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ABSTRACT 

The design and synthesis of artificial learning systems has been aided by the study 

of biological learning systems. Classic biological learning is driven by the strengthening 

and weakening of the synapses that connect neurons within the brain through a 

phenomenon known as Spike-Timing-Dependent-Plasticity. That is, synaptic 

connectivity between neurons is modulated by the relative timing of their spiking outputs. 

Similarly, neuromorphic computing architectures can implement a mesh of artificial 

neurons interconnected by a network of artificial synapses to mimic the learning 

behaviors found in nature. 

Memristors, two-terminal devices whose resistance can be programmed as a 

function of voltage and current, offer a promising biomimetic solution for a hardware-

based artificial synapse. This work focuses on characterizing the switching behavior of an 

ion-conducting, chalcogenide-based resistive memory in a test environment emulating the 

behavior of a two-neuron, single-synapse neuromorphic circuit to demonstrate learning at 

speeds significantly faster than those found in biological synapses. 

The results from this study show that the ion-conducting memristors used in this 

work exhibit effective learning at time scales ranging over several orders of magnitude: 

from the biologically-relevant millisecond region to the faster-than-nature nanosecond 

region.  
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CHAPTER ONE: INTRODUCTION 

This work focuses on characterizing the switching behavior of an ion-conducting, 

chalcogenide-based resistive memory in a test environment that emulates the biologically 

equivalent neuron-synapse connection. This includes the demonstration of memristive 

state adjustment, or “learning,” at speeds significantly faster than those found in 

biological synapses, which establishes an exciting precedent in the synthesis and 

operation of a hardware-based synapse for use in neuromorphic computing. An 

introduction to a few key concepts is necessary before diving into the details of how this 

is performed, and is provided in the first chapters of this work. 

This chapter gives a brief introduction to memristor theory and neuromorphic 

computing, specifically Spike-Timing-Dependent-Plasticity (STDP). The motivation for 

and an outline of the body of this work is also included.  

1.1 Memristor Overview 

The term “memristor” is a portmanteau created from “memory” and “resistor,” as 

the term describes a device whose resistance can be changed, by application of potential 

or current to the device, to a value that is “remembered.” Additionally, the resistance of a 

memristor is a function of its history [1][2]. 

In 1971, Leon Chua proposed that there was a fourth circuit element called the 

memristor in addition to the three fundamental circuit elements: resistors, capacitors, and 

inductors [2]. A summary of the four basic circuit variables and their associated circuit 

elements is shown in Figure 1. The relationships between the four fundamental circuit 
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variables, voltage (v), current (i), charge (q), and flux linkage (φ), define the values of 

each of these basic circuit elements, but not all of these variables were appropriately 

related by an elementary circuit component. Thus, Chua proposed the necessary existence 

of the memristor, to be defined as a two terminal circuit element relating flux linkage and 

charge and characterized by the φ-q curve [2].  

 
Figure 1. The four basic circuit elements and their relation to the four 
fundamental circuit variables [3]. 

In a recent publication [4], Chua claims that if a device exhibits a pinched 

hysteresis loop on the voltage-current plane, as shown in Figure 2, that device can be 

classified as a memristor. For this reason, the devices characterized by this work will be 

alternately referred to as “memristors” or “resistive memory.” This means that devices 

ranging from those described by Hirose and Hirose in 1976 [5] to Kozicki and West in 
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1998 [6] should also be classified as memristors. While Strukov and Snider et al. in their 

Nature publication, “The Missing Memristor Found” [3], claimed to have found the first 

memristor, this is clearly not the case. Their TiO2 based resistive memory and the models 

they developed to describe the resistive switching phenomena show a pinched hysteresis 

loop, but they are not unique in this respect. 

 
Figure 2. An example of a pinched I-V hysteresis loop for a memristor. 

1.2 Neuromorphic Computing 

Neuromorphic computing is a field that seeks to increase the speed and efficiency 

of solving complex computing problems by developing hardware and software solutions 

that emulate or simulate biological learning systems. For certain problems, such as 

natural scene recognition, humans regularly outperform computer vision models in terms 

of accuracy [7]. Simulations on the scale of a mammalian brain are incredibly 

computationally expensive. For example, a simulation of a cat brain performed by IBM 

in 2009 ran 83 times slower than its biological counterpart despite using the IBM Blue 
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Gene/P supercomputer, which was equipped with 147,456 CPUs and 144 TB of main 

memory [8].  

Biological systems are also extremely efficient in terms of power, space, and time 

requirements for processing sensory input [9]. These benefits are primarily attributed to 

the use of elementary physical phenomena, such as the interaction of charged 

neurotransmitter ions with biologically generated electrical signals, as the computational 

operators and analog memory storage elements, which allow for massively parallel 

processing of multiple sensory inputs [10]. In mimicking the synaptic connections 

between neurons within brains, learning within artificial neural networks (ANN) is 

accomplished by varying the strength of the connections between individual “neurons” 

within the network. This is accomplished by introducing the network to stimuli that 

should produce a known output, and incrementally adjusting the strength of the internal 

connections of the network until the stimuli-response reproduces the expected output [9]. 

These incremental adjustments typically require computationally expensive software-

based algorithms or low-density, complex circuitry [10][11]. Memristors, which have the 

ability to incrementally adjust their conductance and act as a form of analog memory, 

offer a promising solution for a hardware-based synapse. 

1.3 STDP: “Neurons that fire together, wire together.” 

To understand how Spike-Timing-Dependent-Plasticity (STDP) can affect 

communication between neurons, it’s necessary to understand some of how neurons 

facilitate communication. Figure 3 shows a diagram of a neuron, its dendrites, and its 

axon connecting it to another neuron [12]. 
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Figure 3. A diagram of a synaptic connection between neurons [12]. 

A neuron receives signals on its dendrites in the form of neurotransmitters sent 

from other neurons’ axons. The neuron sends signals by “firing” electrical pulses down 

its own axon membrane, which can release neurotransmitters onto another neuron’s 

dendrite. These signals are formally known as action potentials, but are commonly 

referred to as “spikes” due to their abrupt voltage-time signature [13].  

The interfacial gap between an axon and a dendrite is called the synapse, where 

the axonal neuron (the sender) is denoted as the “presynaptic” neuron and the receiving 

dendrites are connected to the “postsynaptic” neuron [13]. When the presynaptic action 

potential reaches the synapse, channels open in the presynaptic axon that allow 

neurotransmitters to flow out of the axon and into the receptors on the dendrites of the 

postsynaptic neuron [14]. The receptors on the dendrite respond to the presence of these 

neurotransmitters and create a postsynaptic action potential. If this neurotransmitter-
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induced action potential is large enough, it can cause the postsynaptic neuron to fire its 

own action potential [14]. 

Simply stated, the strength of the synaptic connection between two neurons 

determines how well they communicate. In 1949, Donald Hebb postulated that the 

strength of a synapse between two neurons is increased when the presynaptic and 

postsynaptic neurons are simultaneously active, allowing increased flow of 

neurotransmitters across the synaptic gap [13]. Hebb’s work was overly simplified in that 

the synaptic strength was modulated by the average firing rate of pre- and postsynaptic 

neurons, which did not take into consideration the impact of individual synaptic events. 

Subsequent studies by Gerstner et al. expanded Hebb’s work in 1993 to shift the 

emphasis from ensembles of spikes (average firing rate) to the impact of individual 

spiking events [15]. This provided the foundation for what is now known as Spike-

Timing-Dependent-Plasticity [16].  

Spike-Timing-Dependent-Plasticity describes a learning mechanism by which the 

strength of the synaptic connection between neurons can be modulated by the relative 

timing of individual spikes from the neurons’ outputs; if there is an action potential 

present on the dendrite of the postsynaptic neuron that is well timed with the firing of the 

presynaptic neuron, the strength of the synaptic connection will either be potentiated 

(strengthened) or depressed (weakened). Originally proposed in the context of machine 

learning, experimental work in 1998 by Bi and Poo demonstrated that STDP is the 

driving force for synaptic strength modulation in real neural tissue by electrically 

stimulating cultures of rat hippocampal neurons [17].  
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Bi and Poo’s work showed that if the postsynaptic neuron fires at the same time 

that the receptors on the dendrite have their own action potential, the action potential on 

the postsynaptic dendrite created by the reception of neurotransmitters is effectively 

amplified, resulting in strong communication between the neurons and potentiation of 

their synaptic connection. Conversely, if the action potential sourced by the postsynaptic 

neuron is not coincident with the passage of neurotransmittors, the reception of the 

neurotransmitters is effectively rebuffed, resulting in poor communication and depression 

of the synaptic connection. 

As the proposed electrical analogue to a biological synapse, the memristor is 

desired to be able to have its resistance modulated by STDP learning pulses [18]. Chapter 

2 includes a more in-depth discussion about STDP theory and how it works with 

memristors. 

1.4 Motivation and Outline 

This work is motivated by the possibility that the ion-conducting memristor used 

for these experiments is a good biomimetic analog to the chemical synapse, and the 

desire to quantify the response of the ion-conducting memristor used in this work under 

STDP test conditions. While these devices demonstrate learning functionality similar to 

natural synapses, we seek to investigate the range of speeds at which these devices can be 

programmed, including speeds significantly faster than those found in nature. 

Optimization of test conditions to fit this type of memristor’s specific programming 

characteristics is necessary to improve the programming response of the device. This 

includes investigating device behavior as a function of the shape, amplitude, and timing 

of the programming pulse applied to the device.  
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Chapter 2 includes an overview of the structure and fabrication of the ion-

conducting memristors used in this work and a review of STDP implemented with ideal 

models of memristors. 

Chapter 3 provides an overview of the experiments performed and the 

measurement tools used to gather the data. It also includes a brief overview of the device 

design, structure, and fabrication, as well as the typical programming characteristics of 

the ion-conducting memristors used in this work. This section aims to elucidate the 

selection of experimental parameters.  

The results and discussions of the experiments are presented in Chapter 4. 

Chapter 5 summarizes this thesis. 
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CHAPTER TWO: BACKGROUND 

This chapter includes background information about the structure of the ion-

conducting chalcogenide memristor used in this work and a brief overview of STDP 

using ideal memristive models. 

2.1 Ion-Conducting Resistive Memory 

Ion-conducting devices that exhibit nonvolatile resistive switching have been 

identified as potential candidates for scalable, fast switching, and low current memory 

elements [19]. Typically, resistive memories are built with a Metal-Insulator-Metal 

(MIM) structure that starts at a very high resistance as shown in Figure 4 (a). 

Chalcogenide-based ion-conducting resistive memories modulate their resistances 

through a mechanism that involves the generation of mobile metal ions when a potential 

is applied across the device. An easily oxidized metal is typically used for the active 

metal layer, such as Ag or Cu. For devices based on chalcogenide glasses, such as 

GexSe1-x, the mobile metal ions move into and through the amorphous chalcogenide (as 

shown in Figure 4 (b)) when a potential above a certain threshold, commonly denoted as 

vth, is applied [20].  

As the mobile ions are reduced at the more negative electrode, a conductive 

channel, also referred to as a conductive filament, begins to form through the amorphous 

material, which reduces the device’s resistance as shown in Figure 4 (c) and (d). By 

reversing the applied potential, the reverse reaction occurs; the metal in the channel is 

oxidized and forced to migrate towards the more negative electrode, which is now the 
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opposite electrode. This severs the conductive filament and increases the device’s 

resistance as shown in Figure 4 (e) [21]. Not all of the metal in the channel is removed as 

shown in Figure 4 (f), so subsequent programming operations often have a reduced 

threshold requirement [20]. 

 
Figure 4. An example of a MIM ion-conducting memristor structure with an 
active Ag metal layer (top), a GeSe amorphous glass (center) and a W metal layer 
(bottom). (a) Immediately after fabrication, the device is very high resistance and 
there is no movement of the Ag into the GeSe layer. (b) After applying a slight 
positive voltage bias to the top electrode Ag+ ions move into the glass. (c) As the bias 
increases, more Ag+ ions move into the glass and some reduce to begin forming an 
Ag base. (d) When enough Ag+ ions reduce to form an Ag filament, the conductance 
of the device is greatly decreased. (e) By applying a negative potential to the top 
electrode, most of the Ag metal in the channel again ionizes into Ag+ and reduces at 
the top electrode, thus severing the conductive filament and increasing device 
resistance. (f) Some of the reduced Ag is left behind and makes subsequent filament 
formation easier.  
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2.2 STDP in Ideal Memristors 

The characteristic ability of memristors to incrementally change their conductance 

as a function of the potentials applied to the device is crucial for their use as a synapse in 

STDP. Ideally, sub-threshold potentials will not affect the conductance of the memristor 

[22], which allows non-destructive verification of device state. Similarly, the strength of 

a synapse’s connection, also known as its weight, does not change with sub-threshold 

action potentials [17]. Figure 5 shows the relationship between a biological synapse and a 

memristor, where the neuron circuits are labeled as somas [23]. 

 
Figure 5. Schematic diagram showing the analogous relationship between the 
memristor and the synapse [23].  

In the biological system, the relative timing of sub-threshold action potentials 

present on the axon and dendrite membranes can create a pro-threshold action potential 

capable of affecting the synapse’s strength [17]. These potentials, also known as spikes, 

are sourced by the presynaptic (axon) and postsynaptic (dendrite) neurons, and the total 

synaptic action potential is the difference between the membrane action potentials [17]. 

Similarly, in the memristive system, if each neuron circuit fires a sub-threshold voltage 
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pulse (spike) at slightly different times, the interaction of these potentials across the 

memristor can create a resultant voltage that is above the threshold required to affect the 

device’s conductance [18]. When a device increases its conductance, this is referred to as 

a positive weight change, which is analogous to synaptic potentiation. A decrease in 

device conductance is referred to as a negative weight change. 

In this work, a pro-threshold resultant voltage is created when the presynaptic and 

postsynaptic neurons send identical voltage pulses at slightly different times, denoted by 

∆T. The notation for ∆T is such that a positive ∆T indicates that the postsynaptic neuron 

fired before the presynaptic neuron, and vice versa [18]. If ∆T is greater than the time that 

the pulse is active, the presynaptic (Vpre) and postsynaptic (Vpost) voltage pulses do not 

interact, and the resultant voltage (VMR) across the synapse (analogously, the memristor) 

will not have a magnitude greater than the individual pulses. Figure 6 shows the 

interaction of presynaptic and postsynaptic voltage pulses with positive and negative ∆T 

values, and their subsequent creation of a resultant voltage larger than the individual 

pulses. 

 
Figure 6. Differences in resultant voltage due to pulse timing. Vpre is shown in 
dashed red, Vpost in solid blue, and the resultant VMR is the thick purple trace. 
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The function governing the change in conductance of the memristor is generically 

denoted as f(VMR), which is a function of the current (I0) and the polarity of the voltage 

applied to the memristor [18], where  

𝑓(𝑉𝑀𝑅) = �𝐼0 × 𝑠𝑖𝑔𝑛(𝑉𝑀𝑅)    𝑖𝑓     |𝑉𝑀𝑅| > 𝑣𝑡ℎ
0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.    (1) 

The efficacy of these pulses is known as the “learning function,” which is given 

by ξ. It is commonly represented as a function of the time differential between pulses, 

and is equivalent to:   

𝜉(Δ𝑇) = ∫𝑓(𝑉𝑀𝑅) 𝑑𝑡  .       (2) 

Equations 1 and 2 state that for sub-threshold pulses, the change in conductance 

of the memristor should be 0, therefore the learning function should be 0. This occurs 

when the presynaptic and postsynaptic pulses don’t interact to form a pro-threshold 

resultant voltage. For pro-threshold voltage pulses, the sign of the region in which the 

resultant waveform is greater than the device threshold determines how the weight is 

updated. 

Figure 7 shows the resultant voltage and pro-threshold region caused by well-

timed, sub-threshold pulses. The area highlighted in red indicates the time during which 

the weight of the device is adjusted by the resultant waveform; device weight is 

decreased for a value less than the negative threshold and the weight is increased for a 

value above the positive threshold. 
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Figure 7. Positive and negative weight adjustments due to pulse timing. 
Threshold Voltage, Vth, is ± 1 V. Vpre (top electrode) is shown in dashed red, Vpost 
(bottom electrode) in solid blue, and VMR is the thick purple trace. The resultant 
waveform is highlighted where it is above device threshold. 

The shape of the resultant waveform is entirely dependent on the shape of the 

individual pulses, which in turn affects the shape of the learning function. Serrano-

Gotarredona et al. explored simulations of various pulse shapes (Vmem in their notation) 

and their learning functions, two of which are shown in Figure 8 [22]. They propose that 

the ability to tune the STDP pulse shape and the corresponding learning function is 

essential for getting STDP to work with different material systems and circuit topologies 

[22]. This is significant in that it shows that various pulse shapes can still fall under the 

umbrella of STDP, including those that have been optimized for programming the ion-

conducting memristors in this work. The results and analyses of the STDP experiments 

performed in Chapter 4 show the correlation between our pulse shape and the calculated 

learning functions.  
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Figure 8. Two STDP pulse shapes and their corresponding learning functions. 
Inset (b1) shows a sharp positive square pulse followed by a longer negative ramp, 
which results in the sharp transitions shown in the learning function in inset (b2). 
Inset (c2) shows rounded transitions as a result of the pulse shape in (c1), which 
extends the positive pulse with a ramp [22]. 
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CHAPTER THREE: EXPERIMENTAL OVERVIEW 

The goal of this work is the characterization of a type of chalcogenide-based ion-

conducting memristive device in a test environment that mimics the circuit outlined in 

Fig. 5. The experiments have been performed over a range of pulse timing parameters 

with a ∆T ranging from 50 nanoseconds to 950 milliseconds.  

This chapter gives an overview of the structure and fabrication of the ion-

conducting memristors used in this work, the terminology and naming conventions used 

in the experimental analyses, as well as the measurement tools used to perform the 

experiments.  

Four primary experiments were performed for this thesis. They are:  

1. The AC Pulsing experiment is a set of tests designed to show that the device 

can be programmed with the minimum timing window present for the Sub-

Microsecond STDP experiment. 

2. The Sub-Microsecond STDP experiment was the first STDP experiment 

performed for this work, and seeks to investigate the functionality of these 

memristors as circuit analogs to biological synapses. 

3. The Trailing Edge Cancellation experiment is a refinement of the one-sided 

STDP experiment, which uses a modified STDP resultant waveform to 

improve device programming characteristics.  

4. The Extended ∆T experiment is an extension of the sub-microsecond STDP 

experiment, which features slower pulses that extend the ∆T range into the 

hundreds of milliseconds. We hope to show that these memristors are able to 
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demonstrate learning over a broad range of timing windows including those 

found in biological synapses.  

3.1 Device Structure and Fabrication 

The resistive memory used in this work was manufactured in the Idaho 

Microfabrication Laboratory at Boise State University using technology available from 

the U.S. patent and trademark office, referred to as a resistance variable memory device, 

or programmable conductor [24] [25]. All processing steps were performed at Boise State 

University in the Idaho Microfabrication Laboratory. The photomasks used in this work 

were fabricated by HTA Photomask [1605 Remuda Lane, San Jose, CA 95112]. The 

device structure is shown in Figure 9 and Figure 10 shows a top-down view of an actual 

device. This structure contains an easily oxidized Ag metal layer, an amorphous 

chalcogenide layer of Ge2Se3, and W top and bottom electrodes. 

 
Figure 9. The ion-conducting resistive memory device stack featuring tungsten 
top and bottom electrodes, an active metal layer of Ag, and an active Ge2Se3 
chalcogenide glass layer between the conductor layer and the bottom electrode [24] 
[25]. 
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Figure 10. Top-down view of a fabricated 4 µm device with a top electrode (a), 
device via (b), and a bottom electrode (c). 

Ion-conducting devices were fabricated with a via structure and top and bottom 

electrodes as shown in Figure 9, each of which extends to a metal pad for wirebonding or 

electrical probing access as shown in Figure 10. The structure consists of, in thin film 

layer order from bottom to top electrode, 600 Å W/300 Å Ge2Se3/800 Å SnSe/150 Å 

Ge2Se3/500 Å Ag/100 Å Ge2Se3/380 Å W. The active switching layer is the 300 Å 

Ge2Se3 layer adjacent to the bottom electrode. 

The devices were fabricated on 100 mm p-type Si wafers. Isolated W bottom 

electrodes were patterned on the wafers and a nitride layer was used for device isolation. 

Vias were etched through the nitride layer to provide contact to the bottom electrode and 

to define the device active region. This via defines the device size and ranges from 1 µm 

to 30 µm. No difference in the electrical response was observed between the differing 

device sizes, therefore the 4 and 5 µm devices were used throughout the work presented 

here. The wafers were sputtered with Ar+ to clean the W electrode followed by in-situ 

deposition of all devices stack layers using an AJA International ATC Orion 5 UHV 

Magnetron. The Ge2Se3 and SnSe targets were from Process Materials [5625 Brisa Street, 

Livermore, CA 94550]. Etching was performed with a Veeco ME1001 ion-mill by 

etching through the W and the memristor device materials and stopping on nitride. The 

top and bottom electrode bond pad contacts were 80 µm x 80 µm. 
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3.2 Device Programming Characteristics 

The devices in this work typically have an initial resistance of more than 1 GΩ 

immediately after fabrication and can be programmed to less than 100 Ω. The ion-

conducting memristors in this work decrease resistance when programmed by applying a 

positive voltage to the top electrode above their threshold voltage. Conversely, these 

devices dramatically increase their resistance when a negative potential exceeding the 

erase threshold voltage magnitude is applied to the top electrode. Figure 11 shows that 

the positive threshold is approximately 250 mV for DC “Write” operations and 

approximately -175 mV for DC “Erase” operations. Under AC pulsing conditions, 

however, the voltage required to affect the device increases as the width of the applied 

pulse decreases [4], but the polarity remains the same. 

 
Figure 11. An example of a pinched I-V hysteresis loop for an ion-conducting 
chalcogenide memristor used in this work. Starting with a sweep to 0.5 V (1) 
showing a very high initial resistance and a large increase in conductivity at 
approximately 250 mV followed by (2), a reverse sweep showing the lower resistance 
state. The low resistance state is maintained during (3), a sweep to -1 V until (4) 
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where the device decreases in conductivity. The high resistance state is retained 
during the reverse sweep shown by (5). 

3.3 Electrical Characterization 

All probing was performed with a MicroManipulator 6200 microprobe station 

resting on a Technical Manufacturing Corporation MICRO-g air table for vibration 

reduction. Electrical measurements were performed with an Agilent B1500 

Semiconductor Parameter Analyzer equipped with two B1511A medium-power 

Semiconductor Measurement Units (SMU) for DC measurements and a two channel 

B1530A Waveform Generator/Fast Measurement Unit (WGFMU) with two B1531A 

Remote-sense and Switch Units (RSU) for AC (alternating current) pulsing 

measurements.  

