
in the family in fact have length no more than D. The investigation of the previous 
section indicates that this choice of a uniform sequence length search range for all states 
is probably not very efficient. Clearly, it is highly unlikely that states very close to the 
end states will have best-scoring lengths close to the maximum expected overall length  
of the gene when a true family member is found. Likewise, states very close to the root 
start state are not likely to have best-scoring lengths close to zero. 

There are several ways to choose the range of the sequence length dimension  
of the search space more efficiently. The simplest is to specify a maximum expected 
sequence length deviation rather than a maximum expected overall sequence length as is 
currently done. Such a parameter could still be dependent on the ncRNA family  
(as D currently is) and might be chosen simply as twice the maximum of total insertions 
and of total deletions observed in any known family sequence. A more refined method 
could compile statistics on length deviations at each node in each model. From this a list 
of maximum and minimum lengths for the search space at each node can be compiled 
and read into the search program in addition to the covariance model parameter data.  
The non-uniform search of sequence lengths at different nodes may result in some of the 
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child scores needed by a parent node to not have been computed by the child node.  
This can be easily handled by initialising all scores to –∞ before calculation begins. 

One minor difficulty with using node-dependent minimum search lengths DNmin(n) 
and maximum search lengths DNmax(n) at each node n, is converting these to  
state-dependent minimum search lengths DSmin(v) and maximum search lengths DSmax(v) 
at each state v. This is simple in the case of all non-insert states, where the appropriate 
values of DSmin(v) and DSmax(v) are simply the node-dependent values for the node in 
which the state is contained. This is because the non-insert states always generate a score 
which is used by a parent in the next higher node. This is exactly the place for which the 
node length deviation statistics are generated. 

As shown in Figure 8, insert states are somewhat more complicated. Insert states are 
the only states that every have self loops and insert states are a symbol-emitting type of 
state. Furthermore, insert states are the only type of state that ever generates a score that  
is consumed by a parent located in the same node. As a result, using the node minimum 
search length for the insert state may result in the insert state not generating scores  
for short enough sequence lengths. It is recommend here that the maximum search length 
DSmax(v) for an insert state v equal the maximum search length DNmax(n) of the node  
n that the insert state is in. The minimum search length DSmin(v) of the state should equal 
the minimum search length DNmin(n + 1) of the child node n + 1 of the node n that the 
insert state is in. Since bifurcation nodes do not contain insert states, there is always one 
child node and its index is always one greater than the index of the parent node. 

Figure 8 Insert state search length determination 

 

5 Limiting the search space using a genetic algorithm 

So far, limiting the search space has only been discussed in terms of reducing the number 
of sequence lengths evaluated at each node. It has still been assumed that a complete 
search will be made at each possible nucleotide sequence end position in the database 



   

 

   

   
 

   

   

 

   

    Efficient non-coding RNA gene searches through classical 55    
 

    
 
 

   

   
 

   

   

 

   

       
 

sequence. This can be seen as possibly inefficient since evaluation of a subset  
of sequence lengths at a given database position may give one information about the 
likelihood that evaluation of the full set of sequence lengths will return a high score. 
Given limited computing resources, it may be better to concentrate the search  
on positions in the database that produce good scores on a small subset of the sequence 
lengths at each node. A GAs approach to this idea is presented in this section. 

Fitting a database sequence to a covariance model is equivalent to choosing a pattern 
of insertions and deletions with respect to the consensus sequence represented by the 
model. In order to easily apply GAs (and many other search methods) to this search it 
would be helpful to have a fixed-length representation of the pattern of insertions and 
deletions (Yadgari et al., 2001). A fixed-length vector of non-negative integers of length 
equal to that of the consensus sequence can be made to do the job. A value of zero at a 
vector position implies that the associated consensus position does not exist in the 
database sequence. A value of one indicates that the database does have a nucleotide at 
the consensus position and that no nucleotides have been inserted to the right of this 
position in the database sequence. A value m greater than one in the vector represents  
m – 1 inserted nucleotides in the database to the right of the consensus position. Using 
this notation the vector of all ones implies no insertions or deletions and is equivalent to a 
length deviation of zero at all nodes of the covariance model. 

The initial generation of the genetic algorithm should always include the vector of all 
ones and other individuals in the initial generation should mostly have small length 
deviations at each node such that the search is initially concentrated at solutions with high 
probability of being near a true solution. This can be accomplished by introducing a small 
number of mutations of small magnitude relative to the vector of all ones. To match 
mutations in the GA to those observed in nature, it is desirable that insertions and 
deletions appear in groups rather than independently scattered across the sequence.  
This is automatically accomplished by the representation for insertions if we make 
changes in individual integers in small amounts, but sometimes in amounts greater than 
one. To accomplish this grouping for deletions, it is necessary to select a range of 
positions in the vector to set to zero all at once. 

