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ABSTRACT 

The Ichthyosporea (= Mesomycetozoea) is a relatively understudied class of 

unicellular symbionts that molecular phylogenies have placed at the divergence of 

animals and fungi. Subsumed in this class are the cosmopolitan families Eccrinidae and 

Amoebidiidae (referred to as “protist trichos” or “trichos” herein), which are considered 

obligate commensal endobionts of various arthropods, including marine, freshwater and 

terrestrial hosts. Once thought to be members of the fungal class Trichomycetes due to 

their hyphal-like growth form and ecological similarity, molecular evidence has 

necessitated reclassification. However, evolutionary relationships within and between 

them are still unclear as the number of taxa sampled and/or the amount of gene data 

gathered have been factors limiting resolution.  These organisms are also taxonomically 

challenging since informative, homologous morphological characters are difficult to 

discern using only a light microscope (the method by which members of Amoebidiidae 

and Eccrinidae have traditionally been described), and only a few have been obtained in 

axenic culture.  Most protist trichos reported thus far lack sufficiently detailed 

morphological parameters to permit ease and confidence in species identification.  As 

such, relatively little is known about the ecology and biology of most members, some of 

which were originally classified as fungi or algae. As new members were discovered or 

reclassified, two orders were established: Dermocystida and Eccrinida.  Whereas 

members of the Dermocystida are almost entirely parasites of various metazoan hosts, 

only three clades within the Eccrinida contain known parasites, with the remaining 
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members regarded as commensalistic.  Interestingly, the putative closest extant relative to 

both groups is Ichthyophonus, an economically relevant fish parasite, which can invade 

vital host tissues (e.g. heart and liver) via circulating amoeba-like cells, causing disease 

and potentially death.  The most recent molecular systematic study of the protist trichos 

was published about a decade ago, and there is as yet but one Paramoebidium 

(Amoebidiidae) sequence deposited in GenBank.  Currently, based on molecular data, the 

Amoebidiidae are supported as monophyletic (based on one sample from each of its two 

genera) while the monophyly of the Eccrinidae is indicated, but not supported.  Likewise, 

the relationship of the protist trichos to Ichthyophonus remains unresolved.  As such, the 

first chapter of this thesis addressed the molecular phylogeny of order Eccrinida, with 

particular emphasis on the protist trichos by first amplifying and sequencing rDNA genes 

(18S and 28S) for over 100 new samples.  Amplification tests were also attempted for 

several protein-coding genes, including heat shock protein 70.  The resulting tree 

inferences were used in subsequent analyses of ecological and life history traits via 

ancestral state reconstructions and Bayesian tip-association significance testing (BaTS). 

In the second chapter, samples of Paramoebidium spp. were morphologically and 

molecularly assessed as a case study into the utility of traditionally described 

morphological characters for taxonomic delimitation among protist trichos.  

Morphological differentiation of Paramoebidium spp. has been notoriously problematic 

due to inter- and intraspecific variability.  Host specificity within the genus was early 

suggested, but later questioned, and has not been subjected to thorough evaluation.  

Therefore, host and hyphal characters were analyzed via three different methods of 
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ancestral state reconstruction, as well as with BaTS on a molecular phylogeny of over 70 

Amoebidiidae samples.   

Results of these studies indicate: 1) contrary to previous hypotheses, the 

Amoebidiidae may be paraphyletic, 2) relationships among Eccrinidae and between the 

protist trichos and Ichthyophonus remain unresolved, 3) several life history and host 

characters are significantly associated with both the Eccrinida and Amoebidiidae 

phylogenies, providing platforms for future hypothesis formulation, 4) the protist trichos 

and the Eccrinida as a whole are likely much more species rich and widespread than what 

is currently known, 5) species delimitation within Paramoebidium is complicated by 

cryptic speciation, but there is evidence for possible host specificity, and 6) future studies 

of the protist trichos will benefit from an integrated approach that shifts away from an 

emphasis on the morphological species concept but includes both genetic sequence data 

and traditional morphological approaches.   
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PHYLOGENETIC AND ANCESTRAL STATE RECONSTRUCTION ANALYSES  

OF ORDER ECCRINIDA, WITH EMPHASIS ON THE PROTIST TRICHOMYCETES 

Abstract 

Trichomycetes traditionally was a class of gut fungi comprising four orders of 

microorganisms obligately associated with arthropods. Since molecular phylogenies 

revealed two of those orders (“protist trichos”) to be closely related to members of the 

protist class Ichthyosporea (= Mesomycetozoea), trichomycetes have been considered an 

ecological association of both early-diverging fungi and protists.  Class Ichthyosporea 

comprises unicellular animal symbionts associated with hosts ranging from arthropods to 

bivalves and echinoderms to amphibians and mammals.  The most recent classification 

divides the protist trichos between two families, Amoebidiidae and Eccrinidae, within 

order Eccrinida.  However, no new sequence data for the protist trichos has been 

published in about a decade, and an evaluation of their characters in the context of this 

reclassification is lacking.  Therefore, 18S and 28S rDNA sequences were generated for 

106 protist tricho samples and combined with publicly available sequences of remaining 

Eccrinida taxa to generate a taxon-rich dataset for phylogenetic analyses.  Additionally, 

PCR amplification tests of protein-coding genes were performed on the protist tricho 

samples.  The trees generated were subsequently used as input for ancestral state 

reconstruction and Bayesian tip-association significance test (BaTS) analyses of six 

characters relating to the life history and morphology of taxa.  The phylogeny provides 

evidence that both traditional and current taxonomy of the protist trichos may need 
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revision.  Ancestral state reconstructions and BaTS results indicate several character 

states of host, habitat, and spore production traits are significantly correlated with the 

phylogeny.  From these results, it is clear that 1) the species diversity of protist trichos 

and other taxa in the order is undersampled and underestimated, 2) the degree of host 

specificity among protist trichos may be higher than previously thought, and 3) the 

morphological species concept as it has been applied to Eccrinida taxa is insufficient for 

species delimitation in many cases, and a shift to an integrated approach that includes 

genomic sampling and/or culturing efforts should be considered in future studies. 
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Introduction 

Placed at the animal-fungal divergence by molecular phylogenies (Steenkamp et 

al. 2006; Ruiz-Trillo et al. 2008; Paps et al. 2013; Cavalier-Smith et al. 2014), the class 

Ichthyosporea (= Mesomycetozoea) is a recently recognized group of unicellular, 

symbiotic protists that was only elevated from a clade in 1998 (Cavalier-Smith 1998; 

Herr et al. 1999; Mendoza et al. 2001).  At that time, it consisted of only five taxa, but 

has grown to include over 40 (Glockling et al. 2013).  Membership comprises newly 

discovered organisms (e.g. Marshall et al. 2008; Lohr et al. 2010; Marshall & Berbee 

2011; Lord et al. 2012), phylotypes from environmental surveys (e.g. Takishita et al. 

2005; Takishita et al. 2007; Lara et al. 2011; Evans et al. 2012; Heidelberg et al. 2013), 

and reclassified organisms formerly considered to be fungi or other types of protists (e.g. 

Baker et al. 1999; Mendoza et al. 2001).  These taxa are divided into two orders, 

Dermocystida and Eccrinida (Cavalier-Smith 2013), based largely on phylogenetic 

analyses  (Mendoza et al. 2002).  Eccrinida is the larger order with two suborders and six 

families (Cavalier-Smith 2013).  Morphologically, members have fungal-like characters 

(e.g. hyphal-like growth, sporangia) and produce endospores.  All named taxa are found 

in symbiotic association with metazoan hosts (Glockling et al. 2013), including such 

disparate animals as arthropods, bivalves, echinoderms, fish, and frogs.  Only three 

clades within the Eccrinida contain known parasites (just one of which is associated with 

a vertebrate), with the remaining members regarded as commensalistic or even facultative 

symbionts (Glockling et al 2013).   

Among the latter group are the arthropod-associated endobiont families 

Amoebidiidae and Eccrinidae (referred to collectively here as “protist trichos” or 
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“trichos”), included within order Eccrinida, suborder Trichomycina (Cavalier-Smith 

2013).  These two taxa were previously regarded as orders within the fungal class 

Trichomycetes: the Eccrinales (with three families: Eccrinaceae, Palavasciaceae, and 

Parataeniellaceae) and Amoebidiales (with one family, Amoebidiaceae) (Lichtwardt et al. 

2001) (Table 1.1).  Trichomycetes is now realized as a paraphyletic ecological group, 

occupying the microhabitat of the arthropod digestive tract (Lichtwardt et al. 2001).  Both 

the fungal and protist taxa form a holdfast structure that anchors individual hyphae the 

chitinous lining (except Amoebidium spp. which attach to the host exoskeleton) and 

produce walled spores as putative long-distance dispersal units, indicating the possibility 

of proximate convergence between groups (Leander 2008).  Whereas the Eccrinidae 

produce spores in a basipetal manner, as seen within fungi, the Amoebidiidae produce 

motile amoebae in a holocarpic manner, which encyst and subsequently release 

cystospores.  In addition to this amoeboid stage, Amoebidium may produce spores 

holocarpically directly, and without an intermediate phase (termed “sporangiospores” in 

older publications, but considered endospores here).  These features, in combination with 

others such as lack of chitin in the cell wall (Whisler 1963; Trotter & Whisler 1965), and 

appendage ontogeny (Moss 1999), pointed to an independent evolutionary origin of these 

taxa. This was later confirmed by molecular phylogenetic work (Benny & O’Donnell 

2000; Ustinova et al. 2000; Cafaro 2005) that placed them as the putative closest extant 

relative to Ichthyophonus [family Ichthyophonidae (Cavalier-Smith 2013)], an 

economically relevant fish parasite, which can invade vital host tissues (i.e. heart, liver, 

kidney) possibly via circulating amoeboid cells (Kocan et al. 2013), causing disease and 

potentially death (Rowley et al. 2013). 
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Table 1.1 Comparison of traditional fungal classification (Lichtwardt et al. 
2001) within Class Trichomycetes, and the most recent classification (Cavalier-
Smith 2013) within Class Ichthyosporea of the protist trichomycetes.  Note that 
Cavalier-Smith did not include all genera of the Eccrinales in his classification. 

 Orders Suborders Families 
# of 

Genera 
Lichtwardt et al. 

(2001) 
Traditional 

fungal 
classification 

Amoebidiales  Amoebidiaceae 2 
Eccrinales  Eccrinaceae 14 

  Palavasciaceae 1 

  Parataeniellaceae 2 

Cavalier-Smith 
(2013) 

classification 

Eccrinida Trichomycina Amoebidiidae 2 

  Eccrinidae 6 

  Ichthyophonidae 1 
 

Between these taxa, the Eccrinidae is more species rich, with 65 species, than the 

Amoebidiidae, which has 21.  In part, both the disparity and relatively low numbers of 

descriptions represents the dearth of taxonomically informative characters.  The latter has 

been problematic within both groups, but has especially precluded new species 

descriptions for the Amoebidiidae.  Although, compared to their simply spherical or 

ovoid closest relatives (i.e. Creolimax, Pirum, Psorospermium, Sphaeroforma), the 

highly variable hyphal and spore morphotypes of the eccrinids verge on the flamboyant.  

On the other hand, the difference is probably also a reflection of the greater diversity of 

hosts eccrinids are associated with compared to the Amoebidiidae.  According to current 

knowledge, the Amoebidiidae are restricted to freshwater habitats, with Paramoebidium 

found only in the guts of immature aquatic insects.  In contrast, eccrinids have been 

found from almost each major group of mandibulate arthropods (crustaceans, millipedes, 

insects) in habitats ranging from around deep-sea hydrothermal vents (Van Dover & 

Lichtwardt 1986) to terrestrial caves (Manier 1964; Reeves et al. 2000) and from tropical 
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forests (White et al. 2000) to freshwater streams or lakes (e.g. Arundinula orconectis, 

Astreptonema gammari, Enterobryus hydrophilorum) (Lichtwardt et al. 2001).  Similar 

diversity has been observed among other members of the Eccrinida, both in terms of host 

associations and habitats.  For example, Creolimax fragrantissima was isolated from the 

digestive tracts of peanut worms, tunicates, sea cucumbers, and chitons (Marshall et al. 

2008).  Environmental phylotypes include those sampled from anoxic sediments around a 

submarine caldera near Japan (Takishita et al. 2005), sludge from a domestic waste water 

treatment plant in Australia (Evans & Seviour 2011), salt crusts from a hypersaline lake 

in Australia (Heidelberg et al. 2013), a carbon-rich, low nitrogen peat bog in Switzerland 

(Lara et al. 2011), and a shallow lake in Greece (Nikouli et al. 2013).  Such surveys 

highlight the biodiversity of ichthyophonids, but unfortunately leave questions 

unanswered regarding their ecological function, impact on resident flora and fauna, and 

life histories. 

Major challenges face those attempting to study these organisms.  Firstly, most 

are unculturable, and despite numerous attempts by different researchers (Lichtwardt et 

al. 2001), Amoebidium parasiticum and A. appalachense are the only protist trichos to be 

cultured axenically (Whisler 1960; White et al. 2006).  Therefore, our understanding of 

the taxa’s life history, morphology, and host-symbiont interactions are restricted to those 

observations made during or following dissection of the host.  When hosts are abundant 

and infection is prevalent, many data points (e.g. morphometric, physiochemical, etc.) 

may be relatively easily gathered.  However, such ideal circumstances are not reliably 

encountered, especially for surveys of hard to reach habitats such as deep-sea 

hydrothermal vents, and prohibit detailed studies of the symbionts over the course of their 
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life cycle.  Secondly, genomic samples are frequently mixed with host and/or other 

symbiont DNA, complicating molecular data collection.  As such, relatively little is 

known about the ecology, biology, and evolutionary history of most protist tricho 

members, despite their initial discovery over 150 years ago (Leidy 1849).  Indeed, some 

species have not been recorded since they were diagnosed in the early to mid 20th 

century, and a review of their biology in the context of their newly recognized 

phylogenetic position has not yet been undertaken. 

Nevertheless, these organisms are sister taxa to the clade comprising 

choanoflagellates and animals.  Understanding their diversity and evolutionary trajectory 

can help elucidate the path from unicellular protists to multicellular metazoans (Ruiz-

Trillo et al. 2008).  In particular, Capsaspora owczarzaki (suggested as either sister to the 

Ichthyosporea or to choanoflagellates + animals) and Creolimax fragrantissima have 

been the subject of genome and transcriptome sequencing projects due to their 

aggregative behavior (Ruiz-Trillo et al. 2006; Sebé-Pedrós et al. 2011; Suga et al. 2013; 

Sebé-Pedrós et al. 2013; Suga & Ruiz-Trillo 2013; Carr & Suga 2014).  Additionally, as 

the Ichthyosporea is an early-diverging lineage, its diversity is potentially vast 

(Pawlowski et al. 2012; Glockling et al. 2013).  Those that are obligately associated with 

their host and/or are endemic to a restricted habitat may be susceptible to extinction via 

abiotic factors such as climate change (Corliss 2004; Cotterill et al. 2008; Vicente 2010).  

Pathogenic species have the potential to impact populations of fish and amphibians due to 

spread via anthropogenic routes such as the wildlife trade (Rowley et al. 2013; Gozlan et 

al. 2014).  All of these elements could be considered at ecosystem and global scales in 
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terms of biodiversity, ecology, and processes driving evolutionary patterns (Hoberg et al. 

2015). 

Progress in our understanding can only be aided by and well rooted in the firmly 

formed framework of a comprehensive phylogeny that engages a process of organismal 

and systematic reconsideration.  The last published study to include new sequence data 

for the protist trichos was by Cafaro (2005).  His single gene datasets included two 

representatives from the Amoebidiidae and 14 from the Eccrinidae.  The hypotheses 

presented by his 18S and 28S rDNA molecular phylogenies suggested 1) a monophyletic 

Amoebidiidae, 2) a monophyletic but unsupported Eccrinidae, and 3) an unresolved sister 

relationship of the protist trichos with Ichthyophonus.  Consequently, the goals of this 

study were to 1) evaluate the previous molecular phylogenetic hypotheses of the protist 

trichos (Lichtwardt et al. 2001; Cafaro 2005) using broader taxon sampling and a 

multigene dataset, 2) assess the traditional and current taxonomy of the protist trichos in 

light of this phylogeny, and 3) investigate ecological and life history patterns across the 

order Eccrinida via ancestral state reconstructions. 

Materials and Methods 

Taxon Sampling 

Combined two gene (18S and 28S) and three gene (HSP70 and rDNA) datasets 

containing 106 unique samples (24 Eccrinidae, 81 Amoebidiidae and one Ichthyophonus 

sp.) were supplemented with data downloaded from GenBank to obtain representatives of 

every known eccrinid and dermocystid taxon, as well as choanoflagellate, filasterid, and 

animal outgroup sequences (Table 1.2).  Additional environmental clone sequences were 

included, as they have been tentatively placed within the Eccrinida and reveal additional 
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diversity.  Two versions of the rDNA tree were inferred: one with all successfully 

sequenced samples and large outgroup sampling (“large rDNA alignment/tree”) and 

another focusing just on Eccrinida taxa with reduced Paramoebidium representatives and 

Capsaspora owczarzaki as the outgroup (“small rDNA alignment/tree”).  The small 

rDNA taxon set and resulting tree were formed for use in ancestral state reconstructions 

to reduce computation time and tree drawing size.  Character state coding for all 

Paramoebidium samples was the same, so elimination of some samples did not preclude 

the representation of character states for the genus.  In the small rDNA tree, the protist 

tricho samples include two of five Amoebidium species, 12 of 17 eccrinid genera 

(includes 14 identified specimens out of 65 total eccrinid species), and six named (out of 

17 total described species) and 15 putatively new species of Paramoebidium.  For these 

unidentified Paramoebidium samples enough slide voucher material was available to 

distinguish them from published descriptions, but not enough to confidently delineate 

new species at this time.  For the unidentified eccrinid samples, slide voucher material for 

specimens collected outside our lab was not readily available for review.  Enterobryus sp. 

specimens collected locally (Boise, Idaho, USA) putatively represent a new species, but 

slide materials were not reevaluated for this study.  Efforts were made to obtain data for 

as many named species as possible, but amplifications were attempted for all potentially 

unique samples, whether named or unnamed. 

Cultures 

Cultures of Creolimax fragrantissima, Sphaeroforma arctica, and Sphaeroforma 

sp. were obtained from the American Type Culture Collection (ATCC) (ATCC PRA-284, 

ATCC PRA-297, and ATCC PRA-283, respectively) and grown on ATCC medium 2673 
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(www.atcc.org).  Several Ichthyophonus sp. cultures growing on rainbow trout heart 

tissue explants (Kocan et al. 2010) were obtained from Dr. Scott LaPatra of Clear Springs 

Foods, Inc., Idaho.  A few of these tissue explants were placed directly in 2X CTAB 

buffer.  The remaining were microdissected in an attempt to separate the Ichthyophonus 

cells from those of the host tissue.  These cells were rinsed in successive drops of 

NanoPure water before CTAB preservation and were subsequently used for DNA 

extraction. 

Sample Collection, DNA Extraction, and PCR Amplification 

Unculturable specimens were microdissected from arthropod hosts collected 

(methods as in White et al. 2001) from various locations and timeframes (Table 1.2).  

Briefly, hosts are dissected using fine-tipped forceps and jeweler’s needles with the aid of 

a stereomicroscope.  Hyphae of presumed morphospecies are physically separated as 

much as possible from host tissues before being placed in 2X CTAB buffer.  Genomic 

samples may contain an individual cluster of hyphae from a single host dissection, or 

have multiple hyphae of a putative morphospecies pooled from several dissections of the 

same host type.  At the same time, hyphae of a morphospecies are preserved as slide 

vouchers for future morphological evaluation.  In other words, each genomic sample 

should have a corresponding slide voucher, given enough material is present for both 

preparations.  Therefore, in the context of this study, collections refer to host sampling 

and dissecting events from a specific location and date; sample refers to a single genomic 

and slide-preserved morphospecies from a collection.  The term slide voucher refers to a 

slide or series of slides that correspond to a given morphospecies.  Genomic samples 

preserved in CTAB buffer were kept frozen at -20°C or refrigerated at 4°C until the time 
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of extraction.  Extractions followed standard CTAB freezing/thawing and phenol-

chloroform methods from White (2006).  Some of the same genomic dilutions of eccrinid 

specimens studied by Cafaro (2005) were received and incorporated for amplification 

attempts and testing herein as well. 

rDNA Genes 

The small subunit (18S) and large subunit (28S) ribosomal rDNA genes were 

targeted for amplification and sequencing.  Different primer combinations were used 

during amplification attempts (Tables 1.3 and 1.4).  Primers NS1AA and NS8AA (18S) 

and NL1AA and LR7AA (28S) were developed by Wang et al. (2014) so as not to 

amplify animal DNA, a common contaminant of preparations from microdissections.  

Amplification of the ITS region was also tested, and limited data was obtained (Table 

1.4), but not enough to include in the dataset.  Primers NS1PT and NS8PT (18S) are 

novel (designed by Eric Tretter, BSU) and are meant to be specific to the protist trichos.  

For 18S reactions, the PCR recipe generally consisted of the following reagents: 11.0 μL 

Promega GoTaq Green Master Mix (Cat.# M7122), 0.66 μL of each primer at 10 μM 

concentration, 0.88 μL of 25 mM MgCl2 (to a final concentration of 1.0 mM), 0.35 μL of 

50 μg/μL bovine serum albumin (BSA) (to a final concentration of 0.8 μg/μL), 6.45 μL 

nuclease-free, purified water, and 2 μL of diluted genomic DNA for a total volume of 22 

μL.  The thermal cycling program included these steps: initial denaturation at 95°C for 2 

minutes followed by 45 cycles of denaturation at 95°C for 30 seconds, annealing at 60°C 

for 45 seconds and elongation at 72°C for 3 minutes, and completed with an elongation 

hold at 72°C for 10 minutes and a final hold at 4°C.  The default 28S PCR recipe was as 

follows: 11.0 μL Promega GoTaq Hot Start Green Master Mix (Cat.# M5122), 0.66 μL of 
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each primer at 10 μM concentration, 0.44 μL of 25 mM MgCl2 (to a final concentration 

of 0.5 mM), 2.20 μL of 5.0 M betaine (to a final concentration of 0.5 M), 5.04 μL 

nuclease-free, purified water, and 2 μL of diluted genomic DNA for a total volume of 22 

μL.  The cycling program had an initial denaturation at 95°C for 2 minutes followed by 

45 cycles of denaturation at 95°C for 30 seconds, annealing at 56°C for 45 seconds and 

elongation at 72°C for 3 minutes, a final elongation step at 72°C for 10 minutes and a 

final hold at 4°C.  Samples for which the initial amplification attempt (using the 

preceding reaction conditions) failed were retried using modifications to the BSA, betaine 

or MgCl2 concentration in the PCR recipe and/or adjusting the annealing temperature of 

the thermal cycling program.  For a few trials, BSA was added to the 28S PCR cocktail to 

the same final concentration as for the 18S reactions. 

Heat Shock Protein 70 (HSP70) Gene 

Ichthyosporea-specific primers designed by Paps et al. (2013) were used with a 

nested PCR approach to amplify the HSP70 gene.  Limited attempts were also made to 

amplify the HSP90, MCM7 (minichromosome maintenance) and RPB I and II (RNA 

polymerase II largest and second largest subunits) protein-coding genes (see Table 1.3 for 

primers used), but were, for the most part, unsuccessful.   The HSP70 PCR reaction 

consisted of two rounds.  The reaction cocktail for the first round contained the same 

quantity and reagents as the 28S reaction, except 0.44 μL of 5.0 M betaine (to a final 

concentration of 0.1 M) and 6.80 μL nuclease-free, purified water were used (to a total 

volume of 22 μL).  This recipe was also used for the second round, but 5 μL of PCR 

product from the first round was used as template (rather than diluted genomic DNA), for 

a total reaction volume of 25 μL.  The thermal cycling program for both rounds was: an 
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initial denaturation step at 94°C for 5 minutes followed by 5 cycles of denaturation at 

94°C for 35 seconds, annealing at 50°C for 45 seconds, and elongation at 72°C for 1 

minute and 15 seconds, then 35 cycles of denaturation at 94°C for 35 seconds, annealing 

at 45°C for 45 seconds, and elongation at 72°C for 1 minute and 15 seconds, a final 

elongation step of 72°C for 8 minutes and a final hold at 4°C. 

Electrophoresis and Sequencing 

The PCR products were electrophoresed through a 1% Lonza Seaplaque GTG 

agarose gel (Cat.# 50110) in low EDTA 1X TAE buffer.  Lonza GelStar nucleic acid 

stain (Cat.# 50535) was added to the gels and bands were visualized on a Clare Chemical 

DR46B transilluminator box.  Bands were cored out of the gel using wide-bore pipette 

tips, and the tips containing the cores were placed in 1.5 mL microcentrifuge tubes and 

frozen at -20°C.  For the majority of samples, DNA was separated from the gel using a 

“freeze and squeeze” method (Tautz & Renz 1983).  The cut tips served as columns to 

squeeze PCR product and buffer from the gel core.  Tubes were frozen and centrifuged 

twice (15 G for 15 minutes) using a Thermo Scientific Legend Micro21 centrifuge.  One 

to 2 μL of the squeezed product was added to sequencing reactions.  Sequencing 

reactions were performed with the Applied Biosystems BigDye v. 3.1 kit for bidirectional 

sequencing using 0.55 μL premix, 8.25 μL buffer, 0.66 μL of each primer at 10 μM 

concentration, and 10.54 μL nuclease-free, purified water to a total volume of 22 μL.  

The cycling program had an initial denaturation step at 96°C for 1 minute followed by 98 

cycles of a 96°C denaturation for 10 seconds, a 50°C annealing step for 10 seconds, and a 

60°C elongation for 4 minutes, completed with a 4°C hold.  Products of these reactions 

were shipped to the University of Wisconsin Biotechnology Center for cleanup and 
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Sanger sequencing on an Applied Biosystems ABI 3730xl capillary DNA analyzer.  

Chromatograms were visualized using Sequencher 5.0.  Ends of sequences were trimmed, 

aligned into contigs and then checked for obvious sequencing errors.  Contig sequences 

were checked against the National Center for Biotechnology Information database using 

BLASTn or BLASTx as a preliminary assessment of identity. 