The two-channel WGFMU is a self-contained module with each channel able to 

generate arbitrary linear waveforms with a 10 ns minimum time step. Each channel can 

also simultaneously measure current or voltage with a variety of options for measurement 

range and speed, and the channels share a common ground. The ability to simultaneously 

apply a test voltage while measuring voltage and current makes it a good tool for rapidly 

observing changes in device under test (DUT) resistance. Each channel of the WGFMU 

is connected to an RSU located near the probes to improve timing and sourcing. 

Additionally, each RSU features a switch that allows a direct connection from the SMUs 

to the DUT to facilitate high precision DC measurements without the need to lift the 

probes, which could disturb the device state. Figure 12 shows a block diagram of the 

electrical connections for this test setup [26].  
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The measurement equipment was controlled over GPIB with a Visual C++ 

console program that was developed for these experiments to provide a platform for rapid 

device testing and data acquisition. This code is provided in Appendix A.  

(a)

 

(b)  

Figure 12. (a) Block diagram showing the electrical connections for circuit test 
set up. Each RSU (CH1, CH2) features a buffer that is connected to an oscilloscope 
for monitoring the voltage at the top and bottom electrodes. Each channel of the 
WGFMU can monitor the current through or the voltage applied to the device. (b) 
Block diagram and picture showing the RSU’s switch configuration between 
WGFMU (B1530A) and SMU [26]. 

  

Postsyn
 

Presyna
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3.3.1 Calculating Weight Change 

To remain consistent with neuromorphic literature, device state is reported most 

often as  ∆G or  ξ, where ∆ represents “change in,” G represents conductance (Ω-1), and ξ 

is the synaptic weight update function in %. A device is said to increase its weight if its 

conductance increased, and decrease its weight if its conductance is decreased. The 

learning function is empirically calculated as:  

𝜉(Δ𝑇) = (𝐺𝑝𝑜𝑠𝑡−𝐺𝑝𝑟𝑒)
𝐺𝑚𝑎𝑥

× 100 % .      (3) 

Gpre is the conductance before an STDP pulse is sent, Gpost is the conductance 

after the STDP pulse is sent, and Gmax is the maximum conductance value of the device 

during each ∆T test. Dividing by the maximum conductance normalizes the range of ξ to 

be within ±100 %. 

3.3.2 Minimum Timing Considerations 

When creating the pulse shapes for the AC pulsing and Sub-Microsecond ΔT 

experiments, consideration had to be made for the recommended minimum pulse width 

of a waveform sourced by the WGFMU, which is 145 ns [26]. The shape that was created 

for the fast tests (Sub-Microsecond ΔT) has subsequently been stretched for the Extended 

∆T STDP experiment; its rise and fall times have been adjusted so that the overall pulse 

shape remains the same for each ∆T sequence.  

3.3.3 Resistance Measurements 

While the WGFMU is a very good tool for programming and rapidly observing 

changes in device state, its ability to accurately measure resistance is limited by the 

resolution of the ammeter. Additionally, when the DUT rapidly changes its resistance, the 

impedance matching provided by the WGFMU and RSU is invalid until the tool can 



23 
 

 
 

“catch up.” This can cause ringing when the device significantly changes its resistance 

(see Figure 13(d)), which further reduces measurement accuracy [26]. 

The two SMUs are much more accurate for measuring resistance than the 

WGFMU, but they are also much slower. Thus, every AC programming pulse is preceded 

and succeeded by a DC “Read” sweep from 0 to 20 mV sub threshold sweep sourced by 

the SMUs for accurate resistance measurements.  

3.3.4 Two-sided vs. One-sided Measurements 

A two-neuron, single-synapse neuromorphic circuit contains the memristor 

between the two neurons. The programming voltages sourced by the neurons must be 

bipolar, and each neuron is responsible for referencing its output voltage from a common 

ground and the output of the other neuron. This implies a requirement for each neuron to 

be a fully bipolar programming circuit, which significantly increases the footprint of the 

overall neuromorphic circuit.  

With this in mind, the AC characterization has been performed in two ways. The 

two-sided measurement directly mimics the original neuromorphic circuit by using both 

WGFMU channels as pulse sources. The one-sided measurement, however, involves a 

pre-programming calculation of the resultant waveform, which is then sourced from 

Channel 1 (top electrode) exclusively, while the bottom electrode of the device is 

connected through Channel 2, which is set to force 0 V. The resultant waveform is the 

simple subtraction of the separate waveforms, as shown by VMR in Chapter 2. This one-

sided pulsing is intended to show that these devices do not require two fully differential 

neurons for neuromorphic applications, which should dramatically simplify the required 

circuitry. 
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3.3.5 Device Conditioning 

Given that the formation and destruction characteristics of conductive filaments 

are dependent on the device’s initial conditioning [27], every device probed for this work 

has been programmed with a set of AC conditioning pulses or gentle DC sweeps to 

initialize its state. Under DC bias conditions, as shown in Figure 11, 300 mV can be large 

enough to affect the state of the device. Under AC pulsing conditions, however, the 

voltage required to affect the device increases as the width of the applied pulse decreases 

[4]. 

For some of the experiments in this work, conditioning was performed using the 

AC Conditioning waveform sourced by the WGFMU and repeated 10 times immediately 

after breaking through the photo resist on each device. These tests ensure that if the 

results of this work are carried forward into actual circuit design, extra circuitry, such as a 

current-limiting SMU, will not be required to initialize the devices. One caveat with the 

AC Conditioning is that it is quite harsh; it can send as much as 10 mA of current through 

the device, which places the device into a very low resistance state. While this device 

state works for the STDP experiments performed in this thesis, it is not the normal 

operating region for these devices. For the Extended ∆T STDP experiment, however, the 

device was programmed with a gentler DC conditioning sweep from 0 to 1 V with a 

10 µA compliance current. No additional AC conditioning was used. 

The AC conditioning waveform shown in Figure 13 features a low-amplitude,  

200 mV 600 ns full-width-half-max (FWHM) read pulse before and after the two 

programming pulses, which are a -3.5 V 300 ns FWHM Erase pulse and a +2 V, 150 ns 
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FWHM Write pulse. Voltage data is measured on Channel 1 of the WGFMU, and current 

data is measured on Channel 2 (hence the negative current for positive bias).  

 
Figure 13. The AC conditioning pulse for the devices in this work and the typical 
device response. Voltage is measured from Channel 1 (V1, solid red line) and 
current is measured from Channel 2 (I2, dashed blue line). Shown at (a) is the first 
200 mV 600 ns read, (b) is the -3.5 V 300 ns FWHM erase pulse, (c) is the erase-
verification read, (d) is the 2 V 150 ns FWHM write pulse, and (e) is the write-
verification read.   

The large current in Fig. 13(a) shows that the device is already programmed to a 

relatively low resistance from a previous conditioning pulse because the current response 

is in the milliamp range for an applied voltage of 0.2 V. Fig. 13(b) shows the clipped 

current response of the much larger amplitude erase pulse. This pulse greatly increases 

the resistance of the device, which results in a very low current response to the second 

read at Fig. 13(c). Fig. 13(d) shows the ringing response of the ammeter when the device 

switches from the high resistance shown in Fig. 13(c) to the low resistance shown by Fig. 

13(e). The typical resistance of a device after this type of conditioning is less than 500 Ω. 
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Again, it should be reiterated that this harsh conditioning is not how the devices typically 

operate, but is a way that we chose to use them for this study. 

3.4 Motivation 

The over-arching goal of this work is the characterization of these memristive 

devices in a test environment that mimics the theoretical neuromorphic circuit outlined in 

Chapter 2. Particular emphasis is placed on sub-microsecond pulse widths to demonstrate 

rapid adjustments of device conductance. Optimization of these pulsing parameters 

allows us to demonstrate that these devices are capable of state modification at speeds 

much faster than their biological counterparts.  
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CHAPTER FOUR: EXPERIMENTAL RESULTS AND DISCUSSION 

This chapter includes the details of how and why each of the four experiments 

described in Chapter 3 were performed as well as a discussion of their results. 

4.1 AC Pulsing 

The AC pulsing experiment is a set of tests designed to verify that the pulsing 

parameters and timing requirements for the Sub-Microsecond STDP experiment are 

compatible with these memristors for both one- and two-sided tests.  

4.1.1 Experimental Setup 

A series of one- and two-sided pulses were applied using the same timing 

parameters (50 ns rise/fall time) as the waveform shown in Figure 13, but with write and 

erase pulse amplitudes of ± 1.8 V as shown in Figures 14 and 15. In the two-sided pulses, 

negative resultant voltages were created by applying a positive bias to the bottom 

electrode of the device and positive resultant voltages were created by applying a positive 

bias to the top electrode of the device. One-sided pulses used both positive and negative 

biases applied to the top electrode with 0 V applied to the bottom electrode. The state 

verification pulse (Fig. 14(a) and (c)) is used as an indicator of device state change, but is 

not as accurate as the measurement provided by the SMU, thus the device has its 

conductance measured using DC sweeps from 0 to 20 mV before and after each pulse, 

and the change in conductance is used to calculate the weight update function ξ.   
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Figure 14. AC Erase pulse and typical device response with Voltage as the solid 
red line and Current as the dotted blue line. (a) An initial low-resistance indicated 
by a large current. (b) The -1.8 V 300 ns FWHM erase operation. (c) The device has 
been programmed to a higher resistance as indicated by the decreased current. 

 
Figure 15. AC Write pulse and typical device response with Voltage as the solid 
red line and Current as the dotted blue line. (a) An initial high-resistance indicated 
by a very low current. (b) The 1.8 V 150 ns FWHM write operation. (c) The device 
has been programmed to a lower resistance as indicated by the increased current. 
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The full test sequence performed on each device for this experiment is as follows: 

1. AC Conditioning Pulse Repeated 10 times 

2. One-Sided AC Erase Pulse 

3. One-Sided AC Write Pulse 

4. AC Conditioning Pulse Repeated 10 times 

5. Two-Sided AC Erase Pulse 

6. Two-Sided AC Write Pulse 

4.1.2 Results 

The AC Pulsing Experiment was performed on a set of three 5 µm devices 

immediately after conditioning. The results in Figure 16 show that the one- and two-sided 

AC pulsing program in a similar fashion. The one-sided pulses appear to have a smaller 

standard deviation, but the average weight update function for each operation is within a 

single standard deviation for both one- and two-sided pulses.  

 
Figure 16. Results from the AC Pulsing test. Marker indicates the average, error 
bars are ± 0.5 standard deviations for three 5 µm devices. Results from the AC erase 
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pulses (– 1.8 V) are indicated by a blue dash and the results from the AC write 
pulses (+ 1.8 V) are indicated by a red “X”.  

4.1.3 Discussion 

These results show that a ±1.8 V, 150 ns FWHM pulse is able to significantly 

affect the conductance of these memristive devices in both directions (increasing and 

decreasing). It also confirms that both one- and two-sided measurements affect the device 

state in a similar manner.  

4.2 Sub-Microsecond STDP 

As discussed in Chapter 2, the potentiation provided by STDP is effective when 

the amplitude of the resultant is greater than the programming threshold of the device. 

This occurs when the normally sub-threshold pulses “fire together,” effectively 

amplifying their individual magnitudes by combining to form a larger magnitude 

waveform. As the first experiment performed demonstrating STDP programming 

functionality, this experiment seeks to demonstrate rapid adjustments to device 

conductance under STDP pulse conditions.  

4.2.1 Experimental Setup 

The STDP pulse shape was chosen to be a symmetric synaptic pulse with a ± 1 V 

amplitude as shown in Figure 17. Table 1 shows the timing convention used for ∆T and 

includes the expected response of a memristive device and is repeated below. ∆T is the 

difference in time from when the postsynaptic neuron fires to when the presynaptic 

neuron fires. For ∆T = 0, the resultant waveform is 0 V at all points and thus the device 

should remain unaffected.  
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Table 1. Polarity of ∆T for applied STDP pulse and expected device response. 

∆T First Neuron 
to Fire 

Weight 
Update (ξ) 

Conductance (G) VMR Equivalent 
AC 
Operation 

∆T > 0 Postsynaptic Positive Increase Mostly 
Positive 

Write 

∆T < 0 Presynaptic Negative Decrease Mostly 
Negative 

Erase 

 

The maximum amplitude of the resultant is ± 2 V with a ∆T of ± 50 ns, 

respectively. The STDP pulse shape is non-zero for 550 ns, so the VMR when ∆T is 

greater than ± 550 ns does not reflect interaction between Vpre and Vpost. For this reason, 

the maximum ∆T tested is ± 600 ns. Figure 18 shows the resultant VMR for a few ∆T 

values. Note that the VMR is equal in magnitude but opposite in polarity for each pair of 

positive and negative ∆T values.  

 
Figure 17. The STDP Pulse shape used for this experiment. The rise time from 0 
to +1 V is 250 ns, the transition from +1 to -1 V is 50 ns (the minimum ∆T), and the 
rise time from -1 to 0 V is 250 ns. 
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Figure 18. The resultant VMR for various ∆T values. Vpre (top electrode) is shown 
in dashed red, Vpost (bottom electrode) in solid blue, and VMR is the thick purple 
trace. 

The STDP test sequence begins with a ∆T = 0 ns (where VMR is zero), and 

increases the ∆T by increments of ± 50 ns, i.e. ∆T = 0, -50 ns, 50 ns, -100 ns, 100 ns… up 

to ± 600 ns.  This is referred to as the “∆T sequence” or the “STDP test sequence” 

interchangeably.  

One-Sided STDP is performed with the same sequence of ∆Ts, but instead forces 

the calculated resultant VMR for each ∆T at the top electrode of the device. The device has 

its conductance measured using DC sweeps before and after each pulse, and the change 

in conductance is used to calculate the weight update function ξ. 
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The full test sequence performed for this experiment is as follows: 

1. AC Conditioning Pulse with an erase voltage of -4 V and a write voltage of 2 

V, repeated 10 times. 

2. Two-sided or one-sided ∆T sequence (three devices per sequence). 

4.2.2 Results 

Performed on two sets of three 5 µm devices after AC conditioning, which placed 

the device in a low resistance state (as verified by a pre-STDP pulse DC Read sweep), the 

results in Figures 19 and 20 confirm the expected result: STDP can be performed in both 

one- and two-sided circuit topologies. The results are fairly similar for both experiments, 

with the two-sided STDP experiment showing slightly tighter standard deviations than 

the one-sided experiment. 

 
Figure 19. Results from the two-sided STDP experiment. Marker indicates the 
average, error bars are ± 0.5 standard deviations over 3 devices.  
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Figure 20. Results from the one-sided STDP experiment. Marker indicates the 
average, error bars are ± 0.5 standard deviations over three devices.  

4.2.3 Discussion 

For ∆T = 0, the resultant VMR is 0 at all times because the pre- and post-synaptic 

pulses perfectly overlap one another and cancel each other out. As expected, there is no 

observed change in device conductance when the voltage across the device remains 

unchanged.  

The learning function peaks near ∆T = ± 150 ns for both tests, with an average 

magnitude of ± 80 %. As shown in Figure 18, when ∆T = 150 ns, the resultant VMR 

contains a 1.6 V, 160 ns FWHM pulse. As the opposing polarities in the post- and pre-

synaptic pulses Vpost and Vpre align, the resultant VMR is effectively magnified. 

For |∆T| > ± 150 ns, the learning function falls off until it finally terminates at 

around ± 400 ns. This is due to the lack of the “magnification” of the resultant STDP 

pulse when the pulses are spread far enough apart so that they do not interact with one 

another; for ∆Ts ≥ ± 300 ns, the resultant |VMR| is smaller than 1 V. As the separation 
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between pulses grows, the resultant VMR begins to look like two individual pulses 

because Vpre and Vpost no longer overlap.  

Given the results showing very little change in weight when the resultant VMR is 

less than 1 V, it would seem that the estimated threshold of ± 1 V shown in Figure 7 is 

useful in estimating the effectiveness of an STDP pulse on these devices. Interestingly, 

the device conductance is affected when the resultant VMR remains at ± 1 V for a greater 

amount of time than a single pulse would allow.  

This verifies the key STDP principle that says learning should occur when pre- 

and post-synaptic pulses strongly interact, and device state should remain unchanged 

when they do not interact. 

4.3 Trailing Edge Cancellation 

The Trailing Edge Cancellation experiment seeks to show an increase in weight 

adjustment by modifying the shape of the resultant VMR. As is shown in Figure 18, VMR 

is comprised of a large-magnitude spike in between two small-magnitude spikes of the 

opposite polarity. This large spike is the workhorse of the STDP pulse; the device 

conductance should decrease for a VMR whose large spike is negative and vice versa. 

Based upon the data from the STDP experiment, when the large and small magnitude 

spikes are of a similar magnitude, the device’s conductance is not greatly affected.  

4.3.1 Experimental Setup 

By decreasing the amplitude of the final small spike (also called the trailing edge), 

we aim to show that the adjustment of the device’s conductance will be greater as the 

trailing edge’s amplitude approaches 0 V. Figure 21 shows the resultant VMR for a ∆T = 

250 ns and the four modified shapes. As before, a ∆T = -250 ns has the same shape but 
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opposite polarity. ∆T = ±250 ns was chosen because it had a small effect on device state 

as shown in Figure 20, and we wish to show an increase in pulse efficacy with 

modification to the resultant VMR. 

 
Figure 21. The Trailing Edge Cancellation starting with the standard VMR for 
∆T = 250 ns (black, dotted). The magnitude of the trailing edge cancellation is 25 
(red), 50 (blue), 75 (green), and 100 % (orange). 

After conditioning, the device is exposed to the one-sided resultant for  

∆T = -250 ns and ∆T = 250 ns with a full-sized trailing edge (no cancellation). This is 

followed by the same ∆T = ± 250 ns resultants with their trailing edge cancellation 

factors of 25, 50, 75, and 100 %. This can be visualized as a gradual decrease of trailing 

edge magnitude as shown in Figure 21. The device has its conductance measured using 

DC sweeps before and after each pulse, and the change in conductance is used to 

calculate the weight update function ξ. 
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4.3.2 Results 

Performed on a set of two 5 µm devices for all tests immediately after AC 

conditioning, the results of the Trailing Edge Cancellation experiment shown in Figure 

22 indicate a very strong correlation between the magnitude of the trailing edge 

cancellation and the impact of the resultant VMR on the weight function. This leads us to 

the conclusion that for the case where the trailing edge is similar in magnitude to the 

main pulse, which occurs when the pre- and post-synaptic pulses are not heavily 

interacting, the last voltage applied to the device has the largest impact on its 

conductance. 

 
Figure 22. Results from the Trailing Edge Cancellation experiment. Red dash 
markers represent the ∆T = + 250 ns, blue “X” markers represent ∆T = - 250 ns. 
Markers indicate the average, error bars are ± 0.5 standard deviations over two 
devices.  
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4.3.3 Discussion 

The 0 % cancellation has almost no effect on the device’s state, similar to the  

∆T = ± 250 ns tests in Figure 20, while 100 % cancellation brought the learning function 

up to 80 % for ∆T = + 250 ns and -70 % for ∆T = - 250 ns. This indicates that the 

magnitude of the trailing edge, which is opposite in polarity to the “intended” operation, 

heavily impacts the effectiveness of STDP pulse when the main pulse and the trailing 

edge are of similar magnitude. 

4.4 Extended ∆T STDP 

After the Sub-Microsecond STDP experiment was performed, a second STDP 

experiment was performed that sought to show that these memristors are able to 

demonstrate learning over a wide range of timing windows, including those found in 

biological synapses. The results from this Extended ∆T STDP experiment are discussed 

below. 

4.4.1 Experimental Setup 

In the Extended ∆T experiment, the STDP pulse features the same symmetric 

shape shown in Figure 17, but its pulse width and amplitude parameters have been 

adjusted for programming at four different timing windows covering six orders of 

magnitude. Table 2 contains the pulse parameters for each ∆Tmin tested. 

Table 2. Extended ∆T Pulse Amplitudes and Timing Parameters. 

∆Tmin |Vpeak| Max |VMR| 
50 ms 0.2 V 0.4 V 
500 µs 0.35 V 0.7 V 
5 µs 0.7 V 1.4 V 
50 ns 0.9 V 1.8 V 
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The ∆T sequence starts at ∆T = 0 and increases in multiples of the minimum ∆T 

up to ± 19*(∆T). For example, with a minimum ∆T = 50 ms, the range of ∆Ts tested is 

from -950 to +950 ms in increments of ± 50 ms. This provides discretization of test 

points at each minimum ∆T for easy comparison of learning functions at 20 different 

points. The device has its conductance measured using DC sweeps before and after each 

pulse, and the change in conductance is used to calculate the weight update function ξ. 

The full test sequence performed on each device for this experiment is as follows: 

1. DC Conditioning Sweep 1 from 0 – 1 V, 10 µA compliance 

2. ∆T sequence 1: Minimum ∆T = 50 ms, Repeated 10 times 

3. DC Conditioning Sweep 2 from 0 – 1 V, 10 µA compliance 

4. ∆T sequence 2: Minimum ∆T = 500 µs, Repeated 10 times 

5. DC Conditioning Sweep 3 from 0 – 1 V, 10 µA compliance 

6. ∆T sequence 3: Minimum ∆T = 5 µs, Repeated 10 times 

7. DC Conditioning Sweep 4 from 0 – 1 V, 10 µA compliance 

8. ∆T sequence 4: Minimum ∆T = 50 ns, Repeated 10 times 

Each repetition of the ∆T sequence uses a maximum conductance from within that 

sequence’s repetition for normalization of weight changes. 

4.4.2 Results 

Performed on a set of four 4 µm devices with the DC conditioning sweeps in 

between each ∆T sequence, the results in Figure 23 show very similar learning functions 

between each ∆T range tested. This test was performed as a double-sided STDP 

experiment only.  
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As expected, each learning function tends to peak at ∆T = ± 2 to 3 * ∆Tmin, and 

settle to a baseline by ∆T = ± 7 * ∆Tmin. This fall off is due to the lack of interaction 

between the VPre and Vpost pulses, which decreases the magnitude of the resultant STDP 

pulse when the pulses are spread far enough apart. 

 
Figure 23. Results from the Extended ∆T STDP experiment for a ∆Tmin of (a) 50 
ms, (b) 500 µs, (c) 5 µs, and (d) 50 ns. Markers indicate the average of 40 pulses (10 
per device), error bars are ± 0.5 standard deviations over four devices.  

4.4.3 Discussion 

In Fig. 23 (a), the ∆Tmin is 50 ms. The devices show a near-symmetrical STDP 

learning function that is only active when the STDP pulses are within ± 300 ms of one 

another; or ± 6 * ∆Tmin.  