A major advantage to using GA over other search methods is the ability of the GA to 
use crossover. A good pattern of insertions and deletions in one portion of the vector will 
lead to a high contribution to the score. A poor pattern in another portion of the vector 
will lead to a score contribution that is on average about the same as fitting a random 
non-family-member location in the database. The sum of the two contributions will 
generally be way above the background noise of the scores. This will tend to cause two 
solutions with different good pattern regions to both remain in the population as long as 
steps are taken not to converge too quickly and maintain population diversity. Given 
enough crossover attempts, the two partial good patterns should eventually merge and 
create a solution with a higher score than either of the two partial good solutions. 

Another advantage of GA is that they incorporate randomisation. Improvement in the 
score of a solution often requires the simultaneous insertion of a few nucleotides in one 
place and deletion of a few in another place. This has the effect of shifting a range of 
nucleotides in the middle of the sequence while leaving both ends in place. Doing either 
the insertion first or the deletion first often results in a decrease in score. Gradient assent 
algorithms can not escape the local minimum caused by the need to do simultaneous 
changes. Figure 9 shows an example of this using one of the U12 sequences of the 
multiple alignment of Figure 2 (sequence number 2) and the consensus sequence from the 
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same figure. The first pair of sequences shows the correct alignment of the database 
sequence with the model consensus sequence as defined by the original multiple 
alignment with any non-consensus columns in common (dots in both) removed.  
The underlined nucleotides throughout the figure indicate positions that are correctly 
aligned and hence are expected to contribute to a high score. The second pair of 
sequences shows a possible individual that has been found at some point in the search 
which has a decent score, but which it is hoped can be improved on. The four deletions in 
the database sequence are the correct amount of this segment of the alignment, but they 
are misplaced and hence only the first and last parts of the alignment are correct.  
The third pair of sequences shows what might be accomplished if simultaneous insertions 
and deletions are possible. The three insertions (dots in the consensus sequence) and three 
deletions (new dots in the database sequence) have effectively shifted a part of the 
database sequence in the middle (underlined with * characters) with respect to the 
consensus and brought 13 new positions into correct alignment even though neither the 
insertions nor the deletions are exactly correct. The fourth pair of sequences shows what 
happens if only the insertion is done. The new correctly aligned segment in the middle is 
picked up at the expense of losing the end correctly aligned segment. As shown in the 
figure, this may have close to no effect on the score, but since there is much more of the 
original sequences not shown to the right in the figure, the result is probably a large 
decrease in score. The last pair of sequences shows what happens when the deletion is 
made and it is clear that the score will decrease. 

The conclusion that can be drawn from Figure 9 is not only that the possibility  
of multiple mutations should be frequently allowed after the initial generation, but that 
there ought to be a bias toward pairs of compensating mutations. By compensating 
mutations is meant an insertion and deletion pair with the same magnitude effect on the 
sequence length (and zero overall effect on length). The third case in Figure 9 is an 
example of compensating mutations with magnitude three. 

Figure 9 Simultaneous vs. sequential insertion/deletion (underlined symbols are correctly 
aligned) 
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The GA just described is suggested as a prefilter for the reduction of the database  
by many orders of magnitude to only those positions that hold promise of generating 
large scores. The remaining database can then be processed using the limited classical 
algorithm on Section 4 to get optimal alignments of the database to the covariance model. 

6 Conclusion 

An analysis of the search space usage by actual ncRNA family members in the classical 
dynamic programming method for covariance model database search with a single 
maximum length parameter D has be shown to be potentially very inefficient. This is due 
to failure to use the fact that node-level best scores are strongly clustered about zero 
length deviation. Limiting the search space in the sequence length dimension  
at the covariance model node level could significantly reduce computation time with very 
little chance of missing true ncRNA family members. 

The clustering of observed best-score sequence lengths about zero length deviation 
also indicates where to begin a non-exhaustive search that is not based on dynamic 
programming. Such non-exhaustive searches allow the possibility of early exit at a given 
database position if the returned scores are not promising, allowing the algorithm to move 
on more quickly to positions that show more initial promise. Simply gradient search from 
an ungapped alignment starting point is unlikely to succeed due to many local minima 
 in the fitness landscape. Search methods that allow simultaneous insertions and deletions 
and those that allow portions of different solutions at different locations in the alignment 
are more likely to succeed. Genetic algorithm searches have both these properties. 

Much remains to be done in terms of fully characterising the statistics of search space 
usage by all non-coding RNA families and exploring the full range of possible  
non-exhaustive search methods for covariance models. However, the potential of such 
non-exhaustive searches as prefilters to reduce the relevant database size for full 
dynamic-programming based covariance model search is very good. 
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