Cloning 

Samples for which primary sequencing attempts were hampered by secondary 

structure or mixed or weak signal were cloned.  The Promega pGEM T Easy Vector 

System kit (Cat.# A1360) was used along with the JM109 competent cells (Cat.# L2004) 

for all cloning trials.  The ligation reaction mixture was modified from the manufacturer’s 

manual recipe, using the following regent quantities: 2.5 μL ligation buffer, 0.5 μL 

pGEM T Easy vector, 0.5 μL T4 ligase, 0.5 μL nuclease-free, purified water and 1 to 2 

μL PCR product template.  Ligations were stored at 4°C overnight for maximal 

efficiency.  Competent cell transformation procedures were as recommended in the 

manufacturer’s manual except that a reduced volume of competent cells (20-25 μL) and 

SOC media (200 μL) was used in each reaction.  The Promega manual recipes were 

followed to make the stock solutions and media for culture plates.  Plates were incubated 

at 37°C until colonies were sufficiently large for picking (approximately 16-18 hours).  A 

pipette tip was dipped into opaque, white colonies (although a few blue and blue-white 

“bull’s-eye” colonies were tested as well) and the cells were placed directly into tubes 

containing this PCR mixture: 10.5 μL Promega GoTaq Green Master Mix, 0.63 μL of 

each primer (M13 forward and reverse, Cat.# Q5601 and Q5421, respectively) at 10 μM 

concentration, 0.84 μL of 25 mM MgCl2 (to a final concentration of 1.0 mM), and 7.4 μL 
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nuclease-free, purified water to a total volume of 20 μL.  Small volumes of PCR products 

were run on a 2% Fisher agarose gel (Cat.# BP160-100) stained with GelStar to check for 

presence and correct size of bands.  Once confirmed, PCR products were either 

sequenced directly, run and cut from a 1% GTG gel (as described above) or treated with 

Affymetrix ExoSAP-IT (Cat.# 78200) enzymatic PCR product cleanup reagent prior to 

sequencing. 

Phylogenetic Analyses 

Sequences were imported into Mesquite v. 3.01 (Maddison & Maddison 2014) 

and aligned with MUSCLE (Edgar 2004).  Adjustments to the alignment and 

ambiguously aligned regions for exclusion were determined by eye.  Alternate versions 

of the alignment were made using the program Gblocks (Castresana 2000), but missing 

data affected which settings could be utilized in the program, and the resulting output was 

not significantly better for estimating tree topologies.  For the HSP70 alignment, the 

reading frame and translation to the protein sequence was determined using the Swiss 

Institute of Bioinformatics ExPASy online translation tool (Artimo et al. 2012).  

Additionally, the translation tool in Mesquite was used to create an amino acid alignment 

from the nucleotide alignment.  Putative HSP70 sequences (after an initial screening 

using BLASTx) were aligned with sequences from a wide variety of fungal, animal, and 

protist taxa (downloaded from GenBank) and a tree was estimated from these data to 

ensure they formed a clade with other Eccrinida taxa.  As a result, several dubious 

sequences were identified as possibly being from either the host or a paralogous gene, 

and thus were removed from further analyses.   Individual gene trees as well as trees 

based on combined datasets were constructed to compare topologies.  To check for 
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substitution saturation, plots of K80 distance against transitions and transversions (Brown 

et al. 1982) were drawn in DAMBE5 (Xia 2013).  The third codon position was evaluated 

separately from positions 1 and 2 for HSP70. 

Alignments were analyzed with PartitionFinder v. 1.1.0 (Lanfear et al. 2012) and 

jModelTest 2.0 (Darriba et al. 2012; Guindon & Gascuel 2003) to evaluate appropriate 

data partitions and for substitution model selection.  Models were chosen according to the 

corrected AIC score.  For HSP70, partitions based on codon position were compared and 

trees were inferred from both the nucleotide and protein alignments to determine which 

was more informative.   

Tree inferences and evaluations of support were conducted using maximum 

parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods for all 

datasets (i.e. small and large rDNA and the three gene).  Individual gene trees were also 

inferred and compared to check congruence.  The consensus tree output from Bayesian 

analyses was used as the base tree for illustration purposes, but the MP and ML support 

values are shown as well.  TNT (Goloboff et al. 2008) was used for parsimony analyses.  

Tree searches were conducted using 10,000 random addition sequences and TBR 

swapping, followed by 5,000 bootstrap replicates. Maximum likelihood calculations were 

performed with RAxML v. 8.0.22 (Stamatakis 2014).  The GTR + Γ + I model was used 

for both the small and large rDNA alignments and LG + Γ + I for the HSP70 amino acid 

alignment.  The GTR + Γ + I model (without partitioning) had the highest support from 

PartitionFinder, but was second best in jModelTest, behind TIM2 + Γ + I.  Finally, BI 

was conducted with MrBayes v. 3.2.2 and v. 3.2.5 (Ronquist et al. 2011; Ronquist et al. 

2012) using the partitioned dataset, four chains, 20 million generations for the two gene 
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alignments and 10 million for the three gene, with half of each discarded as burn-in.  

Convergence and effective sampling were assessed with Tracer v. 1.5.0 (Rambaut & 

Drummond 2009).  Tree files were viewed and drawn for illustration using TreeGraph 2 

(Stöver & Müller 2010), FigTree v. 1.4.2 (Rambaut 2014), and Inkscape 

(https://inkscape.org/en).  Support values greater than 70 (MP), 75 (ML), and 0.95 (BI) 

were considered well supported. 

Topology Testing 

To test alternative hypotheses of tree topology, the large rDNA tree was used, 

with constraint trees drawn in and exported from Mesquite.  Branch length estimates and 

bootstrapping followed by estimation of per site log likelihoods for each constraint tree 

were computed with RAxML.  Seven alternative topologies were tested based on 

preliminary topology results, hypotheses from Cafaro 2005, and the traditional (i.e. 

fungal) classification of families within the Eccrinidae: 1) monophyletic Amoebidiidae 

(Paramoebidium + Amoebidium), 2) protist trichos monophyletic (Amoebidiidae + 

Eccrinidae), 3) Parataeniella with Paramoebidium (an arrangement that was noted 

among alternative topologies), 4) monophyletic Eccrinaceae, 5) monophyletic 

Palavasciaceae (without samples 1115 and 1121), 6) monophyletic Palavasciaceae with 

samples 1115 and 1121, and 7) Eccrinidae without Parataeniella.  To perform SH 

(Shimodaira & Hasegawa 1999) and AU (Shimodaira 2002) tests, TREE-PUZZLE 

(Schmidt et al. 2002) and CONSEL (Shimodaira & Hasegawa 2001) were used.  The null 

hypotheses are as follows (from Schmidt 2009):  

SH test:  All trees Tx  T (including the ML tree) are equally good explanations 

of the data. 
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AU test:  The expected value E [log likelihooda] of Ta is larger or equal to the 

expected values of all trees Tx  T. 

Ancestral State Reconstruction (ASR) 

Terminology 

Whereas it is clear that the true diversity of species within the Eccrinida is as yet 

unknown, and a full accounting of life history stages, ecological roles, etc. is unclear for 

many species (and, indeed, entirely unknown for environmental samples) (Glockling et 

al. 2013; Rowley et al. 2013), a plot of general characteristics on a phylogeny may still be 

illustrative of trends across clades.  It is with this background understanding of the order 

that ancestral state reconstructions were performed.  Characters and character states were 

chosen based on published descriptions of species (e.g. Vogt & Rug 1999; Lichtwardt et 

al. 2001; Marshall et al. 2008; Lohr et al. 2010; Marshall & Berbee 2010; with the 

awareness that several such reports were preliminary.  Therefore, interpretation of the 

results of these analyses should be viewed as an initial attempt and are intended to 

demonstrate notable evolutionary tendencies and affinities of characters across the group.  

 In an effort to promote uniformity of terminology within the group, and in 

recognition of the need of ontological studies to evaluate the homology of spore 

formation, a standaradized set of terms, as so defined, will be used herein.  As such, 

parent cells for which the entire cytoplasmic content forms walled propagules are termed 

“endospores” (similar to “holocarpic” spore formation in fungal terminology).  The 

spores formed holocarpically in Amoebidium spp. have been referred to as 

“sporangiospores” in the literature (Lichtwardt et al. 2001), but are termed endospores in 

this study.  For Ichthyophonus, Kocan (2013) suggested the term “schizont” to describe 
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these holocarpic cells, and “merozoites” for the daughter cells produced from them.  A 

distinction between motile (i.e. amoeboid) versus nonmotile daughter cells (i.e. 

endospores) is made here.  Most members of the Eccrinidae, however, appear to have a 

highly derived ontogeny of propagules in that they are (in some cases) dimorphic and 

formed in a basipetal manner, similar to some Fungi (Lichtwardt et al. 2001).  Likewise, 

propagules formed from a cyst (i.e. as in the Amoebidiidae) are termed “cystospores”, as 

their derivation follows encystment of an amoeboid propagule.  In this case, the motile 

amoeboids form the cysts from which the dispersive spores are produced.  The term 

“spore” has various definitions depending on the specific group of organisms in question.  

For the purposes of this study, “spore” refers broadly to the putative dispersive 

uninucleate or multinucleate asexually-produced propagules that would either amplify the 

endogenous infection in a host, be taken up by a new host, or be released to the 

environment (where a free-living stage has neither been observed nor disproved).  

Finally, “hypha” as used here also follows Kocan (2013), with the caveat that a holdfast, 

as a feature of hyphal attachment, was not included in that definition.  Hyphae with a 

holdfast are differentiated for the purposes of these analyses, but still adhere to the 

chosen definition in that the holdfast appears to be formed by a secretion of extracellular 

material as opposed to a separate cellular structure (Moss 1979).  Undoubtedly, as more 

species are discovered, ultrastructural, biochemical, and ontological evaluations 

conducted, and homology reassessed, these terms will need continued refinement and 

perhaps even parsing into more nuanced vocabulary. 
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Character State Coding and ASR Analyses 

Six characters were reconstructed over the final 5,000 trees (the last 2,500 from 

each of two runs) of the MrBayes analysis of the small rDNA dataset using SIMMAP v. 

1.5.2 (Bollback 2006).  All trees were rooted using the outgroup method, with 

Capsaspora owczarzaki as the chosen taxon based on recent multigene phylogenetic 

work (Cavalier-Smith et al. 2014) and availability of molecular and character state data.  

Alternative topologies with dermocystid taxa as the outgroup were inferred, but the 

relationships of the in-group taxa were not affected by this change.  Capsaspora 

owczarzaki was included in reconstructions.  Characters and their states (Table 1.5) were 

chosen based on their description in the literature, presumed ecological/life history 

relevance, and potential homology within clades.  Coding for individual samples is 

indicated on Figs. 1.4 - 1.9.  The habitats in which ichthyophonids are found are diverse 

and broadly categorized into marine (0), freshwater (1), and terrestrial (2). Clone LT37 

was coded as marine, but it was collected from a benthic salt crust sample from a 

hypersaline lake in Australia (Heidelberg et al. 2013).  Likewise, Taeniellopsis was coded 

as terrestrial, but its hosts are often located in saline/brackish environments (Lichtwardt 

et al. 2001).  Some species described so far appear to have little host specificity, but 

similarly can be generally categorized as vertebrate (0), crustacean (1), insect (2), 

millipede (3) or other invertebrates (4) (e.g. bivalves, tunicates, etc.).  The stage of 

development of the host at the time of infection by an ichthyophonid is not consistently 

recorded, but may be juvenile (0), adult (1) or both juvenile and adult (2).  Multiple 

growth forms have been observed for culturable species such as Abeoforma whisleri, 

Creolimax fragrantissima, and Sphaeroforma spp., whereas others have only a single, 
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dominant form as with the Amoebidiidae, Eccrinidae, and Pirum gemmata.  States 

include: spherical/ovoid (0), hyphal with holdfast (1), spherical/ovoid and plasmodial (2), 

amoeboid (referring to the filose forms for the outgroup taxon Capsaspora owczarzaki) 

(3), and spherical/ovoid, hyphal, and plasmodial (4).  As specified above, the process by 

which spores are formed may be delineated as endospores (0), cystospores (1), basipetal 

(2), endospores and cystospores (3), endospores and basipetal (4), or amoeboid 

propagules (5).  Finally, the location within the host body where ichthyophonids reside 

are categorized as foregut (0), hindgut (1) (both applicable to arthropod hosts), 

organs/tissues (2), attached externally (as with Amoebidium) (3), digestive tract (to 

include other invertebrate hosts whose digestive tracts are structurally unlike to those of 

arthropods) (4), haemolymph (for the outgroup taxon Capsaspora owczarzaki) (5), or 

organs/tissues and digestive tract (6).  

The two-step process for choosing priors for these multistate characters described 

on the SIMMAP website (Bollback 2009) was followed, using a maximum clade 

credibility tree.  The first step uses an MCMC analysis to sample the gamma and beta 

priors for multistate characters and the second step samples the posterior distributions of 

these analyses and plots the best fitting distribution in the R Statistical Package (R 

Foundation for Statistical Computing 2015).  Both an equal (1/k) and empirical bias prior 

were tested with this two-step approach and output of the MCMC runs (one million 

generations each, sampling every 200 generations with a burn-in of 10,000 and upper 

bound of 1,000) were visualized with Tracer (Rambaut & Drummond 2009) to ensure 

appropriate sampling was achieved and to compare the log likelihoods.  Characters were 

unordered.  Once priors were chosen, analyses were run using k=90, rate=1.00, and 20 
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samples/tree with 20 priors drawn.  Results were plotted as pie charts using the R script 

“PlotSimMap.R” (available from https://github.com/nylander/PlotSimMap) and further 

modified using Inkscape (https://inkscape.org/en).  Polymorphic states were coded as 

separate states for these analyses such that they would be considered as true 

polymorphisms rather than uncertainty, with the understanding that this approach 

implicitly assumes that the states are correlated and arose simultaneously in those taxa 

(Millanes et al. 2011). 

Table 1.5 Characters and character state coding for SIMMAP and BaTS 
analyses. 

Character State 0 State 1 State 2 State 3 State 4 State 5 State 6 
Habitat Marine Freshwater Terrestrial     

Host type Vertebrate Crustacean Insect Millipede Other 
invertebrate   

Host stage Juvenile Adult Both     
Growth 

form 
Spherical/ 

ovoid 
Hypha with 

holdfast 
Spherical/ 
plasmodial Amoeboid 

Spherical, 
plasmodial 
& hypha   

Spore 
production Endospores Cystospores Basipetal Endo- & 

cystospores 
Endo- & 
basipetal Amoeboid  

Location in 
host Foregut Hindgut Organs/ 

tissues External Digestive 
tract Haemolymph Organs & 

digestive tract 

 

Bayesian Tip-Association Significance Testing (BaTS) 

As a further test of correlation between characters and the phylogeny, BaTS beta 

v. 2 (Parker et al. 2008) was run using the last 1,002 trees of the MrBayes analysis (final 

501 trees from each of two runs, using the small rDNA alignment).  This method 

generates three statistics: the association index (AI) (Wang et al. 2001), parsimony score 

(PS) (Fitch 1971), and maximum exclusive single-state clade size (MC) (Parker et al. 

2008).  These statistics are computed by first generating a null distribution by 

randomizing tip rearrangements and then comparing the observed value to the expected 

value (generated from the null distribution) to obtain a p-value.  The null hypothesis for 
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evaluating the p-values is that characters at the tips are randomly distributed across the 

phylogeny.  For both the AI and PS, lower values indicate stronger phylogeny-trait 

associations, while the MC will show a positive correlation with the association.  

Characters and their states were the same as for the SIMMAP analysis and 1,000 null 

replicates were performed. 

Results 

Genetic Data 

A total of 19 new HSP70 and 195 new rDNA sequences were generated (Table 

1.3).  Protocols 194 and 183 (Table 1.4) were the most successful and frequently used for 

18S and 28S amplifications, respectively.  Host sequences were occasionally obtained 

using 18S and HSP70 amplification procedures (approximately 10% and 20%, 

respectively).  Whereas no host sequences were produced using the 28S protocol 183, 

nine out of 14 attempts resulted in host sequences for protocol 133 (general primer set). 

These results highlight the importance of primer specificity when attempting PCR on 

mixed genomic samples, an unavoidable consequence of collection of these unculturable 

organisms.  In particular, the HSP70 primers for use on protist tricho samples should be 

modified to avoid animal DNA.  Gene fragments ranged in size from 1,613 bp 

(Ichthyophonus sp. 1193) to 2,011 bp (Palavascia sp. 402) for 18S, 1,965 bp 

(Paramoebidium sp. 616) to 1,483 bp (Sphaeroforma arctica 1242) for 28S, and HSP70 

from 750 to 800 bp.  Distance versus transitions and transversions plots indicated no 

significant saturation for rDNA or the first two codon positions of HSP70.  On the other 

hand, the 3rd HSP70 codon position clearly showed saturation.  As the tree topologies and 

number of supported branches inferred from nucleotide and amino acid alignments were 
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not substantially different, the latter was chosen for use in the final analyses.  The final 

three gene alignment consisted of 27 taxa and 3,051 characters: 1,546 bp of 18S, 1,251 

bp of 28S, and 253 HSP70 amino acids, with a total of 1,544 ambiguously aligned 

characters excluded.  The small rDNA gene alignment consisted of 101 taxa and 2,678 

characters: 1,479 bp of 18S characters and 1,199 bp of 28S characters, and 2,442 

excluded.  Finally, the large rDNA gene alignment had 174 taxa and 2,640 characters; 

1,466 bp of 18S and 1,174 bp of 28S, with 2,576 excluded. There was a total of 9% 

missing data (number of missing characters/total characters) in the three gene final 

alignment, and 20% missing in the small and 22% in the large rDNA two gene datasets. 

Phylogenetic Analyses 

The only Paramoebidium sp. sequence currently in GenBank (AY336708.1) 

placed within the Amoebidium clade (Fig. 1.1), and this was in contrast to all data 

subsequently assessed for the placement of Paramoebidium, so that sample was not 

included in the small rDNA tree.  Attempts were made to amplify and sequence new data 

from the genomic stock (collection code KS-61-W6, sample 1175), but each was returned 

as fungal contaminant (as indicated by sequence length and BLAST searches).  

Furthermore, the 28S sequence for the TMS sample in GenBank (JN699061.1) did not 

align with the rest of the taxa, even in highly conserved regions, so it was not included in 

any dataset.  There were no supported topology conflicts between individual genes (18S, 

28S, HSP70).  The three analysis methods (MP, ML, and BI) likewise recovered no 

conflicts on the large (Fig. 1.1) and small (Fig. 1.3) rDNA trees.  However, MP supported 

Ichthyophonus as sister to the protist trichos in the three gene analysis (Fig. 1.2).   
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There was an unexpected split of the Amoebidiidae by genus, each forming a 

well-supported (by at least two methods) clade in all trees, but topology tests (SH and 

AU, Table 1.6) do not reject the hypothesis of a sister taxa relationship between 

Amoebidium and Paramoebidium.  BI and MP, but not ML supported Amoebidium as the 

earliest-diverging Trichomycina lineage in the small rDNA tree (Fig 1.3).  Similarly, the 

three gene analyses recovered support from BI and ML for that placement of 

Amoebidium (Fig 1.2).  Although Ichthyophonus is again (e.g. Ustinova et al. 2000; 

Benny & O'Donnell 2000; Cafaro 2005) indicated as a sister taxon to the protist trichos, 

the constraint tree forcing a monophyletic protist tricho clade (and thus placing 

Ichthyophonus as the early diverging lineage) is not rejected by topology tests (Table 

1.6). 

As found previously with fewer taxa (e.g. Cafaro 2005; Marshall et al. 2008; 

Marshall & Berbee 2010), the Eccrinidae is monophyletic, but without support from any 

analysis method.  Although herein, taxon sampling within the group is not complete, 

representative rDNA gene sequences from each family were obtained.  Based on 

inferences from these data, the traditional family structure is not supported, with the 

Palavasciaceae and the Eccrinaceae being non-monophyletic.  The Parataeniellaceae is 

recovered as monophyletic, but with representatives of just one of its two genera included 

in the dataset.  Topology tests reject the hypothesis of monophyly of the Eccrinaceae, but 

not that of the Palavasciaceae (which consists of one genus).  However, samples of two 

Eccrinaceae genera (Alacrinella limnoriae and Astreptonema sp.) are supported by all 

three methods as a clade with the two Palavascia species (identified as the PAA clade) 

(Figs. 1.1, 1.3).  Among alternate topologies, Parataeniella placed on an early diverging 
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branch outside the Eccrinidae (not rejected by topology tests) and sometimes as sister to 

Paramoebidium.  This latter topology was found to be significantly worse than the best 

RAxML tree by SH and AU tests (Table 1.6).  

In the large rDNA tree, the Eccrinida and Dermocystida each form well-supported 

clades and are sister taxa, in keeping with previous findings (Glockling et al. 2013).  

Environmental clones were associated with the same clades as previous analyses (e.g. 

Marshall et al. 2008; Marshall & Berbee 2010) and Psorospermium haeckelii remains on 

a separate, unsupported branch (Glockling et al. 2013).  Sphaeroforma and Creolimax, 

and Caullerya and the TMS sample are each recovered as sister taxa pairs (but without 

support from ML in the latter).  However, Caullerya and the TMS sample are both on 

long branches, indicating that false association resulting from long-branch attraction 

cannot be ruled out. 

Ancestral State Reconstruction and BaTS Analyses 

The environment where ichthyophonids have been collected is significantly 

associated with clades, as illustrated by SIMMAP reconstructions (Fig. 1.4) and indicated 

by BaTS results (Table 1.7).  At least one major shift from terrestrial to marine and 

freshwater hosts occurred among the Eccrinidae.  Indeed, the ancestral state of the 

Eccrinidae is indicated with high probability as terrestrial.  On the other hand, all the 

Amoebidiidae are found in freshwater environments, and the probability of freshwater as 

the ancestral state for the protist trichos as a whole is greater than 50%.  Similarly, there 

is a clear division between the marine environmental clones, which are included in clades 

containing Sphaeroforma and Creolimax, and the freshwater clones that form a clade 

with Anurofeca.  However, the ancestral state of the entire Eccrinida is equivocal.   
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The broad categorizations of hosts also significantly align with the phylogeny, as 

indicated by both methods (Table 1.7, Fig. 1.5).  There have been several host shifts 

within the Eccrinidae, with at least one from millipedes to insects and at least one from 

insects to crustaceans.  Despite these transitions, the ancestral state for the clade is 

indicated as a millipede host, whereas insect host is given the majority of support at the 

node uniting the protist trichos.  Outside this clade, reconstructions at deeper nodes 

become equivocal due, at least in part, to missing data for the environmental clones.  The 

developmental stage of the host at the time of association with ichthyophonids is 

significant for the states “juvenile” and “adult”, but not for “both” in the BaTS analysis 

(Table 1.7).  Only Ichthyophonus, Leidyomyces, Psorospermium, the TMS, and 

Caullerya have been reported to infect both the juvenile and adult stages of their hosts.  

Although all Paramoebidium species described to date are associated with immature 

aquatic insects, the ancestral state for the protist trichos is supported as “adult” (Fig. 1.6).  

The final host-related character, location within the host (Fig. 1.9), has four states that are 

significantly associated with the topology (Table 1.7): foregut, hindgut, external, and 

organs/tissues.  All Paramoebidium and eccrinid (excepting Enteromyces) samples were 

collected from the hindgut of their host, and that state is indicated as the most probable 

ancestral location for the protist tricho group.   

The growth form (Fig. 1.7) and type of spore production (Fig. 1.8) recorded so far 

for ichthyophonids are correlated with clades for most states (Table 1.7).  Hyphal growth 

with a holdfast is the single form observed for the protist trichos, including Amoebidium.  

This state is recovered as the most likely ancestral condition for the protist tricho clade, 

but spherical/ovoid is indicated for the order (Fig. 1.7).  In addition to those two states, 
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spherical/hyphae/plasmodia has a significant correlation with the phylogeny, logically, as 

Ichthyophonus was the only genus coded with that state.  The “amoeboid” state returned 

a significant result, but it was only represented once, for the outgroup.  In contrast, spore 

production across the protist trichos is markedly different among taxa, and all states are 

significantly correlated with the phylogeny in the BaTS analyses (Table 1.7).  “Basipetal” 

is indicated as the ancestral state for the Eccrinidae, and even at the split of 

Ichthyophonus from the Eccrinidae and Paramoebidium (Fig. 1.8).  Beyond that node, 

“endospores” becomes the heavily favored state, including that for the protist trichos as a 

whole. 

Discussion 

Phylogeny and Taxonomy of the Protist Trichos 

The phylogenetic analyses (Figs. 1.1, 1.2, 1.3) and topology tests (Table 1.6), 

though not supported with significant values in all cases, are contradictory to the 

traditional fungal taxonomy and potentially that of Cavalier-Smith (2013).  The 

monophyly of the Amoebidiidae was not rejected by topology tests (Table 1.6), but the 

placement of Amoebidium as the earliest-diverging lineage in the Trichomycina was 

supported by at least one analysis method in all three trees.  Such a signal suggests that 

additional taxon and gene sampling might reinforce the split.  As such, the family 

Amoebidiidae is likely paraphyletic, and likewise the traditional order Amoebidiales.  

The diversity of Paramoebidium samples, their division into multiple well-supported 

clades, and their unification as a well-supported monophyletic clade (Fig. 1.1) 

demonstrate that the elevation of the group to family level would not be unfounded from 

a phylogenetic perspective.  Indeed, life history characteristics of the genera reinforce the 
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potential evolutionary distance between them, even if many of the gross morphological 

characters examined to date do not. Amoebidium is the only genus of order Eccrinida 

known to attach to the exterior of its host and to produce both endo- and cystospores (as 

they are defined here).  Both of these character states are significantly correlated with the 

phylogeny in the BaTS analyses (Table 1.7) and ASRs (Figs. 1.8, 1.9), indicating that 

they are likely homologous within clades.  Furthermore, Amoebidium species have a 

broad range of host associations (Fig. 1.5) (Lichtwardt et al. 2001) as compared to 

Paramoebidium, for which host specificity may be significant (see Chapter 2).  

Moreover, ultrastructural differences have been noted.  For example, P. curvum had 

cylindrical pits at the apex of the cystospores (from which holdfast material is thought to 

exude), whereas those of A. parasiticum were tapered (Dang & Lichtwardt 1979).  

However, division of the Amoebidiidae remains, as yet, premature due to the unresolved 

placement of Ichthyophonus and the Eccrinidae. 

On the other hand, the monophyly of the Eccrinidae, though not supported, aligns 

with their unification as a taxonomic unit.  Now collapsed to a single family, eccrinid 

genera were divided among three families in the fungal framework (Table 1.1).  These 

divisions are not borne out by the results presented here (see Appendix A for a detailed 

discussion of Eccrinidae genera).  For example, the Palavasciaceae is the smallest family 

with one genus and three species, and is represented by samples from two species.  A 

monophyletic Palavasciaceae as traditionally circumscribed is not rejected by topology 

tests (Table 1.6), but neither is the well-supported clade containing Palavascia + 

Alacrinella limnoriae and an unnamed Astreptonema (WA-3-C3) sample (PAA clade) 

(Fig. 1.1).  Hibbits Galt (1971) hypothesized that Alacrinella, Astreptonema sp., and 
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Palavascia were closely related to one another, as well as to two additional genera, 

Paramacrinella and Ramacrinella (traditionally placed within the Eccrinaceae).  