In Fig. 23 (b), however, we can see that the pulses applied slightly affect the 

device beyond the first six ∆T steps. This effect is magnified in Fig. 23 (c) and (d). The 
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data shows a phenomena best described by an inversion of the learning function for ∆T 

values greater than ± 6 * ∆Tmin. This inversion seems to plateau rather than increasing as 

a function of ∆T. Given that the trailing edge of a resultant waveform remains unchanged 

when the pre- and post-synaptic pulses no longer interact, and given the results from the 

Trailing Edge Cancellation experiment, which indicate a strong relationship between the 

magnitude of the trailing edge and the effectiveness of an STDP pulse, this leads us to the 

conclusion that the offset is related to the trailing edge of the resultant STDP pulse.  

The trailing edge is opposite in polarity to the expected operation, and the fact 

that individual pulse amplitude is increased as the ∆Tmin decreases indicates that the 

trailing edges created by individual pulses applied to the device are more likely to affect 

its state. This shows up in the increased deviation of weight updates for Fig. 23 (c) and 

(d) when |∆T| >= 5 * ∆Tmin because of the increased effectiveness of this trailing edge. 

4.5 Summary of Results 

The results presented in this chapter show that STDP can be implemented in the 

ion-conducting chalcogenide memristors fabricated by Dr. Campbell’s research group. 

Distinctively, these experiments showed efficacy in both one- and two-sided pulsing 

topologies at speeds much faster than those found in biology. The addition of one-sided 

STDP presents a promising avenue for shrinking the circuit complexity and power 

requirements of a neuromorphic circuit by halving the required programming circuitry.  

The extreme rapidity of synaptic weight change presented in this work showed 

that pulse conditions can be orders of magnitude faster than any publication to date. 

Biological synaptic updates are typically of the 1 – 100 millisecond time scale, but this 

work proves that incremental memristive synaptic weight updates can occur from the 50 
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nanosecond to the 50 millisecond time scales in the ion-conducting chalcogenide 

memristors fabricated by Dr. Campbell’s research group at Boise State. 
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CHAPTER FIVE: CONCLUSION 

This thesis is the culmination of research and experimentation to understand and 

implement STDP learning algorithms in physical memristors. This conclusion 

summarizes the accomplishments of this thesis and ends with some recommended next-

steps for further characterization. 

5.1 Conclusion and Next Steps 

The main goal of this thesis was to explore the switching behavior of Boise 

State’s chalcogenide-based resistive memory fabricated by Dr. Campbell’s research 

group in a test environment that mimics neuromorphic circuitry. The experiments 

performed for this thesis show that memristive STDP is possible using real devices in a 

lab environment. 

The best next-step would be to deposit and package these devices directly into an 

integrated circuit with CMOS neurons. This would pull these devices out of the lab and 

allow exciting combinations of multiple neurons and synapses for use in neuromorphic 

computing architectures.  

More characterization work is required to fill in the gaps of our understanding, but 

this work establishes an exciting precedent by demonstrating STDP in physical 

memristors from nanosecond to millisecond time scales. 
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APPENDIX 

STDP Testing Program 

// KDPulser.cpp 
// Developed in Visual Studio 2013 
// Used to perform all testing included in Kolton Drake's Master Thesis 
// @Author Kolton Drake 
// WGFMU Libraries from Agilent 
#include "stdafx.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include "wgfmu.h" 
#include <visa.h> 
#include <cmath> 
#include <sstream> 
#include <string> 
#include <iostream> 
#include <iomanip> // std::setprecision 
#include <fstream> 
#include <vector> 
#include <Windows.h> 
#include <algorithm> 
#include <functional> 
#include <random> 
#include <chrono> 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <vector> 
 
using namespace std; 
 
struct Waveform 
{ 
   vector<double> waveData; 
   vector<double> rawData; 
   double freq; 
   double amp; 
   double offset; 
   int length; 
}; 
 
 
//   Functions in this module: 
void csvline_populate(vector<string> &record, const string& line, char 

delimiter); 
int csvparse(string operation, double amplitude, int dt); 
int csvparse1(string cmd, double wAmp, double eAmp); 
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int csvparse2(string cmd, double wAmp, double eAmp); 
int csvparse3(string cmd, double wAmp, double eAmp); 
int csvparseRead(string cmd, double wAmp, double eAmp); 
double dcSweep(double amplitude, double compliance, int pts, string 

testName); 
double dcSweep2(double amplitude, double compliance, int pts, string 

testName); 
double dcSweep3(double amplitude, double compliance, int pts, string 

testName); 
double dcSweep4(double amplitude, double compliance, int pts, string 

testName); 
void wgfmu_arb(); 
void pulse(string fname, string ampl, string endtime, string timeStepStr, 

string currentRange, string repeatCount); 
void pulse1(string fname, string wAmp, string eAmp, string endtime, string 

timeStepStr, string currentRange, string repeatCount); 
void pulse2(string fname, string wAmp, string eAmp, string endtime, string 

timeStepStr, string currentRange, string repeatCount); 
void pulse3(string fname, string wAmp, string eAmp, string endtime, string 

timeStepStr, string currentRange, string repeatCount); 
void pulse4(string fname, string wAmp, string eAmp, string endtime, string 

timeStepStr, string currentRange, string repeatCount); 
void pulseNoSave(string fname, string wAmp, string eAmp, string endtime, 

string timeStepStr, string currentRange, string repeatCount); 
void resultant(string fname, string wAmp, string eAmp); 
void writeResults2ChannelP(int channelId1, int channelId2, const char* 

fileName, string pulseParams); 
void dSee(string ampl, string comp, string points); 
void res(string timeStepStr); 
 
// Global variables and constants 
 
const int CH1 = 101; 
const int CH2 = 102; 
string rootF = "C:/Users/koltondrake/Documents/STDP/STDP_data/Jan2015/"; 

//root file location 
 
string testID; 
string dieNum; 
string devNum="Dev16"; 
string temperature = "777"; 
string cwAmp; 
string ceAmp; 
ViSession defaultRM, vi; 
Waveform testWave,testWave2,testWave3,testWave4; 
vector<double> curWaveDT; 
vector<double> curWaveV; 
int k, m; 
int fnum = 0, dcnum = 0; 
double curAmp=0; 
 
 
// Checks the error being returned from the WGFMU 
 
void checkError(int ret) // 7 
{ 
   if (ret < WGFMU_NO_ERROR) { 
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     throw ret; 
   } 
} 
 
// Checks the error being returned from the WGFMU 
 
int checkError2(int ret) //14 
{ 
   if (ret < WGFMU_NO_ERROR) { 
     int size; 
     WGFMU_getErrorSize(&size); 
     char* msg = new char[size + 1]; 
     WGFMU_getError(msg, &size); 
     fprintf(stderr, "%s", msg); 
     delete[] msg; 
   } return ret; 
} 
 
static const int VISA_ERROR_OFFSET = WGFMU_ERROR_CODE_MIN - 1; 
 
 
void checkError3(int ret) //29 
{ 
   if (ret < WGFMU_NO_ERROR && ret >= WGFMU_ERROR_CODE_MIN || ret < 

VISA_ERROR_OFFSET) 
   { 
     throw ret; 
   } 
} 
 
// Saves the file from the WGFMU 
 
void writeResults(int channelId, const char* fileName) //36 
{ 
   FILE* fp = fopen(fileName, "w"); 
   if (fp != 0) 
   { 
     int measuredSize, totalSize; WGFMU_getMeasureValueSize(channelId, 

&measuredSize, &totalSize); 
     for (int i = 0; i < measuredSize; i++) 
     { 
       double time, value; 
       WGFMU_getMeasureValue(channelId, i, &time, &value); 
       fprintf(fp, "%.9lf, %.9lf\n", time, value); 
     } fclose(fp); 
   } 
} 
 
// Saves the file from the WGFMU with a row offset 
void writeResults2(int channelId, int offset, int size, const char* fileName) 

//51 
{ 
   FILE* fp = fopen(fileName, "w"); 
   if (fp != 0) { 
     int measuredSize, totalSize; 
     WGFMU_getMeasureValueSize(channelId, &measuredSize, &totalSize); 
     for (int i = offset; i < offset + size; i++) { 
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       double time, value; 
       WGFMU_getMeasureValue(channelId, i, &time, &value); 
       fprintf(fp, "%.9lf, %.9lf\n", time, value); 
     } 
     fclose(fp); 
   } 
} 
 
// Saves the file from the WGFMU with a row offset for each channel 
 
void writeResults3(int channelId1, int channelId2, int offset, int size, 

const 
   char* fileName) //66 
{ 
   FILE* fp = fopen(fileName, "w"); 
   if (fp != 0) { 
     int measuredSize, totalSize; 
     WGFMU_getMeasureValueSize(channelId2, &measuredSize, &totalSize); 
     for (int i = offset; i < offset + size; i++) { 
       double time, value, voltage; 
       WGFMU_getMeasureValue(channelId2, i, &time, &value); 
       WGFMU_getInterpolatedForceValue(channelId1, time, &voltage); 
       fprintf(fp, "%.9lf, %.9lf\n", voltage, value); 
     } 
     fclose(fp); 
   } 
} 
 
// Saves the results from the WGFMU with a row offset for each channel // and 

the measurement information is placed in the header. 
 
void writeResults2Channel(int channelId1, int channelId2, const char* 

fileName) 
{ 
   FILE* fp = fopen(fileName, "w"); 
   if (fp != 0) 
   { 
     fprintf(fp, "Chan 1 Mode:,FastIV,Chan 2 Mode:,FastIV\n"); 
     fprintf(fp, "Chan 1 Meas Mode:,IMeas,Chan 2 Meas Mode:,IMeas\n"); 
     fprintf(fp, "Chan 1 IMeas Range:,1 mA,Chan 2 IMeas Range:,1 mA\n"); 
     fprintf(fp, "time, V1, I2\n"); 
     int measuredSize, totalSize; 
     WGFMU_getMeasureValueSize(channelId1, &measuredSize, &totalSize); 
     for (int i = 0; i < measuredSize; i++) 
     { 
       double time1, value1, time2, value2; 
       WGFMU_getMeasureValue(channelId1, i, &time1, &value1); 
       WGFMU_getMeasureValue(channelId2, i, &time2, &value2); 
       fprintf(fp, "%.9lf, %.9lf, %.9lf\n", time1, value1, value2); 
 
     } fclose(fp); 
   } 
} 
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// Saves the results from the WGFMU with a row offset for each channel // and 
the measurement information is placed in the header, as well as // the 
actual pulse conditions used (how to call the STDP test) 

 
void writeResults2ChannelP(int channelId1, int channelId2, const char* 

fileName, string pulseParams) 
{ 
   FILE* fp = fopen(fileName, "w"); 
   if (fp != 0) 
   { 
     fprintf(fp, "Chan 1 Mode:,FastIV,Chan 2 Mode:,FastIV\n"); 
     fprintf(fp, "Chan 1 Meas Mode:,VMeas,Chan 2 Meas Mode:,IMeas\n"); 
     fprintf(fp, pulseParams.c_str()); 
     fprintf(fp, "\n"); 
     fprintf(fp, "time, V1, I2\n"); 
     int measuredSize, totalSize; 
     WGFMU_getMeasureValueSize(channelId1, &measuredSize, &totalSize); 
     for (int i = 0; i < measuredSize; i++) 
     { 
       double time1, value1, time2, value2; 
       WGFMU_getMeasureValue(channelId1, i, &time1, &value1); 
       WGFMU_getMeasureValue(channelId2, i, &time2, &value2); 
       fprintf(fp, "%.9lf, %.9lf, %.9lf\n", time1, value1, value2); 
 
     } fclose(fp); 
   } 
} 
 
// This is the main menu for the console application 
// Saves a log file to the root file location. 
 
 
void wgfmu_arb() 
{ 
 
   //set up log file 
   ostringstream os; 
   //os << rootF << dieNum << "_" << devNum << "_" <<  "log.csv"; //for the  
   //os << rootF << dieNum << "/" << devNum << "/"<< devNum<< "_" <<  

"log.csv"; //Original STDP Form. 
   os << rootF << dieNum << "/" << devNum << "_" << "log.csv"; //New Form 
   string f_name = os.str(); 
    
   FILE *fp = fopen(f_name.c_str(), "w"); 
   fprintf(fp, "LOG\n"); 
   fprintf(fp, devNum.c_str()); 
   fprintf(fp, "\n"); 
 
   ostringstream rName; 
   ostringstream rNum; 
 
   string cmd="y"; 
   cout << "w to send positive pulse\n"; 
   cout << "e to send negative pulse\n"; 
   cout << "r to DC Read device\n"; 
   cout << "c to DC condition device\n"; 
   cout << "n to exit\n"; 
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   cout << "p to pulse the device\n"; 
   cout << "s to pulse the device frome one side\n"; 
   cout << "d to pulse the device frome both sides\n"; 
   cout << "h to show this information again\n"; 
   //int i = 0; 
    
   while (cmd != "n") 
   { 
     cout << "KDPulser:>"; 
     cin >> cmd; 
     fprintf(fp, cmd.c_str()); 
     fprintf(fp, "\n"); 
     string fname, amplitude, endTime, timeStepStr, compStr, repeatCount, 

wAmp, eAmp,points; 
     if (cmd == "n")break; //exit 
     if (cmd == "h") 
     { 
       cout << "w to send positive pulse\n"; 
       cout << "e to send negative pulse\n"; 
       cout << "r to DC Read device\n"; 
       cout << "c to DC condition device\n"; 
       cout << "n to exit\n"; 
       cout << "p to pulse the device\n"; 
       cout << "h to show this information again\n"; 
     } 
     else if (cmd == "r") 
     { 
       cout << "Number of Points: "; 
       cin >> points; 
       fprintf(fp, points.c_str()); 
       fprintf(fp, "\n"); 
        
       res(points); 
     } 
     else if (cmd == "rPost") 
     { 
       rNum << setfill('0') << setw(3)<< fnum-1; 
       rName << "rPost" << rNum.str(); 
       //dcSweep4(0.02, 10E-3, 51, rName.str()); //dc sweep to read 
       fnum -= 1; 
       dcSweep4(0.02, 10E-3, 51, "rPost"); 
 
       rName.clear(); 
       rName.str(""); 
       rNum.clear(); 
       rNum.str(""); 
     } 
     else if (cmd == "rPre") 
     { 
       rNum << setfill('0') << setw(3) << fnum; 
       rName << "rPre_" << rNum.str(); 
 
       //dcSweep4(0.02, 10E-3, 51, rName.str()); //dc sweep to read 
       dcSweep4(0.02, 10E-3, 51, "rPre"); 
       fnum -= 1; 
       rName.clear(); 
       rName.str(""); 
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       rNum.clear(); 
       rNum.str(""); 
     } 
     else if (cmd == "c") //condition 
     { 
       condition(); 
     } 
     else if (cmd == "p") //pulse 
     { 
       cout << "Input File: "; 
       cin >> fname; 
 
       //fprintf(fp, "Input File: "); 
       fprintf(fp, fname.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Amplitude: "; 
       cin >> amplitude; 
        
       //fprintf(fp, "Amplitude: "); 
       fprintf(fp, amplitude.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "End time: "; 
       cin >> endTime; 
        
       //fprintf(fp, "End time: "); 
       fprintf(fp, endTime.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Time step: "; 
       cin >> timeStepStr; 
        
        
       //fprintf(fp, "Time step: "); 
       fprintf(fp, timeStepStr.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Compliance: "; 
       cin >> compStr; 
        
       //fprintf(fp, "Compliance: "); 
       fprintf(fp, compStr.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Repeats: "; 
       cin >> repeatCount; 
        
       //fprintf(fp, "Repeats: "); 
       fprintf(fp, repeatCount.c_str()); 
       fprintf(fp, "\n"); 
 
       pulse(fname, amplitude, endTime, timeStepStr,compStr,repeatCount); 
     } 
     else if (cmd == "d") //double side 
     { 
       cout << "Input File: "; 



54 
 

 
 

       cin >> fname; 
 
       //fprintf(fp, "Input File: "); 
       fprintf(fp, fname.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Write Amplitude: "; 
       cin >> wAmp; 
 
       //fprintf(fp, "Amplitude: "); 
       fprintf(fp, wAmp.c_str()); 
       fprintf(fp, "\n"); 
        
       cout << "Erase Amplitude: "; 
       cin >> eAmp; 
 
       //fprintf(fp, "Amplitude: "); 
       fprintf(fp, eAmp.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "End time: "; 
       cin >> endTime; 
 
       //fprintf(fp, "End time: "); 
       fprintf(fp, endTime.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Time step: "; 
       cin >> timeStepStr; 
 
 
       //fprintf(fp, "Time step: "); 
       fprintf(fp, timeStepStr.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Compliance: "; 
       cin >> compStr; 
 
       //fprintf(fp, "Compliance: "); 
       fprintf(fp, compStr.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Repeats: "; 
       cin >> repeatCount; 
 
       //fprintf(fp, "Repeats: "); 
       fprintf(fp, repeatCount.c_str()); 
       fprintf(fp, "\n"); 
 
       pulse2(fname, wAmp, eAmp, endTime, timeStepStr, compStr, repeatCount); 
     } 
     else if (cmd == "s") //single side 
     { 
       cout << "Input File: "; 
       cin >> fname; 
 
       //fprintf(fp, "Input File: "); 
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       fprintf(fp, fname.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Write Amplitude: "; 
       cin >> wAmp; 
 
       //fprintf(fp, "Amplitude: "); 
       fprintf(fp, wAmp.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Erase Amplitude: "; 
       cin >> eAmp; 
 
       //fprintf(fp, "Amplitude: "); 
       fprintf(fp, eAmp.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "End time: "; 
       cin >> endTime; 
 
       //fprintf(fp, "End time: "); 
       fprintf(fp, endTime.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Time step: "; 
       cin >> timeStepStr; 
 
 
       //fprintf(fp, "Time step: "); 
       fprintf(fp, timeStepStr.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Compliance: "; 
       cin >> compStr; 
 
       //fprintf(fp, "Compliance: "); 
       fprintf(fp, compStr.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Repeats: "; 
       cin >> repeatCount; 
 
       //fprintf(fp, "Repeats: "); 
       fprintf(fp, repeatCount.c_str()); 
       fprintf(fp, "\n"); 
 
       pulse1(fname, wAmp, eAmp, endTime, timeStepStr, compStr, repeatCount); 
     } 
     else if (cmd == "stdp") //double side STDP 
     { 
       cout << "Input File: "; 
       cin >> fname; 
 
       //fprintf(fp, "Input File: "); 
       fprintf(fp, fname.c_str()); 
       fprintf(fp, "\n"); 
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       cout << "Write Amplitude: "; 
       cin >> wAmp; 
 
       //fprintf(fp, "Amplitude: "); 
       fprintf(fp, wAmp.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Erase Amplitude: "; 
       cin >> eAmp; 
 
       //fprintf(fp, "Amplitude: "); 
       fprintf(fp, eAmp.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "End time: "; 
       cin >> endTime; 
 
       //fprintf(fp, "End time: "); 
       fprintf(fp, endTime.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Time step: "; 
       cin >> timeStepStr; 
 
 
       //fprintf(fp, "Time step: "); 
       fprintf(fp, timeStepStr.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Compliance: "; 
       cin >> compStr; 
 
       //fprintf(fp, "Compliance: "); 
       fprintf(fp, compStr.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Repeats: "; 
       cin >> repeatCount; 
 
       //fprintf(fp, "Repeats: "); 
       fprintf(fp, repeatCount.c_str()); 
       fprintf(fp, "\n"); 
 
       //pulse3(fname, wAmp, eAmp, endTime, timeStepStr, compStr, 

repeatCount); 
       pulseNoSave(fname, wAmp, eAmp, endTime, timeStepStr, compStr, 

repeatCount); 
     } 
     else if (cmd == "stdpl") //double side STDP with longer pos-neg 
     { 
       cout << "Input File: "; 
       cin >> fname; 
 
       //fprintf(fp, "Input File: "); 
       fprintf(fp, fname.c_str()); 
       fprintf(fp, "\n"); 
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       cout << "Write Amplitude: "; 
       cin >> wAmp; 
 
       //fprintf(fp, "Amplitude: "); 
       fprintf(fp, wAmp.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Erase Amplitude: "; 
       cin >> eAmp; 
 
       //fprintf(fp, "Amplitude: "); 
       fprintf(fp, eAmp.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "End time: "; 
       cin >> endTime; 
 
       //fprintf(fp, "End time: "); 
       fprintf(fp, endTime.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Time step: "; 
       cin >> timeStepStr; 
 
 
       //fprintf(fp, "Time step: "); 
       fprintf(fp, timeStepStr.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Compliance: "; 
       cin >> compStr; 
 
       //fprintf(fp, "Compliance: "); 
       fprintf(fp, compStr.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Repeats: "; 
       cin >> repeatCount; 
 
       //fprintf(fp, "Repeats: "); 
       fprintf(fp, repeatCount.c_str()); 
       fprintf(fp, "\n"); 
 
       pulse4(fname, wAmp, eAmp, endTime, timeStepStr, compStr, repeatCount); 
     } 
 
     else if (cmd == "resl") //double side resultant with longer pos-neg 
     { 
       cout << "Input File: "; 
       cin >> fname; 
 
       //fprintf(fp, "Input File: "); 
       fprintf(fp, fname.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Write Amplitude: "; 
       cin >> wAmp; 
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       //fprintf(fp, "Amplitude: "); 
       fprintf(fp, wAmp.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Erase Amplitude: "; 
       cin >> eAmp; 
 
       resultant(fname, wAmp, eAmp); 
     } 
      
     else if (cmd == "dsee") 
     { 
       fprintf(fp, fname.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Amplitude: "; 
       cin >> wAmp; 
 
       fprintf(fp, wAmp.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Compliance: "; 
       cin >> compStr; 
 
       fprintf(fp, compStr.c_str()); 
       fprintf(fp, "\n"); 
 
       cout << "Number of Points: "; 
       cin >> points; 
       fprintf(fp, points.c_str()); 
       fprintf(fp, "\n"); 
 
 
       dSee(wAmp, compStr, points); 
     } 
     else if (cmd == "time") 
     { 
       cout << chrono::system_clock::now().time_since_epoch().count(); 
       Sleep(1000); 
       cout << chrono::system_clock::now().time_since_epoch().count(); 
     } 
   } 
 
   fclose(fp); 
   WGFMU_closeSession(); 
   viClose(vi); 
   viClose(defaultRM); 
   exit(0); 
} 
// The very first write/erase STDP pulse creator. Deprecated function 
// left for archiving purposes. 
 
void datPulse(string cmd, string ampl,string dt) 
{ 
   string amplitude=ampl; 
   csvparse(cmd, stod(amplitude), stoi(dt)); 
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   WGFMU_clear(); 
   int dtint = stoi(dt); 
   testWave2.waveData.push_back(0); 
   testWave.waveData.push_back(0); 
   double* v1 = &testWave.waveData[0]; 
   double* v2 = &testWave2.waveData[0]; 
   vector<double> testDT, test2DT; 
   //vector<double> zeroV = { 0, 0 }; 
   char* leader = "ch1"; 
   char* lagger = "ch2"; 
   int leaderch = 101; 
   int laggerch = 102; 
 
   double minTime = 10E-9; 
   double datStep = .00100; 
   for (int i = 0; i < dtint; i++) 
   { 
   //   if (cmd == "w")test2DT.push_back(datStep); 
   //   if (cmd == "e")testDT.push_back(datStep); 
   } 
   for (int i = 0; i < testWave.length; i++) 
   { 
     //cout << i*datStep << "testing doub convert\n"; 
     testDT.push_back(datStep); 
     test2DT.push_back(datStep); 
   } 
   for (int i = 0; i < dtint; i++) 
   { 
   //   if (cmd == "e")test2DT.push_back(datStep); 
   //   if (cmd == "w")testDT.push_back(datStep); 
   } 
   double* dt1 = &testDT[0]; 
   double* dt2 = &test2DT[0]; 
   double endTime = datStep*(testWave.length); 
   //vector<double> zeroDT = { datStep, endTime }; 
   //double* zDT = &zeroDT[0]; 
   //double* zV = &zeroV[0]; 
   WGFMU_createPattern(leader, 0); 
   WGFMU_createPattern(lagger, 0); 
 
   //WGFMU_addVectors(leader, leaderdts, v1, 6); 
   WGFMU_addVectors(leader, dt1, v1, testWave.length); 
   WGFMU_addVectors(lagger, dt2, v2, testWave2.length); 
 
   int numPoints = 20000; //was 100000 
   //double timeStep = window / (numPoints -1); 
   double timeStep = 1E-4; 
    
 
   // Set the measurement events for both channels 
   //WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, 0, 

WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
   //WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, 0, 

WGFMU_MEASURE_EVENT_DATA_AVERAGED); //no averaging 
   WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, timeStep-

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
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   WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, timeStep-
minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 

 
 
   WGFMU_addSequence(101, leader, 1); // Add the waveform to WGFMU channel 1 
   WGFMU_addSequence(102, lagger, 1); 
 
   //ONLINE 
   WGFMU_initialize(); 
 
   // Set the operation mode for each channel 
   WGFMU_setOperationMode(101, WGFMU_OPERATION_MODE_FASTIV); 
   WGFMU_setOperationMode(102, WGFMU_OPERATION_MODE_FASTIV); 
 
   // B1500 Defaults to measuring voltage. Change it to current. Also set the 

resolution 
   // for the ADC in the WGFMU 
   WGFMU_setMeasureMode(101, WGFMU_MEASURE_MODE_CURRENT); 
   WGFMU_setMeasureMode(102, WGFMU_MEASURE_MODE_CURRENT); 
   WGFMU_setMeasureCurrentRange(101, WGFMU_MEASURE_CURRENT_RANGE_1MA); 
   WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1MA); 
 
 
 
   WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE, 

WGFMU_TRIGGER_OUT_POLARITY_POSITIVE); 
   WGFMU_setTriggerOutEvent(leader, "trig", 0, 0); 
 
   WGFMU_connect(101); 
   WGFMU_connect(102); 
   WGFMU_execute(); 
   WGFMU_waitUntilCompleted(); 
 
   // Write the data to appropriate file 
   ostringstream thefilename; 
 
   //thefilename << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" 

<< dieNum << "/" << devNum << "/" << posAmplitude << "_" << 
abs(negAmplitude) << "_" << dT << units << ".csv"; 

   thefilename << rootF << dieNum << "/" << devNum << "/Pulse_" << curAmp << 
"_" << dt << "_" << fnum << ".csv"; 

   //thefilename << "C:/Users/koltondrake/Documents/STDP/STDP_data/" << 
"resultant/" << devNum << "/" << curAmp << "_" << fnum << ".csv"; 

   string f_name = thefilename.str(); 
   writeResults2Channel(101, 102, f_name.c_str()); 
   //int ret = WGFMU_exportAscii(f_name.c_str()); 
 
   thefilename.str(""); 
   thefilename.clear(); 
   fnum++; 
} 
 
 
void pulse(string fname, string ampl, string endtime, string timeStepStr, 

string currentRange, string repeatCount) 
{ 
   string amplitude = ampl; 
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   csvparse(fname, stod(amplitude), 0); 
   WGFMU_clear(); 
   double endCount=0; 
   int error = 1; 
   int curPeat=0; 
   int wasZero = 1; 
   //int dtint = stoi(dt); 
   //testWave2.waveData.push_back(0); 
   testWave.waveData.push_back(0); 
   double* v1 = &testWave.waveData[0]; 
   //double* v2 = &testWave2.waveData[0]; 
   int repeats = 1; 
   while (error == 1) 
   { 
     error = 0; 
     try 
     { 
       repeats = stoi(repeatCount); 
     } 
     catch (const std::invalid_argument& ia) 
     { 
       error = 1; 
       cout << "Invalid Repeat Count \n"; 
       cout << "Repeat Count: "; 
       cin >> repeatCount; 
       cout << "\n"; 
     } 
   } 
   error = 0; 
    
 
 
   vector<double> testDT; 
   vector<double> zeroV = { 0, 0 }; 
   char* leader = "ch1"; 
   char* lagger = "ch2"; 
   int leaderch = 101; 
   int laggerch = 102; 
   string pulseParams = fname+","+ampl + "," + endtime + "," + timeStepStr + 

"," + currentRange + "," + repeatCount; 
    
   size_t size = 0; 
 
   if (endtime.find_first_of("m", size) != 

string::npos)endtime.replace(endtime.find_first_of("m", size), 1, "e-
3"); 

   else if (endtime.find_first_of("u", size) != 
string::npos)endtime.replace(endtime.find_first_of("u", size), 1, "e-
6"); 

   else if (endtime.find_first_of("n", size) != 
string::npos)endtime.replace(endtime.find_first_of("n", size), 1, "e-
9"); 

 
   if (timeStepStr.find_first_of("m", size) != 

string::npos)timeStepStr.replace(timeStepStr.find_first_of("m", size), 
1, "e-3"); 
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   else if (timeStepStr.find_first_of("u", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("u", size), 
1, "e-6"); 

   else if (timeStepStr.find_first_of("n", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("n", size), 
1, "e-9"); 

 
 
   double minTime = 10E-9; 
   //double datStep = 10E-9; 
   double datStep = stod(endtime) / testWave.length; 
   if (datStep <= 10e-9) datStep = 10e-9; 
   double bigStep = 3 * datStep; 
 
   /*if (datStep <= 14.49E-9) datStep = 10E-9; 
   else if (datStep <= 24.49E-9) datStep = 20E-9; 
   else if (datStep <= 34.49E-9) datStep = 30E-9; 
   else if (datStep <= 44.49E-9) datStep = 40E-9; 
   else if (datStep <= 54.49E-9) datStep = 50E-9; 
   else if (datStep <= 64.49E-9) datStep = 60E-9; 
   else if (datStep <= 74.49E-9) datStep = 70E-9;*/ 
 
 
 
   for (int i = 0; i < testWave.length*repeats; i++) 
   { 
     //cout << i*datStep << "testing doub convert\n"; 
     //if(datStep<=100e-9) testDT.push_back(datStep+minTime); 
     if ((i>1 && i<testWave.length && v1[i] == 0 && v1[i-1]==0)) 
     { 
       testDT.push_back(datStep * 3); 
       endCount += bigStep; 
     } 
     else if (i > testWave.length) 
     { 
       if (v1[i - testWave.length*curPeat] == 0 && v1[i-1]==0) 
       { 
         testDT.push_back(datStep * 3); 
         endCount += bigStep; 
       } 
       else 
       { 
         wasZero = 0; 
         testDT.push_back(datStep); 
         endCount += datStep; 
       } 
     } 
     else 
     { 
       wasZero = 0; 
       testDT.push_back(datStep); 
       endCount += datStep; 
     } 
     if (i%testWave.length == 0)curPeat++; 
 
     //test2DT.push_back(datStep); 
   } 
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   //cout << endCount << "\n"; 
   double* dt1 = &testDT[0]; 
   //double* dt2 = &test2DT[0]; 
 
 
   //double endTime = datStep*testWave.length*repeats; 
    
    
    
   //double endTime = stod(endtime)*repeats; 
   //double endTime = testDT.size()*datStep; 
   double endTime = endCount; 
 
   vector<double> zeroDT = {datStep, endTime}; 
   double* zDT = &zeroDT[0]; 
   double* zV = &zeroV[0]; 
   WGFMU_createPattern(leader, 0); 
   WGFMU_createPattern(lagger, 0); 
 
   //WGFMU_addVectors(leader, leaderdts, v1, 6); 
   for(int i=0;i<repeats;i++) WGFMU_addVectors(leader, dt1, v1, 

testWave.length); //Account for repeats. 
   WGFMU_addVectors(lagger, zDT, zV, 2); 
 
    
   //double timeStep = window / (numPoints -1); 
   //double timeStep = 10E-9; 
   double timeStep = stod(timeStepStr); 
   if (timeStep <= 10e-9) timeStep = 10e-9; 
   //int numPoints = (endTime / timeStep); //was 100000 
   //int numPoints = (datStep*testDT.size())/timeStep; 
   int numPoints = endTime / timeStep; 
 
   // Set the measurement events for both channels 
   //WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, 0, 

WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
   //WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, 0, 

WGFMU_MEASURE_EVENT_DATA_AVERAGED); //no averaging 
   WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, timeStep - 

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
   WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, timeStep - 

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
 
 
   WGFMU_addSequence(101, leader, 1); // Add the waveform to WGFMU channel 1 
   WGFMU_addSequence(102, lagger, 1); 
 
   //ONLINE 
   WGFMU_initialize(); 
 
   // Set the operation mode for each channel 
   WGFMU_setOperationMode(101, WGFMU_OPERATION_MODE_FASTIV); 
   WGFMU_setOperationMode(102, WGFMU_OPERATION_MODE_FASTIV); 
 
   // B1500 Defaults to measuring voltage. Change it to current. Also set the 

resolution 
   // for the ADC in the WGFMU 
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   WGFMU_setMeasureMode(101, WGFMU_MEASURE_MODE_VOLTAGE); 
   WGFMU_setMeasureMode(102, WGFMU_MEASURE_MODE_CURRENT); 
   WGFMU_setMeasureVoltageRange(101, WGFMU_MEASURE_VOLTAGE_RANGE_10V); 
   if (currentRange == "1u" || currentRange == "1E-6" || currentRange == "1e-

6" || currentRange == "1uA" || currentRange == "1ua" || currentRange == 
"0.000001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1UA); 
   else if (currentRange == "10u" || currentRange == "10E-6" || currentRange 

== "10e-6" || currentRange == "10uA" || currentRange == "10ua" || 
currentRange == "0.00001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10UA); 
   else if (currentRange == "100u" || currentRange == "100E-6" || 

currentRange == "100e-6" || currentRange == "100uA" || currentRange == 
"100ua" || currentRange == "0.0001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_100UA); 
   else if (currentRange == "1m" || currentRange == "1E-3" || currentRange == 

"1e-3" || currentRange == "1mA" || currentRange == "1ma" || 
currentRange == "0.001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1MA); 
   else if (currentRange == "10m" || currentRange == "10E-3" || currentRange 

== "10e-3" || currentRange == "10mA" || currentRange == "10ma" || 
currentRange == "0.01") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   else 
   { 
     cout << "wat"; 
     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   } 
    
   WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE, 

WGFMU_TRIGGER_OUT_POLARITY_POSITIVE); 
   WGFMU_setTriggerOutEvent(leader, "trig", 0, 0); 
 
   WGFMU_connect(101); 
   WGFMU_connect(102); 
   WGFMU_execute(); 
   WGFMU_waitUntilCompleted(); 
 
   // Write the data to appropriate file 
   ostringstream thefilename; 
   ostringstream fileNumber; 
   fileNumber << setfill('0') << setw(3) << fnum; 
 
   //thefilename << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" 

<< dieNum << "/" << devNum << "/" << posAmplitude << "_" << 
abs(negAmplitude) << "_" << dT << units << ".csv"; 

   thefilename << rootF << dieNum << "/" << devNum << "/" << devNum << "_" << 
fname <<"_" << curAmp << "_" << fileNumber.str() << ".csv"; 

   //thefilename << "C:/Users/koltondrake/Documents/STDP/STDP_data/" << 
"resultant/" << devNum << "/" << curAmp << "_" << fnum << ".csv"; 

   string f_name = thefilename.str(); 
   writeResults2ChannelP(101, 102, f_name.c_str(),pulseParams); 
   //int ret = WGFMU_exportAscii(f_name.c_str()); 
 
   thefilename.str(""); 
   thefilename.clear(); 
   fileNumber.str(""); 
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   fileNumber.clear(); 
   fnum++; 
} 
 
/* 
This pulse is for taking a csv file and placing all amplitudes on Channel 1. 
Write amplitude and Erase amplitude should be entered as positive values. 
*/ 
void pulse1(string fname, string wAmp, string eAmp, string endtime, string 

timeStepStr, string currentRange, string repeatCount) 
{ 
   //string amplitude = ampl; 
   csvparse1(fname, stod(wAmp), stod(eAmp)); 
   WGFMU_clear(); 
   double endCount = 0; 
   int error = 1; 
   int curPeat = 0; 
   int wasZero = 1; 
   //int dtint = stoi(dt); 
   testWave2.waveData.push_back(0); 
   testWave.waveData.push_back(0); 
   double* v1 = &testWave.waveData[0]; 
   double* v2 = &testWave2.waveData[0]; 
   int repeats = 1; 
   while (error == 1) 
   { 
     error = 0; 
     try 
     { 
       repeats = stoi(repeatCount); 
     } 
     catch (const std::invalid_argument& ia) 
     { 
       error = 1; 
       cout << "Invalid Repeat Count \n"; 
       cout << "Repeat Count: "; 
       cin >> repeatCount; 
       cout << "\n"; 
     } 
   } 
   error = 0; 
 
 
 
   vector<double> testDT; 
   vector<double> zeroV = { 0, 0 }; 
   char* leader = "ch1"; 
   char* lagger = "ch2"; 
   int leaderch = 101; 
   int laggerch = 102; 
   string pulseParams = fname + "," + wAmp + "," + eAmp + "," + endtime + "," 

+ timeStepStr + "," + currentRange + "," + repeatCount; 
 
   size_t size = 0; 
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   if (endtime.find_first_of("m", size) != 
string::npos)endtime.replace(endtime.find_first_of("m", size), 1, "e-
3"); 

   else if (endtime.find_first_of("u", size) != 
string::npos)endtime.replace(endtime.find_first_of("u", size), 1, "e-
6"); 

   else if (endtime.find_first_of("n", size) != 
string::npos)endtime.replace(endtime.find_first_of("n", size), 1, "e-
9"); 

 
   if (timeStepStr.find_first_of("m", size) != 

string::npos)timeStepStr.replace(timeStepStr.find_first_of("m", size), 
1, "e-3"); 

   else if (timeStepStr.find_first_of("u", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("u", size), 
1, "e-6"); 

   else if (timeStepStr.find_first_of("n", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("n", size), 
1, "e-9"); 

 
 
   double minTime = 10E-9; 
   //double datStep = 10E-9; 
   double datStep = stod(endtime) / testWave.length; 
   if (datStep <= 10e-9) datStep = 10e-9; 
   double bigStep = 3 * datStep; 
 
   /*if (datStep <= 14.49E-9) datStep = 10E-9; 
   else if (datStep <= 24.49E-9) datStep = 20E-9; 
   else if (datStep <= 34.49E-9) datStep = 30E-9; 
   else if (datStep <= 44.49E-9) datStep = 40E-9; 
   else if (datStep <= 54.49E-9) datStep = 50E-9; 
   else if (datStep <= 64.49E-9) datStep = 60E-9; 
   else if (datStep <= 74.49E-9) datStep = 70E-9;*/ 
 
 
 
   for (int i = 0; i < testWave.length*repeats; i++) 
   { 
     //cout << i*datStep << "testing doub convert\n"; 
     //if(datStep<=100e-9) testDT.push_back(datStep+minTime); 
     if ((i>1 && i<testWave.length && v1[i] == 0 && v1[i - 1] == 0 && v2[i] 

== 0 && v2[i - 1] == 0)) 
     { 
       testDT.push_back(datStep * 3); 
       endCount += bigStep; 
     } 
     else if (i > testWave.length) 
     { 
       if (v1[i - testWave.length*curPeat] == 0 && v2[i - 

testWave.length*curPeat] == 0 && v1[i - 1] == 0 && v2[i - 1] == 0) 
       { 
         testDT.push_back(datStep * 3); 
         endCount += bigStep; 
       } 
       else 
       { 
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         wasZero = 0; 
         testDT.push_back(datStep); 
         endCount += datStep; 
       } 
     } 
     else 
     { 
       wasZero = 0; 
       testDT.push_back(datStep); 
       endCount += datStep; 
     } 
     if (i%testWave.length == 0)curPeat++; 
 
     //test2DT.push_back(datStep); 
   } 
   //cout << endCount << "\n"; 
   double* dt1 = &testDT[0]; 
   double* dt2 = &testDT[0]; 
 
 
   //double endTime = datStep*testWave.length*repeats; 
 
 
 
   //double endTime = stod(endtime)*repeats; 
   //double endTime = testDT.size()*datStep; 
   double endTime = endCount; 
 
   //vector<double> zeroDT = { datStep, endTime }; 
   //double* zDT = &zeroDT[0]; 
   //double* zV = &zeroV[0]; 
   WGFMU_createPattern(leader, 0); 
   WGFMU_createPattern(lagger, 0); 
 
   //WGFMU_addVectors(leader, leaderdts, v1, 6); 
   for (int i = 0; i < repeats; i++) 
   { 
     WGFMU_addVectors(leader, dt1, v1, testWave.length); //Account for 

repeats. 
     WGFMU_addVectors(lagger, dt2, v2, testWave.length); 
   } 
   //WGFMU_addVectors(lagger, zDT, zV, 2); 
 
 
   //double timeStep = window / (numPoints -1); 
   //double timeStep = 10E-9; 
   double timeStep = stod(timeStepStr); 
   if (timeStep <= 10e-9) timeStep = 10e-9; 
   //int numPoints = (endTime / timeStep); //was 100000 
   //int numPoints = (datStep*testDT.size())/timeStep; 
   int numPoints = endTime / timeStep; 
 
   // Set the measurement events for both channels 
   //WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, 0, 

WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
   //WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, 0, 

WGFMU_MEASURE_EVENT_DATA_AVERAGED); //no averaging 
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   WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, timeStep - 
minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 

   WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, timeStep - 
minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 

 
 
   WGFMU_addSequence(101, leader, 1); // Add the waveform to WGFMU channel 1 
   WGFMU_addSequence(102, lagger, 1); 
 
   //ONLINE 
   WGFMU_initialize(); 
 
   // Set the operation mode for each channel 
   WGFMU_setOperationMode(101, WGFMU_OPERATION_MODE_FASTIV); 
   WGFMU_setOperationMode(102, WGFMU_OPERATION_MODE_FASTIV); 
 
   // B1500 Defaults to measuring voltage. Change it to current. Also set the 

resolution 
   // for the ADC in the WGFMU 
   WGFMU_setMeasureMode(101, WGFMU_MEASURE_MODE_VOLTAGE); 
   WGFMU_setMeasureMode(102, WGFMU_MEASURE_MODE_CURRENT); 
   WGFMU_setMeasureVoltageRange(101, WGFMU_MEASURE_VOLTAGE_RANGE_10V); 
   if (currentRange == "1u" || currentRange == "1E-6" || currentRange == "1e-

6" || currentRange == "1uA" || currentRange == "1ua" || currentRange == 
"0.000001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1UA); 
   else if (currentRange == "10u" || currentRange == "10E-6" || currentRange 

== "10e-6" || currentRange == "10uA" || currentRange == "10ua" || 
currentRange == "0.00001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10UA); 
   else if (currentRange == "100u" || currentRange == "100E-6" || 

currentRange == "100e-6" || currentRange == "100uA" || currentRange == 
"100ua" || currentRange == "0.0001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_100UA); 
   else if (currentRange == "1m" || currentRange == "1E-3" || currentRange == 

"1e-3" || currentRange == "1mA" || currentRange == "1ma" || 
currentRange == "0.001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1MA); 
   else if (currentRange == "10m" || currentRange == "10E-3" || currentRange 

== "10e-3" || currentRange == "10mA" || currentRange == "10ma" || 
currentRange == "0.01") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   else 
   { 
     cout << "wat"; 
     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   } 
 
   WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE, 

WGFMU_TRIGGER_OUT_POLARITY_POSITIVE); 
   WGFMU_setTriggerOutEvent(leader, "trig", 0, 0); 
 
   WGFMU_connect(101); 
   WGFMU_connect(102); 
   WGFMU_execute(); 
   WGFMU_waitUntilCompleted(); 
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   // Write the data to appropriate file 
   ostringstream thefilename; 
   ostringstream fileNumber; 
   fileNumber << setfill('0') << setw(3) << fnum; 
 
   //thefilename << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" 

<< dieNum << "/" << devNum << "/" << posAmplitude << "_" << 
abs(negAmplitude) << "_" << dT << units << ".csv"; 

   thefilename << rootF << dieNum << "/" << devNum << "/" << devNum << "_" << 
fname << "_" << wAmp << "_" << eAmp << "_" << fileNumber.str() << 
".csv"; 

   //thefilename << "C:/Users/koltondrake/Documents/STDP/STDP_data/" << 
"resultant/" << devNum << "/" << curAmp << "_" << fnum << ".csv"; 

   string f_name = thefilename.str(); 
 
   writeResults2ChannelP(101, 102, f_name.c_str(), pulseParams); 
   //int ret = WGFMU_exportAscii(f_name.c_str()); 
 
   thefilename.str(""); 
   thefilename.clear(); 
   fileNumber.str(""); 
   fileNumber.clear(); 
   fnum++; 
} 
 