Although no genomic samples were available for the latter two, the well-supported PAA 

clade supports part of her hypothesis.  However, there are several characters that could 

indicate the relatedness of all six specimens: distinct “microthalli” that produce 

uninucleate cells [although the thin filaments described for Palavascia spp. have not been 

termed “microthalli”, to date (Cafaro 2000)] and a persistent “spore mother-cell” at the 

distal or proximal end of the hyphae (Lichtwardt et al. 2001).  Additionally, 

Paramacrinella and Ramacrinella share host (isopods and amphipods [Crustacea]) and 

habitat (marine) types with the PAA clade.  As these character states are significantly 

correlated with the phylogeny (Table 1.7, Figs. 1.4, 1.5), the hypothesis is bolstered by 

these results, but awaits molecular phylogenetic confirmation. 

In contrast, the Eccrinaceae is the largest of the traditional families, and its 

monophyly is rejected by topology tests (Table 1.6).  Again, clade formation in relation 

to host and habitat type is evident across the representative samples (Figs. 1.4, 1.5).  As a 

case-in-point, Enterobryus is the largest of the eccrinid genera, but the samples included 

here are polyphyletic.  The crab-associated E. halophilus is more closely related to other 

marine, decapod-associated taxa (e.g. Enteropogon, Taeniella) than with other 

Enterobryus species (Figs. 1.1, 1.3). Likewise, an unidentified eccrinid (sample 1067) 

dissected from a freshwater beetle (noted by MMW as another possible Enterobryus sp.) 

is on a branch nearer to the other Coleoptera clade (Leidyomyces) and the freshwater-

associated Arundinula opeongoensis.  The remaining samples were taken from millipede 

hosts, but even within this single host type, they are divided among several well-
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supported clades.  The main obstacle to taxonomic assignation within Enterobryus 

mirrors that of the Eccrinidae in general: the paucity of informative morphological 

characters.  The production of different spore types (a total of nine for Enterobryus) and 

cells of unknown function combined with intraspecific variability, even along the length 

of a single host gut (Lichtwardt 1954, 1958; Hibbits Galt 1978; Lichtwardt et al. 2001) 

have confounded attempts to evaluate genera and species solely with morphology.  

Certainly new species descriptions would benefit from such thorough statistical analyses 

of morphological variability as recently published for E. luteovirgatus (Contreras & 

Cafaro 2013).  However, genomic samples of species and their putative conspecific 

morphotypes should be sought in any future collection effort, to disambiguate the 

taxonomy and contribute to a robust, integrated morpho-phylogenetic framework. 

Evolution of the Protist Trichos 

Amoebidium is supported as the earliest-diverging protist tricho by at least one 

method on all three trees.  This is an evolutionary scenario that aligns with that 

hypothesized by Lichtwardt (1986), who proposed that the ancestral [protist] tricho 

probably had promiscuous affiliations with the exoskeleton of its hosts, and upon 

repeated ingestion of spores by the arthropod eventually became adapted to, and took up 

residence in, the gut leading to a Paramoebidium-like ancestor.  However, this hypothesis 

assumes a monophyletic protist tricho clade, and while that relationship is not rejected by 

topology tests, (Table 1.6) the position of Ichthyophonus remains unresolved.  Certainly, 

clarification of the relatedness of Ichthyophonus to the protist trichos is essential to 

understanding the evolution of characters within the Trichomycina.  For instance, if 

Ichthyophonus is truly sister to Paramoebidium + the Eccrinidae, then an Amoebidium-
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like ancestor would have had to transition not just from the outside to the inside of the 

host, but also from invertebrate to vertebrate, commensal to parasitic relationship, as well 

as have required a loss of the holdfast structure.  Ancestral state reconstructions of 

growth forms (Fig. 1.7) give full probability to “hypha with holdfast” as the state for the 

Trichomycina ancestor.  Furthermore, they support the Trichomycina ancestor as living 

in freshwater (Fig. 1.4).  If so, this would imply that Ichthyophonus evolved first in 

freshwater fishes and then secondarily adapted to marine hosts.  Ichthyophonus is known 

to infect anadromous fishes, implicating a possible evolutionary pathway for transmission 

between habitats and hosts.  The Amoebidium-like ancestor in this scenario might have 

gained access to the fish host in a similar manner as outlined above: by repeated ingestion 

of prey insects and small crustaceans with it attached. 

Furthermore, Ichthyophonus as sister to Paramoebidium + the Eccrinidae would 

suggest either a reversion to ancestral states (e.g. hypha with holdfast structure, 

association with arthropod hosts) or independent reacquisition of those states in the 

Paramoebidium + the Eccrinidae ancestors.  These explanations are clearly not as 

parsimonious as a monophyletic protist tricho clade for those traits.  Nevertheless, under 

either topology, Paramoebidium and the Eccrinidae remain sister taxa, although this is 

only supported by BI in the large rDNA tree (Fig. 1.1), and not supported by any method 

in the three gene or small rDNA trees (Figs. 1.2, 1.3).  Interestingly, the life history and 

phylogenetic position of Parataeniella may provide insight to the evolutionary history of 

the two groups.  Parataeniella is the earliest-diverging eccrinid of those represented here, 

and it is the only eccrinid with hyphae that produce spores both basipetally and in a 

holocarpic manner (i.e. endospores) (Fig. 1.8) that strongly resembles the amoebiids.  
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Possibly, Parataeniella reflects an intermediate form between more derived eccrinids and 

the hypothetical ancestor. 

However, whether or not such characters may be symplesiomorphic is an 

important consideration as well.  For example, the production of motile amoeboid 

propagules is not unique to the Amoebidiidae, as Abeoforma (Marshall & Berbee 2010), 

Creolimax (Marshall et al. 2008) and Psorospermium (Vogt & Rug 1999) all produce 

these forms at certain stages in their life cycle (Fig. 1.8), and the amoebae of the latter 

two were observed to encyst after a period of active crawling.  While the life cycle of 

Ichthyophonus has not been fully resolved, Kocan et al. (2013) indicated the presence of 

infectious amoeba-like cells in the blood of its hosts.  After migrating through the body, 

these cells settle in the tissue, grow larger and form “schizonts” with thick cell walls.  

These schizonts subsequently release amoeba-like cells into the stomach upon ingestion 

by a new host (ingestion of infected tissue is thought to be the main route of transmission 

of the parasite), but a planktonic phase has also been hypothesized, with evidence of 

infective cells released from epidermal lesions on infected hosts (Kocan et al. 2010).  

From this point of view, the Ichthyophonus life cycle appears to contain the amoeba-cyst 

stages of the Amoebidiidae, but whether spores (either endo- or cystospores, as defined 

for the protist trichos) are formed at some point is unclear.  Possibly the cells released 

through the epidermal lesions are spores, but they were not identified as such (see Fig. 3 

in Kocan et al. 2010).  All character states of spore production were significantly 

correlated with the phylogeny in both the ASR (Fig. 1.8) and the BaTS analyses (Table 

1.7), but the proportion of missing data and incomplete life cycle descriptions of some 

taxa preclude evolutionary inferences of homology.  Despite this caveat, the most 
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parsimonious explanation is that both cystospores and amoeboid propagules are ancestral 

characters to at least the prostist tricho clade and order Eccrinida, respectively.  

Undoubtedly, future addition/emendation of life histories for Eccrinida taxa and 

discovery and inclusion of new members will clarify the homology versus 

symplesiomorphy of characters. 

Ancestral State Reconstructions 

Ancestral state reconstructions suggest that habitat states (Fig. 1.4) have 

independently arisen within the order more than once.  For the marine character there 

appear three separate origins: at least one among the Eccrinidae, the Piridae (Abeoforma, 

Pirum) and the Creolimacidae (Anurofeca, Creolimax, Sphaeroforma) clades.  Similarly, 

there are distinct freshwater and terrestrial clades, (Fig. 1.4), but the unresolved 

placement of Psorospermium, Caullerya, and the TMS, and the potential influence of 

long-branch attraction complicate interpretation of the reconstruction.  Thus far, the 

Eccrinidae is the only group with multiple terrestrial taxa, and the results implicate that 

habitat as the ancestral state of the clade.  If so, a reversion to freshwater and a transition 

to marine hosts would have occurred among the remaining eccrinid genera. On the other 

hand, there are at least two defined freshwater origins: one for the trichos and one for the 

clade including Anurofeca and a few environmental clones.  Interestingly, these clones 

were collected from nutrient-rich freshwater environments such as effluent from a 

domestic wastewater treatment plant (Evans & Seviour 2011) and a peat bog in the 

mountains of Switzerland (Lara et al. 2010).  Several of the marine clones were sampled 

from anoxic or low oxygen environments (Takishita et al. 2005; Edgcomb et al. 2011; 

Takishita et al. 2007), including one from a salt crust sample from a hypersaline lake 
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(Heidelberg et al. 2013).  Clearly, further investigation into the role of ichthyophonids in 

these extreme habitats is warranted. 

There has been little indication of host specificity among non-tricho 

ichthyophonids to date (Glockling et al. 2013), but the broad categorization of host type 

used here shows that insect, crustacean, millipede, and vertebrate states are significantly 

correlated with the phylogeny in the BaTS (Table 1.7) and ASR (Fig. 1.5) analyses.  

Ichthyophonus and Anurofeca are the only taxa known from vertebrate hosts within the 

order, and the topology suggests independent origins of these associations (Fig. 1.5).  The 

arthropod character states are mainly associated with the protist trichos, whereas “other 

invertebrate” is applied to members of Sphaeroformina, some of which have been 

isolated from a wide range of hosts.  For example, Creolimax fragrantissima was 

collected from peanut worms (Phascolosoma agassizii), sea cucumbers (Leptosynapta 

clarki), and chitons (Corella sp. and Katharina tunicata) (Marshall et al. 2008).  This 

reinforces the suggestion that early-diverging members of Eccrinida (e.g. Anurofeca, 

Creolimax, Sphaeroforma) likely have generalist host associations, the ancestors of 

which subsequently diverged into marine, freshwater, and terrestrial specialists (Marshall 

et al. 2008).  Both Amoebidium (Lichtwardt et al. 2001) and Ichthyophonus (Rowley et al. 

2013) have been reported as generalists, therefore only members of the Eccrinidae and 

Paramoebidium are suggested to have host specificity (in terms of the number of hosts a 

single species associates with).  Although, as recently described by Poulin et al. (2011), 

host specificity may occur at different levels beyond the simple number of species a 

symbiont associates with.  Symbionts may exhibit structural, phylogenetic, or geographic 
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specificity (Poulin et al. 2011), aspects that can be tested among future collections of 

protist trichos and other ichthyosporeans. 

Stage of the host at the time of infection by these symbionts (Fig. 1.6) is a factor 

that may influence the evolution of members of the Eccrinida, as well as indicate possible 

routes of transmission between hosts.  The “juvenile” and “adult” states were 

significantly correlated with the phylogeny (Table 1.7), whereas “both” was not.  

Caullerya, Ichthyophonus, Psorospermium, and the TMS are the few taxa characterized 

as affecting both juvenile and adult forms of their hosts.  Paramoebidium is only 

recorded from juvenile stages (nymphs and larvae), whereas nearly all eccrinids are 

found in adult forms.  The two exceptions are Leidyomyces and Lajasiella, which infest 

both larvae and adults in the former and just the larvae in the latter case (Lichtwardt et al. 

2001).  Intriguingly, both of these taxa are associated with terrestrial beetles, as is the 

TMS.  During surveys of the TMS, Lord et al. (2012) attempted to sterilize eggs in order 

to grow an uninfected population of hosts, but were unsuccessful, despite no 

microscopically visible evidence of infection.  As the TMS was found to heavily infest 

the testes, and was subsequently passed to the female during mating, vertical transmission 

between hosts cannot be ruled out.  If so, these symbionts would presumably have to 

cope with the metamorphosis of their host, but as the beetles do not transition between 

environments (i.e. aquatic to terrestrial as with mayflies, stoneflies, black flies etc.) it 

may be possible that infections of the larvae and adults occur as separate events.  

Conversely, the Amoebidiidae, having wall-less amoeboid propagules (Whisler 1968; 

Dang & Lichtwardt 1979), could be restricted to the aquatic habitat, thus only associating 

with whatever hosts are available in the water column.  Amoebidium, attaching to the 
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exterior, has a range of hosts and depending on their life cycle may associate with 

juvenile (e.g. midges) or both juvenile and adult (e.g. Daphnia, which never leaves the 

water).  Whether protist trichos can be transmitted vertically between hosts (e.g. in cysts 

of the ovaries as with the fungal trichos) is unknown, but seems unlikely as none (except 

Enterobryus borariae, discussed below) have been observed to penetrate into the tissues 

of the host. 

The growth forms of most members of the order are variable (Fig. 1.7) and 

significantly correlated with the phylogeny (except “spherical/plasmodial/hyphal”) 

(Table 1.7), and range from simple spheres to plasmodia-like to hyphal. The trichos are 

clearly distinguished from the rest of the taxa by their hyphal growth with a holdfast.  

This structure has logically been assumed to be an adaptation to allow them to maintain 

their residence in the vicinity of high nutrient availability (inside the gut for the 

Eccrinidae and Paramoebidium, and on the exoskeleton near the anus or mouth for 

Amoebidium) (Lichtwardt et al. 2001).  As Ichthyophonus invades the tissues of its host, 

the holdfast would presumably be unnecessary.  Abeoforma, Creolimax, Pirum, and 

Sphaeroforma all were isolated from the digestive tract of their hosts, and their apparent 

lack of holdfast structures could reflect the physiological differences of their hosts’ guts 

(e.g. no chitinous lining) and/or a facultative association.  Abeoforma and Sphaeroforma 

cells were able to attach to debris in culture (Marshall & Berbee 2010; Marshall & 

Berbee 2013), but whether they are capable of adhering to the gut wall or not is unknown.  

Although most of the non-tricho taxa grow as spherical/ovoid cells with thick walls, 

Abeoforma presented plasmodial and amoeboid forms in culture.  Interestingly, 

transitions between forms for I. hoferi have been observed at different pH levels 
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(Okamoto et al. 1985) and Lichtwardt (1958) suggested that physiological gradations 

along the digestive tract could contribute to morphological variation and niche 

partitioning among Enterobryus spp. Thus, it is important to consider whether these 

various forms are homologous within clades, and to what degree the environment affects 

the growth of different species.  Polymorphisms were deliberately coded as separate 

characters here such that they would be evaluated as true variation, but the underlying 

assumption is that these polymorphisms arose simultaneously and are correlated with one 

another.  Certainly such an assumption is quite challenging to test, but the presence of 

these polymorphic forms in several early-diverging clades could suggest such a 

polymorphic ancestor. 

The production of propagules has likewise been linked to the condition of the 

host.  For instance, Amoebidium (Whisler 1968), Paramoebidium (Dang & Lichtwardt 

1979), and Psorospermium (Vogt & Rug 1999) all produce motile amoebae upon molting 

or injury (for the Amoebidiidae) and death (Psorospermium) of the host.  Furthermore, 

some eccrinids have been noted to produce thick-walled primary spores only upon 

molting of their hosts (Lichtwardt et al. 2001).  Similarly, passage through the gut of the 

tadpole host triggered replication of Anurofeca cells (Beebee & Wong 1993).  These 

interactions point to varying degrees of host-symbiont interaction, depending on the 

molecular mechanisms that elicit the responses.  For example, Whisler (1968) found that 

calcium, glucose and some amino acids contributed to amoebagenesis in Amoebidium 

parasiticum, but that whole homogenate of the host provoked the greatest amoebagenic 

response.  Whether such responses occur in the marine non-tricho taxa remains to be 

investigated.  Abeoforma, Creolimax, Pirum, and Sphaeroforma were collected from the 
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stomach content of their host, but if they were simply ingested by the animal or if the gut 

is the preferred habitat of the protists remains to be established.   

Spore production is significantly associated with clades on the phylogeny (Fig. 

1.8, Table 1.7).  Among those taxa that produce amoebae, morphological variation has 

been noted that could be further investigated as a source of new taxonomical characters.  

Psorospermium amoebae were shown to have “filose pseudopodia” (Vogt & Rug 1999) 

that somewhat resemble the “uroidal adhesive filaments” recently reported on amoebae 

of Paramoebidium ecdyonuridae (see Figs. 30-33 in Valle 2014a).  No other members of 

Amoebidiidae are known to have these uroidal filaments, but Valle (2014a) noted that 

they might be more common than previously thought, as they are difficult to see using 

light microscopy and the amoeboid stage is not always observed among amoebidiid 

collections.  Possibly, endospore characters could be taxonomically informative at a finer 

level than simple size dimensions, as traditionally used for members of the Eccrinidae.  

For example, some members of the Eccrinidae (e.g. Astreptonema gammari, Palavascia 

sphaeromae, Taeniella carcini) have “mucilaginous” or “gelatinous” appendages at the 

poles of their spores (Moss 1979).  Future ultrastructural and ontological studies are 

warranted to determine the potential taxonomic utility of such features. 

Finally, location in the host (Fig. 1.9) where these symbionts occur is a factor that 

may affect their evolution, as also indicated by the BaTS results (Table 1.7).  Residence 

in the digestive tract is recovered as the ancestral state for the entire order (Fig. 1.9).  This 

result, in combination with the topology, point to independent origins of lineages that 

invade the host tissues and live externally (i.e. Amoebidium).  Among the former lineages 

only Caullerya and Ichthyophonus have clear pathogenic effects on their hosts (Lohr et 



40 

 

al. 2010; Gozlan et al. 2014).  Despite the sometimes abundant growth in the nerve chord 

and testes, no apparent pathology was observed for beetles infected with the TMS (Lord 

et al. 2012).  In parallel, Psorospermium grows in the connective tissues of crayfish and 

has been associated with mortalities, but whether it contributed to these deaths is still 

unclear (Bangyeekhun et al. 2001).  On the other hand, Anurofeca is not known to cause 

direct pathogenicity, but was demonstrated to contribute to interference competition 

between tadpoles of different species (Bardsley & Beebee 2001).  For the trichos, the 

default assumption (or null hypothesis) has been commensalism.  The only member of 

the order to solely inhabit the foregut of it host, Enteromyces callianassae, is also one of 

the few whose host interactions have been studied.  Kimura et al. (2002) suggested the 

possibility of a mutualistic interaction with the host via supplementation of digestive 

enzymes within the host stomach in a comparison of infected and uninfected shrimp 

populations.   In a putative parasitic interaction, Lichtwardt (1958) observed unusual, 

cyst-like spores of Enterobryus borariae located outside of the gut lining of the millipede 

host, penetrating through the lining as it germinated into the interior of the gut.  Together, 

these previous observations and the results presented here could signify that host-

symbiont interactions are decoupled from the location of infection for some Eccrinida 

taxa.  That is, symbionts that have no apparent direct effects on the host, even when 

invasive to the tissues, could affect indirect consequences, such as that shown for 

Anurofeca.  Additional studies comparing infected and uninfected host populations, or 

employing experimental methods could clarify the nature of these symbiotic associations. 
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Conclusion 

Whereas several studies reporting new collections (Strongman 2007; Valle & 

Santamaria 2009; Hernández Roa et al. 2009; Hernandez Roa & Cafaro 2012; William & 

Strongman 2013) or describing new species (White et al. 2006; Strongman & White 

2008; Strongman & White 2006; Bench & White 2013; Contreras & Cafaro 2013; Valle 

2014a; Valle 2014b) have been published on individual members of the protist trichos, 

relatively little phylogenetic work or morphological comparisons across the group have 

been published since they were recognized outside Fungi in 2000 (Benny & O’Donnell 

2000; Ustinova et al. 2000) and 2005 (Cafaro 2005).  As the taxonomic position of the 

Amoebidiidae and Eccrinidae has been tenuously linked to Fungi, the terminology used 

to describe their morphological and life history characters are all rooted in this 

mycological background.  The challenge going forward, therefore, is to reevaluate these 

features in the context of their relationship to other ichthyosporeans.  This will be 

complicated as relatively little is yet known about the class as a whole, and trichos have 

unique features even in comparison to their relatives (e.g. basipetal propagule formation, 

hyphal forms, spore polymorphism).  Nevertheless, a paradigm shift has occurred and the 

results presented here highlight what has been suspected by trichomycetologists for some 

time: few of the characters used to delineate species thus far are informative of the 

evolutionary relationships among the trichos as a group.  Reevaluation of traits such as 

spore types and ontogeny, propagule appendages/filaments, host specificity, and hyphal 

polymorphism is necessary.  In other words, a shift from a morphological species concept 

to an integrative, or even strictly phylogenetic concept if no practically measurable (e.g. 

nuclear number or functional role of different propagules), homologous traits are found, 
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is needed.  Different concepts may be appropriate for different clades.  For example, 

Marshall and Berbee (2013) found that morphology was not sufficient to distinguish 

samples of Sphaeroforma that were phylogenetically distinct, and therefore used the 

genealogical concordance phylogenetic species recognition method to delimit species.  

This method would not work (or at least would require an unrealistic amount of 

resources) for some Paramoebidium spp. and most of the Eccrinidae, however, because it 

utilizes multiple loci from multiple samples of putative species, an arduous task for these 

unculturable taxa. 

 The inability to culture these organisms has made and will continue to make 

biological evaluation markedly challenging, as observations must be restricted to the 

moments following host dissection, emphasizing the need and opportunity for renewed 

cultivation efforts.  Not only that, but protist tricho diversity is undersampled and 

considerably underestimated, potentially fragmenting and distorting the evolutionary 

signal gleaned from current knowledge.  Tracking the development of spores and hyphae, 

understanding their functional roles, both in regard to the life history of the protist and its 

relationship to its host, and even determining dispersal mechanisms are all gaps yet to be 

bridged, despite first being discovered over 150 years ago (Leidy 1849).  Nevertheless, 

the results presented here illustrate that phylogenetic tools can be critical for elucidating 

evolutionary trends and providing platforms from which to launch explorations of new 

hypotheses for these taxa.  For the trichos in particular: 1) the Amoebidiidae may not by 

monophyletic and the traditional family structure within the Eccrinidae is not supported; 

2) diversity within the Trichomycina is great and sampling has yet to encompass the 

range of species richness; 3) host type is shown to be a more taxonomically informative 
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character than previously thought for Paramoebidium and the Eccrinidae; and 4) a 

traditional morphological species concept is insufficient for species delimitation for many 

Eccrinida taxa.  Fortunately, with the current reduced cost and relative ease of DNA 

sequencing, progress in our understanding of these enigmatic microorganisms may 

advance rapidly. 
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Table 1.2 List of samples with their sample code, collection code, host information, collection location, PCR protocol, and 
GenBank accession numbers.  Dashes indicate no sequence data obtained/available for that gene. 

Sample 
Collection 
code Species Host (Order, Family, Genus) 

Collector 
& Date Collection Location 

       PCR protocol/ 
       GenBank Accession# 

      18S                   28S                 HSP70 

38 ME-2-W3 Paramoebidium 
sp. 

Ephemeroptera, 
Leptophlebiidae, Leptophlebia 

MMW 
4/1999 

Salmon Pond, 44°38’N, 68°04’W; Hancock 
Co., Maine, USA 194C 183 - 

41 NS-6-W8-10 Paramoebidium 
sp. 

Ephemeroptera, 
Leptophlebiidae, 
Paraleptophlebia 

MMW 
9/1998 

Small, spring-fed brook (Black Brook) at 
Little Nine Mile River, 45°03.90’N, 
63°35.47’W; Halifax, Nova Scotia, Canada 

194 183 901C 

42 NY-3-W7 Paramoebidium 
sp. Plecoptera MJC 

11/1998 

Enfield Creek, Treman Park, temp. 4.5°C, 
42°23.83'N, 76°33.07'W; Ithaca, New York, 
USA 

194C - - 

122 RMBL-75-1 Paramoebidium 
sp. Ephemeroptera, Siphlonuridae RWL 

8/1995 

Rocky Mountain Biological Laboratory, 
East River upstream from bridge near 
Avery Creek, temp. 17.5°C; Crested Butte, 
Colorado, USA 

177 - - 

197 AFR-9 Paramoebidium 
curvum Diptera, Simuliidae  South Africa 194 183 - 

209 FRA-1-14 Amoebidium 
parasiticum 

Cladocera, Daphniidae, 
Daphnia 

RWL 
6/1968 

Small, stagnant pool at S.W. junction of Rt. 
N. 109 to Courpouiran and D5E1, 
43°36.20’N, 3°48.41’E; Montpellier, 
Herault, France 

AF274051.1 DQ273802.1 901 

303 NS-34-W17 Paramoebidium 
sp. Plecoptera, Nemouridae MMW 

10/2000 

Small, spring-fed brook (Black Brook) at 
Little Nine Mile River, 45°03.90’N, 
63°35.47’W; Halifax, Nova Scotia, Canada 

194C 183 - 

376 JAP-7-2 Amoebidium 
parasiticum 

Diptera, Chironomidae, 
Chironomus 

RWL 
3/1964 

Ditch on the side of the road leading to the 
Tropical Plant Experiment Station of Tokyo 
University, algae present in quantity; 
Shimokamo, Shizuoka Prefecture, Japan 

194 183 - 

377 A1a Amoebidium 
parasiticum 

Cladocera, Daphniidae, 
Daphnia 

HCW 
1959 California, USA 194 183 901 

400 ARG-D4-
C11 

Palavascia 
patagonica Isopoda, Sphaeromatidae MJC 

12/1998 
Cabo Blanco, 47°12.18'S, 65°44.38'W; 
Santa Cruz, Argentina 194 183C - 

401 
(1154) 

ARG-D1-
C15 

Palavascia 
patagonica 

Isopoda, Sphaeromatidae, 
Exosphaeroma 

MJC 
12/1998 

Puerto Deseado, 47°45.39'S, 65°53.42'W; 
Santa Cruz, Argentina 194 

183C 
(AY336695.1 

not used) 
901C 
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402 SC-1-C26 Palavascia 
sphaeromae 

Isopoda, Sphaeromidae, 
Sphaeroma 

MJC 
7/1998 

Folly Beach, rock groin adjacent to Center 
Street Pier, high tide line, from aggregations 
found among shell debris beneath rocks, 
32°39.272'N, 79°56.396'W; Charleston Co., 
South Carolina, USA 

194C - - 

444 HN-3 Leidyomyces 
attenuatus 

Coleoptera, Passalidae, 
Mastochilus quaestionis 

HN 
8/1998 

Springbrook, Lamington National Park, 
Queensland, Austrailia  203 183 - 

446 KS-61-W20 Paramoebidium 
sp. 

Ephemeroptera, 
Siphlonuridae, Siphlonurus 

MMW 
5/1998 

Ephemeral stream, University of Kansas 
Field Station, Nelson Environmental Study 
Area; Lawrence, Kansas, USA 

194 - - 

447 MA-3-W51 Paramoebidium 
sp. 

Plecoptera, Taeniopterygidae, 
Taeniopteryx 

MMW 
12/1997 

Winnetuxet River where it drains a small 
pond near where the river crosses State 
Highway 58, approximately 0.8 km south of 
Plympton and 2 km north of the junction 
with State Highway 44, 41°57.2'N, 
70°48.4'W; Plymouth Co., Massachusetts, 
USA 