/* 
This pulse is for taking a csv file and placing negative amplitudes on 

Channel 2 and positive amplitudes on Channel 1. 
Write amplitude and Erase amplitude should be entered as positive values.s 
*/ 
void pulse2(string fname, string wAmp, string eAmp, string endtime, string 

timeStepStr, string currentRange, string repeatCount) 
{ 
   //string amplitude = ampl; 
   csvparse2(fname, stod(wAmp), stod(eAmp)); 
   WGFMU_clear(); 
   double endCount = 0; 
   int error = 1; 
   int curPeat = 0; 
   int wasZero = 1; 
   //int dtint = stoi(dt); 
   testWave2.waveData.push_back(0); 
   testWave.waveData.push_back(0); 
   double* v1 = &testWave.waveData[0]; 
   double* v2 = &testWave2.waveData[0]; 
   int repeats = 1; 
   while (error == 1) 
   { 
     error = 0; 
     try 
     { 
       repeats = stoi(repeatCount); 
     } 
     catch (const std::invalid_argument& ia) 
     { 
       error = 1; 
       cout << "Invalid Repeat Count \n"; 
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       cout << "Repeat Count: "; 
       cin >> repeatCount; 
       cout << "\n"; 
     } 
   } 
   error = 0; 
 
 
 
   vector<double> testDT; 
   vector<double> zeroV = { 0, 0 }; 
   char* leader = "ch1"; 
   char* lagger = "ch2"; 
   int leaderch = 101; 
   int laggerch = 102; 
   string pulseParams = fname + "," + wAmp + "," + eAmp + "," + endtime + "," 

+ timeStepStr + "," + currentRange + "," + repeatCount; 
 
   size_t size = 0; 
 
   if (endtime.find_first_of("m", size) != 

string::npos)endtime.replace(endtime.find_first_of("m", size), 1, "e-
3"); 

   else if (endtime.find_first_of("u", size) != 
string::npos)endtime.replace(endtime.find_first_of("u", size), 1, "e-
6"); 

   else if (endtime.find_first_of("n", size) != 
string::npos)endtime.replace(endtime.find_first_of("n", size), 1, "e-
9"); 

 
   if (timeStepStr.find_first_of("m", size) != 

string::npos)timeStepStr.replace(timeStepStr.find_first_of("m", size), 
1, "e-3"); 

   else if (timeStepStr.find_first_of("u", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("u", size), 
1, "e-6"); 

   else if (timeStepStr.find_first_of("n", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("n", size), 
1, "e-9"); 

 
 
   double minTime = 10E-9; 
   //double datStep = 10E-9; 
   double datStep = stod(endtime) / testWave.length; 
   if (datStep <= 10e-9) datStep = 10e-9; 
   double bigStep = 3 * datStep; 
 
   /*if (datStep <= 14.49E-9) datStep = 10E-9; 
   else if (datStep <= 24.49E-9) datStep = 20E-9; 
   else if (datStep <= 34.49E-9) datStep = 30E-9; 
   else if (datStep <= 44.49E-9) datStep = 40E-9; 
   else if (datStep <= 54.49E-9) datStep = 50E-9; 
   else if (datStep <= 64.49E-9) datStep = 60E-9; 
   else if (datStep <= 74.49E-9) datStep = 70E-9;*/ 
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   for (int i = 0; i < testWave.length*repeats; i++) 
   { 
     //cout << i*datStep << "testing doub convert\n"; 
     //if(datStep<=100e-9) testDT.push_back(datStep+minTime); 
     if ((i>1 && i<testWave.length && v1[i] == 0 && v1[i - 1] == 0 && v2[i] 

== 0 && v2[i - 1] == 0)) 
     { 
       testDT.push_back(datStep * 3); 
       endCount += bigStep; 
     } 
     else if (i > testWave.length) 
     { 
       if (v1[i - testWave.length*curPeat] == 0 && v2[i - 

testWave.length*curPeat] == 0 && v1[i - 1] == 0 && v2[i - 1] == 0) 
       { 
         testDT.push_back(datStep * 3); 
         endCount += bigStep; 
       } 
       else 
       { 
         wasZero = 0; 
         testDT.push_back(datStep); 
         endCount += datStep; 
       } 
     } 
     else 
     { 
       wasZero = 0; 
       testDT.push_back(datStep); 
       endCount += datStep; 
     } 
     if (i%testWave.length == 0)curPeat++; 
 
     //test2DT.push_back(datStep); 
   } 
   //cout << endCount << "\n"; 
   double* dt1 = &testDT[0]; 
   double* dt2 = &testDT[0]; 
 
 
   //double endTime = datStep*testWave.length*repeats; 
 
 
 
   //double endTime = stod(endtime)*repeats; 
   //double endTime = testDT.size()*datStep; 
   double endTime = endCount; 
 
   //vector<double> zeroDT = { datStep, endTime }; 
   //double* zDT = &zeroDT[0]; 
   //double* zV = &zeroV[0]; 
   WGFMU_createPattern(leader, 0); 
   WGFMU_createPattern(lagger, 0); 
 
   //WGFMU_addVectors(leader, leaderdts, v1, 6); 
   for (int i = 0; i < repeats; i++) 
   { 
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     WGFMU_addVectors(leader, dt1, v1, testWave.length); //Account for 
repeats. 

     WGFMU_addVectors(lagger, dt2, v2, testWave.length); 
   } 
   //WGFMU_addVectors(lagger, zDT, zV, 2); 
 
 
   //double timeStep = window / (numPoints -1); 
   //double timeStep = 10E-9; 
   double timeStep = stod(timeStepStr); 
   if (timeStep <= 10e-9) timeStep = 10e-9; 
   //int numPoints = (endTime / timeStep); //was 100000 
   //int numPoints = (datStep*testDT.size())/timeStep; 
   int numPoints = endTime / timeStep; 
 
   // Set the measurement events for both channels 
   //WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, 0, 

WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
   //WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, 0, 

WGFMU_MEASURE_EVENT_DATA_AVERAGED); //no averaging 
   WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, timeStep - 

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
   WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, timeStep - 

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
 
 
   WGFMU_addSequence(101, leader, 1); // Add the waveform to WGFMU channel 1 
   WGFMU_addSequence(102, lagger, 1); 
 
   //ONLINE 
   WGFMU_initialize(); 
 
   // Set the operation mode for each channel 
   WGFMU_setOperationMode(101, WGFMU_OPERATION_MODE_FASTIV); 
   WGFMU_setOperationMode(102, WGFMU_OPERATION_MODE_FASTIV); 
 
   // B1500 Defaults to measuring voltage. Change it to current. Also set the 

resolution 
   // for the ADC in the WGFMU 
   WGFMU_setMeasureMode(101, WGFMU_MEASURE_MODE_VOLTAGE); 
   WGFMU_setMeasureMode(102, WGFMU_MEASURE_MODE_CURRENT); 
   WGFMU_setMeasureVoltageRange(101, WGFMU_MEASURE_VOLTAGE_RANGE_10V); 
   if (currentRange == "1u" || currentRange == "1E-6" || currentRange == "1e-

6" || currentRange == "1uA" || currentRange == "1ua" || currentRange == 
"0.000001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1UA); 
   else if (currentRange == "10u" || currentRange == "10E-6" || currentRange 

== "10e-6" || currentRange == "10uA" || currentRange == "10ua" || 
currentRange == "0.00001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10UA); 
   else if (currentRange == "100u" || currentRange == "100E-6" || 

currentRange == "100e-6" || currentRange == "100uA" || currentRange == 
"100ua" || currentRange == "0.0001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_100UA); 
   else if (currentRange == "1m" || currentRange == "1E-3" || currentRange == 

"1e-3" || currentRange == "1mA" || currentRange == "1ma" || 
currentRange == "0.001") 
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     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1MA); 
   else if (currentRange == "10m" || currentRange == "10E-3" || currentRange 

== "10e-3" || currentRange == "10mA" || currentRange == "10ma" || 
currentRange == "0.01") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   else 
   { 
     cout << "wat"; 
     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   } 
 
   WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE, 

WGFMU_TRIGGER_OUT_POLARITY_POSITIVE); 
   WGFMU_setTriggerOutEvent(leader, "trig", 0, 0); 
 
   WGFMU_connect(101); 
   WGFMU_connect(102); 
   WGFMU_execute(); 
   WGFMU_waitUntilCompleted(); 
 
   // Write the data to appropriate file 
   ostringstream thefilename; 
   ostringstream fileNumber; 
   fileNumber << setfill('0') << setw(3) << fnum; 
 
   //thefilename << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" 

<< dieNum << "/" << devNum << "/" << posAmplitude << "_" << 
abs(negAmplitude) << "_" << dT << units << ".csv"; 

   thefilename << rootF << dieNum << "/" << devNum << "/" << devNum << "_" << 
fname << "_" << wAmp << "_" << eAmp  << "_" << fileNumber.str() << 
".csv"; 

   //thefilename << "C:/Users/koltondrake/Documents/STDP/STDP_data/" << 
"resultant/" << devNum << "/" << curAmp << "_" << fnum << ".csv"; 

   string f_name = thefilename.str(); 
    
   writeResults2ChannelP(101, 102, f_name.c_str(), pulseParams); 
   //int ret = WGFMU_exportAscii(f_name.c_str()); 
 
   thefilename.str(""); 
   thefilename.clear(); 
   fileNumber.str(""); 
   fileNumber.clear(); 
   fnum++; 
} 
 
 
/* 
This is for STDP. Requires two files _ch1 and _ch2 
Includes bumpy read. 
*/ 
void pulse3(string fname, string wAmp, string eAmp, string endtime, string 

timeStepStr, string currentRange, string repeatCount) 
{ 
   //string amplitude = ampl; 
   csvparse3(fname, stod(wAmp), stod(eAmp)); 
    
   //Generates the testWave3 data. 
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   csvparseRead("bumpy", 1, 1); 
    
   WGFMU_clear(); 
   double endCount = 0; 
   double endReadCount = 0; 
   double readIdx[100]; 
   double readTimeStep[100]; 
   int error = 1; 
   int curPeat = 0; 
   int wasZero = 1; 
   int pointCount=0; 
   //Number of decades to read. 
   int decades = 2; 
   //Number of points per read waveform data; if bumpy_ch1.csv has 70 points, 

readRes takes 20 measurement points for each point. 
   //Number of read points calculation = numBumpyPts * readRes * decades. 
   int readRes = 5; 
   //int dtint = stoi(dt); 
 
   testWave.waveData.push_back(0); //Top Electrode 
   testWave2.waveData.push_back(0); //Bottom Electrode 
   testWave3.waveData.push_back(0); //Read Pulse (goes to top electrode). 
   testWave4.waveData.push_back(0); //Read pulse bot. 
 
 
   int repeats = 1; 
   while (error == 1) 
   { 
     error = 0; 
     try 
     { 
       repeats = stoi(repeatCount); 
     } 
     catch (const std::invalid_argument& ia) 
     { 
       error = 1; 
       cout << "Invalid Repeat Count \n"; 
       cout << "Repeat Count: "; 
       cin >> repeatCount; 
       cout << "\n"; 
     } 
   } 
   error = 0; 
 
 
 
   vector<double> testDT; 
   vector<double> test2DT; 
   vector<double> test3DT; 
   vector<double> test4DT; 
   char* leader = "ch1"; 
   char* lagger = "ch2"; 
   int leaderch = 101; 
   int laggerch = 102; 
   string pulseParams = fname + "," + wAmp + "," + eAmp + "," + endtime + "," 

+ timeStepStr + "," + currentRange + "," + repeatCount; 
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   size_t size = 0; 
 
   if (endtime.find_first_of("m", size) != 

string::npos)endtime.replace(endtime.find_first_of("m", size), 1, "e-
3"); 

   else if (endtime.find_first_of("u", size) != 
string::npos)endtime.replace(endtime.find_first_of("u", size), 1, "e-
6"); 

   else if (endtime.find_first_of("n", size) != 
string::npos)endtime.replace(endtime.find_first_of("n", size), 1, "e-
9"); 

 
   if (timeStepStr.find_first_of("m", size) != 

string::npos)timeStepStr.replace(timeStepStr.find_first_of("m", size), 
1, "e-3"); 

   else if (timeStepStr.find_first_of("u", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("u", size), 
1, "e-6"); 

   else if (timeStepStr.find_first_of("n", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("n", size), 
1, "e-9"); 

 
   double endTimes = stod(endtime); 
   double minTime = 10E-9; 
   //double datStep = 10E-9; 
   double datStep = endTimes / testWave.length; 
   if (datStep <= 10e-9) datStep = 10e-9; 
    
   if (endTimes >= 1) 
   { 
     decades = 2; 
     readRes = 40; 
   } 
   else if (endTimes > 1e-3) 
   { 
     decades = 3; 
     readRes = 20; 
   } 
   else if (endTimes > 10e-6) 
   { 
     decades = 5; 
     readRes = 20; 
   } 
   else 
   { 
     decades = 7; 
     readRes = 20; 
   } 
 
   /*if (datStep <= 14.49E-9) datStep = 10E-9; 
   else if (datStep <= 24.49E-9) datStep = 20E-9; 
   else if (datStep <= 34.49E-9) datStep = 30E-9; 
   else if (datStep <= 44.49E-9) datStep = 40E-9; 
   else if (datStep <= 54.49E-9) datStep = 50E-9; 
   else if (datStep <= 64.49E-9) datStep = 60E-9; 
   else if (datStep <= 74.49E-9) datStep = 70E-9;*/ 
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   for (int i = 0; i < testWave.length; i++) 
   { 
     //cout << "idx:\t" << i << "\t dt:\t" << datStep << "\n"; 
     //cout << "idx:\t" << testDT[i] << "\t dt:\t" << datStep; 
     testDT.push_back(datStep); 
     test2DT.push_back(datStep); 
     //test2DT.push_back(datStep * 10); 
     endCount += datStep; 
   } 
 
 
   endReadCount = endCount; 
   for (int j = 1; j < decades; j++) 
   { 
     readIdx[j] = endReadCount; 
     for (int i = 0; i < testWave3.length; i++) 
     { 
       if (j == 1) 
       { 
         pointCount += readRes; 
         test3DT.push_back(datStep); 
         test4DT.push_back(datStep); 
         endReadCount += datStep; 
       } 
        
       else if (j > 1) 
       { 
         test3DT.push_back(datStep*pow(10.0, j)); 
         test4DT.push_back(datStep*pow(10.0, j)); 
         endReadCount += datStep*pow(10.0, j); 
 
         testWave3.waveData.push_back(testWave3.waveData[i]); 
         testWave4.waveData.push_back(testWave4.waveData[i]); 
       } 
     } 
     readTimeStep[j] = (endReadCount-readIdx[j])/pointCount; 
     if (readTimeStep[j] <= 10E-9) 
     { 
       readTimeStep[j] = 10e-9; 
       pointCount = (endReadCount - readIdx[j]) / 10e-9; 
     } 
   } 
   double* dt1 = &testDT[0]; 
   double* dt2 = &test2DT[0]; 
   double* dt3 = &test3DT[0]; 
   double* dt4 = &test4DT[0]; 
   double* v1 = &testWave.waveData[0]; 
   double* v2 = &testWave2.waveData[0]; 
   double* v3 = &testWave3.waveData[0]; 
   double* v4 = &testWave4.waveData[0]; 
 
   //double* dt23 = &test2DT[0]; 
   //double* dt24 = &test2DT[0]; 
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   //double endTime = datStep*testWave.length*repeats; 
 
 
 
   //double endTime = stod(endtime)*repeats; 
   //double endTime = testDT.size()*datStep; 
   double endTime = endCount; 
   //endTime *= repeats; 
 
   double endReadTime = endReadCount; 
 
 
 
   WGFMU_createPattern(leader, 0); 
   WGFMU_createPattern(lagger, 0); 
 
   for (int i = 0; i < repeats; i++) 
   { 
     WGFMU_addVectors(leader, dt1, v1, testWave.length); //Account for 

repeats. 
     WGFMU_addVectors(lagger, dt2, v2, testWave2.length); 
      
     //readSection 
     WGFMU_addVectors(leader, dt3, v3, testWave3.waveData.size()-1); 
     WGFMU_addVectors(lagger, dt4, v4, testWave4.waveData.size()-1); 
   } 
 
   double timeStep = stod(timeStepStr); 
   if (timeStep <= 10e-9) timeStep = 10e-9; 
   int numPoints = endTime / timeStep; 
 
   // Set the measurement events for both channels 
 
   WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, timeStep - 

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
   WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, timeStep - 

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
 
   //read events 
    
   ostringstream eventName; 
   double averagingTime = 0.02; 
   for (int i = 1; i < decades; i++) 
   { 
     while (readTimeStep[i]>1.3) 
     { 
       readTimeStep[i] /= 10; 
       pointCount *= 10; 
     } 
     averagingTime = readTimeStep[i] - minTime; 
     if (averagingTime > 0.02) averagingTime = 0.02; 
     eventName.clear(); 
     eventName << "evtR" << i; 
     WGFMU_setMeasureEvent(leader, eventName.str().c_str(), readIdx[i], 

pointCount, readTimeStep[i], averagingTime, 
WGFMU_MEASURE_EVENT_DATA_AVERAGED); 

     eventName.clear(); 
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     eventName << "evtRR" << i; 
     WGFMU_setMeasureEvent(lagger, eventName.str().c_str(), readIdx[i], 

pointCount, readTimeStep[i], averagingTime, 
WGFMU_MEASURE_EVENT_DATA_AVERAGED); 

   } 
 
   WGFMU_addSequence(101, leader, 1); // Add the waveform to WGFMU channel 1 
   WGFMU_addSequence(102, lagger, 1); 
 
   //ONLINE 
   WGFMU_initialize(); 
 
   // Set the operation mode for each channel 
   WGFMU_setOperationMode(101, WGFMU_OPERATION_MODE_FASTIV); 
   WGFMU_setOperationMode(102, WGFMU_OPERATION_MODE_FASTIV); 
 
   // B1500 Defaults to measuring voltage. Change it to current. Also set the 

resolution 
   // for the ADC in the WGFMU 
   WGFMU_setMeasureMode(101, WGFMU_MEASURE_MODE_VOLTAGE); 
   WGFMU_setMeasureMode(102, WGFMU_MEASURE_MODE_CURRENT); 
   WGFMU_setMeasureVoltageRange(101, WGFMU_MEASURE_VOLTAGE_RANGE_10V); 
   if (currentRange == "1u" || currentRange == "1E-6" || currentRange == "1e-

6" || currentRange == "1uA" || currentRange == "1ua" || currentRange == 
"0.000001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1UA); 
   else if (currentRange == "10u" || currentRange == "10E-6" || currentRange 

== "10e-6" || currentRange == "10uA" || currentRange == "10ua" || 
currentRange == "0.00001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10UA); 
   else if (currentRange == "100u" || currentRange == "100E-6" || 

currentRange == "100e-6" || currentRange == "100uA" || currentRange == 
"100ua" || currentRange == "0.0001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_100UA); 
   else if (currentRange == "1m" || currentRange == "1E-3" || currentRange == 

"1e-3" || currentRange == "1mA" || currentRange == "1ma" || 
currentRange == "0.001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1MA); 
   else if (currentRange == "10m" || currentRange == "10E-3" || currentRange 

== "10e-3" || currentRange == "10mA" || currentRange == "10ma" || 
currentRange == "0.01") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   else 
   { 
     cout << "wat"; 
     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   } 
 
   WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE, 

WGFMU_TRIGGER_OUT_POLARITY_POSITIVE); 
   WGFMU_setTriggerOutEvent(leader, "trig", 0, 0); 
 
   WGFMU_connect(101); 
   WGFMU_connect(102); 
   WGFMU_execute(); 
   WGFMU_waitUntilCompleted(); 
   // Write the data to appropriate file 
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   ostringstream thefilename; 
   ostringstream fileNumber; 
   fileNumber << setfill('0') << setw(3) << fnum; 
 
   //thefilename << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" 

<< dieNum << "/" << devNum << "/" << posAmplitude << "_" << 
abs(negAmplitude) << "_" << dT << units << ".csv"; 

   thefilename << rootF << dieNum << "/" << devNum << "/" << devNum << "_" << 
fname << "_" << wAmp << "_" << eAmp << "_" << fileNumber.str() << 
".csv"; 

   //thefilename << "C:/Users/koltondrake/Documents/STDP/STDP_data/" << 
"resultant/" << devNum << "/" << curAmp << "_" << fnum << ".csv"; 

   string f_name = thefilename.str(); 
   /* 
   This is the section where it returns a value 
   */ 
 
   writeResults2ChannelP(101, 102, f_name.c_str(), pulseParams); 
 
 
   thefilename.str(""); 
   thefilename.clear(); 
   fileNumber.str(""); 
   fileNumber.clear();    
   fnum++; 
} 
 
/* 
This is for STDP, does not perform a bumpy read, does not save data. 
Requires ch1 and ch2 
*/ 
void pulseNoSave(string fname, string wAmp, string eAmp, string endtime, 

string timeStepStr, string currentRange, string repeatCount) 
{ 
   //string amplitude = ampl; 
   csvparse3(fname, stod(wAmp), stod(eAmp)); 
 
   WGFMU_clear(); 
   double endCount = 0; 
   double endReadCount = 0; 
   double readIdx[100]; 
   double readTimeStep[100]; 
   int error = 1; 
   int curPeat = 0; 
   int wasZero = 1; 
   int pointCount = 0; 
    
 
   testWave.waveData.push_back(0); //Top Electrode 
   testWave2.waveData.push_back(0); //Bottom Electrode 
 
   int repeats = 1; 
   while (error == 1) 
   { 
     error = 0; 
     try 
     { 
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       repeats = stoi(repeatCount); 
     } 
     catch (const std::invalid_argument& ia) 
     { 
       error = 1; 
       cout << "Invalid Repeat Count \n"; 
       cout << "Repeat Count: "; 
       cin >> repeatCount; 
       cout << "\n"; 
     } 
   } 
   error = 0; 
 
 
 
   vector<double> testDT; 
   vector<double> test2DT; 
   char* leader = "ch1"; 
   char* lagger = "ch2"; 
   int leaderch = 101; 
   int laggerch = 102; 
   string pulseParams = fname + "," + wAmp + "," + eAmp + "," + endtime + "," 

+ timeStepStr + "," + currentRange + "," + repeatCount; 
 
   size_t size = 0; 
 
   if (endtime.find_first_of("m", size) != 

string::npos)endtime.replace(endtime.find_first_of("m", size), 1, "e-
3"); 

   else if (endtime.find_first_of("u", size) != 
string::npos)endtime.replace(endtime.find_first_of("u", size), 1, "e-
6"); 

   else if (endtime.find_first_of("n", size) != 
string::npos)endtime.replace(endtime.find_first_of("n", size), 1, "e-
9"); 

 
   if (timeStepStr.find_first_of("m", size) != 

string::npos)timeStepStr.replace(timeStepStr.find_first_of("m", size), 
1, "e-3"); 

   else if (timeStepStr.find_first_of("u", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("u", size), 
1, "e-6"); 

   else if (timeStepStr.find_first_of("n", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("n", size), 
1, "e-9"); 

 
   double endTimes = stod(endtime); 
   double minTime = 10E-9; 
 
   double datStep = endTimes / testWave.length; 
   if (datStep <= 10e-9) datStep = 10e-9; 
 
 
   for (int i = 0; i < testWave.length; i++) 
   { 
 
     testDT.push_back(datStep); 
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     test2DT.push_back(datStep); 
     endCount += datStep; 
   } 
 
 
   double* dt1 = &testDT[0]; 
   double* dt2 = &test2DT[0]; 
 
   double* v1 = &testWave.waveData[0]; 
   double* v2 = &testWave2.waveData[0]; 
 
 
 
   double endTime = endCount; 
   endTime *= repeats; 
 
 
 
   WGFMU_createPattern(leader, 0); 
   WGFMU_createPattern(lagger, 0); 
 
   for (int i = 0; i < repeats; i++) 
   { 
     WGFMU_addVectors(leader, dt1, v1, testWave.length); //Account for 

repeats. 
     WGFMU_addVectors(lagger, dt2, v2, testWave2.length); 
   } 
 
   double timeStep = stod(timeStepStr); 
   if (timeStep <= 10e-9) timeStep = 10e-9; 
   int numPoints = endTime / timeStep; 
 
   // Set the measurement events for both channels 
 
   WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, timeStep - 

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
   WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, timeStep - 

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
 
 
   WGFMU_addSequence(101, leader, 1); // Add the waveform to WGFMU channel 1 
   WGFMU_addSequence(102, lagger, 1); 
 
   //ONLINE 
   WGFMU_initialize(); 
 
   // Set the operation mode for each channel 
   WGFMU_setOperationMode(101, WGFMU_OPERATION_MODE_FASTIV); 
   WGFMU_setOperationMode(102, WGFMU_OPERATION_MODE_FASTIV); 
 
   // B1500 Defaults to measuring voltage. Change it to current. Also set the 

resolution 
   // for the ADC in the WGFMU 
   WGFMU_setMeasureMode(101, WGFMU_MEASURE_MODE_VOLTAGE); 
   WGFMU_setMeasureMode(102, WGFMU_MEASURE_MODE_CURRENT); 
   WGFMU_setMeasureVoltageRange(101, WGFMU_MEASURE_VOLTAGE_RANGE_10V); 
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   if (currentRange == "1u" || currentRange == "1E-6" || currentRange == "1e-
6" || currentRange == "1uA" || currentRange == "1ua" || currentRange == 
"0.000001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1UA); 
   else if (currentRange == "10u" || currentRange == "10E-6" || currentRange 

== "10e-6" || currentRange == "10uA" || currentRange == "10ua" || 
currentRange == "0.00001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10UA); 
   else if (currentRange == "100u" || currentRange == "100E-6" || 

currentRange == "100e-6" || currentRange == "100uA" || currentRange == 
"100ua" || currentRange == "0.0001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_100UA); 
   else if (currentRange == "1m" || currentRange == "1E-3" || currentRange == 

"1e-3" || currentRange == "1mA" || currentRange == "1ma" || 
currentRange == "0.001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1MA); 
   else if (currentRange == "10m" || currentRange == "10E-3" || currentRange 

== "10e-3" || currentRange == "10mA" || currentRange == "10ma" || 
currentRange == "0.01") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   else 
   { 
     cout << "wat"; 
     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   } 
 
   WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE, 

WGFMU_TRIGGER_OUT_POLARITY_POSITIVE); 
   WGFMU_setTriggerOutEvent(leader, "trig", 0, 0); 
 
   WGFMU_connect(101); 
   WGFMU_connect(102); 
   WGFMU_execute(); 
   WGFMU_waitUntilCompleted(); 
 
 
   fnum++; 
} 
 
/* 
This is for STDP. Requires two files _ch1 and _ch2 
*/ 
void pulse4(string fname, string wAmp, string eAmp, string endtime, string 

timeStepStr, string currentRange, string repeatCount) 
{ 
   //string amplitude = ampl; 
   csvparse3(fname, stod(wAmp), stod(eAmp)); 
   WGFMU_clear(); 
   double endCount = 0; 
   int error = 1; 
   int curPeat = 0; 
   int wasZero = 1; 
   //int dtint = stoi(dt); 
   testWave2.waveData.push_back(0); 
   testWave.waveData.push_back(0); 
   double* v1 = &testWave.waveData[0]; 
   double* v2 = &testWave2.waveData[0]; 
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   int repeats = 1; 
   while (error == 1) 
   { 
     error = 0; 
     try 
     { 
       repeats = stoi(repeatCount); 
     } 
     catch (const std::invalid_argument& ia) 
     { 
       error = 1; 
       cout << "Invalid Repeat Count \n"; 
       cout << "Repeat Count: "; 
       cin >> repeatCount; 
       cout << "\n"; 
     } 
   } 
   error = 0; 
 
 
 
   vector<double> testDT; 
   vector<double> test2DT; 
   vector<double> zeroV = { 0, 0 }; 
   char* leader = "ch1"; 
   char* lagger = "ch2"; 
   int leaderch = 101; 
   int laggerch = 102; 
   string pulseParams = fname + "," + wAmp + "," + eAmp + "," + endtime + "," 

+ timeStepStr + "," + currentRange + "," + repeatCount; 
 
   size_t size = 0; 
 
   if (endtime.find_first_of("m", size) != 

string::npos)endtime.replace(endtime.find_first_of("m", size), 1, "e-
3"); 

   else if (endtime.find_first_of("u", size) != 
string::npos)endtime.replace(endtime.find_first_of("u", size), 1, "e-
6"); 

   else if (endtime.find_first_of("n", size) != 
string::npos)endtime.replace(endtime.find_first_of("n", size), 1, "e-
9"); 

 
   if (timeStepStr.find_first_of("m", size) != 

string::npos)timeStepStr.replace(timeStepStr.find_first_of("m", size), 
1, "e-3"); 

   else if (timeStepStr.find_first_of("u", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("u", size), 
1, "e-6"); 

   else if (timeStepStr.find_first_of("n", size) != 
string::npos)timeStepStr.replace(timeStepStr.find_first_of("n", size), 
1, "e-9"); 

 
 
   double minTime = 10E-9; 
   //double datStep = 10E-9; 
   double datStep = stod(endtime) / testWave.length; 
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   if (datStep <= 10e-9) datStep = 10e-9; 
   double bigStep = 3 * datStep; 
 
   /*if (datStep <= 14.49E-9) datStep = 10E-9; 
   else if (datStep <= 24.49E-9) datStep = 20E-9; 
   else if (datStep <= 34.49E-9) datStep = 30E-9; 
   else if (datStep <= 44.49E-9) datStep = 40E-9; 
   else if (datStep <= 54.49E-9) datStep = 50E-9; 
   else if (datStep <= 64.49E-9) datStep = 60E-9; 
   else if (datStep <= 74.49E-9) datStep = 70E-9;*/ 
 
 
 
   for (int i = 0; i < testWave.length; i++) 
   { 
     if (testWave.rawData[i]==-1) 
     { 
       testDT.push_back(datStep*10); 
       endCount += datStep*10; 
     } 
     else 
     { 
       testDT.push_back(datStep); 
       endCount += datStep; 
     } 
 
     if (testWave2.rawData[i] == -1) 
     { 
       test2DT.push_back(datStep * 10); 
     } 
     else 
     { 
       test2DT.push_back(datStep); 
     } 
   } 
 
   double* dt1 = &testDT[0]; 
   double* dt2 = &test2DT[0]; 
 
 
   //double endTime = datStep*testWave.length*repeats; 
 
 
 
   //double endTime = stod(endtime)*repeats; 
   //double endTime = testDT.size()*datStep; 
   double endTime = endCount; 
 
   //vector<double> zeroDT = { datStep, endTime }; 
   //double* zDT = &zeroDT[0]; 
   //double* zV = &zeroV[0]; 
   WGFMU_createPattern(leader, 0); 
   WGFMU_createPattern(lagger, 0); 
 
   //WGFMU_addVectors(leader, leaderdts, v1, 6); 
   for (int i = 0; i < repeats; i++) 
   { 
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     WGFMU_addVectors(leader, dt1, v1, testWave.length); //Account for 
repeats. 

     WGFMU_addVectors(lagger, dt2, v2, testWave.length); 
   } 
   //WGFMU_addVectors(lagger, zDT, zV, 2); 
 
 
   //double timeStep = window / (numPoints -1); 
   //double timeStep = 10E-9; 
   double timeStep = stod(timeStepStr); 
   if (timeStep <= 10e-9) timeStep = 10e-9; 
   //int numPoints = (endTime / timeStep); //was 100000 
   //int numPoints = (datStep*testDT.size())/timeStep; 
   int numPoints = endTime / timeStep; 
 
   // Set the measurement events for both channels 
   //WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, 0, 

WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
   //WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, 0, 

WGFMU_MEASURE_EVENT_DATA_AVERAGED); //no averaging 
   WGFMU_setMeasureEvent(leader, "evt", 0, numPoints, timeStep, timeStep - 

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
   WGFMU_setMeasureEvent(lagger, "evt2", 0, numPoints, timeStep, timeStep - 

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED); 
 
 
   WGFMU_addSequence(101, leader, 1); // Add the waveform to WGFMU channel 1 
   WGFMU_addSequence(102, lagger, 1); 
 
   //ONLINE 
   WGFMU_initialize(); 
 
   // Set the operation mode for each channel 
   WGFMU_setOperationMode(101, WGFMU_OPERATION_MODE_FASTIV); 
   WGFMU_setOperationMode(102, WGFMU_OPERATION_MODE_FASTIV); 
 
   // B1500 Defaults to measuring voltage. Change it to current. Also set the 

resolution 
   // for the ADC in the WGFMU 
   WGFMU_setMeasureMode(101, WGFMU_MEASURE_MODE_VOLTAGE); 
   WGFMU_setMeasureMode(102, WGFMU_MEASURE_MODE_CURRENT); 
   WGFMU_setMeasureVoltageRange(101, WGFMU_MEASURE_VOLTAGE_RANGE_10V); 
   if (currentRange == "1u" || currentRange == "1E-6" || currentRange == "1e-

6" || currentRange == "1uA" || currentRange == "1ua" || currentRange == 
"0.000001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1UA); 
   else if (currentRange == "10u" || currentRange == "10E-6" || currentRange 

== "10e-6" || currentRange == "10uA" || currentRange == "10ua" || 
currentRange == "0.00001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10UA); 
   else if (currentRange == "100u" || currentRange == "100E-6" || 

currentRange == "100e-6" || currentRange == "100uA" || currentRange == 
"100ua" || currentRange == "0.0001") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_100UA); 
   else if (currentRange == "1m" || currentRange == "1E-3" || currentRange == 

"1e-3" || currentRange == "1mA" || currentRange == "1ma" || 
currentRange == "0.001") 
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     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_1MA); 
   else if (currentRange == "10m" || currentRange == "10E-3" || currentRange 

== "10e-3" || currentRange == "10mA" || currentRange == "10ma" || 
currentRange == "0.01") 

     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   else 
   { 
     cout << "wat"; 
     WGFMU_setMeasureCurrentRange(102, WGFMU_MEASURE_CURRENT_RANGE_10MA); 
   } 
 
   WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE, 

WGFMU_TRIGGER_OUT_POLARITY_POSITIVE); 
   WGFMU_setTriggerOutEvent(leader, "trig", 0, 0); 
 
   WGFMU_connect(101); 
   WGFMU_connect(102); 
   WGFMU_execute(); 
   WGFMU_waitUntilCompleted(); 
   // Write the data to appropriate file 
   ostringstream thefilename; 
   ostringstream fileNumber; 
   fileNumber << setfill('0') << setw(3) << fnum; 
 
   //thefilename << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" 

<< dieNum << "/" << devNum << "/" << posAmplitude << "_" << 
abs(negAmplitude) << "_" << dT << units << ".csv"; 

   thefilename << rootF << dieNum << "/" << devNum << "/" << devNum << "_" << 
fname << "L_" << wAmp << "_" << eAmp << "_" << fileNumber.str() << 
".csv"; 

   //thefilename << "C:/Users/koltondrake/Documents/STDP/STDP_data/" << 
"resultant/" << devNum << "/" << curAmp << "_" << fnum << ".csv"; 

   string f_name = thefilename.str(); 
 
   writeResults2ChannelP(101, 102, f_name.c_str(), pulseParams); 
   //int ret = WGFMU_exportAscii(f_name.c_str()); 
 
   thefilename.str(""); 
   thefilename.clear(); 
   fileNumber.str(""); 
   fileNumber.clear(); 
   fnum++; 
} 
 
/* 
This is for printing resultant waves. Requires two files _ch1 and _ch2 
*/ 
void resultant(string fname, string wAmp, string eAmp) 
{ 
   //string amplitude = ampl; 
   csvparse3(fname, stod(wAmp), stod(eAmp)); 
   int l = fname.length() - 1; 
   //WGFMU_clear(); 
   string outputF = fname.replace(2,1,"RL"); 
   cout << "\n" << outputF << "\n"; 
 
   double endCount = 0; 
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   testWave2.waveData.push_back(0); 
   testWave.waveData.push_back(0); 
   double* v1 = &testWave.waveData[0]; 
   double* v2 = &testWave2.waveData[0]; 
 
 
   vector<double> actualT; 
   vector<double> actualV1; 
   vector<double> actualV2; 
   //actualT.push_back(0); 
   //actualV1.push_back(0); 
   //actualV2.push_back(0); 
 
 
   vector<double> testDT; 
   vector<double> test2DT; 
   vector<double> zeroV = { 0, 0 }; 
 
   size_t size = 0; 
    
   double minTime = 10E-9; 
   //double datStep = 10E-9; 
   double datStep = 50e-9; 
   //double datStep = 10e-9; 
    
   for (int i = 0; i < testWave.length; i++) 
   { 
     if (testWave.rawData[i] == -1) 
     { 
       for (int j = 0; j < 10; j++) 
       { 
         double tempV = (((double)j + 1) / 10)*-2 + 1; 
         actualV1.push_back(tempV); 
 
         testDT.push_back(datStep); 
         actualT.push_back(endCount); 
         endCount += datStep; 
       } 
     } 
     else 
     { 
       actualV1.push_back(testWave.rawData[i]); 
       testDT.push_back(datStep); 
       actualT.push_back(endCount); 
       endCount += datStep; 
     } 
 
     if (testWave2.rawData[i] == -1) 
     { 
       for (int j = 0; j < 10; j++) 
       { 
         double tempV = (((double)j + 1) / 10)*-2 + 1; 
         actualV2.push_back(tempV); 
 
         test2DT.push_back(datStep); 
       } 
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     } 
     else 
     { 
       actualV2.push_back(testWave2.rawData[i]); 
       test2DT.push_back(datStep); 
     } 
   } 
   double* actT = &actualT[0]; 
   double* actV1 = &actualV1[0]; 
   double* actV2 = &actualV2[0]; 
   double* dt1 = &testDT[0]; 
   double* dt2 = &test2DT[0]; 
   double endTime = endCount; 
   double timeStep = 50e-9; 
   int numPoints = endTime / timeStep; 
 
   cout << "V\t" << "T\n"; 
   for (int i = 0; i < numPoints; i++) 
   { 
     cout << actV1[i]-actV2[i] << "\t" << actT[i] << "\n"; 
   } 
 
   ostringstream thefilename; 
    
   thefilename << rootF << dieNum << "/" << devNum << "/" << outputF 

<<"_ch2.csv"; 
    
   string f_name = thefilename.str(); 
 
   FILE* fp = fopen(f_name.c_str(), "w"); 
   if (fp != 0) 
   { 
     fprintf(fp, "V1, T\n"); 
     for (int i = 0; i < numPoints; i++) 
     { 
       if (i == 0) 
       { 
         fprintf(fp, "%.9lf,", 0); 
         fprintf(fp, "VOLATILE,1,0.1,0,%i\n",numPoints); 
       } 
       else fprintf(fp, "%.9lf\n", 0); 
     } fclose(fp); 
   } 
    
   //int ret = WGFMU_exportAscii(f_name.c_str()); 
 
   thefilename.str(""); 
   thefilename.clear(); 
   actualT.clear(); 
   actualV1.clear(); 
   actualV2.clear(); 
   //actualT.push_back(0); 
   //actualV1.push_back(0); 
   //actualV2.push_back(0); 
 
 
   testDT.clear(); 
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   test2DT.clear(); 
   fnum++; 
} 
 
 
 
double dcSweep2(double amplitude, double compliance, int pts, string 

testName){ 
 
   ViSession defaultRM, vi; 
   viOpenDefaultRM(&defaultRM); 
   viOpen(defaultRM, "GPIB0::17::INSTR", VI_NULL, VI_NULL, &vi); 
 
   viPrintf(vi, "*RST\n"); 
 
   viPrintf(vi, "CN 2,3\n"); 
 
   // Set ch2 to sweep measure mode (mode=2) 
   // Params: mode(sweep),chnum 
   viPrintf(vi, "MM 2,2\n"); 
 
   // Set ch2 sweep parameters 
   char dcString[100]; 
   sprintf(dcString, "WV 2,1,200,0,%f,%i,%e\n", amplitude, pts, compliance); 
   //cout << dcString; 
   ostringstream os; 
   //os << "WV 2,1,0,0," << amplitude << ",51," << compliance << "\n"; 
   //string sweepParam = os.str(); 
   string sweepParam = dcString; 
   // Params: chnum,mode(linear),range(auto),start,stop,step,icomp 
   viPrintf(vi, (char*)sweepParam.c_str()); // A little magic necessary to 

turn string into Char* 
 
   os.str(""); 
   os.clear(); 
 
   // Force 0V at ch3 with auto-ranging and 100mA current limit. 
   viPrintf(vi, "DV 3,0,0,0.1\n"); 
 
   // Set format to return 12 digits with a header, and return the sourcing 
   // data   
   // Params: format, mode 
   viPrintf(vi, "FMT 2,1\n"); // Terminator = <CR/LF^EOI>/ 
 
   viPrintf(vi, "XE\n"); 
 
   char buf[102800]; 
 
   viScanf(vi, "%s", &buf); 
   //       cout << deltaT << "\n"; 
 
   // Write the data to output 
   string s = buf; 
   std::stringstream ss(s); 
   std::string item; 
   vector<string> elems; 
   while (std::getline(ss, item, ',')) { 
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     elems.push_back(item); 
   } 
 
   // Write the data to appropriate file 
 
   string tmp = testName; 
   int nameLength = tmp.length(); 
 
   // make sure that the files are in a nice order 
   if (nameLength < 2) 
   { 
     //os << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" << 

dieNum << "/" << devNum << "/Sweep_" << "0" << testName << ".csv"; 
     os << rootF << dieNum << "/" << devNum << "/" << devNum << "0_" << 

testName<< ".csv"; 
   } 
   else 
   { 
     //os << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" << 

dieNum << "/" << devNum << "/Sweep_" << testName << ".csv"; 
     os << rootF << dieNum << "/" << devNum << "/" << devNum << "_" << 

testName << ".csv"; 
   } 
   //os << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" << dieNum 

<< "/" << devNum << "summary.csv"; 
 
   string f_name = os.str(); 
 
   os.str(""); 
   os.clear(); 
   double R_avg = 0; 
 
   FILE *fp = fopen(f_name.c_str(), "w"); 
 
   int cnt = 1; 
   fprintf(fp, "V,I,R,G\n"); 
 
   for (int i = 0; i < elems.size() - 1; i += 2) 
   { 
     double vol = stod(elems[i + 1]); // Source data is returned after the 

force data 
     double cur = stod(elems[i]); 
     while (cur == 0) 
     { 
       if (elems.size() > (i + 2 * cnt)) cur = stod(elems[i + 2 * cnt]); 
       else if ((i - 2 * cnt) >= 0) cur = stod(elems[i - 2 * cnt]); 
       cnt++; 
     } 
     double res = abs(vol / cur); 
     // Check for indeterminite or infinite values. 
     if (isinf(res)) cout << "Infinite Value Supressed\n"; 
     if (isnan(res))   cout << "indeterminate value supressed"; 
     if (res == 0)res = 1; 
     R_avg += isinf(res) || isnan(res) ? 1 : res; 
     //fp << vol << "," << cur << "," << abs(res) << "\n"; 
     fprintf(fp, "%f,%e,%f,%e\n", vol, cur, res, 1 / res); 
     //cout << vol << "\t" << cur << "\t" << res << "\n"; 
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     //fp << elems[i + 1] << "," << elems[i] << "\n"; 
     //cout << elems[i + 1] << "\t" << elems[i] << "\n"; 
   } 
   R_avg /= elems.size() - 2; 
   R_avg *= 2; 
   cout << "\tLast\tI: \t" << elems[elems.size() - 2] << "\n"; 
   cout << "\tAverage\tR: \t" << R_avg << "\n"; 
   fprintf(fp, ",R_avg,%f\n", R_avg); 
   //fp.close(); 
   fclose(fp); 
   //dcnum++; 
   //cout << buf; 
 
   viPrintf(vi, "CL 2,3\n"); 
 
   viClose(vi); 
   viClose(defaultRM); 
   return abs(R_avg); 
} 
 
 
//ColdT dcsweep. 
double dcSweep3(double amplitude, double compliance, int pts, string 

testName){ 
 
   ViSession defaultRM, vi; 
   viOpenDefaultRM(&defaultRM); 
   viOpen(defaultRM, "GPIB0::17::INSTR", VI_NULL, VI_NULL, &vi); 
 
   viPrintf(vi, "*RST\n"); 
 
   //Enable slots 2 and 3 
   viPrintf(vi, "CN 2,3\n"); 
 
   //Set slot 2 to sweep measure mode (mode=2) (Vtop) 
   //Params: mode(sweep),chnum 
   //MM works off of slots;  
   viPrintf(vi, "MM 2,2\n"); 
 
 
 