- 183* - 

449 MO-19-W15 Paramoebidium 
sp. 

Ephemeroptera, Baetidae, 
Fallceon 

MMW 
3/1999 

East tributary of Turkey Creek, temp. 9°C, 
37°24.40'N, 93°32.86'W; Polk Co., 
Missouri, USA 

194C 183C - 

450 NF-10-W15 Paramoebidium 
sp. 

Diptera, Simuliidae, Simulium 
venustum/verecundum  

MMW 
5/1999 

Beachy Cove Brook at Witch Hazel Rd., 
47°35.82'N, 52°50.84'W; Newfoundland, 
Canada 

194 183C - 

457 RMBL-71-3 Paramoebidium 
sp. 

Ephemeroptera, Ameletidae, 
Ameletus velox 

RWL 
8/1995 

East River upstream from bridge near 
Avery Creek, Rocky Mountain Biological 
Laboratory; Crested Butte, Colorado, USA 

194 183 - 

458 RMBL-72-3 Paramoebidium 
sp. Diptera, Simuliidae RWL 

8/1995 

Willow Creek near outlet to Taylor Park 
Reservoir, temp. 15.5°C, Rocky Mountain 
Biological Laboratory; Crested Butte, 
Colorado, USA 

194 - - 

459 PA-2-W2 Paramoebidium 
sp. 

Plecoptera, Nemouridae, 
Shipsa 

MMW 
3/2000 

Unnamed stream on North side Route 286, 
1.3 mi. NE of Hillsdale; Indiana Co., 
Pennsylvania, USA 

194 183C - 

466 NS-24-W16 Paramoebidium 
sp. 

Ephemeroptera, 
Leptophlebiidae 

MMW 
10/2000 

Small, pebble-bottom stream near James 
River (2.1 km off Hwy. 104), temp.10.5°C, 
45°36.12’N, 62°11.54’W; Antigonish, Nova 
Scotia, Canada 

- 183 - 

467 VT-3-W1 Paramoebidium 
sp. 

Ephemeroptera, 
Ephemerellidae, Drunella 

MMW 
8/2000 

Just North of Warren County line along 
Hwy. 100 S., where Mad River crosses the 
highway, temp. 16°C, 44°04.25’N, 
72°51.65’W; Green Mountain National 

194C - - 
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Forest, Vermont, USA 

473 UT-1-W14 Paramoebidium 
sp. 

Diptera, Simuliidae, Simulium 
arcticum complex 

MMW 
8/2001 

Provo River, temp. 14.5°C, 40°19.25'N, 
111°38.12'W; Utah Co., Utah, USA 194 + 203 183 - 

488 UT-2-W5 Paramoebidium 
sp. 

Ephemeroptera, Baetidae, 
Baetis bicaudatus 

MMW 
8/2001 

Bridal Veil Falls on Provo River Road, 
elev. 1562 m., temp. 11.5°C, 40° 20.69’N, 
111° 36.38’W; Utah Co., Utah, USA 

- 183C - 

504 NS-35-W8 Paramoebidium 
sp. 

Ephemeroptera, 
Ephemerellidae, Ephemerella 
subvaria 

MMW 
12/2001 

Cape Breton, Big Intervale Cape North, 
Cabot Trail, temp. 0.5°C, 46°49.74'N, 
60°37.07'W; Nova Scotia, Canada 

194C - - 

506 NS-35-W14 Paramoebidium 
sp. 

Ephemeroptera, 
Ephemerellidae, Eurylophella 

MMW 
12/2001 

Cape Breton, Big Intervale Cape North, 
Cabot Trail, temp. 0.5°C, 46°49.74'N, 
60°37.07'W; Nova Scotia, Canada 

194 183 - 

508 NS-35-W18 Paramoebidium 
sp. 

Ephemeroptera, 
Leptophlebiidae, 
Paraleptophlebia 

MMW 
12/2001 

Cape Breton, Big Intervale Cape North, 
Cabot Trail, temp. 0.5°C, 46°49.74'N, 
60°37.07'W; Nova Scotia, Canada 

194 183 - 

511 NS-35-
W22b 

Paramoebidium 
sp. 

Ephemeroptera, 
Ephemerellidae, Eurylophella 

MMW 
12/2001 

Cape Breton, Big Intervale Cape North, 
Cabot Trail, temp. 0.5°C, 46°49.74'N, 
60°37.07'W; Nova Scotia, Canada 

194 183 901 

514 LA-9-W2a Arundinula sp. Decapoda, Astacidae 
(Freshwater crayfish) 

MMW 
2/2002 

Commercial pond crayfish purchased from 
Country Corner convenience store; Baton 
Rouge, Louisiana, USA 

- 183 - 

525 NOR-3-1 Paramoebidium 
sp. 

Plecoptera, Capniidae, 
Capnopsis schilleri 

RWL 
5/2002 

Heggelielva River near Skansebakken 
parking area, 60°01.19'N, 10°35.20'E; Oslo 
County, Norway 

194 183 - 

526 NOR-3-W2 Paramoebidium 
sp. 

Plecoptera, Nemouridae, 
Protonemura cf. meyeri 

MMW 
5/2002 

Heggelielva River near Skansebakken 
parking area, 60°01.19'N, 10°35.20'E; Oslo 
County, Norway 

194 183 901 

531 NOR-4-W9 Paramoebidium 
sp. Plecoptera MMW 

5/2002 

Small stream next to house at old bridge 
just N. of newer bridge, temp 6.5°C, 
60°01.14'N, 10°33.88'E; Oslo County, 
Norway 

194 183 - 

533 NOR-7-W2 Paramoebidium 
sp. 

Plecoptera, Nemouridae, 
Protonemura cf. meyeri 

MMW 
5/2002 

Stream on curve of Sørkendalsveien Rd., 
with parking just NW of stream. Heading 
northward, 0.65 km to church, temp. 7°C, 
60°00.72'N, 10°36.84'E; Oslo county, 
Norway 

194 183 901 

536 NOR-5-W14 Paramoebidium 
sp. 

Plecoptera, Nemouridae, 
Nemurella pictetii 

MMW 
5/2002 

Small, unnamed stream off Kampeveien 
Rd., reached from Lommedalsveien, at 
wooden bridge, temp. 6.5°C, 59°59.19'N, 
10°28.64'E; Akershus county, Norway 

194 183 - 
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538 NOR-5-2 Paramoebidium 
sp. 

Plecoptera, Taeniopterygidae, 
Brachyptera risi 

RWL 
5/2002 

Small, unnamed stream off Kampeveien 
Rd., reached from Lommedalsveien, at 
wooden bridge, temp. 6.5°C, 59°59.19'N, 
10°28.64'E; Akershus county, Norway 

194 183 901 

543 NOR-10-W1 Paramoebidium 
sp. 

Plecoptera, Capniidae, 
Capnopsis schilleri 

MMW 
5/2002 

Small stream next to house at old bridge 
just N. of newer bridge, temp 6.5°C, 
60°01.14'N, 10°33.88'E; Oslo county, 
Norway 

194 183 - 

546 NOR-10-
W10a 

Paramoebidium 
sp. 

Plecoptera, Capniidae, 
Capnopsis schilleri 

MMW 
5/2002 

Small stream next to house at old bridge 
just N. of newer bridge, temp 6.5°C, 
60°01.14'N, 10°33.88'E; Oslo county, 
Norway 

194 183 - 

551 NOR-16-W3 Paramoebidium 
sp. 

Plecoptera, Taeniopterygidae, 
Brachyptera 

MMW 
5/2002 

Dalbekken stream near bungalow, temp. 
6.0°C, 60°29.99'N, 10°08.00'E; Buskerud 
county, Norway 

194 183 901 

558 NOR-10-
W15 

Paramoebidium 
sp. Plecoptera MMW 

5/2002 

Small stream next to house at old bridge 
just N. of newer bridge, temp 6.5°C, 
60°01.14'N, 10°33.88'E; Oslo county, 
Norway 

194 183 - 

564 NOR-21-W5 Paramoebidium 
sp. 

Plecoptera, Leuctridae, 
Leuctra hippopus 

MMW 
5/2002 

Stream at bottom of Haga foss, a tributary 
of the Ekso River, about 0.4 km W. of Ekse 
field station, 60°50.11'N, 06°19.48'E; 
Hordaland County, Norway 

194 183 - 

566 NOR-22-
W10 

Paramoebidium 
avitruviense 

Plecoptera, Chloroperlidae, 
Siphonoperla burmeisteri 

MMW 
5/2002 

Small stream under Route E16 W. of Voss, 
0.6 km E. of Norske Vandrerlyem parking 
lot and just W. of sign Vosse Vaugen; going 
W., 1.3 km from turnoff to Kvåle, temp. 
6.5°C, 60°37.52'N, 06°23.65'E; Hordaland 
County, Norway 

203 - - 

591 GUA-X-13 Leidyomyces sp. Coleoptera, Passalidae, 
Passalus puntatostriatus 

ACB 
10/2001 San Jose Pinula, 1615 m.; Guatemala 194 183 - 

593 GUA-X-18 Leidyomyces sp. Coleoptera, Passalidae, 
Publius agassizi 

ACB 
10/2001 Villa Nueva, 1524 m.; Guatemala 194 183C - 

606 NS-35-L2 Paramoebidium 
sp. 

Ephemeroptera, 
Ephemerellidae, Ephemerella 

L 
12/2001 

Cape Breton, Big Intervale Cape North, 
Cabot Trail, temp. 0.5°C, 46°49.74'N, 
60°37.07'W; Nova Scotia, Canada 

194 183 - 

614 CAL-17-L1 Paramoebidium 
sp. Ephemeroptera L 

6/2002 

Hummingbird Creek, on Calistoga Road, 
temp. 16°C, 38°31.93'N, 122°36.25'W; 
Sonoma Co., California, USA 

194 - - 
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616 CAL-17-L6 Paramoebidium 
sp. Ephemeroptera L 

6/2002 

Hummingbird Creek, on Calistoga Road, 
temp. 16°C, 38°31.93'N, 122°36.25'W; 
Sonoma Co., California, USA 

194 - - 

618 AR-30-C7 Paramoebidium 
sp. Ephemeroptera, Siphlonuridae MJC 

5/1998 

Hock Creek (Hock Creek Rd. at Rte. 74), 
36°03.13'N 93°49.22'W, temp. 0°C, 
Madison Co., Arkansas, USA 

194 183 901 

619 AR-30-C9 Paramoebidium 
sp. Ephemeroptera, Siphlonuridae MJC 

1/2002 

Hock Creek (Hock Creek Rd. at Rte. 74), 
36°03.13'N 93°49.22'W, temp. 0°C, 
Madison Co., Arkansas, USA 

194 183 - 

622 AR-31-C31 Paramoebidium 
sp. Ephemeroptera, Siphlonuridae MJC 

1/2002 

Osage Creek (Rd. 927 at Rte. 74, near Dog 
Branch Cemetery, but from Osage Creek 
proper rather than the Dog Branch), temp. 
5°C, 36°12.18'N, 93°21.56'W; Caroll Co., 
Arkansas, USA 

194 183* - 

664 NOR-35-3 Paramoebidium 
sp. 

Plecoptera, Taeniopterygidae, 
Taeniopteryx nebulosa 

RWL 
8/2002 

Trib. of main river. Kanten Rd. running 
parallel to stream that crosses Kongsvegen 
Rd. Going N., stream is 0.6 km to E6 
highway, temp. 14.5°C, 61°59.61'N, 
09°14.23'E; Oppland County, Norway 

194 183 - 

671 NOR-40-W2 Paramoebidium 
sp. 

Plecoptera, Taeniopterygidae, 
Taeniopteryx nebulosa 

MMW 
8/2002 

Greitbekken River, a tributary of 
Jørstadelva on road S. off Hwy. 763 at dead 
end road, temp. 17°C, 64°10.86'N, 
12°17.07'E; Norge County, Norway 

194 183 - 

674 NOR-40-W8 Paramoebidium 
sp. Diptera, Simuliidae MMW 

8/2002 

Greitbekken River, a tributary of 
Jørstadelva on road S. off Hwy. 763 at dead 
end road, temp. 17°C, 64°10.86'N, 
12°17.07'E; Norge County, Norway 

194 183C - 

680 NOR-50-W2 Paramoebidium 
sp. 

Plecoptera, Taeniopterygidae, 
Taeniopteryx nebulosa 

MMW 
8/2002 

Stream crossing Rte. 74, E. of NOR-49 
boggy pond, temp. 18°C, 64°28.81'N, 
13°12.69'E; Norge County, Norway 

194 183 901 

681 NOR-53-
W1a 

Paramoebidium 
curvum Diptera, Simuliidae MMW 

8/2002 

Aunelva stream draining S., temp. 17.5°C, 
64°19.66'N, 13°35.52'E; Norge County, 
Norway 

194 183C - 

690 NOR-54-2 Paramoebidium 
sp. 

Ephemeroptera, Baetidae, 
Baetis rhodani 

RWL 
8/2002 

Small stream crossing Rte. 759 SSE of 
Steinkjer 31.5 km from field station, just 
before sign to Billakkering when going S., 
temp. 15.5°C, 63°57.64'N, 11°34.27'E; 
Norge County, Norway 

194 183 - 
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691 NOR-54-
W10 

Paramoebidium 
sp. Ephemeroptera, Baetidae MMW 

8/2002 

Small stream crossing Rte. 759 SSE of 
Steinkjer 31.5 km from field station, just 
before sign to Billakkering when going S., 
temp. 15.5°C, 63°57.64'N, 11°34.27'E; 
Norge County, Norway 

194 183 - 

703 NOR-54-
W17 

Paramoebidium 
sp. Ephemeroptera, Baetidae MMW 

8/2002 

Small stream crossing Rte. 759 SSE of 
Steinkjer 31.5 km from field station, just 
before sign to Billakkering when going S., 
temp. 15.5°C, 63°57.64'N, 11°34.27'E; 
Norge County, Norway 

194 183 - 

715 NOR-61-
W11 

Paramoebidium 
sp. 

Plecoptera, Taeniopterygidae, 
Taeniopteryx nebulosa 

MMW 
8/2002 

Large waterfall: Kjaekerfossen. Just off Rte. 
757, 63°50.25'N, 12°01.68'E; Norge 
County, Norway 

194 183C - 

771 CA-22-W2c Enteromyces 
callianassae 

Decapoda, Callianassidae, 
Neotrypaea (=Callianassa) 
(Bay ghost shrimp) 

MMW 
6/2002 

Mud flat in front of housing at Bodega 
Marine Reserve (along Westshore Rd.), 
Bodega Harbor, 38°19.05’N, 123°03.38’W; 
Bodega Bay, California, USA 

194 183C - 

772 LA-9-W1g Arundinula sp. Decapoda, Astacidae 
(Freshwater crayfish) 

MMW 
2/2002 

Commercial pond crayfish purchased from 
Country Corner convenience store; Baton 
Rouge, Louisiana, USA 

194C 183 - 

776 NOR-1-W1 Parataeniella sp. Isopoda MMW 
5/2002 

Boards harboring isopods on University of 
Oslo campus; Oslo, Norway 194 183 - 

830 NS-X-17 Paramoebidium 
sp. Plecoptera DBS 

4/2003 

Small, spring-fed brook near Black Duck 
Lake, 44°42.10’N, 64°42.45’W; East 
Dalhousie, Nova Scotia, Canada 

194 183 901 

833 ONT-X-10 Paramoebidium 
sp. Diptera, Simuliidae DBS 

5/2003 

Small, spring-fed brook near Black Duck 
Lake, 44°42.10’N, 64°42.45’W; East 
Dalhousie, Nova Scotia, Canada 

177 183C - 

870 CO-16-W12 Paramoebidium 
sp. Trichoptera, Brachycentridae MMW 

6/2003 
Beaver Creek, near Gunnison, temp. 9°C, 
38° 29.77N, 107° 01.94W; Colorado, USA - 183 - 

872 FL-2-W7 Enterobryus sp. 
Polydesmida, 
Paradoxosomatidae, Oxidus 
gracilis 

MMW 
2/2003 

Archbold Biological Station, within 100 m. 
of buildings, 27.182843, -81.351786; 
Venus, Florida, USA 

194 183 901 

901 TN-27-A3 Amoebidium 
appalachense 

Diptera, Chironomidae, 
Chironomus 

AS 
7/2004 

Rock pools above Roaring Fork Creek, just 
upstream from bridge across river, elev. 560 
m., 35°42.55’N’ 83°28.65’W; Gatlinburg, 
Tennessee, USA 

194 183 - 

903 TN-27-W4 Amoebidium sp. Diptera, Chironomidae, 
Chironomus 

MMW 
7/2004 

Rock pools above Roaring Fork Creek, just 
upstream from bridge across river, elev. 560 
m., 35°42.55’N’ 83°28.65’W; Gatlinburg, 

194 183 - 
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Tennessee, USA 

904 TN-46-A6 Amoebidium 
appalachense 

Diptera, Chironomidae, 
Chironomus 

AS 
8/2004 

Rock pools on Little Pigeon River, and 
River itself, elev. 430 m., 35°44.1’N, 
83°24.8’W; Gatlinburg, Tennessee, USA 

194 183 - 

921 TN-27-W1a Amoebidium 
appalachense 

Diptera, Chironomidae, 
Chironomus 

MMW 
7/2004 

Rock pools above Roaring Fork Creek, just 
upstream from bridge across river, elev. 560 
m., 35°42.55’N’ 83°28.65’W; Gatlinburg, 
Tennessee, USA 

194 183 - 

935 PEI-X-12 Paramoebidium 
sp. 

Plecoptera, Taeniopterygidae, 
Taeniopteryx 

DBS 
12/2003 

Trout River (wide, slow moving stream) at 
Tyne Valley, 46°34'13.50"N, 
063°55'44.18"W; Prince Edward Island, 
Canada 

194 183 - 

943 ALG-15-
W1a 

Arundinula 
opeongoensis 

Decapoda, Astacidae 
(Freshwater crayfish) 

MMW 
5/2004 

Opeongo Lake, Sproule Bay, Algonquin 
Park, 45°38.05’N, 78°21.84’W; Ontario, 
Canada 

194 183 - 

950 ONT-3-W6 Enterobryus cf. 
euryuri 

Polydesmida, Polydesmidae, 
Apheloria virginiensis 
corrugata 

MMW 
5/2004 

Webster Falls, Spencer Gorge, 43°16.77’N, 
79°58.74’W; Hamilton, Ontario, Canada 194 183 - 

1048 TN-38-W15 Paramoebidium 
sp. Plecoptera MMW 

7/2004 

Cades Cove, Tater Branch of Abrams 
Creek, at Cades Cove Loop Road, elev. 537 
m., temp. 20°C, 35°36.49'N, 83°49.78'W; 
Tallassee, Tennessee, USA 

194* 183 - 

1049 ALG-9-W10 Paramoebidium 
sp. Diptera, Simuliidae MMW 

5/2004 

Fast flowing stream draining beaver pond 
beside Opeongo Rd., Algonquin Park, 
45°36.19'N, 078°20.19'W; Ontario, Canada 

194 183C - 

1052 OR-3-W12 Paramoebidium 
sp. 

Plecoptera, Peltoperlidae, 
Soliperla 

MMW 
8/2005 

New Belgium Creek, elev. 750 m., 
44°13.5'N, 122°10.6'W; Blue River, 
Oregon, USA 

194 183 - 

1058 Boi-14-W5 Parataeniella sp. Isopoda MMW 
4/2008 

Boise River, Friendship Bridge near BSU 
campus, 43.605149, -116.203810; Boise, 
Idaho, USA 

194 183 - 

1067 CO-16-W6 Enterobryus sp. Coleoptera MMW 
6/2003 

Beaver Creek, small drain, near Gunnison, 
temp. 9°C, 38° 29.77N, 107° 01.94W; 
Colorado, USA 

- 183 - 

1115 MA-8-W4 Alacrinella 
limnoriae 

Isopoda, Limnoridae, 
Limnoria 

MMW 
3/1998 Woods Hole, Massachusetts, USA AY336703.1 - - 
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1117 MA-7-W17 Astreptonema 
gammari Amphipoda, Gammaridae MMW 

4/1998 

Winnetuxet River where it drains a small 
pond near where the river crosses State 
Highway 58, approximately 0.8 km south of 
Plympton and 2 km north of the junction 
with State Highway 44, 41°57.2'N, 
70°48.4'W; Plymouth Co., Massachusetts, 
USA 

194 183 - 

1118 SET-3-C3 Astreptonema 
gammari 

Amphipoda, Gammaridae, 
Gammarus 

MJC 
8/2002 

Source du Lez, temp. 19°C, 43°42.956'N, 
3°50.938'E; Saint-Clément-de-Rivière, 
France 

194 183 - 

1120 MN-3-W6 Astreptonema 
gammari 

Amphipoda, Gammaridae, 
Gammarus 

MMW 
3/1998 Woods Hole, Massachusetts, USA AY336709.1 183 - 

1121 WA-3-C3 Astreptonema sp. Isopoda, Sphaeromatidae MJC 
3/1999 

Eagle Cove, San Juan Island, Washington, 
USA AY336706.1 183 - 

1126 SPA-10-C2 Eccrinidus flexilis Glomerida, Glomeridae, 
Glomeris (Pill millipede) 

MJC 
8/2002 St. Llorens del Munt, Barcelona, Spain AY336698.1 183 - 

1128 SPA-11-C45 Eccrinidus flexilis Glomerida, Glomeridae, 
Glomeris (Pill millipede) 

MJC 
8/2002 

Punta de la Mora, 41°7.89'N, 1°20.54'E; 
Tarragona, Spain.  AY336700.1 183 - 

1133 CA-11-C4 Enterobryus 
halophilus 

Decapoda, Hippidae, Emerita 
(Pacific sand crab) 

MJC 
7/2001 

Salmon Creek Beach, Bodega Bay, 
California, USA - 

183 
(AY336694.1 

not used) 
- 

1135 KS-79-W2 Enterobryus oxidi 
Polydesmida, 
Paradoxosomatidae, Oxidus 
gracilis 

MJC 
8/1999 

Rice Woodland Tract, Kansas University 
Ecological Reserve; Lawrence, Kansas, 
USA 

AY336710.1 183 - 

1137 SPA-10-C6 Enterobryus sp. Julida, Julidae MJC 
8/2002 St. Llorens del Munt, Barcelona, Spain AY336711.1 183 - 

1138 SPA-2-C10 Enterobryus sp. Polydesmida, Polydesmidae, 
Brachydesmus 

MJC 
8/2002 

Near Riera de Santa Fe, 41°46.41'N, 
2°27.87'E; Montseny, Spain AY336712.1 183 - 

1139 CR-LS-C1 Enterobryus sp. Diplopoda MJC 
7/1999 

La Selva Biological Station, 10°25′19″N, 
84°00′54″W; Heredia Province, Costa Rica 203 - - 

1141 MA-11-C1 Enterobryus sp. Diplopoda MJC 
2/2002 

Peach’s Point up Beacon Rd. in Steep 
Swamp area, 42°31.096'N, 70°50.495'W; 
Essex, Massachusetts, USA 

AY336701.1 183 - 

1145 CA-12-C8 Enteromyces 
callianassae 

Decapoda, Callianassidae, 
Neotrypaea (=Callianassa) 
(Bay ghost shrimp) 

MJC 
7/2001 

Walker Creek Marsh, Tomales Bay, Marin, 
California, USA AY336702.1* 183 - 

1146 WA-1-C5 Enteropogon 
sexuale 

Decapoda, Upogebiidae, 
Upogebia (Blue mud shrimp) 

MJC 
3/1999 

False Bay, San Juan Island, Washington, 
USA AY336705.1 183 - 

1164 SC-4-C6 Parataeniella 
dilatata Isopoda MJC 

11/1998 South Carolina, USA 194 183 - 
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1166 KS-48-C18 Parataeniella 
armadillidii Isopoda, Armadillidae MJC 

1/1998 

Rice Woodland Tract, Kansas University 
Ecological Reserve; Lawrence, Kansas, 
USA 

194 - - 

1170 WA-1-C37 Taeniella carcini 
Decapoda, Varunidae, 
Hemigrapsus (Purple shore 
crab) 

MJC 
3/1999 

False Bay, San Juan Island, Washington, 
USA AY336707.1 183 - 

1172 MA-5-C17 Taeniellopsis sp. Amphipoda, Talitridae, 
Orchestia 

MJC 
3/1999 

Nobska Point, Barnstable Co., 
Massachusetts, USA AY336704.1 AY336697.1* - 

1175 KS-61-W6 Paramoebidium 
sp. Ephemeroptera, Siphlonuridae MMW 

5/1998 
Breidenthal Biological Reserve, Douglas 
Co., Lawrence, Kansas, USA AY336708.1 - - 

1176 AR-31-C7 Paramoebidium 
sp. Ephemeroptera, Siphlonuridae MJC 

5/1998 

Osage Creek, (Rd. 927 at Rte. 74, near Dog 
Branch Cemetery, but from Osage Creek 
proper rather than the Dog Branch), temp. 
5°C, 36°12.18'N, 93°21.56'W; Caroll Co., 
Arkansas, USA 

194 183 901 

1181 ID-164-G2 Paramoebidium cf. 
grande 

Diptera, Simuliidae, Simulium 
piperi 

JG  
6/2013 

Cottonwood Creek, Military Reserve Park, 
43°38.19’N, 116°14.28’W; Ada Co., Boise, 
Idaho, USA 

194 - - 

1183 ID-157-G11 Paramoebidium 
sp. 

Ephemeroptera, Baetidae, 
Baetis 

JG  
6/2013 

Cottonwood Creek, Military Reserve Park, 
43°38.19’N, 116°14.28’W; Ada Co., Boise, 
Idaho, USA 

194 - - 

1185 ID-163-G5 Enterobryus sp. Polydesmida, Polydesmidae, 
Polydesmus 

JG  
6/2013 

Garden area of backyard in Northend 
neighborhood, 43°37.59’N, 116°12.47’W; 
Ada Co., Boise, ID, USA 

194 183* - 

1187 ID-165-G2 Enterobryus sp. Julidae, Parajulidae JG  
6/2013 

Garden area of backyard in Northend 
neighborhood, 43°37.59’N, 116°12.47’W; 
Ada Co., Boise, ID, USA 

194 - - 

1188 ID-165-G4 Enterobryus sp. Polydesmida, Polydesmidae, 
Polydesmus 

JG  
6/2013 

Garden area of backyard in Northend 
neighborhood, 43°37.59’N, 116°12.47’W; 
Ada Co., Boise, ID, USA 

194 - - 

1193 ID-155-N1-2 Ichthyophonus sp. 
Salmoniformes, Salmonidae, 
Oncorhynchus (Rainbow 
trout) 

SL  
3/2013 Clear Springs Foods, Buhl, Idaho, USA 194 - - 

1194 ID-155-N2-1 Ichthyophonus sp. 
Salmoniformes, Salmonidae, 
Oncorhynchus (Rainbow 
trout) 

SL  
3/2013 Clear Springs Foods, Buhl, Idaho, USA 194 183* 901 

1196 Mex-16-W4 Paramoebidium 
curvum Diptera, Simuliidae, Simulium MMW 

11/2005 

Xico. Road from Xico to Xico Viejo, Km. 
2.5. Puente de la Virgen de Guadalupe, 
elev. 1667 m., temp. 14°C, 19°26.6779’N, 
97°02.7579’W; Veracruz, Mexico 

177 + 194 183C - 
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1197 Mex-4-C1 Enterobryus sp. Diplopoda MJC 
11/2005 

San Andrés Tlalnelhuayocan, Rancho 
Viejo, Agüita Fría. Spring fed stream, Misty 
forest, elev. 1440 m., temp. 14.5°C, 
19°31.18’N, 96°59.23’W; Xalapa, 
Veracruz, Mexico 

203 - - 

1198 KY-5-P5 Enterobryus sp. Diplopoda PK 
6/2010 Kentucky, USA 194 - - 

1200 DR-16-C8 Paramoebidium 
sp. 

Ephemeroptera, 
Ephemerellidae 

MJC 
12/2006 

La vega, Ébano Verde, Río Arroyazo, elev. 
1010 m., temp. 17°C, Dominican Republic 194 183 - 

1201 Mex-38-C8 Leidyomyces sp. Coleoptera, Passalidae MJC 
8/2006 

Submontane humid evergreen tropical 
forest of Los Tuxtlas (San Andrés Tuxtlas), 
Veracruz, Mexico 

203 + 194 - - 

1207 ID-166-G6 Paramoebidium cf. 
hamatum 

Ephemeroptera, Baetidae, 
Baetis bicaudatus 

JG  
6/2013 

Cottonwood Creek, Military Reserve Park, 
temp. 14°C, 43°38.19’N, 116°14.28’W; 
Boise, Idaho, USA 

194 183C - 

1210 NS-X-39 Paramoebidium 
stipula Plecoptera, Nemouridae DBS 

2/2005 

Small, spring-fed brook near Black Duck 
Lake, 44°42.10’N, 64°42.45’W; East 
Dalhousie, Nova Scotia, Canada 

194 183 - 

1214 KS-114-3 Paramoebidium 
corpulentum 

Plecoptera, Capniidae, 
Allocapnia 

RWL 
1/2005 

Rock Creek, temp. 1°C, 38°50.89'N, 
95°26.71'W; Douglas Co., Kansas, USA 194C 183 - 

1215 NS-X-29 Paramoebidium 
sp. 

Plecoptera, Taeniopterygidae, 
Taeniopteryx 

DBS 
3/2004 

Small river, through urban area on Sackville 
Dr. adjacent to Downsview Mall, 
44°46.15’N, 63°41.22’W; Sackville, Nova 
Scotia, Canada 

194 183 - 

1217 OR-13-W1 Paramoebidium 
sp. 

Ephemeroptera, 
Ephemerellidae, Ephemerella 
aurivilli 

MMW 
9/2005 

First Creek on Rd. 12, temp. 12°C, elev. 
1079 m., 44°27.57'N, 121°41.35'W; Camp 
Sherman, Oregon, USA 

194 183 - 

1218 TN-13-W20 Paramoebidium 
sp. 

Ephemeroptera, Baetiscidae, 
Baetisea carolina 

MMW 
3/2004 

Two confluent streams at junction of Little 
Cove, Mill Creek roads, 35°45.91'N, 
83°34.18'W; Pigeon Forge, Tennessee, 
USA 

194 - - 

1219 TN-38-W13 Paramoebidium 
sp. 

Plecoptera, Perlidae, 
Acromeuria 

MMW 
7/2004 

Cades Cove, Tater Branch of Abrams 
Creek, at Cades Cove Loop Road, elev. 537 
m., temp. 20°C, 35°36.49'N, 83°49.78'W; 
Tallassee, Tennessee, USA 

203 - - 

1223 Mex-17-W2 Paramoebidium 
sp. 

Diptera, Simuliidae, Simulium 
parrai 

MMW 
11/2005 

Xico. Road from Xico to Xico Viejo, Km 2. 
Cofre de Perote mountain. Little stream, 
elev. 1650 m., temp. 17.5°C, 19°25.9489N, 
97°03.7669W; Veracruz, Mexico 

194C - - 

1225 OR-14-W1 Paramoebidium Plecoptera, Peltoperlidae, MMW Jack Creek on Rd. 1230, temp. 8°C, elev. 194 183 901C 
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sp. Yoraperla 9/2005 928 m., 44°29.27'N, 121°41.88'W; Camp 
Sherman, Oregon, USA 

1227 CO-3-W13 Paramoebidium 
sp. Ephemeroptera MMW 

9/1997 

Onahu Creek, Rocky Mountain National 
Park, temp. 7.5°C, 40°22.8N, 105°51.0W; 
Grand Lake, Colordao, USA 

194 183 - 

1228 BC-5a-W6 Paramoebidium 
sp. 

Ephemeroptera, Baetidae, 
Callibaetis 

MMW 
7/2006 

Pond at South Slocan, 5a was still water, 
elev. 445 m., pH 7, temp. 20°C, 
49°27.27’N, 117°28.18’W; Nelson, British 
Columbia, Canada 

194 133 - 

1234 NS-16-W2 Paramoebidium 
sp. 

Ephemeroptera, 
Leptophlebiidae, Leptophlebia 
cf. cupida 

MMW 
6/1999 

Medium river with boulders (Halfway 
Brook) in Cape Breton Highlands National 
Park, 46°48.53’N; 60°20.68’W; Nova 
Scotia, Canada 

203* - - 

1236 ID-65e-E1 Paramoebidium 
sp. Diptera, Simuliidae ERW 

2/2010 
Cottonwood Creek, Military Reserve Park, 
temp. 7.2°C; Ada Co., Boise, Idaho, USA 194 - - 

1237 ID-156-T1 Paramoebidium 
sp. Plecoptera, Nemouridae TP  

5/2013 
Cottonwood Creek, Military Reserve Park, 
temp. 10.5°C; Ada Co., Boise, Idaho, USA 203 - - 

1238 ATCC-PRA-
283 

Sphaeroforma sp. 
(nootkatensis) 

Echinoida, 
Strongylocentrotidae, 
Strongylocentrotus 
franciscanus (Red sea urchin) 

  194 183C - 

1239 ATCC-PRA-
283 

Sphaeroforma sp. 
(nootkatensis) 

Echinoida, 
Strongylocentrotidae, 
Strongylocentrotus 
franciscanus (Red sea urchin) 

  194 - 901C 

1240 ATCC-PRA-
284 

Creolimax 
fragrantissima 

Phleobranchia, Corellidae, 
Corella sp. (Transparent 
tunicate)   194 183 - 

1242 ATCC-PRA-
297 

Sphaeroforma 
arctica 

Amphipoda, Gammaridae, 
Gammarus   194 183 901 

1247 SPA-X-74 Paramoebidium 
avitruviense 

Plecoptera, Chloroperlidae, 
Siphonoperla torrentium 

LGV 
4/2013 

Montseny Natural Park, Cànoves, 
Vallforners stream above the homonym 
marsh, elev. 530 m., 41°43'37.66’N, 
2°20'12.31’E; Barcelona, Catalunya, Spain 

- 183 - 

1249 SPA-X-76 Paramoebidium 
ecdyonuridae 

Ephemeroptera, 
Heptageniidae, Ecdyonurus 
forcipula 

LGV 
4/2013 

Montseny Natural Park, Cànoves, 
Vallforners stream above the homonym 
marsh, elev. 530 m. (same site and date as 
the holotype), 41°43'37.66’N, 2°20'12.31’E; 
Barcelona, Catalunya, Spain 

194 183C - 
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1250 SPA-X-77 Paramoebidium 
ecdyonuridae 

Ephemeroptera, 
Heptageniidae, Ecdyonurus 
forcipula 

LGV 
4/2013 

Montseny Natural Park, Cànoves, 
Vallforners stream above the homonym 
marsh, elev. 530 m. (same site and date as 
the holotype), 41°43'37.66’N, 2°20'12.31’E; 
Barcelona, Catalunya, Spain 

177 - - 

 

FRA-1-14 
(=NRRL205
24, ATCC-
32708) 

Amoebidium 
parasiticum 

Cladocera, Daphniidae, 
Daphnia 

RWL 
6/1968 

Small, stagnant pool at S.W. junction of Rt. 
N. 109 to Courpouiran and D5E1, 
43°36.20’N, 3°48.41’E; Montpellier, 
Herault, France 

AF274051.1 DQ273802.1 AY582831.1 

 
ATCC-PRA-
280 

Abeoforma 
whisleri 

Mytiloida, Mytilidae, Mytilus 
(Mussel)   GU810145.1 - - 

  
Acanthoeca 
spectabilis -   EU011922.1 EU011933.2 - 

 2-04 Amphibiocystidium 
ranae 

Anura, Ranidae, Rana 
lessonae (Pool frog)  Switzerland AY692319.1 - - 

 Cl07 Amphibiocystidium 
sp. 

Anura, Ranidae, Rana italica 
(Italian stream frog)  Italy EU650666.1 - - 

  
Amphibiothecum 
penneri 

Anura, Bufonidae, Bufo 
americanus (American toad)  Connecticut, USA AY772001.1 - - 

  
Anurofeca 
richardsi 

Anura, Ranidae, Rana 
temporaria (Common frog)  

School of Biological Sciences, University 
of Sussex, Falmer, Brighton, UK AF070445.1 - - 

 
ATCC-
30864 

Capsaspora 
owczarzaki 

Planorboidea, Biomphalaria 
glabrata (Freshwater snail)  Corvalis, OR AY363957.1 AY724688.1 XM_ 

004365659.2 

 
CAUL-
BRN01 Caullerya mesnili 

Cladocera, Daphniidae, 
Daphnia longispina hybrid 
complex   GU123051.1 - - 

 
QM 
G313693 Clathrina sp. -  Great Barrier Reef, Yonge Reef AM180960.1 JQ272286.1 - 

 IOW94 Codosiga balthica -  Baltic Sea JQ034424.1 JQ034425.1 - 

  
Corallochytrium 
limacisporum -  

Coral reef lagoons of the Lakshadweep 
Islands of the Arabian Sea L42528.1 EU011936.1 AY582834.1 

 CH2 Creolimax 
fragrantissima 

Phleobranchia, Corellidae, 
Corella sp. (Transparent 
tunicate)  

Barkley Sound, Scott's Bay, Bamfield, 
British Columbia, Canada EU124915.1 HQ896016.1 HQ896021.1 

 Pw1 Creolimax 
fragrantissima 

Phascolosomatiformes, 
Phascolosomatidae, 
Phascolosoma (Peanut worm)  

Scott's Bay, Bamfield, British Columbia, 
Canada EU124914.1 - - 

 Clone 52 Dermocystidium 
percae 

Perciformes, Percidae, Perca 
fluviatilis (European perch)   AF533949.1 - - 
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Dermocystidium 
salmonis 

Salmoniformes, Salmonidae, 
Onchorhynchus tschawytscha 
(Chinook salmon)   U21337.1 - - 

 CM-2002 Dermocystidium 
sp. 

Perciformes, Percidae, Perca 
fluviatilis (European perch)   AF533950.1 - - 

 LKM51 Ichthyophonida sp. ?  
Lake Ketelmeer, Flevoland, The 
Netherlands AJ130859.1 - - 

 A3 Ichthyophonus sp. Mugiliformes, Mugilidae 
(Mullet)  Western Mediterranean FJ887961.1 - - 

 D5 Ichthyophonus sp. Mugiliformes, Mugilidae 
(Mullet)  Western Mediterranean FJ869836.1 - - 

 Clone 1-17 Ichthyophonus 
hoferi 

Pleuronectiformes, 
Pleuronectidae, Limanda 
ferruginea (Yellowtail 
flounder) 

  U25637.1 AY026370 - 

  
Ichthyophonus 
irregularis 

Pleuronectiformes, 
Pleuronectidae, Limanda 
ferruginea (Yellowtail 
flounder) 

 Nova Scotia shelf, Canada AF232303.1 - - 

 
Manhattan 
YLS-1 

Ichthyosporea sp. 
Tenebrio molitor 
symbiont (TMS) 

Coleoptera, Tenebrionidae, 
Tenebrio molitor  (Mealworm 
beetle)  

Center for Grain and Animal Health 
Research, Manhattan, KS, USA JN699060.1* Not used 

(JN699061.1) - 

 
QM 
G313818 Levinella prolifera -  Great Barrier Reef, Hook Reef AM180956.1 JQ272292.1 - 

 
ATCC-
50519 Ministeria vibrans -   AF271998.1 - AY582836.1 

 
ATCC-
50154 

Monosiga 
brevicollis -  Church Cave, Bermuda AF100940.1 AY026374.1 - 

 
CCAP 
1552/4 Nuclearia simplex -  

Freshwater, Heidelberg, West Berlin, 
Germany AF484687.1 AY148095.1 AY582835.1 

 
ATCC-PRA-
279 Pirum gemmata 

Phascolosomatiformes, 
Phascolosomatidae, 
Phascolosoma (Peanut worm)   GU810144.1 - - 

  
Psorospermium 
haeckelii 

Decapoda, Astacidae, Astacus 
(Freshwater crayfish)   U33180.1 - - 

  
Rhinosporidium 
cygnus 

Anseriformes, Anatidae, 
Cygnus (Swan)  Florida, USA AF399715.2 - - 

  
Rhinosporidium 
seeberi Human  

Department of Microbiology, University of 
Peradeniya, Sri Lanka AF118851.2 - - 
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QM 
G313668 

Soleneiscus 
stolonifer   Great Barrier Reef, Wistari Reef AM180955.1 JQ272290.1 - 

 IE7 
Sphaeroforma 
(Pseudoperkinsus) 
tapetis 

Apodida, Synaptidae, 
Leptosynapta clarki (Sea 
cucumber)  

Barkley Sound, Scott's Bay, Bamfield, 
British Columbia, Canada GU727527.1 - - 

  

Sphaeroforma 
(Pseudoperkinsus) 
tapetis 

Veneroida, Veneridae, 
Ruditapes decussatus (Carpet 
shell clam)  Spain AF192386.1 - - 

 JP610 Sphaeroforma 
arctica 

Amphipoda, Gammaridae, 
Gammarus setosus  

Littoral zone on the northern coast of 
Spitsbergen of the high-arctic Svalbard 
archipelago (79°47’N, 11°53’E) 

Y16260.2 - DQ403166.1 

 UK-Cefas1 Sphaerothecum 
destruens 

Cypriniformes, Cyprinidae, 
Leucaspius delineatus 
(Sunbleak)  

Freshwater pond in southern England, Park 
Pond, North Stoneham, Hampshire, UK, 
(Grid Ref SU43301730) 

FN996945.1 - - 

 BML Sphaerothecum 
destruens 

Salmoniformes, Salmonidae, 
Onchorhynchus tschawytscha 
(Chinook salmon)  Washington, USA AY267345.1 - - 

 LT37-C21 
Uncultured 
Amoebidium 
isolate 

?  
Hypersaline Lake Tyrrell, 320 km NW of 
Melbourne in semi-arid northwestern 
Victoria, Australia 

KC486775.1 - - 

 AI3F14RJ2
D12 

Uncultured 
eukaryote clone ?  

Micro-oxic water column sample, Cariaco 
Basin, Venezuela, Caribbean Sea GU824755.1 - - 

 B47 Uncultured 
eukaryote clone ?  

Domestic waste treatment plant sludge, 
Bendigo, Victoria, Australia JN054668.1 - - 

 D3P06H09 Uncultured 
eukaryote clone ? 

 

Oxygen-depleted intertidal marine 
sediment, upper 2 cm sediment surface, 
Arctic, Greenland 

EF100301.1* - - 

 KRL03E12 Uncultured 
eukaryote clone ?  Lake Karla, central Greece KC315811.1 - - 

 NAMAKO-
33 

Uncultured 
eukaryote clone ? 

 

Anoxic sediments, Namako-ike Lake 
(31°51'51" N, 129°52'18" E), Kamikoshiki 
Island, Japan 

AB252773.1 - - 

 SGUH1520 Uncultured 
eukaryote clone ?  

Eastern North Pacific, 33.55N, 118.4W, 5m 
depth KJ763063.1 - - 

 TAGIRI-25 Uncultured 
eukaryote clone ? 

 

Anoxic sediment around fumaroles on a 
submarine caldera floor, off shore from 
Fukuyama in Kagoshima Bay, Taigiri site 
(204 m, 31°39.747'N, 130°46.285'E: WGS-
84 Datum), Japan 

AB191433.1 - - 

 TAGIRI-26 Uncultured ?  Anoxic sediment around fumaroles on a AB191434.1 - - 
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eukaryote clone submarine caldera floor, off shore from 
Fukuyama in Kagoshima Bay, Taigiri site 
(204 m, 31°39.747'N, 130°46.285'E: WGS-
84 Datum), Japan 

 PR2-4E-07 
Uncultured 
Ichthyophonida 
clone 

? 
 

Praz-Rodet peat bog, 46°33’N 06°10’E, 
altitude 1041m., Switzerland GQ330605.1 - - 

ACB, Anna Cristina Bailey; AS, Augusto Siri; DBS, Doug B. Strongman; ERW, Emma R. Wilson; HCW, Howard C. Whisler; 
HN, Helen Nahrung; JG, Justin Gause; L, Chris L. Frey; LGV, Laia Guàrdia-Valle; MJC, Matías J. Cafaro; MMW, Merlin M. 
White; PK, Prasanna Kandel; RWL, Robert W. Lichtwardt; SL, Scott LaPatra; TP, Tyler Pickell 

C = PCR products from these samples were cloned to obtain sequence data 

* = Partial sequence 
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Table 1.3 Primers used for PCR amplification and sequencing, with citations and primer sequences. 

Primer name Target gene Source Direction Sequence (5'-3') Length 
NS1AA SSU rDNA Wang et al. 2014 For AAGCCATGCATGTCTAAGTATAA 23 bp 
NS8AA SSU rDNA Wang et al. 2014 Rev TACTTCCTCTAAATGACCAAGTTTG 25 bp 
NL1AA LSU rDNA Wang et al. 2014 For GAGTGAAGCGGGAAIAGCTCAAG 23 bp 

LR5 LSU rDNA Vilgalys & Hester 1990 Rev TCCTGAGGGAAACTTCG 17 bp 
LR7AA LSU rDNA Wang et al. 2014 Rev CCACCAAGATCTGCACTAGA 20 bp 

NS3 SSU rDNA White et al. 1990 For GCAAGTCTGGTGCCAGCAGCC 21 bp 
NS2 SSU rDNA White et al. 1990 Rev GGCTGCTGGCACCAGACTTGC 21 bp 
NS4 SSU rDNA White et al. 1990 Rev CTTCCGTCAATTCCTTTAAG 20 bp 

NS8PT SSU rDNA New to this study Rev TACTTCCTCTAAATGATCAAGTTTG 25 bp 
BMB-BR SSU rDNA Lane et al. 1986 For CTTAAAGGAATTGACGGAA 19 bp 
NS1PT SSU rDNA New to this study For AAGCCATGCATGTCCAAGTATAA 23 bp 

NL4 LSU rDNA O'Donnell 1993 Rev GGTCCGTGTTTCAAGACGG 19 bp 
LR6 LSU rDNA Vilgalys & Hester 1990 Rev CGCCAGTTCTGCTTACC 17 bp 

LR3.1R LSU rDNA New to this study For GTCTTGAAACACGGACCAAGG 21 bp 
LR5.1R LSU rDNA New to this study For GCCGAAGTTTCCCTCAGGAT 23 bp 

LR7 LSU rDNA Vilgalys & Hester 1990 Rev TACTACCACCAAGATCT 17 bp 
LR0R LSU rDNA Vilgalys lab page* For ACCCGCTGAACTTAAGC 17 bp 

hsp70 Ichthyo F1 HSP70 Paps et al. 2013 For AAYGAYCARGGHAACCGCACMACYCC 26 bp 
hsp70 Ichthyo F2 HSP70 Paps et al. 2013 For CAGCGYCAGGCYACCAAGGAYGC 23 bp 
hsp70 Ichthyo R1 HSP70 Paps et al. 2013 Rev ATCTGRGGARNTCRAAYTTRCC 22 bp 
hsp70 Ichthyo R2 HSP70 Paps et al. 2013 Rev GTGGGSAYGGTNGTGTTDCGC 21 bp 

Primers for protein-coding gene and ITS amplification tests 
hsp90 Ichthyo F1 HSP90 Paps et al. 2013 For TCYGATGCTYTKGAYAAGATTCG 23 bp 
hsp90 Ichthyo F2 HSP90 Paps et al. 2013 For AACAACCTGGGWACWATTGC 20 bp 
hsp90 Ichthyo R1 HSP90 Paps et al. 2013 Rev GCCTGNGCCTTCATGATRCGCTCC 24 bp 
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hsp90 Ichthyo R2 HSP90 Paps et al. 2013 Rev AGSKTCTTGCCCTCGTACTCCTT 23 bp 
MCM7-7f MCM7 New to this study For ACIMGIGTITCVGAYGTHAARCC 23 bp 

MCM7-7fp MCM7 New to this study For ACIMGIACIACIGAYGTIAARCC 23 bp 
MCM7-16r MCM7 Tretter et al. 2013 Rev GTYTGYTGYTCCATIACYTCRTG 23 bp 

MCM7-16.1r MCM7 New to this study Rev TGYTGYTCCATIACYTCRTGRATIGC 26 bp 
MCM7-15r MCM7 New to this study Rev TCCATYTTRTCRAAYTCRTCRATRCA 26 bp 
RPB1-AfL RPB1 Wang et al. 2014 For GARTGYCCDGGDCAYTTYGGICA 23 bp 
RPB1-DrL RPB1 Wang et al. 2014 Rev TTCATYTCRTCDCCRTCRAARTCIGC 26 bp 
fRPB2-5F RPB2 Liu et al. 1999 For GAYGAYMGWGATCAYTTYGG 20 bp 

fRPB2-7cR RPB2 Liu et al. 1999 Rev CCCATRGCTTGYTTRCCCAT 20 bp 
NS7AA ITS Tretter et al. 2014 For GGAAGTTTGAGGCAATAACAGG 22 bp 

ITS3 ITS White et al. 1990 For GCATCGATGAAGAACGCAGC 20 bp 
ITS2 ITS White et al. 1990 Rev GCTGCGTTCTTCATCGATGC 20 bp 

LR2/LR22 mix ITS Vilgalys lab page* Rev TTTTCAAAGTTCTTTTC/ 
CCTCACGGTACTTGTTCGCT 17/20 bp 

* Available from http://sites.biology.duke.edu/fungi/mycolab/primers.htm 
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Table 1.4 PCR protocol details for rDNA and protein-coding gene amplifications.  Promega brand mixes were used. 

Protocol  
      #            Gene 

Forward 
primer 

Reverse 
primer 

Master 
mix  

Program Details 
Cycles        Initial           Denature         Annealing     Extension         Final  
                denature                                                                              extension Betaine BSA Notes 

194 18S 
rDNA NS1AA NS8PT GoTaq 

Green 45 95°C/2:00 95°C/0:30 60°C/0:45 72°C/3:00 72°C/ 
10:00 no 0.8 

μg/μL 
Worked for Eccrinidae and 
Amoebidiidae; 35% amp failure 

203 18S 
rDNA NS1PT NS8PT GoTaq 

Green 45 95°C/2:00 95°C/0:30 58°C/0:45 72°C/3:00 72°C/ 
10:00 no 0.8 

μg/μL 
Worked for Eccrinidae and 
Amoebidiidae; 64% amp failure 

177 18S 
rDNA NS1AA NS8AA GoTaq 

Green 45 95°C/2:00 95°C/0:30 58°C/0:45 72°C/3:00 72°C/ 
10:00 no 0.8 

μg/μL 

Only obtained successful 
sequences for Paramoebidium; 
57% amp failure 

183 28S 
rDNA NL1AA LR7AA 

GoTaq 
Hot Start 

Green 
45 95°C/2:00 95°C/0:30 56°C/0:45 72°C/3:00 72°C/ 

10:00 0.5 M no* 
Worked for Eccrinidae and 
Amoebidiidae; no host 
sequences, but 39% amp failure 

133 28S 
rDNA LR0R LR7 GoTaq 

Green 45 95°C/2:00 95°C/0:30 51°C/0:45 72°C/3:00 72°C/ 
10:00 0.5 M 0.8 

μg/μL 

Prone to host sequence 
amplification; obtained 
successful amplification for 
Paramoebidium and 
Enteromyces; 45 % amp failure 

901 HSP70 
hsp70 

Ichthyo 
F1/F2 

hsp70 
Ichthyo 
R1/R2 

GoTaq 
Hot Start 

Green 
40 94°C/5:00 94°C/0:35 50 & 45°C/ 

0:45 72°C/1:15 72°C/ 
8:00 0.1 M no 

Nested program; 30% amp 
failure; prone to host sequence 
amplification 

Test protocols for ITS and protein-coding genes 

131 ITS 
rDNA NS7AA LR2/ 

LR22 mix 

GoTaq 
Hot Start 

Green 
45 95°C/2:00 95°C/0:30 

52-50°C 
step-down/ 

0:45 
72°C/3:00 72°C/ 

10:00 no 0.8 
μg/μL 

Obtained partial sequences for 
samples 377, 533, 872, 1052, 
1194, 1240, 1242; secondary 
structure evident in sequence 
chromatograms; 13% amp 
failure out of 3 reaction 
attempts; prone to host sequence 
amplification 

902 HSP90 
hsp90 

Ichthyo 
F1/F2 

hsp90 
Ichthyo 
R1/R2 

GoTaq 
Hot Start 

Green 
40 94°C/5:00 94°C/0:35 50 & 45°C/ 

0:45 72°C/1:30 72°C/ 
10:00 0.1 M no 

Nested program; multiple 
products observed upon 
electrophoresis; 54% amp failure 
out of 3 reaction attempts 

303 MCM7 MCM7-7f MCM7-
15r 

GoTaq 
Hot Start 

Green 
45 95°C/2:00 95°C/0:30 50°C/0:45 72°C/1:15 72°C/ 

10:00 no 0.8 
μg/μL 

Multiple products observed upon 
electrophoresis; 31% amp failure 
out of 2 reaction attempts 

317 MCM7 MCM7-
7fp 

MCM7-
16r 

GoTaq 
Hot Start 

Green 
45 95°C/2:00 95°C/0:30 52°C/1:15 72°C/2:00 72°C/ 

10:00 0.1 M no 
Multiple products observed upon 
electrophoresis; 73% amp failure 
out of 6 reaction attempts 

318 MCM7 MCM7-
7fp 

MCM7-
16.1r 

GoTaq 
Hot Start 

Green 
45 95°C/2:00 95°C/0:30 56°C/0:45 72°C/1:15 72°C/ 

10:00 no no 
Multiple products observed upon 
electrophoresis; 83% amp failure 
out of 3 reaction attempts 
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602 RPB1 RPB1-
AfL 

RPB1-
DrL 

GoTaq 
Hot Start 

Green 
49 95°C/2:00 95°C/1:00 

57-47°C 
step-down/ 

1:15 
72°C/2:45 72°C/ 

10:00 no 0.8 
μg/μL 

81% amp failure out of 3 
reaction attempts 

82 RPB2 fRPB2-5F fRPB2-
7cR 

GoTaq 
Hot Start 

Green 
49 95°C/2:00 95°C/1:00 

55-45°C 
step-down/ 

1:15 
72°C/2:45 72°C/ 

10:00 no no 68% amp failure out of 5 
reaction attempts 

* Added BSA at 0.8 μg/μL for 5 reactions 
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Table 1.6 SH and AU topology test results.  Constraint topologies are listed under Hypothesis and were compared to the 
RAxML best tree.  Bold values indicate significant results (p < 0.05). 
 