   // Set slot 3 (SMU 1) sweep parameters 
   char dcString[100]; 
 
   if (abs(amplitude) <= 500e-3) 
   { 
     //Sets ADC Integration settings. 
     //Syntax: AIT type,mode[,N] 
     //Type = 1: High-Resolution A/D 
     //Mode = 1: Manual 
     //N = Number of averages. 
     viPrintf(vi, "AIT 1,1,100\n"); //High-Res A/Ds average 20 times. 
     //Specifies ADC type for each channel. 
     //Syntax: AAD chnum[, type] 
     viPrintf(vi, "AAD 2,1\n"); //Sets slot 2 to High Res 
     viPrintf(vi, "AAD 3,1\n"); //Sets slot 3 to High Res 
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     //0.5V Limited autoranging 
     sprintf(dcString, "WV 2,1,5,0,%f,%i,%e\n", amplitude, pts, compliance); 
   } 
   else if (abs(amplitude) <= 5) 
   { 
     //Sets ADC Integration settings. 
     //Syntax: AIT type,mode[,N] 
     //Type = 1: High-Resolution A/D 
     //Mode = 1: Manual 
     //N = Number of averages. 
     viPrintf(vi, "AIT 1,1,50\n"); //High-Res A/Ds average 50 times. 
     //Specifies ADC type for each channel. 
     //Syntax: AAD chnum[, type] 
     viPrintf(vi, "AAD 2,1\n"); //Sets slot 2 to High Res 
     viPrintf(vi, "AAD 3,1\n"); //Sets slot 3 to High Res 
     //5V limited autoranging 
     sprintf(dcString, "WV 2,1,50,0,%f,%i,%e\n", amplitude, pts, compliance); 
   } 
   else 
   { 
     //Sets ADC Integration settings. 
     //Syntax: AIT type,mode[,N] 
     //Type = 1: High-Resolution A/D 
     //Mode = 1: Manual 
     //N = Number of averages. 
     viPrintf(vi, "AIT 1,1,50\n"); //High-Res A/Ds average 50 times. 
     //Specifies ADC type for each channel. 
     //Syntax: AAD chnum[, type] 
     viPrintf(vi, "AAD 2,1\n"); //Sets slot 2 to High Res 
     viPrintf(vi, "AAD 3,1\n"); //Sets slot 3 to High Res 
     sprintf(dcString, "WV 2,1,200,0,%f,%i,%e\n", amplitude, pts, 

compliance); 
   } 
 
   //cout << dcString; 
   ostringstream os; 
   //os << "WV 2,1,0,0," << amplitude << ",51," << compliance << "\n"; 
   //string sweepParam = os.str(); 
   string sweepParam = dcString; 
   // Params: chnum,mode(linear),range(auto),start,stop,step,icomp 
   viPrintf(vi, (char*)sweepParam.c_str()); // A little magic necessary to 

turn string into Char* 
 
   os.str(""); 
   os.clear(); 
 
   // Force 0V at slot3 (SMU 2) with auto-ranging and 100mA current limit. 
   viPrintf(vi, "DV 3,0,0,0.1\n"); 
 
   // Set format to return 12 digits with a header, and return the sourcing 
   // data   
   // Params: format, mode 
   viPrintf(vi, "FMT 2,1\n"); // Terminator = <CR/LF^EOI>/ 
 
   viPrintf(vi, "XE\n"); 
 
   char buf[102800]; 
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   viScanf(vi, "%s", &buf); 
   //       cout << deltaT << "\n"; 
 
   // Write the data to output 
   string s = buf; 
   std::stringstream ss(s); 
   std::string item; 
   vector<string> elems; 
   while (std::getline(ss, item, ',')) { 
     elems.push_back(item); 
   } 
 
   // Write the data to appropriate file 
 
   string tmp = testName; 
   int nameLength = tmp.length(); 
 
   // make sure that the files are in a nice order 
   os << rootF << dieNum << "_" << devNum << "_" << testName << "_" << 

temperature << ".csv"; 
 
   string f_name = os.str(); 
 
   os.str(""); 
   os.clear(); 
   double R_avg = 0; 
 
   FILE *fp = fopen(f_name.c_str(), "w"); 
 
   fprintf(fp, "V,I,R,G\n"); 
   int cnt = 1; 
 
   for (int i = 0; i < elems.size() - 1; i += 2) 
   { 
     double vol = stod(elems[i + 1]); // Source data is returned after the 

force data 
     double cur = stod(elems[i]); 
     while (cur == 0) 
     { 
       if(elems.size() > (i + 2*cnt)) cur = stod(elems[i + 2*cnt]); 
       else if ((i - 2 * cnt) >= 0) cur = stod(elems[i - 2 * cnt]); 
       cnt++; 
     } 
     double res = abs(vol / cur); 
     // Check for indeterminite or infinite values. 
     if (isinf(res)) cout << "Infinite Value Supressed\n"; 
     if (isnan(res))   cout << "indeterminate value supressed"; 
     if (res == 0) res = 1; 
      
     R_avg += isinf(res) || isnan(res) ? 1 : res; 
     //fp << vol << "," << cur << "," << abs(res) << "\n"; 
     fprintf(fp, "%f,%e,%f,%e\n", vol, cur, res, 1 / res); 
     //cout << vol << "\t" << cur << "\t" << res << "\n"; 
 
     //fp << elems[i + 1] << "," << elems[i] << "\n"; 
     //cout << elems[i + 1] << "\t" << elems[i] << "\n"; 
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   } 
   R_avg /= elems.size() - 2; 
   R_avg *= 2; 
   cout << "\tLast\tI: \t" << elems[elems.size() - 2] << "\n"; 
   cout << "\tAverage\tR: \t" << R_avg << "\n"; 
   fprintf(fp, ",R_avg,%f\n", R_avg); 
   //fp.close(); 
   fclose(fp); 
   dcnum++; 
   //cout << buf; 
 
   viPrintf(vi, "CL 2,3\n"); 
 
   viClose(vi); 
   viClose(defaultRM); 
   return abs(R_avg); 
} 
 
 
 
double dcSweep4(double amplitude, double compliance, int pts, string 

testName){ 
 
   ViSession defaultRM, vi; 
   viOpenDefaultRM(&defaultRM); 
   viOpen(defaultRM, "GPIB0::17::INSTR", VI_NULL, VI_NULL, &vi); 
 
   viPrintf(vi, "*RST\n"); 
 
   //Enable slots 2 and 3 
   viPrintf(vi, "CN 2,3\n"); 
 
   //Set slot 2 to sweep measure mode (mode=2) (Vtop) 
   //Params: mode(sweep),chnum 
   //MM works off of slots;  
   viPrintf(vi, "MM 2,2\n"); 
   ostringstream dcNum; 
 
   dcNum << setfill('0') << setw(3) << dcnum; 
 
   // Set slot 3 (SMU 1) sweep parameters 
   char dcString[100]; 
 
   if (abs(amplitude) <= 500e-3) 
   { 
     //Sets ADC Integration settings. 
     //Syntax: AIT type,mode[,N] 
     //Type = 1: High-Resolution A/D 
     //Mode = 1: Manual 
     //N = Number of averages. 
     viPrintf(vi, "AIT 1,1,20\n"); //High-Res A/Ds average 20 times. 
     //Specifies ADC type for each channel. 
     //Syntax: AAD chnum[, type] 
     viPrintf(vi, "AAD 2,1\n"); //Sets slot 2 to High Res 
     viPrintf(vi, "AAD 3,1\n"); //Sets slot 3 to High Res 
     //0.5V Limited autoranging 
     sprintf(dcString, "WV 2,1,5,0,%f,%i,%e\n", amplitude, pts, compliance); 
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   } 
   else if (abs(amplitude) <= 5) 
   { 
     //Sets ADC Integration settings. 
     //Syntax: AIT type,mode[,N] 
     //Type = 1: High-Resolution A/D 
     //Mode = 1: Manual 
     //N = Number of averages. 
     viPrintf(vi, "AIT 1,1,50\n"); //High-Res A/Ds average 50 times. 
     //Specifies ADC type for each channel. 
     //Syntax: AAD chnum[, type] 
     viPrintf(vi, "AAD 2,1\n"); //Sets slot 2 to High Res 
     viPrintf(vi, "AAD 3,1\n"); //Sets slot 3 to High Res 
     //5V limited autoranging 
     sprintf(dcString, "WV 2,1,50,0,%f,%i,%e\n", amplitude, pts, compliance); 
   } 
   else 
   { 
     //Sets ADC Integration settings. 
     //Syntax: AIT type,mode[,N] 
     //Type = 1: High-Resolution A/D 
     //Mode = 1: Manual 
     //N = Number of averages. 
     viPrintf(vi, "AIT 1,1,50\n"); //High-Res A/Ds average 50 times. 
     //Specifies ADC type for each channel. 
     //Syntax: AAD chnum[, type] 
     viPrintf(vi, "AAD 2,1\n"); //Sets slot 2 to High Res 
     viPrintf(vi, "AAD 3,1\n"); //Sets slot 3 to High Res 
     sprintf(dcString, "WV 2,1,200,0,%f,%i,%e\n", amplitude, pts, 

compliance); 
   } 
 
   //cout << dcString; 
   ostringstream os; 
   //os << "WV 2,1,0,0," << amplitude << ",51," << compliance << "\n"; 
   //string sweepParam = os.str(); 
   string sweepParam = dcString; 
   // Params: chnum,mode(linear),range(auto),start,stop,step,icomp 
   viPrintf(vi, (char*)sweepParam.c_str()); // A little magic necessary to 

turn string into Char* 
 
   os.str(""); 
   os.clear(); 
 
   // Force 0V at slot3 (SMU 2) with auto-ranging and 100mA current limit. 
   viPrintf(vi, "DV 3,0,0,0.1\n"); 
 
   // Set format to return 12 digits with a header, and return the sourcing 
   // data   
   // Params: format, mode 
   viPrintf(vi, "FMT 2,1\n"); // Terminator = <CR/LF^EOI>/ 
 
   viPrintf(vi, "XE\n"); 
 
   char buf[102800]; 
 
   viScanf(vi, "%s", &buf); 



96 
 

 
 

   //       cout << deltaT << "\n"; 
 
   // Write the data to output 
   string s = buf; 
   std::stringstream ss(s); 
   std::string item; 
   vector<string> elems; 
   while (std::getline(ss, item, ',')) { 
     elems.push_back(item); 
   } 
 
   // Write the data to appropriate file 
 
   string tmp = testName; 
   int nameLength = tmp.length(); 
 
   // make sure that the files are in a nice order 
   //os << rootF << dieNum << "_" << devNum << "_" << testName << "_" << 

dcNum.str() << ".csv"; //ColdT name 
    
   //Old Version 11AM 1-28 
   ostringstream fileNumber; 
   fileNumber << setfill('0') << setw(3) << fnum; 
    
   //os << rootF << dieNum << "/" << devNum << "/" << devNum << "_" << 

testName << "_" << fileNumber.str() << ".csv"; 
    
   //New Version 
   os << rootF << dieNum << "/" << devNum << "_" << testName <<  "_" << 

fileNumber.str() << ".csv"; 
 
   string f_name = os.str(); 
 
   os.str(""); 
   os.clear(); 
   double R_avg = 0; 
 
   FILE *fp = fopen(f_name.c_str(), "w"); 
 
   fprintf(fp, "V,I,R,G\n"); 
   int cnt = 1; 
 
   //Often, the first 5 points or so will have the SMU in a different range 

than is required. 
   //For many-point sweeps, tossing out these points gives a more accurate 

measurement. 
   int firstAvgToss = 10; 
    
   if (pts > 50) firstAvgToss = 10; 
   else firstAvgToss = 0; 
 
 
 
   for (int i = 0; i < elems.size() - 1; i += 2) 
   { 
     double vol = stod(elems[i + 1]); // Source data is returned after the 

force data 
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     double cur = stod(elems[i]); 
     while (cur == 0) 
     { 
       if (elems.size() >(i + 2 * cnt)) cur = stod(elems[i + 2 * cnt]); 
       else if ((i - 2 * cnt) >= 0) cur = stod(elems[i - 2 * cnt]); 
       cnt++; 
     } 
     double res = abs(vol / cur); 
     // Check for indeterminite or infinite values. 
     if (isinf(res)) cout << "Infinite Value Supressed\n"; 
     if (isnan(res))   cout << "indeterminate value supressed"; 
     if (res == 0) res = 1; 
 
     if(i>firstAvgToss+1) R_avg += isinf(res) || isnan(res) ? 1 : res; 
     //fp << vol << "," << cur << "," << abs(res) << "\n"; 
     fprintf(fp, "%f,%e,%f,%e\n", vol, cur, res, 1 / res); 
     //cout << vol << "\t" << cur << "\t" << res << "\n"; 
 
     //fp << elems[i + 1] << "," << elems[i] << "\n"; 
     //cout << elems[i + 1] << "\t" << elems[i] << "\n"; 
   } 
 
   R_avg /= elems.size() - 2 + firstAvgToss; 
   R_avg *= 2; 
   cout << "\tLast\tI: \t" << elems[elems.size() - 2] << "\n"; 
   cout << "\tAverage\tR: \t" << R_avg << "\n"; 
   fprintf(fp, ",R_avg,%f\n", R_avg); 
   //fp.close(); 
   fclose(fp); 
   dcnum++; 
   //cout << buf; 
   fileNumber.str(""); 
   fileNumber.clear(); 
   fnum++; 
   viPrintf(vi, "CL 2,3\n"); 
 
   viClose(vi); 
   viClose(defaultRM); 
   return abs(R_avg); 
} 
 
double dcSweep(double amplitude, double compliance, int pts, string 

testName){ 
 
   ViSession defaultRM, vi; 
   viOpenDefaultRM(&defaultRM); 
   viOpen(defaultRM, "GPIB0::17::INSTR", VI_NULL, VI_NULL, &vi); 
 
   viPrintf(vi, "*RST\n"); 
 
   viPrintf(vi, "CN 2,3\n"); 
 
   // Set ch2 to sweep measure mode (mode=2) 
   // Params: mode(sweep),chnum 
   //MM works off of slots;  
   viPrintf(vi, "MM 2,2\n"); 
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   // Set slot 3 (SMU 1) sweep parameters 
   char dcString[100]; 
   sprintf(dcString, "WV 2,1,200,0,%f,%i,%e\n", amplitude, pts, compliance); 
   //cout << dcString; 
   ostringstream os; 
   //os << "WV 2,1,0,0," << amplitude << ",51," << compliance << "\n"; 
   //string sweepParam = os.str(); 
   string sweepParam = dcString; 
   // Params: chnum,mode(linear),range(auto),start,stop,step,icomp 
   viPrintf(vi, (char*)sweepParam.c_str()); // A little magic necessary to 

turn string into Char* 
 
   os.str(""); 
   os.clear(); 
 
   // Force 0V at slot3 (SMU 2) with auto-ranging and 100mA current limit. 
   viPrintf(vi, "DV 3,0,0,0.1\n"); 
 
   // Set format to return 12 digits with a header, and return the sourcing 
   // data   
   // Params: format, mode 
   viPrintf(vi, "FMT 2,1\n"); // Terminator = <CR/LF^EOI>/ 
 
   viPrintf(vi, "XE\n"); 
 
   char buf[102800]; 
 
   viScanf(vi, "%s", &buf); 
   //       cout << deltaT << "\n"; 
 
   // Write the data to output 
   string s = buf; 
   std::stringstream ss(s); 
   std::string item; 
   vector<string> elems; 
   while (std::getline(ss, item, ',')) { 
     elems.push_back(item); 
   } 
    
   // Write the data to appropriate file 
 
   string tmp = testName; 
   int nameLength = tmp.length(); 
 
   // make sure that the files are in a nice order 
   if (nameLength < 2) 
   { 
     //os << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" << 

dieNum << "/" << devNum << "/Sweep_" << "0" << testName << ".csv"; 
     os << rootF << dieNum << "/" << devNum << "/" << devNum << "_sweep_" << 

"0" << testName << "_"<< dcnum << ".csv"; 
   } 
   else 
   { 
     //os << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" << 

dieNum << "/" << devNum << "/Sweep_" << testName << ".csv"; 
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     os << rootF << dieNum << "/" << devNum << "/" << devNum << "_sweep_" << 
testName << "_" << dcnum << ".csv"; 

   } 
   //os << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Wafer10/" << dieNum 

<< "/" << devNum << "summary.csv"; 
 
   string f_name = os.str(); 
 
   os.str(""); 
   os.clear(); 
   double R_avg = 0; 
 
   FILE *fp = fopen(f_name.c_str(), "w"); 
 
   fprintf(fp, "V,I,R,G\n"); 
   int cnt = 1; 
   for (int i = 0; i < elems.size() - 1; i += 2) 
   { 
     double vol = stod(elems[i + 1]); // Source data is returned after the 

force data 
     double cur = stod(elems[i]); 
     while (cur == 0) 
     { 
       if (elems.size() > (i + 2 * cnt)) cur = stod(elems[i + 2 * cnt]); 
       else if ((i - 2 * cnt) >= 0) cur = stod(elems[i - 2 * cnt]); 
       cnt++; 
     } 
     double res = abs(vol / cur); 
     // Check for indeterminite or infinite values. 
     if (isinf(res)) cout << "Infinite Value Supressed\n"; 
     if (isnan(res))   cout << "indeterminate value supressed"; 
     if (res == 0)res = 1; 
     R_avg += isinf(res) || isnan(res) ? 1 : res; 
     //fp << vol << "," << cur << "," << abs(res) << "\n"; 
     fprintf(fp, "%f,%e,%f,%e\n", vol, cur, res, 1 / res); 
     //cout << vol << "\t" << cur << "\t" << res << "\n"; 
 
     //fp << elems[i + 1] << "," << elems[i] << "\n"; 
     //cout << elems[i + 1] << "\t" << elems[i] << "\n"; 
   } 
   R_avg /= elems.size()-2; 
   R_avg *= 2; 
   cout << "\tLast\tI: \t" << elems[elems.size() - 2] << "\n"; 
   cout << "\tAverage\tR: \t" << R_avg << "\n"; 
   fprintf(fp, ",R_avg,%f\n", R_avg); 
   //fp.close(); 
   fclose(fp); 
   dcnum++; 
   //cout << buf; 
 
   viPrintf(vi, "CL 2,3\n"); 
 
   viClose(vi); 
   viClose(defaultRM); 
   return abs(R_avg); 
} 
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void resetTests(int numTests, double riseTime, double fallTime, double 
widthAtHalfMax, double tail, double posAmplitude, double negAmplitude, 
double writeScale) 

{ 
   vector<int> testNums; 
   vector<double> deltaGs; 
   double deltaG; 
   double maxG; 
   double thisG = 1 / dcSweep(20E-3, 10E-3, 51, "Init"); // Get an initial 

conductance reading 
   maxG = thisG; 
   double previousG; 
 
   double deltaT; 
   cout << "Enter a spike timing interval to test: "; 
   cin >> deltaT; 
   int k = 1; 
   int m = 2; 
 
   for (int i = 1; i <= numTests; i++) { 
 
     testNums.push_back(i); 
 
     createSpikes(riseTime, fallTime, widthAtHalfMax, tail, posAmplitude, 

negAmplitude, deltaT, writeScale, to_string(k)); 
     previousG = thisG; 
     thisG = 1 / dcSweep(20E-3, 10E-3, 51, to_string(k)); 
     maxG = thisG > maxG ? thisG : maxG; 
 
     deltaG = (thisG - previousG); 
     deltaGs.push_back(deltaG); // change in conductance calculation 
 
     createSpikes(riseTime, fallTime, widthAtHalfMax, tail, posAmplitude, 

negAmplitude, 12E-3, writeScale, to_string(m)); 
     previousG = thisG; 
     thisG = 1 / dcSweep(20E-3, 10E-3, 51, to_string(m)); 
     k += 2; 
     m += 2; 
   } 
   double scaleFactor = 100 / maxG; 
 
   transform(deltaGs.begin(), deltaGs.end(), deltaGs.begin(), 

std::bind1st(multiplies<double>(), scaleFactor)); 
 
   ostringstream summary_filename; 
   //summary_filename << "L:/MEC 107 Data/STDP/" << testID << 

"/1006301/Wafer10/" << dieNum << "/" << devNum << "/" << devNum << 
"_summary.csv"; 

   //summary_filename << "C:/Users/koltondrake/Documents/STDP/STDP_data/" << 
testID << "/1006301/Wafer10/" << dieNum << "/" << devNum << "/" << 
devNum << "_summary.csv"; 

   summary_filename << rootF << dieNum << "/" << devNum << "/" << devNum << 
"_summary.csv"; 

   string fname = summary_filename.str(); 
   ofstream fp; 
   fp.open(fname); 
   fp << "Test #,dG\n"; 
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   for (int i = 0; i < testNums.size(); i++) 
   { 
     fp << testNums[i] << "," << deltaGs[i] << "\n"; 
   } 
   fp.close(); 
   summary_filename.str(""); 
   summary_filename.clear(); 
} 
 
// Make sure that if the window is closed or the process is stopped the VISA 

resources 
// are shut down 
BOOL CtrlHandler(DWORD) 
{ 
   //MessageBox(NULL, "Program closed", "Message", MB_ICONEXCLAMATION | 

MB_OK); 
   WGFMU_closeSession(); 
   viClose(vi); 
   viClose(defaultRM); 
   FILE *f = fopen("C:/Users/koltondrake/Desktop/dump.txt", "w"); 
   fprintf(f, "Program Didn't End Well"); 
   exit(-1); 
} 
 
 
int introQuery() 
{ 
   SetConsoleCtrlHandler((PHANDLER_ROUTINE)&CtrlHandler, TRUE); 
 
   try{ 
     ViSession defaultRM, vi; 
     viOpenDefaultRM(&defaultRM); 
     //viOpen(defaultRM, "GPIB0::17::INSTR", VI_NULL, VI_NULL, &vi); 
     viOpen(defaultRM, "GPIB0::17::INSTR", VI_NULL, VI_NULL, &vi); 
     viPrintf(vi, "*RST\n"); 
     viClose(vi); 
     viClose(defaultRM); 
 
     int ch1 = 101; 
     int ch2 = 102; 
     string shouldCondition; 
     cout << "What is the test identifier for this test?\n"; 
     cin >> testID; 
     cout << "DIE NUMBER (in the form DieXX, where XX is the number)\n"; 
     cin >> dieNum; 
     cout << "Device Number (in the form DevXX, where XX is the number)\n"; 
     cin >> devNum; 
     cout << "Would you like to condition the device before running learning 

spikes? Y/N\n"; 
     cin >> shouldCondition; 
     //     //transform(shouldCondition.begin(), 

shouldCondition.end(),shouldCondition.begin(),::tolower); 
     // Set the full width half max parameters (for the positive going spike) 
     double widthAtHalfMax = 10E-3; 
     double riseTime = 9E-3; 
     double fallTime = 9E-3; 
     double posAmplitude = 0.3; 



102 
 

 
 

     double negAmplitude = -.2; 
     double tail = 22E-3; 
 
     // Set the maximum deltaT that you want to test.  
     double maxDT = 40E-3; 
 
     // Set the number of tests to run (this will be used to sample at even 

intevals between the min 
     // and max deltaT values). Remember that these tests are double sided, 

so both the positive and  
     // negative side will be run, resulting in twice as many tests as you 

say. The endpoints of your 
     // test range will always be run, so take this into account if you'd 

like all of the intermediate 
     // test numbers to be 'nice' numbers.  
     int numTests = 5; // You always probably mean to do one more than you 

think (think ends) 
 