Hypothesis SH p-value AU p-value 
Amoebidiidae (Paramoebidum + Amoebidium) monophyletic 0.128 0.118 
Protist trichos (Amoebidiidae + Eccrinidae) monophyletic 0.180 0.176 
Paramoebidium + Parataeniella 0.032 0.024 
Eccrinaceae monophyletic 0 0.0002 
Palavasciaceae monophyletic (no 1121) 0.159 0.139 
Palavasciaceae monophyletic (with 1121 & 1115) 0.698 0.75 
Eccrinidae without Parataeniella 0.587 0.535 
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Table 1.7 BaTS testing results.  Association Index (AI), Parsimony Score (PS), and maximum exclusive single-state clade 
size (MC) statistics are shown.  Character state coding was the same as for ASR analyses.  Bold values indicate significant 
results (p < 0.05).  Results for character states only represented once in the dataset are not shown. 

 
Statistic 

Observed 
mean 

Lower 95% 
CI 

Upper 95% 
CI Null mean 

Lower 95% 
CI 

Upper 95% 
CI Significance 

Habitat AI 0.913208 0.91320461 0.91320461 7.061775 5.825057983 8.244171143 0 

 
PS 13 13 13 44.621 40 49 0 

 
MC Freshwater 24 24 24 3.407 2 5 1.00E-03 

 
MC Marine 9 9 9 2.377 2 4 1.00E-03 

 
MC Terrestrial 5 5 5 2.074 1 3 0.005 

         Location in 
host AI 1.824103 1.824117064 1.824117064 6.727517 5.708010197 7.720700741 0 

 
PS 16 16 16 38.64 37 40 0 

 
MC External 7 7 7 1.127 1 2 1.00E-03 

 
MC Hindgut 24 24 24 4.808 3 8 1.00E-03 

 
MC Foregut 2 2 2 1.002 1 1 0.00300002 

 
MC Organs/digestive tract 1 1 1 1.042 1 1 1 

 
MC Digestive tract 3 3 3 1.262 1 2 0.01200002 

 
MC Organs/tissues 1 1 1 1.057 1 2 1 

         Host type AI 2.082251 2.082234859 2.082234859 8.689934 7.476430893 9.769218445 0 

 
PS 19 19 19 57.097 53 61 0 

 
MC Insect 24 24 24 2.665 2 4 1.00E-03 

 
MC Crustacean 16 16 16 2.183 1 3 1.00E-03 

 
MC Millipede 5 5 5 1.492 1 2 1.00E-03 

 
MC Vertebrate 6 6 6 1.153 1 2 1.00E-03 

 
MC Other invertebrate 2 2 2 1.16 1 2 0.15799999 
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         Host stage AI 2.409571 2.409572601 2.409572601 6.748516 5.552778721 7.929811954 0 

 
PS 17 17 17 41.068 37 44 0 

 
MC Juvenile 24 24 24 2.353 2 4 1.00E-03 

 
MC Adult 16 16 16 4.055 2 6 1.00E-03 

 
MC Both 2 2 2 1.071 1 2 0.06999999 

         Growth 
form AI 0.932438 0.932446301 0.932446301 5.329536 4.292477608 6.333039284 0 

 
PS 10 10 10 29.752 28 31 0 

 
MC Hypha with holdfast 70 70 70 5.862 4 10 1.00E-03 

 
MC Spherical/hypha 6 6 6 1.119 1 2 1.00E-03 

 
MC Spherical 3 3 3 1.4 1 2 0.01700002 

 
MC Spherical/plasmodial/hyphae 1 1 1 1 1 1 1 

        

 

Spore 
production AI 1.278151751 1.278145194 1.278145194 8.800624847 7.691408634 9.868835449 0 

PS 14 14 14 57.8660011 54 62 0 

 
MC Endo- & cystospores 7 7 7 1.136000037 1 2 1.00E-03 

 
MC Cystospores 24 24 24 2.066999912 1 3 1.00E-03 

 
MC Basipetal 35 35 35 2.614000082 2 4 1.00E-03 

 
MC Basipetal & endospores 4 4 4 1.034000039 1 1 1.00E-03 

 
MC Endospores (non-motile) 6 6 6 1.480000019 1 2 1.00E-03 

 
MC Amoeboid (motile) 2 2 2 1.037999988 1 1 0.037 
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Figure 1.1 “Large rDNA tree”, a MrBayes (BI) consensus tree of the 18S and 28S 
combined dataset, and including all Paramoebidium samples and a large outgroup sampling, 
with maximum likelihood (ML) and maximum parsimony (MP) values indicated symbolically.  
Red text highlights protist tricho clades.  Branches supported by all three methods are bolded.  
Classification of Cavalier-Smith (2013) is indicated. 
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Figure 1.2 MrBayes (BI) consensus tree of the 18S, 28S and HSP70 amino acid 
combined dataset, with maximum likelihood (ML) and maximum parsimony (MP) values 
indicated symbolically.  Bolded branches indicate support from all three methods.  Grey dashed 
line indicates the alternative placement of Ichthyophonus in the MP tree.  Classification of 
Cavalier-Smith (2013) is indicated. 
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Figure 1.3 “Small rDNA tree”, a MrBayes (BI) consensus tree of the 18S and 28S 
combined dataset, and including fewer Paramoebidium samples and Capsaspora owczarzaki as 
the outgroup, with maximum likelihood (ML) and maximum parsimony (MP) values indicated 
symbolically.  Branches supported by all three methods are bolded.  Classification of Cavalier-
Smith (2013) is indicated. 

 



70 
 

 

 

 
Figure 1.4 SIMMAP output for the Habitat character drawn on the MrBayes small 
rDNA consensus tree.  Pie charts at each node indicate the proportion of probability for each 
state.  Character state coding for each sample is indicated by a colored dot after the name.  White 
represents marine, red represents freshwater, and blue represents terrestrial. 
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Figure 1.5 SIMMAP output for the Host type character drawn on the MrBayes small 
rDNA consensus tree.  Pie charts at each node indicate the proportion of probability for each 
state.  Character state coding for each sample is indicated by a colored dot after the name.  White 
represents vertebrate, red represents crustacean, blue represents insect, green represents 
millipede, and purple represents other invertebrates (e.g. bivalves, tunicates, echinoderms).  
Missing data is indicated by a question mark. 
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Figure 1.6 SIMMAP output for the Host stage character drawn on the MrBayes small 
rDNA consensus tree.  Pie charts at each node indicate the proportion of probability for each 
state.  Character state coding for each sample is indicated by a colored dot after the name.  White 
represents juvenile, red represents adult, and blue represents both (juvenile & adult).  Missing 
data is indicated by a question mark. 
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Figure 1.7 SIMMAP output for the Growth form character drawn on the MrBayes 
small rDNA consensus tree.  Pie charts at each node indicate the proportion of probability for 
each state.  Character state coding for each sample is indicated by a colored dot after the name.  
White represents spherical/ovoid, red represents hypha with holdfast, blue represents 
spherical/plasmodial, green represents amoeboid, and purple represents 
spherical/hypha/plasmodial.  Missing data is indicated by a question mark. 
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Figure 1.8 SIMMAP output for the Spore production character drawn on the MrBayes 
small rDNA consensus tree.  Pie charts at each node indicate the proportion of probability for 
each state.  Character state coding for each sample is indicated by a colored dot after the name.  
White represents endospores, red represents cystospores, blue represents basipetal, green 
represents endospores and cystospores, purple represents endospores and basipetal, and orange 
represents amoeboid.  Missing data is indicated by a question mark. 
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Figure 1.9 SIMMAP output for the Location in host character drawn on the MrBayes 
small rDNA consensus tree.  Pie charts at each node indicate the proportion of probability for 
each state.  Character state coding for each sample is indicated by a colored dot after the name.  
White represents foregut, red represents hindgut, blue represents organs/tissues, green represents 
external, purple represents digestive tract, orange represents haemolymph, and grey represents 
organs/tissues and digestive tract.  Missing data is indicated by a question mark. 
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EVALUATION OF HOST ASSOCIATIONS AND THE UTILITY OF HYPHAL 

MORPHOLOGY FOR SPECIES DESCRIPTIONS OF PARAMOEBIDIUM  

USING MOLECULAR PHYLOGENETIC ASSESSMENT METHODS 

Abstract 

Despite first being established as a genus in 1929, Paramoebidium circumscribes 

just 17 species, and its putative sister taxon, Amoebidium, includes only five.  An oft-

cited reason for the lack of species descriptions is the paucity of informative 

morphological characters in the form of significant inter- and intraspecific variation.  As 

a morphological species concept has been traditionally applied to these taxa, characters to 

construct an effective taxonomic framework have been elusive.  Further compounding 

these issues has been the uncertain evolutionary relationship of these taxa to Fungi.  

Originally they were included as order Amoebidiales in the fungal class Trichomycetes, 

though this was early considered only a tentative placement.  Consequently, the group 

has remained relatively understudied, but molecular systematics has necessitated their 

reclassification as family Amoebidiidae within the protist class Ichthyosporea.  Still, 

there is only a single 18S rDNA sequence available in GenBank for Paramoebidium.  

The two sister taxa to the Amoebidiidae include another former Trichomycetes group, 

Eccrinidae, and a parasite of fishes, Ichthyophonus.  Amoebidium and Ichthyophonus 

demonstrate generalist host associations, whereas host specificity among the Eccrinidae 

remians unclear.  On the other hand, Paramoebidium spp. were initially thought to be 

specific to host genus, and perhaps even to species level, although researchers later 
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questioned this hypothesis.  This study generated of a large molecular dataset including 

18S and 28S rDNA sequences for 72 Paramoebidium samples, as well as morphometric 

evaluation of their corresponding slide vouchers.  From the multiple sequence alignment, 

phylogenies were inferred and subsequently used as input for ancestral state 

reconstruction and Bayesian tip-association significance testing analyses of hyphal 

morphology and host characters.  Results of these analyses indicate: 1) some species of 

Paramoebidium may have a high degree of host specificity, even to the genus level, 2) 

Paramoebidium is likely substantially more species rich than previously understood, 3) 

cryptic speciation is evident, and 4) a morphological species concept is inadequate for 

species delimitation for many, but not all, members of the genus.  Moving forward, an 

integrated morpho-phylogenetic approach is recommended in order to establish a robust, 

practically applicable taxonomic framework. 
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Introduction 

What has recently been defined as the protist family Amoebidiidae (comprising 

Amoebidium and Paramoebidium) (Cavalier-Smith 2013) was previously classified as 

order Amoebidiales in the fungal class Trichomycetes, a group of arthropod-associated, 

obligate endobionts (Lichtwardt et al. 2001).  Though tenuous, their historical inclusion 

in this fungal group was based on residence in the digestive tracts (Paramoebidium) or on 

the exterior (Amoebidium) of arthropods, a hyphal growth form with a holdfast, and 

production of spores (Moss 1979).  Whereas the actual relatedness of the Amoebidiidae 

to Fungi was long suspect due to the formation of amoeboid propagules and lack of chitin 

in their cell wall (Whisler 1963; Trotter & Whisler 1965), their phylogenetic placement 

remained uncertain until 2000 (Benny & O’Donnell 2000; Ustinova et al. 2000; Cafaro 

2005) when molecular phylogenetic inferences revealed their relationship to members of 

class Ichthyosporea (= Mesomycetozoea).  The family is now included with order 

Eccrinida, along with their close relatives, the Eccrinidae (also formerly within class 

Trichomycetes) and Ichthyophonus (Cavalier-Smith 2013).  Class Ichthyosporea 

comprises animal-associated, unicellular symbionts and has been placed near the 

divergence of animals and fungi in multigene phylogenies (Steenkamp et al. 2006; Ruiz-

Trillo et al. 2008; Paps et al. 2013; Cavalier-Smith et al. 2014). 

Members of the Eccrinida have been found in association with marine 

invertebrates such as bivalves and tunicates, but the Amoebidiidae are apparently 

restricted to freshwater hosts such as mayfly (Ephemeroptera) and stonefly (Plecoptera) 

nymphs, black fly and midge larvae (Diptera), and water fleas (Cladocera) (Moss 1979).  

These commensal organisms attach to the chitinous digestive tract lining or exoskeleton 
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via a non-cellular, secreted holdfast, and produce walled spores as putative long-distance 

dispersal units (Lichtwardt et al. 2001).  During their life cycle, the cellular content of the 

coenocytic Amoebidiidae is divided entirely into motile amoebae that disperse and 

subsequently encyst.  From these cysts are formed “cystospores” that are presumably 

released to the environment to be ingested by a new host.  This amoeba-cyst cycle is the 

only known method of spore production in Paramoebidium spp., but Amoebidium may 

also produce spores directly (termed “sporangiospores”) via holocarpic division (Whisler 

1968).   

Spores and amoebae are not unique characters among the Eccrinida.  As sister 

taxa to the Amoebidiidae, members of the Eccrinidae produce only spores, basipetally, 

and attach to the digestive tracts of a much broader range of arthropods, including crabs, 

shrimps, beetles, and millipedes (Lichtwardt et al. 2001).  Conversely Ichthyophonus, the 

other sister taxon, is a parasite of fish.  Its life cycle is not completely known, but it 

grows as spherical, multinucleate bodies in the host tissues [termed a “schizont” by 

Kocan (2013)] from which amoeba-like cells disperse (Spanggaard et al. 1995; Kocan et 

al. 2013).  While the exact relationships between these four taxa are not resolved, 

morphological delineation of species within groups has also been problematic.  Growing 

as simple spheres in host tissues, but exhibiting a range of forms in culture (e.g. 

plasmodial, hypha-like, spherical) depending on pH and media recipe (Okamoto et al. 

1985), Ichthyophonus spp. are challenging to differentiate morphologically.  Likewise, 

members of the Eccrinidae circumscribe a wide spectrum of hyphal morphotypes and 

spore forms within the host gut, and the interspecific overlap of these features 

complicates taxonomic efforts to interpret and define them.  Further confounding 
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morphometric assessments of Paramoebidium and the Eccrinidae is the intractability of 

these taxa to grow in culture, requiring descriptions to be based on material dissected 

from living arthropod hosts.   

Collections of the Amoebidiidae are similarly challenging, although Amoebidium 

parasiticum (Whisler 1962) and A. appalachense (White et al. 2006) have been isolated 

in pure culture.  Traditionally, voucher slides and photomicrographs of the Amoebidiidae 

(and Eccrinidae), from both living and fixed specimens, are used to morphometrically 

define characters and apply a morphological species concept to identify and diagnose 

species (Lichtwardt et al. 2001).  However, it is not uncommon for researchers (e.g. 

Whisler 1963; White et al. 2000; Lichtwardt et al. 2001b; Strongman & White 2006; 

White et al. 2006; Hapsari et al. 2009; William & Strongman 2013) to include lists of 

unnamed Paramoebidium spp. morphotypes without further identification, despite their 

sometimes extensive occurrence within collections.  

Since the genus was first established in 1929 (Leger & Duboscq 1929), 17 species 

have been named and recognized (Lichtwardt et al. 2001).  Indeed, most recently 

described species of Paramoebidium have been those that exhibit “unique” or “unusual” 

extremes of morphologies such as branching, size and/or curvature of the hyphae, 

presence of a papillum, and/or growing in clusters (e.g. Lichtwardt et al. 1990; 

Lichtwardt & Williams 1992; Strongman et al. 2010).  Interestingly, early French 

protozoologists (i.e. Duboscq, Leger, Manier, Poisson, and Tuzet) included the host as 

part of their taxonomic considerations when identifying Paramoebidium, with the 

specific epithet sometimes referring to the host genus (Léger & Duboscq 1929; Duboscq 

et al. 1948; Manier 1950), a trend that continues today (Valle 2014a).  Most of these early 
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species were later regarded as nomen nudum, as their descriptions did not meet the 

criteria of the International Code of Botanical Nomenclature (Lichtwardt et al. 2001).  

However, later work, particularly in the United States by both Lichtwardt and Whisler, 

cast doubt on the degree of host specificity within the genus.  In particular, variability of 

the symbionts’ characters, even within a particular host genus or family, has been the 

main obstacle (Lichtwardt et al. 2001).  As Whisler (1963) stated, Paramoebidium spp. 

“present a spectrum of overlapping characters … Separation on the basis of different 

hosts seems inadequate and it would be meaningless or even misleading to assign a 

specific epithet … until the taxonomy of the genus has become clarified.”  This referred 

to both vegetative characters and reproductive structures (i.e. amoebae, cysts, 

cystospores).  Certainly the possibility of more than one Paramoebidium species 

inhabiting a single host is a consideration, such as P. chattoni and P. curvum from black 

flies (Dang & Lichtwardt 1979; Valle 2014b), but no studies have thoroughly analyzed 

the range of intra- and/or interspecific character variability at different taxonomic host 

levels. 

Similarly, there have been few molecular systematic studies focused on the 

Amoebidiidae.  There is but one Paramoebidium sequence in GenBank (Cafaro 2005), 

although there are several for Amoebidium parasiticum.  The goals of this study, 

therefore, were to use sequence and morphometric data for many Paramoebidium 

samples from various geographic locations and hosts to: 1) illustrate the potential for 

species diversity (or lack thereof), 2) attempt to evaluate any implication of host 

specificity, 3) gauge evidence of cryptic speciation, and 4) assess the taxonomic utility of 



82 
 

 

 

general vegetative characters and, by extension, the practicality of the application of a 

morphological species concept to the genus. 

Materials and Methods 

Genetic Data 

DNA extraction, PCR amplification, sequencing, and cloning procedures are as 

outlined in Chapter 1. 

Voucher Materials 

All collection materials available in our lab were mined for data regarding the 

Paramoebidium samples used here.  Dissection log notebooks, photographs, and slides 

were reviewed to ascertain collection location, host identification, and morphological 

information.  Host vouchers (in ethanol) were sent out for identification.  All slide 

specimens were preserved with lactophenol cotton blue.  Slide vouchers corresponding to 

genomic samples or of the same morphospecies, when present, were examined with a 

Nikon Eclipse 80i microscope.  Images of specimens were taken with a 2 Mp Spot Color 

Mosaic camera (Diagnostic Instruments, Sterling Heights, Michigan) and measurements 

taken using the accompanying advanced software (4.6).  The Lucid Keys 

(http://keys.lucidcentral.org), developed through the Trichomycete Monograph 

(Lichtwardt et al. 2001), were used to compare morphological assessments with 

described species.  The morphological identification of sample 566 as P. avitruviense was 

confirmed with Dr. Laia Guàrdia-Valle (personal communication) based on photographs 

of fresh specimens and limited slide voucher material.  Aspects of the amoebae, cysts, 

and cystospores are not recorded or are poorly defined for some described species, and 
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they were not among the slide voucher materials for the samples included here; therefore, 

those characters were not considered for these analyses. 

Phylogenetic Analyses 

Multiple sequence alignments and model testing were performed as in Chapter 1, 

with the exception that Gblocks v. 0.91 (Castresana 2000) output was used in forming the 

final alignment.  The program was run with half gap positions allowed and the output was 

further modified by eye to exclude any remaining ambiguous sites.  Trees were built and 

analyzed three ways: MP using TNT (Goloboff et al. 2008), ML using RAxML v. 8.0.22 

(Stamatakis 2014), and BI using BEAUti and BEAST v. 1.8.1. (to create the xml input 

file and run the analysis, respectively) (Drummond et al. 2012).  For MP, 10,000 random 

addition sequences using TBR were followed by 5,000 bootstrap replicates to create a 

50% majority rule tree (branch lengths of 0 collapsed).  The GTR + Γ + I model was used 

without partitioning the alignment for ML, based on results from PartitionFinder v. 1.1.0 

(Lanfear et al. 2012).  That model was listed as second best by jModelTest 2.0 (Darriba et 

al. 2012; Guindon & Gascuel 2003) using AICc, behind TIM1 + Γ + I.  Using BEAUti, 

substitution models were unlinked, Paramoebidium and Amoebidium were separated into 

two taxon sets (to create reciprocally monophyletic groups), the GTR + Γ + I model was 

used along with the lognormal relaxed clock (Drummond et al. 2006) mutation model and 

Yule process model of speciation (Gernhard 2008; Yule 1925) using a random starting 

tree.  The uncorrelated lognormal relaxed clock mean was set as an exponential 

distribution with a mean of 10.  This analysis was run for 20 million generations in 

BEAST and the output was checked for effective sampling and convergence in Tracer v. 
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1.5 (Rambaut & Drummond 2009).  Branches with greater than 70 for MP, 75 for ML, 

and 0.95 for BI are considered well supported. 

Ancestral State Reconstruction (ASR) 

Character State Coding 

Morphological features of the hyphae commonly used in species delineation were 

evaluated for their utility in that regard via ancestral state reconstructions (Table 2.1).  

Characters and states were chosen based on published descriptions and features observed 

among voucher slide materials available for the samples included here.  The ancestral 

host association was also reconstructed at the order level for the deeper, well-supported 

nodes.  Host orders include: Plecoptera (stoneflies) (0), Ephemeroptera (mayflies) (1), 

Diptera (black flies and midges) (2), Trichoptera (caddis flies) (3), and Cladocera 

(Daphnia) (4).  Four morphological characters were chosen, two describing the holdfast 

and two describing the hyphal shape.  Although not always recorded, holdfast types have 

been loosely categorized as globose (0), cylindrical (1), cylindrical with lateral grasping 

projections (2), discoid (flat, wide, thin layer of secretion, forming a “suction cup-like” 

attachment) (3), and a final descriptor defined here: wrapped (4).  The “wrapped” 

holdfast appears as a thin, flat layer of secretion that coats the base of the hypha, without 

forming a “pedestal” or any visible projections.  The second holdfast character is 

position: basal (0), lateral (here defined as approximately 90° or greater angle away from 

the proximal end of the hypha) (1), and central (i.e. middle or near middle of the hypha 

such that the hypha becomes bifurcated or branched) (2).  Terms to describe hyphal 

growth forms so far include “straight and cylindrical”, “branched”, “hooked”, and 

“curved”.  These forms were seen among voucher materials, but additional categories 
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were added to accommodate as-yet undescribed shapes, to include: branched (0), straight 

to sinuous (1), coiled to looped (coiled = hypha forming a spiral shape, curving up to 

360°, but not crossing over itself; whereas looped hyphae curve greater than 360°, to 

cross back over itself) (2), arched [i.e. hypha with obtuse, gradual curvature, bending to 

create a half-circle – as illustrated for P. chattoni (Valle 2014b)] (3), hooked [hypha 

forming an approximately 180°, obtuse bend within the lower (=proximal) half of the 

hypha – as illustrated for P. hamatum (Bench & White 2012)] (4), hairpin [hypha with an 

approximately 180°, acute bend in the middle, such that the length of the hypha is nearly 

equally divided (i.e. folded in half) – as illustrated for the type species, P. inflexum 

(Léger & Duboscq 1929b)] (5), and bent (differing from “hooked” by an acute bend, and 

“hairpin” by the folded portion occurring in the lower half of the hypha, rather than in the 

middle) (6).  Lastly, the consistency of the width along the length of the hyphae may be 

defined as: equal (less than 60% difference from the widest point to the narrowest point 

along the length) (0), tapering distally (= widest portion of hypha is proximal, defined as 

greater than 60% difference in width from widest point to narrowest point, with a gradual 

reduction in width along the length) (1), tapering basally (= widest portion is at the distal 

end) (2), middle (= widest portion is in the middle) (3), base (widest point is proximal, 

but there is an abrupt narrowing of the hypha, after which point the remaining length of 

the hypha has an equal width) (4).  Finally, Paramoebidium species are recognized to 

have considerable morphological variation, so samples were coded based on the 

dominant form seen among the voucher material, but there were some instances of 

variation that will be discussed.  Only “mature” hyphae were evaluated and measured, 

but much of the noted hyphal variation may be seen among “immature” forms.  For 
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example, many coiled, looped or hairpin hyphal shapes appear hooked when immature.  

Similarly, when the cellular content is dividing into amoebae prior to dispersal, the width 

along the length of the hyphae may become distorted, with certain portions (e.g. 

proximal) becoming somewhat inflated compared to the vegetative state. 

Table 2.1 Paramoebidium characters and character state coding used for 
SIMMAP and BaTS analyses.  
Character State 0 State 1 State 2 State 3 State 4 State 5 State 6 
Host 
Order Plecoptera Ephemeroptera Diptera Trichoptera Cladocera   

Holdfast 
type Globose Cylindrical Grasping Discoid Wrapped   

Holdfast 
position Basal Lateral Central     

Hypha 
curvature Branched Straight/ 

sinuous 
Coiled/ 
looped Arched Hooked Hairpin Bent 

Hypha 
width Equal Tapering 

distally 
Tapering 
basally Middle Base   

 

Ancestral State Reconstruction Analyses 

Reconstructions were recorded for 24 well-supported (by ML and BI) nodes at 

varying depth in order to compare the strength of the characters at species level and 

above.  Analyses were run three ways: using parsimony and likelihood methods in 

Mesquite v. 3.01 (Maddison & Maddison 2014) and Bayesian methods in SIMMAP v. 

1.5 (Bollback 2009; Bollback 2006).  Just as phylogenetic trees are typically inferred and 

evaluated by more than one method due to the different assumptions and model 

complexities inherent in each, Ekman et al. (2008) recommended ASR analyses be 

conducted several ways as well.  Concordance among methods could suggest a degree of 

robustness of signal in the data.  For parsimony analyses, states were reconstructed across 

the set of the last 5,005 trees from the BEAST analysis (Trace Character Over Trees 

command in Mesquite) using the unordered model.  Thus, the resulting pie charts reflect 
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the proportion of trees (that contain the node) that return a particular state as the best state 

at each node.  Currently, Mesquite cannot perform the Trace Character Over Trees 

function for a maximum likelihood analysis, so the maximum clade credibility tree 

generated by Tree Annotator v. 1.8.1 (Drummond et al. 2012) was used.  The analysis as 

implemented in Mesquite also cannot handle missing data, so results were not obtained 

for some nodes.  Reconstructions were performed with a one-parameter Markov k-state 

model (Lewis 2001).  In SIMMAP, priors were chosen using the two-step approach as 

outlined on the website (Bollback 2009), which consists of first using an MCMC analysis 

to sample overall rate and bias values followed by sampling the posterior distributions of 

these parameters to find the best fitting distribution in the R Statistical Package 

(http://www.r-project.org/ 2015).  Both the equal (1/k) and empirical bias priors were 

tested over 1 million generations, sampling every 200 generations, with a burn-in of 

10,000 and the upper bound set at 1,000.  The MCMC output was imported into Tracer to 

compare the log likelihood values and check for effective sampling.  All characters were 

unordered.  Using the priors indicated from the R plots, analyses were conducted with 

k=60, rate=1.00, 20 samples/tree and 20 prior draws.  Results were visualized as pie 

charts with the R script “PlotSimMap.R” (https://github.com/nylander/PlotSimMap) and 

cut and pasted into table format using Inkscape (https://inkscape.org/en). 

Bayesian Tip-association Significance Testing (BaTS) and Genealogical Sorting Index 

(GSI) Analyses 

The BaTS beta v. 2 program (Parker et al. 2008) was used to further test for 

correlation between morphological characters and the phylogeny.  Characters and their 

states were coded the same way as for SIMMAP and the last 1,002 trees (final 501 trees 
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from each of two runs) from the MrBayes analysis were used to run 1,000 replicates.   

However, host family and genus were added into this analysis as these characters include 

too many states to be analyzed by ASRs, but their possible connection to the phylogeny 

was of interest.  Support for delineation of well-supported (by ML and BI) clades as 

potentially new species was evaluated with the GSI (Cummings et al. 2008).  This 

analysis holds the topology constant, but randomly shuffles taxa at the tips many times 

(thus randomizing the ancestry of clades) to generate a null distribution that observed 

values are compared against.  The null hypothesis is: the amount of exclusive ancestry 

observed is that which might be observed at random (Cummings et al. 2008).  The 

program accepts 100 trees as input, so the last 50 trees from each of the two MrBayes 

runs were used to create the tree file and 10,000 permutations were conducted.  Samples 

were sorted into putative taxa groups based on their inclusion in strongly supported, 

monophyletic clades, here referred to as clade 1-6, sp.1-3, and cf. chattoni/grande 

complex.  Sample 488 was included with the “hamatum” group. 

Results 

Genetic Data and Phylogenetic Analyses 

One hundred thirty (as shown in Chapter 1, Table 1.1) new Paramoebidium 

rDNA sequences were generated: 72 18S and 58 for 28S.  The final alignment consisted 

of 1,521 18S bp characters (566 excluded), 1,261 28S bp characters (665 excluded), and 

approximately 15% missing data.  Dr. Laia Guàrdia-Valle (Universitat Autònoma de 

Barcelona, Spain) graciously provided samples of P. chattoni, but unfortunately, 

amplification, sequencing, and cloning attempts only recovered host data, and further 

processing of the samples was not possible during the course of this study.  Sample 870 
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was collected from a trichcopteran, providing the first record of a Paramoebidium from 

that host order, family, and genus (Trichoptera, Lepidostomatidae, Lepidostoma).  

Additionally, vouchers represent new records from the following families and genera: 

mayflies: Baetiscidae (Baetisea), Ephemerellidae (Drunella, Ephemerella, Eurylophella); 

from previously recorded families: Ameletus (Ameletidae), Callibaetis, Fallceon 

(Baetidae), Leptophlebia, Paraleptophlebia (Leptophlebiidae), Siphlonurus 

(Siphlonuridae); stoneflies: Peltoperlidae (Soliperla, Yoraperla), Perlidae (Acromeuria); 

from previously recorded families: Capnopsis (Capniidae), Leuctra (Leuctridae), 

Nemurella, Protonemura, Shipsa (Nemouridae), Taeniopteryx (Taeniopterygidae).  New 

geographic records for Paramoebidium spp. collection presented here include: British 

Columbia (Canada), Mexico, and Oregon (USA).  Furthermore, sample 566 represents a 

new collection record for P. avitruviense from Norway.   

There were no topology conflicts supported by more than one analysis method, 

however several branches supported by ML and BI did not have support above 70 from 

MP (as indicated by a star in Fig. 2.1).  The 24 branches supported by ML and BI that 

were used for subsequent ASR analyses are labeled in Fig 2.1.  Branch 7 supports the 

clade of all samples from stonefly hosts, except for 459, which forms an unsupported 

clade with a P. curvum voucher (1196) from Mexico.  This P. curvum voucher is on a 

longer branch, as is sample 1228, potentially obscuring resolution of their placement via 

long branch attraction.  Other host-associated branches include 13, 15, 18, 23 (mayflies), 

and 21 (black flies).  Multiple vouchers of identified specimens (P. avitruviense, 

remaining P. curvum, P. ecdyonuridae, P. hamatum) formed clades supported by at least 

two methods.  Branch 24 (including all Paramoebidium vouchers) was forced to be 
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monophyletic in the BEAST analyses, but this clade is supported by all three methods 

(MP, ML, BI) without topology constraints. 

Morphology 

In many cases voucher material was limited or not available, but morphometric 

analyses were sufficient to separate samples from known species (except for 566, as 

mentioned above).  Table 2.1 lists the morphological findings for individual samples.  

Only a few samples had potentially enough slide voucher material to name a new species, 

but that is beyond the scope of this thesis.  Variability within character states, as outlined 

here, was noted, such as the degree to which the lateral, grasping projections on holdfasts 

incurved or the acuteness of curvature among individual hyphae.  Several morphotypes 

were observed that are not included with accepted descriptions, but do resemble those in 

the nomen nudum list (Lichtwardt et al. 2001).  These unvalidated taxa are still relevant 

as they afford researchers starting points from which to initiate collection efforts, and 

possibly lead to validation, as was recently demonstrated for P. chattoni (Valle 2014b).   

As hypha curvature is the character with the most significant states in the BaTS 

analyses, this discussion will focus on those results.  Within that character, “hairpin”, 

“sinuous”, “looped”, and “bent” are all unrepresented states in the literature, although P. 

inflexum (the type for the genus) is illustrated such that it evokes the “hairpin” and 

“hooked” shapes (Léger & Duboscq 1929b).  The hairpin type has been illustrated for P. 

arcuatum (Léger & Duboscq 1929b), P. pavillardi (Manier 1950), and P. giganteum 

(Duboscq et al. 1948) nomen nudum taxa.  The first two were collected from Baetis 

mayflies, the former from B. gemellus and B. rhodani, and the latter from B. atrebatinus, 

whereas P. giganteum was collected from Chloroperla stoneflies.  The hairpin specimens 
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here were collected from baetid mayflies (449, 691, 703, and 690, the host of which was 

identified as B. rhodani) as well as perlid and peltoperlid stoneflies.  Unfortunately, very 

limited material was available for these samples (state determination for most was based 

on comments in the dissection logs of the respective researchers), so comparison beyond 

host types and general shape is not feasible.  However, P. giganteum hyphae were 

recorded up to 2,700 µm long and the single hypha measured for 1219 was over 3,500 

µm. 

Looped hyphae are found in the drawings of P. arcuatum and P. dispersum 

(Duboscq et al. 1948), but the latter was taken from a leptophlebiid mayfly 

(Habrophlebia).  There was one very distinct example seen here for sample 1200.  A 

couple of hyphae for 1227 superficially had this shape, but it was attributed to artifacts of 

slide fixation because the voucher slide contained many hyphae, the remainder of which 

strictly adhered to a coiled curvature.  However, both slides had “hooked” shaped hyphae 

as well.  Additionally, both were collected from mayflies, but the host of sample 1227 

was only identified to order, and 1200 to family (Ephemerellidae). 

Finally, sinuous and bent, as they are defined here, do not appear even among 

nomen nudum taxa, and were not entirely common among examined specimens, as 

opposed to “hooked”.  Indeed, the examples of sinuous hyphae seen here (680, 664, 715) 

are quite distinctive, as they also have a knob-like base, papillae, and a distally 

positioned, lateral, thumb-like projection.  The bent shape was likewise observed in 

combination with other distinguishing features.  For example, sample 551 hyphae had a 

bulbous base followed by a constriction in the width at the bent portion, and the 
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photographs of 538 showed extremely thick, consistently wide hyphae (apparently on the 

verge of rupturing to release amoebae). 

Ancestral State Reconstruction 

There was general concordance among the three methods for most characters at 

most nodes (Fig. 2.2).  Likelihood could not provide reconstructions for holdfast type at 

nodes 6, 12, 15, 19, and 22, for holdfast position at nodes 6, 15, 19, and 22, for curvature 

at nodes 12, 15, and 22, or for width at nodes 12, 15, 19, and 22.  Similarly, parsimony 

found no best states on any tree for holdfast type and position at node 22, curvature at 

node 19, and width at node 12.  These nodes (6, 12, 15, 19, 22) were problematic due to 

missing character state data.  Figure 2.1 shows symbolic representations of the most 

probable states reconstructed for labeled clades and the deeper nodes for which host 

orders were analyzed.  Character coding is indicated in Table 2.1, with representative 

drawings of character states in Fig. 2.3. 

Plecoptera is given a probability near 1 by all three methods for nodes 4 and 7, 

whereas Ephemeroptera has the highest probability at the remaining nodes, with the 

exception of 21, which subtends the cf. chattoni/grande group.  The most commonly 

reconstructed state for holdfast type is “grasping projections”, but this character also had 

the highest number of reconstruction disagreements between methods (six total).  For 

example, at node 3 parsimony returns “discoid” as the best state, but likelihood and 

SIMMAP give “cylindrical” the highest probability.  Furthermore, all three methods 

disagree at node 4, with parsimony favoring “discoid”, likelihood “globose”, and 

SIMMAP “grasping projections”.  Interestingly, there was agreement between methods 
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for this character at deeper nodes (i.e. 7, 13, 20, 24).  A comparable pattern may be 

observed for hypha curvature, with conflicts arising at “midlevel” nodes 4, 19, and 21.   

On the other hand, there was only one conflict for hypha width and holdfast 

position for reconstructions.  The former occurring at node 3, with parsimony suggesting 

“basal” rather than “central” of the other two.  The latter is observed at node 1, with 

SIMMAP giving less than half probability to “base”, the most likely state returned by 

parsimony and likelihood.  “Equal” was the most common state observed overall for 

hypha width, and this is reflected among the reconstructions; only nodes 1 and 3 give an 

alternate state. 

GSI and BaTS Analyses 

The GSI analysis found significant results for clades 1-6, sp. 1-3,  and the “cf 

chattoni/grande” group.  In addition, vouchers identified as P. avitruviense, P. 

ecdyonuridae, and P. hamatum were supported.  BaTS indicated significant correlation of 

several character states with the phylogeny (Table 2.2).  Specifically, for host states, three 

orders, none families, and five genera returned significant values.  Morphologically, 

fewer states appear informative, with three states regarding holdfast and six states 

regarding hyphal characters being significant.  Of these, hyphal curvature had the most 

states correlated with the phylogeny. 

Discussion 

Utility of Morphological Characters 

The overall agreement among ancestral state reconstruction methods and the 

significant result for some states (found with the BaTS program) suggest that there is a 

degree of phylogenetic signal for the morphological characters analyzed.  The broad, 
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relatively general characters and states used here align with morphotaxonomic platforms 

for Paramoebidium species that have been used to date.  Paramoebidium avitruviense 

and P. curvum both have been described using the morphological species concept and are 

sufficiently represented here to provide initial commentary.  Firstly, the P. avitruviense 

from Norway (collection code NOR-22-W10, voucher 566), identified morphologically, 

gives some insight into the possible range of intraspecific morphological variability when 

compared to the voucher from that species’ type locality and host (collection code SPA-

X-74, voucher 1247).  Upon examination, the Norway specimen matched the type (Valle 

2014a) in having branched hyphae, a central, globose holdfast, and a small “pedestal-

like” protrusion above the holdfast.  However, it differed from the type in its dimensions, 

being longer and wider.  Unfortunately, the only mature material for the Norway 

specimen was a film photograph taken through the objective of a stereomicroscope, so 

measurements are somewhat approximate, but could be as much as 200 μm longer and 50 

μm wider.  Furthermore, both samples were taken in the spring, and the Norway sample 

is from a different species of the same host genus.  Therefore, the postulation that specific 

morphometric dimensions have a wider range of variation than general shape, overall 

aspect, and even possibly host organism, does not seem unqualified. 

In contrast, the P. curvum vouchers from Norway (681) and Mexico (1196) 

matched the dimensions and hyphal features of the type (Dang & Lichtwardt 1979).  No 

material was available for the Africa sample (197), however.  Whereas 197 and 681 form 

a clade with support from BI and ML, 1196 is on a long branch, likely contributing to the 

obfuscation of its placement.  Paramoebidium curvum is easily recognized by its 

consistent position in the posterior hindgut, even located as far outside as the anal 
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papillae, and short, coiled hyphae (Dang & Lichtwardt 1979).  A review of slide vouchers 

did not reveal any morphological features to suggest that 1196 is not P. curvum, so a 

number of possible explanations for its position in the phylogeny exist, including cryptic 

speciation. The other two species vouchers, though collected from geographically distant 

locations, are recovered as sister taxa.  Therefore, factors such as environment and host 

may be important to consider.  The collection location of sample 1196 in Mexico was a 

high elevation (1,667 m) tropical uplift area, and the genetic divergence indicated by the 

long branch could be a reflection of the effects of this environment on the symbiont and 

its host (e.g limited dispersal, endemism, etc.).  Indeed, voucher 1223 (collected from a 

nearby location in Mexico) is similarly diverged from its relatives, but its morphology 

was not, at least at the broad level examined here.  Future phylogeographic studies will 

help elucidate whether, and to what degree, allopatric speciation drives such trends 

among Paramoebidium populations. 

Although P. ecdyonuridae and P. hamatum have two vouchers each, they were 

collected by the same individual, from the same locality, at a single time point.  

Therefore, the conclusions that may be drawn from their placement in the phylogeny are 

somewhat more limited.  In particular, P. hamatum was described from not only two 

different host families (Ameletidae and Baetidae), but also two different host orders 

(Ephemeroptera and Chironomidae) (Bench & White 2012), an unusual extension beyond 

observed host boundaries in traditional trichomycete taxonomy.  Based on the prevalence 

of the “hooked” morphotype found in this study and correlation of host type with the 

phylogeny, it seems doubtful that the P. hamatum Bench & White (2012) observed in 

chironomid larvae is closely related to the P. hamatum from mayfly nymphs. Especially 
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considering that P. ecdyonuridae also has this hooked curvature, a size range that 

overlaps that of P. hamatum, and a mayfly host, but they are separated by considerable 

genetic distance in the phylogeny.  Of course, a definitive resolution to this problem 

awaits phylogenetic analysis with vouchers from each P. hamatum host type to identify 

whether their observed specimens are all “true” P. hamatum representatives, in a 

genealogical sense.  Indeed, Bench & White (2012) suggested the possibility of cryptic 

speciation and the utility of genetic sequencing to help unravel host specificity versus 

promiscuity in the species. 

Morphological consistency among the remaining unnamed vouchers would 

indicate that the analyzed morphological features have some taxonomic signal.  However, 

they do present varying degrees of inferred utility, as only a few states are significantly 

correlated with the phylogeny.  Firstly, curvature of the hypha is principally important as 

it encompasses the primary features that have been used to delineate species to date.  The 

most problematic of these is the hooked morphotype, which was observed among various 

mayfly and stonefly samples.  Vouchers 506, 511, and 1200 (Plate 2.1) are closely related 

to P. ecdyonuridae, for example, and the first two bear significant resemblance to that 

species except that they lack a papillum and their maximum length and width 

measurements are only half of the maximum reported (Valle 2014a).  Without a 

molecular phylogeny, these samples could readily be ascribed to P. hamatum in light of 

that species’ host affiliations, described above.  Sample 1200 is more easily 

differentiated, however, as many of the hyphae are looped, but it remains to be 

determined if such a feature falls within the acceptable range of intraspecific variability.  

Additionally, 504 is another example of a P. hamatum doppelganger, but it is positioned 



97 
 

 

 

distantly from that species and P. ecdyonuridae in the tree, and itself forms a distinct 

clade. 

On the other hand, sample 488 from Utah was collected from a baetid mayfly and 

morphologically matched the type of P. hamatum from Idaho mayflies (see Fig. 79 in 

Bench & White 2012).  Indeed, 488 forms a well-supported clade with the P. hamatum 

samples, a relationship that is reinforced by a significant GSI value for the P. hamatum 

clade.  Interestingly, the hyphae depicted in Bench & White (2012) from chironomid 

larvae (Figs. 74-78 in that publication) appear to have a more tightly coiled bend at the 

proximal end than those from mayflies.  This slight difference creates a hyphal shape 

analogous to a “sewing needle” rather than the “candy cane” appearance of those found 

in mayflies.  While this distinction was not noted by the authors, the mixed results of the 

utility of hyphal morphology found here cannot suggest whether this feature falls within 

the range of intraspecific variability or represents morphological evidence of a different 

species.  Possibly, the actual degree measurement of hyphal curvature of mature 

specimens could prove to be a character used in future morphotype investigations, and 

even species descriptions. 

Another illustrative example of morphotaxonomic complexity is the cf. 

chattoni/grande clade (Plate 2.2).  Not only are both species found in the same hosts 

(simulids), but also the description of P. grande (Lichtwardt & Arenas 1996) is very brief 

and lacks mention of the holdfast, and the hyphal measurements overlap those of P. 

chattoni (Valle 2014b).  In fact, P. grande is a rare example of a species for which 

dimensions of the amoebae were considered relevant, being comparatively quite large.  

Some of the original slide materials from the P. grande type collection from Chile were 
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received (from R.W. Lichtwardt, now with M.M. White, BSU) and reviewed, but a clear 

determination of which hyphae belonged to the P. grande designation could not be easily 

made.  There were slides that had longer hyphae (i.e. greater than 800 μm), and thus were 

more P. chattoni-like, but there were also other shorter, wider hyphae that would fit 

either the P. grande or P. chattoni description.  Further confounding these efforts is that 

only a single hypha was imaged in the P. grande publication (Lichtwardt & Arenas 

1996).  The specimens for the vouchers in the cf. chattoni/grande clade are consistent in 

having an arched curvature, a holdfast with grasping projections, and measurements that 

fall within the range of both species.  However, samples 1049 and 833 have distally 

tapering widths, whereas the remaining samples are either wider in the middle or are 

more equal in width along the length.  Furthermore, these specimens had lateral holdfasts, 

while the rest were basal.  Despite these differences, their sequences are not very 

diverged from others in the clade in this tree, but in the large rDNA phylogeny (see 

Chapter 1), BI supports them as a separate group.  Overall, members of this clade are 

more P. chattoni-like in their morphology, but their relatedness to or identity with P. 

grande cannot be ruled out.  Certainly genetic samples from established and confirmed 

identifications of both species, especially P. grande from Chile, are needed to clarify 

their positions and relationships. 

All three of these examples illustrate cryptic speciation as a real challenge, but 

also potential boon for Paramoebidium taxonomy and scope of biodiversity.  It is perhaps 

not unfair to suggest that there are some inherent taxonomic pitfalls in the way species 

traditionally have been described.  Reproductive characters that may have been earlier 

discounted (Lichtwardt et al. 2001; Whisler 1963), could be reconsidered for their utility, 
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or at least be better tested to confirm or refute their effectiveness.  This is suggested while 

noting that, practically speaking, the reproductive structures are often more difficult to 

obtain in routine collections and likely would demand longer-term efforts and even 

modified laboratory methods.  Nonetheless, descriptions of the amoebae, cysts, and 

cystospores have been reported for many species, and close inspection of amoebae of P. 

ecdyonuridae recently discovered uroidal filaments (Valle 2014a), indicating the prospect 

of a new character to investigate.  Clearly, a combination of characters is required for any 

adequate delimitation, but those used to date should be reevaluated and supplemented 

with methods that include genomic samples for molecular study, to generate a more 

robust, integrative taxonomic framework. 

Paramoebidium Diversity and Host Specificity 

As noted, host organism was originally a character used for Paramoebidium 

species considerations and delimitation.  Certain host types are significantly correlated 

with the phylogeny in the BaTS analyses, even to the genus level.  Paramoebidium 

samples collected from stonefly hosts are clearly distinct from those collected from 

mayflies and black flies, forming a well-supported clade.  Sample 459 is the only stonefly 

specimen that falls outside that clade.  The host voucher for this sample was not 

preserved, but it was field identified as Shipsa.  A misidentification cannot be ruled out, 

but if correct, its placement could signal a host-switching event or it could represent an 

example of a generalist Paramoebidium species.  Similarly, sample 870 was collected 

from a trichopteran, but it is included in the well-supported stonefly clade.  Surely there 

could be varying levels of host specificity among these symbionts, but such an evaluation 

requires additional samples.  How old is the relationship between Paramoebidium spp. 
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and their hosts?  Has coevolution occurred?  The Ichthyosporea, located near the 

divergence point of animals and fungi (Cavalier-Smith et al. 2014), is an ancient group, 

thus the amoebidiids could have a long, shared evolutionary history with these 

arthropods. The preliminary analyses presented here cannot address these questions, but 

they do suggest the possibility of host specificity, which may lead future investigations of 

coevolutionary hypotheses.  

What is clearly demonstrated by this phylogeny is that Paramoebidium is much 

more diverse than previously understood, with at least three putatively new species and 

six potential species clusters.  A long-standing debate among protistologists has been 

whether protist species are globally distributed (i.e. everything is everywhere) or if there 

are many endemic species that are masked by cryptic speciation (e.g. Foissner 1999; 

Slapeta et al. 2005; Foissner 2006).  Recent studies have provided evidence for a 

combination of the two, with some cosmopolitan species, and some that are endemic 

(Cotterill et al. 2008; Weisse 2008; Caron et al. 2012).  Surveying the, albeit limited, 

topology and taxa presented here, there is evidence to suggest the latter hypothesis.  For 

example, there is little genetic divergence among samples in the cf. chattoni/grande clade 

and P. curvum from Africa and Norway, but the Paramoebidium spp. from Mexico (1196 

and 1223) are diverged from their close relatives.  However, whether and how much 

microhabitat versus broad-scale geographic partitioning impact these observed patterns 

remains to be determined.  Whatever the case, the number of distinctive clades and new 

host associations, and even the level of differentiation of vouchers within clades (e.g. 

clade 3) point to unrealized species richness.  With thousands of potential host species 

distributed globally, and records of Paramoebidium spp. from locations such as 
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Argentina (Lichtwardt et al. 1990), China (Strongman et al. 2010), and New Zealand 

(Lichtwardt & Williams 1992), it is clear that much remains to be discovered. 

Future Species Descriptions and Species Concept 

Going forward, a shift from an emphasis on a strictly morphological species 

concept to an integrative approach that combines morphology, ultrastructure, and 

especially, gene sequences, should be implemented, as has been advocated for, and 

applied to, other taxonomically challenging organisms (e.g. Azevedo et al. 2015; Katz et 

al. 2015; Li et al. 2015; Lecocq et al. 2015).  At the same time, additional informative 

characters should be sought, such as protein-coding genes, especially considering the 

difficulty in assessing homology and the subjective nature of morphological evaluations.  

Future species descriptions would benefit from an approach that included: 1) sequence 

data or at least a genomic voucher that can be processed later, 2) host organism 

identification, and if the species is thought to occur in more than one genus of host, then 

morphological and genomic vouchers of the putative species from each different host 

type should be obtained, 3) a detailed, statistically analyzed report of intraspecific 

variation when deemed necessary for differentiation from other species, as recently 

published for Enterobryus luteovirgatus (Contreras & Cafaro 2013), and 4) assessments 

of amoebae, cysts, and cystospores, whenever possible.  Hoberg et al. (2015) highlighted 

the need for and importance of taxonomic clarification in the field of parasitology, and 

the implications such would have in terms of broad understanding of biodiversity, 

evolution, and ecology.  An invigorated interest in, and study of, Paramoebidium and 

other members of class Ichthyosporea as whole would contribute to, and advance 
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considerably, our understanding of these symbiotic, unicellular relatives of multicellular 

animals and fungi.
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Table 2.2 Character state coding for Paramoebidium and Amoebidium samples.  Grey lines and dashes indicate no data 
was available for that sample/character.  Length and width measurements of the hyphae, and presence of a papillum and 
other projections are given, but these were not analyzed with BaTS or ASR methods.  See Figure 2.3 for representative 
drawings of characters. 