     //WGFMU_openSession("GPIB0::17::INSTR"); 
     WGFMU_openSession("GPIB0::17::INSTR"); 
     if (shouldCondition == "y") 
     { 
       double R1 = dcSweep(20E-3, 10E-3, 51, "R1"); 
       double W1 = dcSweep(2, 1E-6, 51, "W1"); 
       double R2 = dcSweep(20E-3, 10E-3, 51, "R2"); 
       double E1 = dcSweep(-1, 20E-6, 51, "E1"); 
       double R3 = dcSweep(20E-3, 10E-3, 51, "R3"); 
       double W2 = dcSweep(2, 1E-6, 51, "W2"); 
       double R4 = dcSweep(20E-3, 10E-3, 51, "R4"); 
     } 
     string tnum = "test0"; 
     //     createSpikes(riseTime, fallTime, widthAtHalfMax, tail, 

posAmplitude, negAmplitude,40E-3,1.0,tnum ); 
     runStdpSuite(maxDT, numTests, riseTime, fallTime, widthAtHalfMax, tail, 

posAmplitude, negAmplitude); 
     //     resetTests(numTests, riseTime, fallTime, widthAtHalfMax, tail, 

posAmplitude, negAmplitude,1.0); 
     dcSweep(2, 20E-6, 51, "conditioning"); 
     //dcSweep(20E-3, 10E-3, "read"); 
     WGFMU_initialize(); //WGFMU_disconnect(101); 
     WGFMU_closeSession(); 
   } 
   catch (...) { 
     WGFMU_closeSession(); 
     viClose(vi); 
     viClose(defaultRM); 
     FILE *f = fopen("C:/Users/koltondrake/Desktop/dump.txt", "w"); 
     fprintf(f, "Program Didn't End Well"); 
     exit(-1); 
   } 
} 
 
int csvparse(string cmd,double amplitude, int dt) 
{ 
   string line, filename = "C:/Users/koltondrake/Documents/STDP/stdp_A1.csv"; 
   if (cmd != "w"||cmd!="e" ) 
   { 
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     filename = "C:/Users/koltondrake/Documents/STDP/"+cmd+".csv"; 
   } 
   vector<string> row; 
   double amplitudeL = amplitude; 
   //if (cmd == "w" && amplitudeL<0) amplitudeL *= -1; 
   //if (cmd == "e" && amplitudeL>0) amplitudeL *= -1; 
   curAmp = amplitudeL; 
   ifstream in(filename); 
   if (in.fail())  { cout << "File not found" << endl; return 0; } 
   int rowCount = 0; 
   string::size_type sz; 
   double d; 
   testWave.waveData.clear(); 
   testWave2.waveData.clear(); 
 
 
   while (getline(in, line) && in.good()) 
   { 
     csvline_populate(row, line, ','); 
     rowCount++; 
 
     if (rowCount == 2) 
     { 
       int leng = row.size(); 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            //break; 
         } 
         if (i == 2) 
         { 
            testWave.freq = d; 
            testWave2.freq = d; 
         } 
         if (i == 3) 
         { 
            testWave.amp = d; 
            testWave2.amp = d; 
         } 
         if (i == 4) 
         { 
            testWave.offset = d; 
            testWave2.offset = d; 
         } 
         if (i == 5) 
         { 
            testWave.length = (int)d; 
            testWave2.length = (int)d; 
         } 
       } 
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     } 
 
 
     int leng = row.size(); 
     if (rowCount >= 2) 
     { 
 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            break; 
         } 
         //if (i == 0)testWave.waveData.push_back(d*testWave.amp); 
         if (i == 0) 
         { 
            testWave.waveData.push_back(d*amplitudeL); 
            testWave2.waveData.push_back(d*amplitudeL); 
         } 
       } 
       //cout << endl; 
     } 
   } 
   in.close(); 
   vector<double>::iterator it; 
   if (cmd == "w") 
   { 
     it = testWave.waveData.begin(); 
     for (int i = 0; i < dt; i++) 
     { 
       it = testWave.waveData.insert(it, 0); 
     } 
   } 
   if (cmd == "e") 
   { 
     it = testWave2.waveData.begin(); 
     for (int i = 0; i < dt; i++) 
     { 
       it = testWave2.waveData.insert(it, 0); 
     } 
   } 
   return 0; 
} 
 
int csvparse1(string cmd, double wAmp, double eAmp) 
{ 
   string line; 
   string filename = "C:/Users/koltondrake/Documents/STDP/" + cmd + ".csv"; 
   vector<string> row; 
 
   ifstream in(filename); 
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   if (in.fail())  { cout << "File not found" << endl; return 0; } 
   int rowCount = 0; 
   string::size_type sz; 
   double d; 
   testWave.waveData.clear(); 
   testWave2.waveData.clear(); 
 
 
   while (getline(in, line) && in.good()) 
   { 
     csvline_populate(row, line, ','); 
     rowCount++; 
 
     if (rowCount == 2) 
     { 
       int leng = row.size(); 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            //break; 
         } 
         if (i == 2) 
         { 
            testWave.freq = d; 
            testWave2.freq = d; 
         } 
         if (i == 3) 
         { 
            testWave.amp = d; 
            testWave2.amp = d; 
         } 
         if (i == 4) 
         { 
            testWave.offset = d; 
            testWave2.offset = d; 
         } 
         if (i == 5) 
         { 
            testWave.length = (int)d; 
            testWave2.length = (int)d; 
         } 
       } 
     } 
 
 
     int leng = row.size(); 
     if (rowCount >= 2) 
     { 
 
       for (int i = 0; i < leng; i++) 
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       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            break; 
         } 
         //if (i == 0)testWave.waveData.push_back(d*testWave.amp); 
         if (i == 0) 
         { 
            if (d == 0.05) //We see a read 
            { 
              testWave.waveData.push_back(0.2); 
              testWave2.waveData.push_back(0); 
            } 
            else if (d > 0) 
            { 
              testWave.waveData.push_back(d*wAmp); //Positive voltages go to 

Channel 1 
              testWave2.waveData.push_back(0); //Negative voltages go to 

Channel 2 (as positive voltages). 
            } 
            else if (d < 0) 
            { 
              testWave.waveData.push_back(d*eAmp); //Negative voltages go to 

Channel 2 (as positive voltages). 
              testWave2.waveData.push_back(0); 
            } 
            else if (d == 0) 
            { 
              testWave.waveData.push_back(0); 
              testWave2.waveData.push_back(0); 
            } 
         } 
       } 
       //cout << endl; 
     } 
   } 
   in.close(); 
   return 0; 
} 
 
 
 
/** 
This csvparse is for taking a csv file and placing negative amplitudes on 

Channel 2 and positive amplitudes on Channel 1. 
*/ 
int csvparse2(string cmd, double wAmp, double eAmp) 
{ 
   string line; 
   string filename = "C:/Users/koltondrake/Documents/STDP/" + cmd + ".csv"; 
   vector<string> row; 
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   ifstream in(filename); 
   if (in.fail())  { cout << "File not found" << endl; return 0; } 
   int rowCount = 0; 
   string::size_type sz; 
   double d; 
   testWave.waveData.clear(); 
   testWave2.waveData.clear(); 
 
 
   while (getline(in, line) && in.good()) 
   { 
     csvline_populate(row, line, ','); 
     rowCount++; 
 
     if (rowCount == 2) 
     { 
       int leng = row.size(); 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            //break; 
         } 
         if (i == 2) 
         { 
            testWave.freq = d; 
            testWave2.freq = d; 
         } 
         if (i == 3) 
         { 
            testWave.amp = d; 
            testWave2.amp = d; 
         } 
         if (i == 4) 
         { 
            testWave.offset = d; 
            testWave2.offset = d; 
         } 
         if (i == 5) 
         { 
            testWave.length = (int)d; 
            testWave2.length = (int)d; 
         } 
       } 
     } 
 
 
     int leng = row.size(); 
     if (rowCount >= 2) 
     { 
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       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            break; 
         } 
         //if (i == 0)testWave.waveData.push_back(d*testWave.amp); 
         if (i == 0) 
         { 
            if (d == 0.05) //We see a read 
            { 
              testWave.waveData.push_back(0.2); 
              testWave2.waveData.push_back(0); 
            } 
            else if (d > 0) 
            { 
              testWave.waveData.push_back(d*wAmp); //Positive voltages go to 

Channel 1 
              testWave2.waveData.push_back(0); //Negative voltages go to 

Channel 2 (as positive voltages). 
            } 
            else if (d < 0) 
            { 
              testWave.waveData.push_back(0); 
              testWave2.waveData.push_back(d*eAmp*-1); //Negative voltages go 

to Channel 2 (as positive voltages). 
            } 
            else if (d == 0) 
            { 
              testWave.waveData.push_back(0); 
              testWave2.waveData.push_back(0); 
            } 
         } 
       } 
       //cout << endl; 
     } 
   } 
   in.close(); 
   return 0; 
} 
 
/** 
This csvparse is for taking a csv file and placing negative amplitudes on 

Channel 2 and positive amplitudes on Channel 1. 
*/ 
int csvparse3(string cmd, double wAmp, double eAmp) 
{ 
   string line,line2; 
   string filename = "C:/Users/koltondrake/Documents/STDP/" + cmd + 

"_ch1.csv"; 
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   string filename2 = "C:/Users/koltondrake/Documents/STDP/" + cmd + 
"_ch2.csv"; 

   vector<string> row,row2; 
 
   ifstream in(filename); 
   ifstream in2(filename2); 
   if (in.fail()||in2.fail())  { cout << "File not found" << endl; return 0; 

} 
   int rowCount = 0; 
   int rowCount2 = 0; 
 
   string::size_type sz; 
   double d; 
 
 
   testWave.waveData.clear(); 
   testWave.rawData.clear(); 
    
   testWave2.waveData.clear(); 
   testWave2.rawData.clear(); 
 
   while (getline(in, line) && in.good()) 
   { 
     csvline_populate(row, line, ','); 
     rowCount++; 
 
     if (rowCount == 2) 
     { 
       int leng = row.size(); 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            //break; 
         } 
         if (i == 2) 
         { 
            testWave.freq = d; 
            //testWave2.freq = d; 
         } 
         if (i == 3) 
         { 
            testWave.amp = d; 
            //testWave2.amp = d; 
         } 
         if (i == 4) 
         { 
            testWave.offset = d; 
            //testWave2.offset = d; 
         } 
         if (i == 5) 
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         { 
            testWave.length = (int)d; 
            //testWave2.length = (int)d; 
         } 
       } 
     } 
 
 
     int leng = row.size(); 
     if (rowCount >= 2) 
     { 
 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            break; 
         } 
         //if (i == 0)testWave.waveData.push_back(d*testWave.amp); 
         if (i == 0) 
         { 
            testWave.rawData.push_back(d); 
            if (d == 0.05) //We see a read 
            { 
              testWave.waveData.push_back(0.05); 
              //testWave2.waveData.push_back(0); 
            } 
            else if (d > 0) 
            { 
              testWave.waveData.push_back(d*wAmp); //Positive voltages go to 

Channel 1 
              //testWave2.waveData.push_back(0); //Negative voltages go to 

Channel 2 (as positive voltages). 
            } 
            else if (d < 0) 
            { 
              testWave.waveData.push_back(d*eAmp); 
              //testWave2.waveData.push_back(d*eAmp*-1); //Negative voltages 

go to Channel 2 (as positive voltages). 
            } 
            else if (d == 0) 
            { 
              testWave.waveData.push_back(0); 
              //testWave2.waveData.push_back(0); 
            } 
         } 
       } 
       //cout << endl; 
     } 
   } 
   in.close(); 
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   while (getline(in2, line2) && in2.good()) 
   { 
     csvline_populate(row2, line2, ','); 
     rowCount2++; 
 
     if (rowCount2 == 2) 
     { 
       int leng = row2.size(); 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row2[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            //break; 
         } 
         if (i == 2) 
         { 
            //testWave.freq = d; 
            testWave2.freq = d; 
         } 
         if (i == 3) 
         { 
            //testWave.amp = d; 
            testWave2.amp = d; 
         } 
         if (i == 4) 
         { 
            //testWave.offset = d; 
            testWave2.offset = d; 
         } 
         if (i == 5) 
         { 
            //testWave.length = (int)d; 
            testWave2.length = (int)d; 
         } 
       } 
     } 
 
 
     int leng = row2.size(); 
     if (rowCount2 >= 2) 
     { 
 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row2[i], &sz); 
         } 
         catch (...) 
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         { 
            //cout << "oops"; //we can't convert the value to a double. 
            break; 
         } 
         if (i == 0) 
         { 
            testWave2.rawData.push_back(d); 
            if (d == 0.05) //We see a read 
            { 
              testWave2.waveData.push_back(0.05); 
               
              //testWave2.waveData.push_back(0); 
            } 
            else if (d > 0) 
            { 
              testWave2.waveData.push_back(d*wAmp); //Positive voltages go to 

Channel 1 
               
              //testWave2.waveData.push_back(0); //Negative voltages go to 

Channel 2 (as positive voltages). 
            } 
            else if (d < 0) 
            { 
              testWave2.waveData.push_back(d*eAmp); 
               
              //testWave2.waveData.push_back(d*eAmp*-1); //Negative voltages 

go to Channel 2 (as positive voltages). 
            } 
            else if (d == 0) 
            { 
              testWave2.waveData.push_back(0); 
               
              //testWave2.waveData.push_back(0); 
            } 
         } 
       } 
     } 
   } 
   in2.close(); 
 
   return 0; 
} 
 
/** 
This csvparse is for reading in the "Read" bumps. 
*/ 
int csvparseRead(string cmd, double wAmp, double eAmp) 
{ 
   string line, line2; 
   string filename = "C:/Users/koltondrake/Documents/STDP/" + cmd + 

"_ch1.csv"; 
   string filename2 = "C:/Users/koltondrake/Documents/STDP/" + cmd + 

"_ch2.csv"; 
   vector<string> row, row2; 
 
   ifstream in(filename); 
   ifstream in2(filename2); 
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   if (in.fail() || in2.fail())  { cout << "File not found" << endl; return 
0; } 

   int rowCount = 0; 
   int rowCount2 = 0; 
 
   string::size_type sz; 
   double d; 
 
 
   testWave3.waveData.clear(); 
   testWave3.rawData.clear(); 
 
   testWave4.waveData.clear(); 
   testWave4.rawData.clear(); 
 
   while (getline(in, line) && in.good()) 
   { 
     csvline_populate(row, line, ','); 
     rowCount++; 
 
     if (rowCount == 2) 
     { 
       int leng = row.size(); 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            //break; 
         } 
         if (i == 2) 
         { 
            testWave3.freq = d; 
            //testWave2.freq = d; 
         } 
         if (i == 3) 
         { 
            testWave3.amp = d; 
            //testWave2.amp = d; 
         } 
         if (i == 4) 
         { 
            testWave3.offset = d; 
            //testWave2.offset = d; 
         } 
         if (i == 5) 
         { 
            testWave3.length = (int)d; 
            //testWave2.length = (int)d; 
         } 
       } 
     } 
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     int leng = row.size(); 
     if (rowCount >= 2) 
     { 
 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            break; 
         } 
         //if (i == 0)testWave.waveData.push_back(d*testWave.amp); 
         if (i == 0) 
         { 
            testWave.rawData.push_back(d); 
            if (d == 0.02) //We see a read 
            { 
              testWave3.waveData.push_back(0.02); 
              //testWave2.waveData.push_back(0); 
            } 
            else if (d > 0) 
            { 
              testWave3.waveData.push_back(d*wAmp); //Positive voltages go to 

Channel 1 
              //testWave2.waveData.push_back(0); //Negative voltages go to 

Channel 2 (as positive voltages). 
            } 
            else if (d < 0) 
            { 
              testWave3.waveData.push_back(d*eAmp); 
              //testWave2.waveData.push_back(d*eAmp*-1); //Negative voltages 

go to Channel 2 (as positive voltages). 
            } 
            else if (d == 0) 
            { 
              testWave3.waveData.push_back(0); 
              //testWave2.waveData.push_back(0); 
            } 
         } 
       } 
       //cout << endl; 
     } 
   } 
   in.close(); 
 
   while (getline(in2, line2) && in2.good()) 
   { 
     csvline_populate(row2, line2, ','); 
     rowCount2++; 
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     if (rowCount2 == 2) 
     { 
       int leng = row2.size(); 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row2[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            //break; 
         } 
         if (i == 2) 
         { 
            //testWave.freq = d; 
            testWave4.freq = d; 
         } 
         if (i == 3) 
         { 
            //testWave.amp = d; 
            testWave4.amp = d; 
         } 
         if (i == 4) 
         { 
            //testWave.offset = d; 
            testWave4.offset = d; 
         } 
         if (i == 5) 
         { 
            //testWave.length = (int)d; 
            testWave4.length = (int)d; 
         } 
       } 
     } 
 
 
     int leng = row2.size(); 
     if (rowCount2 >= 2) 
     { 
 
       for (int i = 0; i < leng; i++) 
       { 
         //cout << row[i] << "\t"; 
         try 
         { 
            d = stod(row2[i], &sz); 
         } 
         catch (...) 
         { 
            //cout << "oops"; //we can't convert the value to a double. 
            break; 
         } 
         if (i == 0) 
         { 
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            testWave4.rawData.push_back(d); 
            if (d == 0.05) //We see a read 
            { 
              testWave4.waveData.push_back(0.05); 
 
              //testWave2.waveData.push_back(0); 
            } 
            else if (d > 0) 
            { 
              testWave4.waveData.push_back(d*wAmp); //Positive voltages go to 

Channel 1 
 
              //testWave2.waveData.push_back(0); //Negative voltages go to 

Channel 2 (as positive voltages). 
            } 
            else if (d < 0) 
            { 
              testWave4.waveData.push_back(d*eAmp); 
 
              //testWave2.waveData.push_back(d*eAmp*-1); //Negative voltages 

go to Channel 2 (as positive voltages). 
            } 
            else if (d == 0) 
            { 
              testWave4.waveData.push_back(0); 
 
              //testWave2.waveData.push_back(0); 
            } 
         } 
       } 
     } 
   } 
   in2.close(); 
 
   return 0; 
} 
 
// Reads in a single line from a waveform file. 
 
void csvline_populate(vector<string> &record, const string& line, char 

delimiter) 
{ 
   int linepos = 0; 
   int inquotes = false; 
   char c; 
   int i; 
   int linemax = line.length(); 
   string curstring; 
   record.clear(); 
 
   while (line[linepos] != 0 && linepos < linemax) 
   { 
 
     c = line[linepos]; 
 
     if (!inquotes && curstring.length() == 0 && c == '"') 
     { 
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       //beginquotechar 
       inquotes = true; 
     } 
     else if (inquotes && c == '"') 
     { 
       //quotechar 
       if ((linepos + 1 <linemax) && (line[linepos + 1] == '"')) 
       { 
         //encountered 2 double quotes in a row (resolves to 1 double quote) 
         curstring.push_back(c); 
         linepos++; 
       } 
       else 
       { 
         //endquotechar 
         inquotes = false; 
       } 
     } 
     else if (!inquotes && c == delimiter) 
     { 
       //end of field 
       record.push_back(curstring); 
       curstring = ""; 
     } 
     else if (!inquotes && (c == '\r' || c == '\n')) 
     { 
       record.push_back(curstring); 
       return; 
     } 
     else 
     { 
       curstring.push_back(c); 
     } 
     linepos++; 
   } 
   record.push_back(curstring); 
   return; 
} 
 
void dcsweepQuery() 
{ 
   string testNumberStr; 
   cout << "DIE NUMBER (in the form DieXX, where XX is the number):> "; 
   cin >> dieNum; 
   cout << "Device Number (in the form DevXX, where XX is the number):> "; 
   cin >> devNum; 
   cout << "Test Number:> "; 
   cin >> testNumberStr; 
   fnum = stoi(testNumberStr); 
   cout << "Do you want to condition?> "; 
   string ans; 
   cin >> ans; 
 
   if (ans == "y") 
   { 
     condition(); 
   } 
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} 
 
 
void dSee(string ampl, string comp, string points) 
{ 
   size_t size = 0; 
 
   if (ampl.find_first_of("m", size) != 

string::npos)ampl.replace(ampl.find_first_of("m", size), 1, "e-3"); 
   else if (ampl.find_first_of("u", size) != 

string::npos)ampl.replace(ampl.find_first_of("u", size), 1, "e-6"); 
   else if (ampl.find_first_of("n", size) != 

string::npos)ampl.replace(ampl.find_first_of("n", size), 1, "e-9"); 
 
   if (comp.find_first_of("m", size) != 

string::npos)comp.replace(comp.find_first_of("m", size), 1, "e-3"); 
   else if (comp.find_first_of("u", size) != 

string::npos)comp.replace(comp.find_first_of("u", size), 1, "e-6"); 
   else if (comp.find_first_of("n", size) != 

string::npos)comp.replace(comp.find_first_of("n", size), 1, "e-9"); 
 
 
   double amplitude = stod(ampl); 
   double compliance = stod(comp); 
   double numpts = stod(points); 
 
   dcSweep4(amplitude, compliance, numpts, "DC"); 
 
    
} 
 
// Simple DC resistance read up to 20 mV with a 10 mA compliance 
 
void res(string points) 
{ 
   double numpts = stod(points); 
   dcSweep4(20E-3, 10E-3, numpts, "R"); 
} 
 
// Allows the user to call “condition” from the menu. This function is edited 
// for specific experiments. 
 
void condition() 
{ 
   dSee("1", "10u", "200"); 
   //dcSweep(20E-3, 10E-3, 51, "Read"); 
   //dcSweep(0.5, 100E-9, 201,  "Write"); 
   //dcSweep(20E-3, 10E-3, 51, "Read"); 
   /* 
   dcSweep(20E-3, 10E-3, 51, "Read"); 
   dcSweep(-1, 100E-3, 201, "Erase"); 
   dcSweep(20E-3, 10E-3, 51, "Read"); 
   */ 
   //dcSweep(0.75, 1E-7, "Write_100n"); 
   //dcSweep(20E-3, 10E-3, "Read"); 
   //dcSweep(1.0, 1E-8, "Write_10n"); 
   //dcSweep(20E-3, 10E-3, "Read"); 
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   //dcSweep(20E-3, 10E-3, ".02"); 
   //dcSweep(0.6, 10E-6, ".60"); 
   //dcSweep(20E-3, 10E-3, ".02"); 
   //dcSweep(-0.6, 10E-3, "-.60"); 
   //dcSweep(20E-3, 10E-3, ".02"); 
   //dcSweep(0.6, 10E-6, ".60"); 
   //dcSweep(20E-3, 10E-3, ".02"); 
} 
 
// Starts the session with the WGFMU and begins the console application. 
 
int main() 
{ 
   dcsweepQuery(); 
   WGFMU_openSession("GPIB0::17::INSTR"); 
   wgfmu_arb(); 
   //introQuery(); 
} 
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