Sample and Collection code 

Hypha 
Length 

range (μm) 

Hypha 
Width range 

(μm) 
Holdfast 

type 
Holdfast 
position Papillum 

Hypha 
curvature 

Hypha 
width 

Other 
projections 

1048 Paramoebidium sp. TN-38-W15  3597 103 - - - hairpin equal - 

1049 Paramoebidium sp. ALG-9-W10  650-1188 29-61 cylindrical basal n arched tapering 
distally n 

1052 Paramoebidium sp. OR-3-W12  - - - - - hairpin - - 
1176 Paramoebidium sp. AR-31-C7  634-672 25-26 - - - hooked equal n 
1181 Paramoebidium cf. grande ID-164-G2  - - - basal n arched - n 
1183 Paramoebidium hamatum ID-157-G11  204 14 cylindrical basal n hooked equal n 

1196 Paramoebidium curvum Mex-16-W14  141-201 19-34 cylindrical lateral n coiled/ 
looped equal n 

1200 Paramoebidium sp. DR-16-C8  232-353 13-21 cylindrical basal n hooked tapering 
distally n 

1207 Paramoebidium hamatum ID-166-G6  260-800 10-60 cylindrical basal n hooked equal n 

1210 Paramoebidium stipula NS-X-39  650-700 45 cylindrical central n branched tapering 
basally y 

1214 Paramoebidium corpulentum KS-114-3  300 30-90 globose basal n arched tapering 
distally n 

1215 Paramoebidium sp. NS-X-29  725-965 10-25 discoid lateral y straight equal n 
1217 Paramoebidium sp. OR-13-W1          
1218 Paramoebidium sp. TN-13-W20  2070-4006 23-47 cylindrical basal n straight equal n 
1219 Paramoebidium sp. TN-38-W13  3597 103 - - - hairpin equal n 
122 Paramoebidium sp. RMBL-75-1          1223 Paramoebidium sp. Mex-17-W2  850-1443 21-59 cylindrical basal n arched middle n 

1225 Paramoebidium sp. OR-14-W1  225-316 8-11 discoid basal n hooked tapering 
distally n 

1227 Paramoebidium sp. CO-3-W13  255-541 13-31 cylindrical basal n coiled/ 
looped equal n 

1228 Paramoebidium sp. BC-5a-W6  870-1321 10-27 cylindrical basal n straight tapering 
basally n 

1234 Paramoebidium sp. NS-16-W2  290-462 15-19 cylindrical basal n hooked equal n 
1236 Paramoebidium sp. ID-65e-E1  1396 33 cylindrical basal n arched equal n 
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1237 Paramoebidium sp. ID-156-T1  98-202 45-78 cylindrical basal n straight tapering 
distally n 

1247 Paramoebidium avitruviense SPA-X-74  670-770 20-30 globose central n branched tapering 
distally y 

1249 Paramoebidium ecdyonuridae SPA-X-76  1000 80 cylindrical basal y hooked equal n 
1250 Paramoebidium ecdyonuridae SPA-X-77  1000 80 cylindrical basal y hooked equal n 

197 Paramoebidium curvum AFR-9  140-280 20-60 cylindrical lateral n coiled/ 
looped equal n 

303 Paramoebidium sp. NS-34-W17  - - discoid basal n hooked equal n 
376 Amoebidium parasiticum JAP-7-2  32-500 6-11 discoid - n straight equal n 
377 Amoebidium parasiticum A1a  32-500 6-11 discoid - n straight equal n 
38 Paramoebidium sp. ME-2-W3  204-448 7-14 cylindrical lateral n hooked equal n 
41 Paramoebidium sp. NS-6-W8-10  289-299 10-11 discoid basal n hooked equal n 
42 Paramoebidium sp. NY-3-W7          446 Paramoebidium sp. KS-61-W20  345-600 12-22 cylindrical basal y arched equal n 

447 Paramoebidium sp. MA-3-W51  833-1106 19-37 cylindrical lateral y straight tapering 
basally n 

449 Paramoebidium sp. MO-19-W15  - - - - - hairpin - - 
450 Paramoebidium sp. NF-10-W15          457 Paramoebidium sp. RMBL-71-3          458 Paramoebidium sp. RMBL-72-3          459 Paramoebidium sp. PA-2-W2  138 10 cylindrical basal n hooked equal n 
466 Paramoebidium sp. NS-24-W16          
467 Paramoebidium sp. VT-3-W1  750 37 - basal n hooked middle y 
473 Paramoebidium sp.  UT-1-W14  968-1265 39-53 cylindrical basal n arched middle n 
488 Paramoebidium sp. UT-2-W5  379-434 31-39 cylindrical basal n hooked middle n 
504 Paramoebidium sp. NS-35-W8  996 54 cylindrical basal n hooked equal n 
506 Paramoebidium sp. NS-35-W14  308-549 18-41 cylindrical basal n hooked equal n 
508 Paramoebidium sp. NS-35-W18  154-495 6-12 discoid lateral n hooked equal n 
511 Paramoebidium sp. NS-35-W22b  279-504 14-23 cylindrical basal n hooked equal n 
525 Paramoebidium sp. NOR-3-1  180-210 60-70 discoid basal n arched equal n 

526 Paramoebidium sp. NOR-3-W2  609-1026 58-64 discoid basal n hooked tapering 
basally n 

531 Paramoebidium sp. NOR-4-W9          533 Paramoebidium sp. NOR-7-W2          536 Paramoebidium sp. NOR-5-W14          538 Paramoebidium sp. NOR-5-2  220-380 55-90 globose basal n bent equal n 
543 Paramoebidium sp. NOR-10-W1  300 75 discoid basal n straight equal n 
546 Paramoebidium sp. NOR-10-W10a          
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551 Paramoebidium sp. NOR-16-W3  449-521 40-46 discoid basal n bent equal n 
558 Paramoebidium sp. NOR-10-W15  - - discoid basal n bent equal n 
564 Paramoebidium sp. NOR-21-W5  3000 50 - - n straight equal n 
566 Paramoebidium avitruviense NOR-22-W10  800-1000 80-90 globose central n branched equal y 
606 Paramoebidium sp. NS-35-L2 - - - - - hooked equal  614 Paramoebidium sp. CAL-17-L1          616 Paramoebidium sp. CAL-17-L6          618 Paramoebidium sp. AR-30-C7  242-460 10-13 discoid basal y hooked equal n 
619 Paramoebidium sp. AR-30-C9          622 Paramoebidium sp. AR-31-C31          664 Paramoebidium sp. NOR-35-3          671 Paramoebidium sp. NOR-40-W2          674 Paramoebidium sp. NOR-40-W8  1080 31 discoid basal n arched equal n 
680 Paramoebidium sp. NOR-50-W2  485-791 17-40 cylindrical lateral y straight base y 

681 Paramoebidium curvum NOR-53-W1a  140-280 20-60 cylindrical lateral n coiled/ 
looped equal n 

690 Paramoebidium sp. NOR-54-2  - - - - - hairpin - - 
691 Paramoebidium sp. NOR-54-W10  - - - - - hairpin - - 
703 Paramoebidium sp. NOR-54-W17  375-750 20-30 cylindrical basal n hairpin equal n 
715 Paramoebidium sp. NOR-61-W11  417-552 30-49 cylindrical lateral - straight base - 

830 Paramoebidium stipula NS-X-17  650-700 45 cylindrical central n branched tapering 
basally y 

833 Paramoebidium sp. ONT-X-10  685-883 29-51 cylindrical lateral n arched tapering 
distally n 

870 Paramoebidium sp. CO-2-W12  190-494 42-143 globose basal n straight equal n 
901 Amoebidium appalachense TN-27-A3  55-80 4-8 discoid basal n straight equal n 
903 Amoebidium sp. TN-27-W4  - - - - n straight equal n 
904 Amoebidium appalachense TN-46-A6  55-80 4-8 discoid basal n straight equal n 
921 Amoebidium appalachense TN-27-W1a  55-80 4-8 discoid basal n straight equal n 
935 Paramoebidium sp. PEI-X-12  907 21 discoid basal n arched equal n 
Amoebidium parasiticum FRA-1-14  
                                      (NRRL20524)  32-500 6-11 discoid - n straight equal n 
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Table 2.3 Bayesian Tip-association Significance testing (BaTS) results.  The statistics (Association Index, Parsimony Score 
and maximum exclusive single-state clade size), observed means, null means, confidence intervals and p-values are given for 
all states and characters.  Character state coding was the same as for ASR analyses.  Bold numbers indicate significant results 
(p < 0.05).  Results for character states only represented once in the dataset are not shown. 

Host Order Statistic 
Observed 

mean 
Lower 

95% CI 
Upper 

95% CI Null mean 
Lower 

95% CI 
Upper 

95% CI Significance 

 
AI 0.84932822 0.42211232 1.26890361 5.83471251 4.91656923 6.72862387 0 

 
PS 9 9 9 39.1255264 35.3882217 42.5988007 0 

 
MC Diptera 9 9 9 1.74796236 1.15668666 2.4381237 1.00E-03 

 
MC Cladocera 1 1 1 1.00659776 1 1 1 

 
MC Ephemeroptera 9 9 9 2.77016902 2.00399208 4.43712568 1.00E-03 

 
MC Plecoptera 15.6257486 11 16 2.6916225 1.98103797 4.83732557 1.00E-03 

         Host Family AI 2.81444359 2.24810338 3.41229606 8.33708382 7.79773092 8.80851555 0 

 
PS 31.6846313 31 32 63.6851463 60.5898209 66.6786423 0 

 
MC Chironomidae 1.5 1 3 1.06354761 1 1.32934129 1 

 
MC Daphniidae 1 1 1 1.00589132 1 1 1 

 
MC Leptophlebiidae 1.91616762 1 2 1.14188659 1 1.9371258 0.028 

 
MC Siphlonuridae 2.273453 1 4 1.07536173 1 1.54291415 0.01099998 

 
MC Baetidae 5 5 5 1.10325861 1 1.62175643 0.00099999 

 
MC Capniidae 3.00399208 3 3 1.20860493 1 1.96806383 0.00199997 

 
MC Chloroperlidae 1.6357286 1 3 1.04566026 1 1.27644706 1 

 
MC Simuliidae 1.99001992 2 2 1.00649202 1 1 0.00099999 

 
MC Heptageniidae 9 9 9 1.44116902 1 2.05489016 0.00099999 

 
MC Peltoperlidae 2 2 2 1.0029732 1 1 0.00099999 

 
MC Nemouridae 1 1 1 1.00736809 1 1 1 

 
MC Ephemerellidae 5 5 5 1.2019484 1 1.96407187 0.00099999 
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MC Taeniopterygidae 2.72954082 2 3 1.14984417 1 1.91916168 0.00099999 

         Host Genus AI 3.88455892 3.12670112 4.68431854 7.89598894 7.33976746 8.39205933 0 

 
PS 39.0309372 37 41 55.1049957 53.2774467 56.7235527 0 

 
MC Chironomus 1.5 1 3 1.06979287 1 1.37624753 1 

 
MC Daphnia 1 1 1 1.00731432 1 1 1 

 
MC Baetis 3.96606779 4 4 2.37427163 1.74251497 3.39520955 0.02200001 

 
MC Siphonoperla 1 1 1 1 1 1 1 

 
MC Simulium 1.99001992 2 2 1.00363779 1 1 1.00E-03 

 
MC Ecdyonurus 1.37225544 1 3 1.06130719 1 1.34331334 1 

 
MC Ephemerella 1 1 1 1 1 1 1 

 
MC Taeniopteryx 2.58283424 1 3 1.02422631 1 1.15169656 1.00E-03 

 
MC Capnopsis 1 1 1 1 1 1 1 

 
MC Brachyptera 1.6357286 1 3 1.01953495 1 1.08982038 1 

 
MC Protonemura 1 1 1 1 1 1 1 

 
MC Eurylophella 1.96307385 2 2 1.00694513 1 1 0.00199997 

 
MC Paraleptophlebia 2 2 2 1.010445 1 1 1.00E-03 

 
MC Leptophlebia 1 1 1 1.00673544 1 1 1 

         Holdfast type AI 4.31549406 3.49616003 5.12116909 6.69734478 5.89303732 7.43649197 0 

 
PS 38.1916161 36 40 46.1521873 42.6477051 49.4451103 0 

 
MC Cylindrical 1.73053896 1 3 1.27935398 1 2 0.05500001 

 
MC Discoid 2.01397204 2 2 1.65500224 1.02894211 2.46007991 0.21399999 

 
MC Globose 3 3 3 2.42031217 1.79940116 3.69061875 0.153 

 
MC Grasping 1.99900198 2 2 1.06341076 1 1.34331334 0.00700003 

 
MC Wrapped 4.97305393 5 5 2.19617701 1.52395213 3.02894211 0.005 
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Holdfast position AI 3.99607873 3.20100331 4.73894978 5.36370373 4.49562311 6.17108488 0.00599998 

 
PS 31.047905 29 33 34.3312225 31.285429 36.9191628 0.04000002 

 
MC Basal 5.00199604 5 6 3.67770863 2.4261477 5.21656704 0.12099999 

 
MC Central 2.26746511 2 3 2.32362962 1.66367269 3.4311378 0.74199998 

 
MC Lateral 1.99101794 2 2 1.03565979 1 1.2275449 0.005 

         Hypha curvature AI 3.93399239 3.23814893 4.63009644 7.33377838 6.61065817 7.99542904 0 

 
PS 36.8083839 35 38 52.1415367 48.6497002 55.235527 0 

 
MC Straight/sinuous 2.79341316 2 4 1.90325093 1.22854292 2.9431138 0.046 

 
MC Hooked 1.97604787 2 2 1.76432991 1.13173652 2.58283424 0.27399999 

 
MC Branched 4.88423157 3 5 1.99117339 1.34131742 2.9311378 0.00199997 

 
MC Coiled/looped 1.99101794 2 2 1.04131126 1 1.27644706 0.00700003 

 
MC Arched 2 2 2 1.06929862 1 1.4141717 0.014 

 
MC Hairpin 1.68662679 1 3 1.18974769 1 1.99001992 0.04400003 

 
MC Bent 2.38922167 2 3 1.13208866 1 1.81636727 0.01700002 

         Hypha width AI 4.4713273 3.72924018 5.26312208 5.57150984 4.77452421 6.36616707 0.01300001 

 
PS 31.4910183 30 33 35.5085335 32.9221573 37.9680634 0.02200001 

 
MC Equal 3.99201608 3 4 3.69091487 2.48403192 5.21656704 0.28399998 

 
MC Distally tapering 2.26447105 2 3 2.14254498 1.45708585 3.00199604 0.59799999 

 
MC Middle 1.54291415 1 2 1.10293818 1 1.68762469 0.01599997 

 
MC Basally tapering 1.00399196 1 1 1.04601145 1 1.27644706 1 

 
MC Base 1.21457088 1 2 1.06769252 1 1.37624753 1 
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Figure 2.1 BEAST (BI) maximum clade credibility tree of the 18S and 28S combined 
dataset, including Amoebidium as the outgroup, with maximum likelihood (ML) and maximum 
parsimony (MP) values given (BI/ML/MP).  Values below 0.90 for BI, 70 for ML and 60 for MP 
are indicated by a dash (-).  Nodes with BI and ML support that were used in ASR analyses are 
numbered 1-24.  Well-supported clades are labeled: Clade 1-6, sp. 1-3, hamatum, and cf. 
chattoni/grande.  Character states given the highest values by ASR analyses are represented 
symbolically next to clades or nodes (for hosts), with the legend shown above.  A drawing of a 
trichopteran host is located next to sample 870 and highlighted with a green box to mark that 
unique sample, but that state (Trichoptera) was not significant among ASR or BaTS analyses. 
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Figure 2.2 Anscestral state reconstruction pie chart output from parsimony, maximum 
likelihood, and SIMMAP, respectively, in each column for nodes 1-24 (Fig. 2.1).  Parsimony and 
ML were performed in Mesquite.  The last 5,005 trees from the BEAST analysis were used for 
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parsimony, so pie charts represent the proportion of trees returning a particular state as the best 
state at each node.   

The characters and character states are as follows: 

Host order: white = Plecoptera, red = Ephemeroptera, blue = Diptera, green = 
Trichoptera, purple = Cladocera 

Holdfast type: white = globose, red = cylindrical, blue = grasping projections, green = 
discoid, purple = wrapped 

Holdfast position: white = basal, red = lateral, blue = central 
Hypha curvature: white = branched, red = straight/sinuous, blue = coiled/looped, green = 

arched, purple = hooked, orange = hairpin, grey = bent 
Hypha width: white = equal, red = tapering distally, blue = tapering basally, green = 

middle, purple = base 
Hatched indicates equivocal results in parsimony. 
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Figure 2.3 Representative drawings of character states, as observed among voucher slides 
and from published species descriptions.  Red boxes indicate new character states observed 
during this study; asterisks indicate states that returned significant values in the BaTS analyses 
(Table 2.3). 
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Plate 2.1 Representative examples of Paramoebidium spp. highlighting variation in 
hyphae and holdfasts for representative vouchers of the “coiled” (A-C), “hooked” (D, F-N), and 
“looped” (D-E) shapes. These were dissected from mayflies collected from various geographic 
regions including (A-C) Colorado, USA; (D,E) Dominica; (F-K) Nova Scotia, Canada and (M, 
N) Pennsylvania, USA. Images are from microscope slide voucher codes: CO-3-W11 (A-C); 
DR-16-C8 (D-E); NS-35-W22 (F-J); NS-35-W9 (K-L); PA-2-W1 (M-N). 
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Plate 2.2 Images of Paramoebidium grande (C) and representatives of the 
morphologically overlapping Paramoebidium cf. chattoni/grande complex.  Large, curved 
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thalli of putative Paramoebidium grande from Chile (A-E) mixed with P. chattoni-like (in F) 
and in comparison with P. chattoni-like specimens (G-I) imaged from slide voucher collection of 
R.W. Lichtwardt. Other images are from specimens considered to be Paramoebidium cf. 
chattoni/grande from three regions in North America: Idaho (J-K) and Colorado (L-M), USA 
and Ontario (O-R), Canada. See text for discussion of species overlap. These were dissected 
from black flies and images are from microscope slide voucher codes: CHI-1-1 (A, F); CHI-1-
2(B-E); CHI-5-12 (G); CHI-20-8 (H); CHI-5-16 (I); ID-65-E1 (J-K); RMBL-78-6 (L-N) and 
ALG-9-W6a (O-R). 
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CONCLUSION 

On a broader scale, this project represents one of the first steps and studies toward 

a higher-resolution picture of the evolutionary history of species within the Eccrinida.  

Especially useful is the attempt to shift the evaluation of the protist trichos from a 

mycological standpoint to a protistological one, which may reveal a whole different suite 

of taxonomically informative characters. Whereas previous studies have focused on 

discovery and placement of species, this project combined expanded taxon sampling with 

a multigene approach to probe larger-scale relationships.  From this strengthened 

phylogenetic backbone, further hypotheses can be proposed toward ongoing 

investigations into the evolution of symbiosis within the group (e.g. coevolution between 

host and symbionts, shifts between commensalism and parasitism, etc.). Finally, as these 

organisms are unicellular relatives of animals and fungi, these data will also augment 

other research initiatives into the origins of multicellularity such as the recently published 

works involving transcriptome analyses (Sebé-Pedrós et al. 2011) and utilizing gene 

silencing and genetic transformation of ichthyosporeans (Suga & Ruiz-Trillo 2013). 
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APPENDIX 

Review of the Morphology and Classification of Eccrinidae genera  

According to the Traditional Family Structure 



131 

 

This review is provided as a more in-depth discussion of the morphological 

features, host associations, and traditional classification of Eccrinidae genera.  A few 

points from this review are mentioned in the discussion section of Chapter 1, but the 

additional information included here gives an historical perspective, as well as offers 

hypotheses regarding the placement of some as-yet unsequenced taxa. 

Palavasciaceae 

Representatives from each of the three former Trichomycete families (currently 

collapsed into family Eccrinidae) were obtained, and though taxon sampling is not 

complete, some of the traditional taxonomic framework within the group is not 

supported.  Palavasciaceae, the smallest family with one genus and three species, is 

represented by vouchers from two species.  These form a well-supported clade with 

Alacrinella limnoriae and an unnamed Astreptonema voucher (termed PAA clade here).   

Both are currently classified within the Eccrinaceae, so their inclusion with 

Palavasciaceae is contradictory, although not unexpected (Lichtwardt et al. 2001).  The 

putative Astreptonema voucher (WA-3-C3) was thought to be the same organism as that 

described by Hibbits Galt (1971) (Astreptonema sp. 2), whose observed characters were 

intermediate between that genus and Alacrinella (i.e. a hooked base vs. lobed and one 

spore appendage rather than two).  The specimen collected for the sample used in this 

study (and Cafaro 2005) was immature, but did have the wide, hooked base and an abrupt 

constriction of the hypha, just proximal to the sporulating region, as previously illustrated 

(Hibbits Galt 1971).  In fact, Hibbits Galt (1971) suggested that Alacrinella, P. 

sphaeromae and Astreptonema could be closely related.  Indeed, there are several 

morphological features that could unite them: distinct “microthalli” that produce 
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uninucleate cells (although the thin filaments described for Palavascia spp. have not been 

termed “microthalli”, to date), a persistent “spore mother-cell” at the distal end of the 

hyphae, and similarly shaped and sized spores.  Two other genera, Ramacrinella and 

Paramacrinella, have been reported to produce microthalli and share persistent “spore 

mother-cells” with the PAA clade.  These genera were morphologically distinguished 

based on the proximal position of the mother-cells, and the branched hyphae of 

Ramacrinella (Manier & Grizel 1971).  Furthermore, Palavasciaceae was formally 

established as a separate family due, at least in part, to the absence of secondary spore 

formation; however, Lajasiella (Parataeniellaceae) (Manier & Lichtwardt 1968) is not 

known to produce these spore types either.  Such morphological variation within a clade 

is not uncommon among the protist trichos (e.g. Arundinula, Enterobryus, and 

Enteropogon, discussed below) and should not, alone, rule out the possible relatedness of 

Ramacrinella and Paramacrinella to the PAA group or preclude dissolution/emendation 

of the Palavasciaceae. 

Besides morphology, Astreptonema sp. 2 and Ramacrinella and Paramacrinella 

share the same host and habitat affiliations as Palavascia and Astreptonema, respectively.  

The significant correlation of habitat and host type found in this study provide additional 

support for Hibbits Galt’s (1971) hypothesis that Ramacrinella and Paramacrinella 

belong with the PAA clade, but tend to refute the placement of her Astreptonema sp. 2 in 

that genus. Similarly, predictions regarding the unrepresented Astreptonema species 

would place A. longispora (Hauptfleisch 1895) and A. typica (Manier 1968) with A. 

gammari (Manier 1964) due to their association with gammarid hosts in freshwater 

habitats.  On the other hand, the affiliation of A. corophii (Manier 1968) and A. pacificum 
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(Hibbits Galt 1978) are viewed with less certainty due to their association with different 

host families from marine habitats, making them desirable targets for future 

collecting/vouchering efforts.  

Beyond the apparent host-related splits, geographic partitioning does not appear 

to have an obvious influence within the clade.  Only two vouchers were collected from 

the Southern Hemisphere (Argentina) (ARG-D4-C11 and ARG-D1-C15), giving this 

dataset an obvious bias toward Northern Hemisphere samples.  However, Palavascia 

patagonica is not significantly diverged from P. sphaeromae from South Carolina or 

from the other North American samples it forms a clade with (at least in the rDNA gene 

trees, Figs. 1.1, 1.3).  Comparing the Northern Hemisphere examples, Canadian, 

European, and USA samples form clades without indication of geographic bias.  

Astreptonema gammari from Minnesota and Massachusetts, for example, have little 

divergence from the sample from France. 

Parataeniellaceae 

Although Parataeniella species are found in isopods (Poisson 1929), they are 

terrestrial hosts as opposed to the marine/halophilic species associated with Palavascia 

and Alacrinella.  Out of the two genera (Parataeniella and Lajasiella) and seven species 

described in the Parataeniellaceae, one genus and two species are represented here.  

However, these samples form a distinct clade from the rest of the eccrinids, falling out 

separately in alternate topologies.  Indeed, SH and AU tests do not reject this hypothesis 

(Table 1.6).  Evaluation of their described life history seems to align with the transitional 

nature of the molecular signal.  Parataeniella hyphae are reported to holocarpically form 

spores or to release propagules basipetally.  Interestingly, some Lajasiella hyphae also 
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divide along most of their length, except for the proximal portion (Tuzet & Manier 1950); 

other hyphae produce propagules in a basipetal manner.  Homology of this holocarp-like 

trait between the two genera remains to be determined, but Lajasiella is especially of 

interest as it is the only protist tricho found (so far) in scarab beetles (Coleoptera, 

Scarabaeidae), the only eccrinid genus reported from just the larval host form and not the 

adult, and it is not known to produce “secondary” spores (Lichtwardt et al. 2001).  

Lajasiella also is described as having a persistent spore mother-cell, but this has not been 

observed in Parataeniella.  While the confirmed schizont-like formation of propagules 

for Parataeniella is unique among the eccrinids (but see Eccrinaceae discussion below), 

it is, at least superficially, similar to the way [sporangio]spores (in Amoebidium) and 

amoebae are formed in the Amoebidiidae. No basipetal forms have been reported for 

accepted Amoebidiidae species, but a nomen nudum (i.e. not validated according to the 

International Code of Botanical Nomenclature) (Lichtwardt et al. 2001) Paramoebidium 

was given the epithet eccriniformis based on the linear arrangement of amoebae within 

the distal portion of the hypha (Duboscq et al. 1948), pointing to the possibility of other 

species with intermediate forms.  

Geographically, most Parataeniella records are from North America and Europe, 

except for P. flavospora (Taiwan) (Chien & Hsieh 2001) and P. latrobi (Australia) 

(Lichtwardt & Williams 1990).  Parataeniella scotonisci was collected from 

cavernicolous hosts in France (Manier 1964).  Collections of species have been recorded 

from a range of isopod families, some of which have broad distributions (David & Handa 

2010), implying wider surveys for Parataeniella are warranted.  The consistency of 

morphological characters recorded for these species (i.e. production of uni-/binucleate 
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spores and both holocarpic and basipetal hyphal forms) across geographic boundaries and 

the strongly supported clade seen here suggests that Parataeniella will hold as a genus in 

future analyses. 

Eccrinaceae 

The third family, and the largest with 14 genera, is the Eccrinaceae.  Topology 

tests reject its monophyly (Table 1.6) and again clade formation appears linked to host 

organism.  For example, Enterobryus halophilus places closer to other marine, decapod-

associated taxa than with other Enterobryus species.  Likewise, an unidentified eccrinid 

(sample 1067) (noted by MMW as another possible Enterobryus sp.) is on a branch 

positioned nearer to the other Coleoptera clade (Leidyomyces) and freshwater-associated 

Arundinula opeongoensis. The only described Enterobryus from a beetle host is E. 

hydrophilorum.  Cursory review of slide material from the unnamed sample superficially 

resembled that E. hydrophilorum, but the measurements were again outside the 

prescribed range.  Additionally, the host was not identified, but an 18S sequencing 

attempt for the sample returned BLAST results as a Helophorus beetle (with 99% 

coverage and identity), of the same host family (Hydrophilidae) as that for E. 

hydrophilorum.  Two illegitimate specimens were recorded from hosts of that family by 

Poisson (1931), but given the genus Trichella, which has been rejected (Lichtwardt et al. 

2001).  However, due to the morphological complexities outlined below, the specimen 

will remain unnamed here.  

Enterobryus is the largest genus of the Eccrinidae, and aside from those 

mentioned above, all other species have been found in association with millipede hosts.  

Twenty-six species descriptions have been accepted, but more than 20 are considered 
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illegitimate or incomplete (Lichtwardt et al. 2001; Contreras & Cafaro 2013).  Host 

specificity has not been determined to date, and, as species have been described from 

crabs and beetles, was not thought to be an influential factor based on morphological 

character similarities.  The main obstacle to Enterobryus (and the Eccrinidae in general) 

taxonomy has been the paucity of informative morphological characters.  Their 

production of different spore types (a total of nine) and cells of unknown function 

combined with intraspecific variability, even along the length of a single host gut 

(Lichtwardt 1954, 1958; Lichtwardt et al. 2001) have confounded attempts to evaluate the 

genus solely with morphology.  Therefore, the genus has been functioning as a “catch-

all” pending better methods (e.g. culturing, genetic barcoding) and characteristics with 

which to differentiate them.  For example, future species descriptions should include such 

thorough analyses of morphological variability as recently published for E. luteovirgatus 

(Contreras & Cafaro 2013).  However, even with the somewhat limited taxon sampling 

presented here, Enterobryus samples separate into defined, well-supported clades, 

indicating the non-homology of characters and the requirement for genetic evaluation of 

species.   

While the samples used here were coded as “hindgut” dwellers for the purpose of 

analysis, the (in many cases) very long millipede gut (Byzov 2006) could be 

subpartitioned according to physiochemical gradations, not only in terms of microhabitats 

that the gut symbionts are exposed to, but also in terms of states for future character 

mapping analyses.  The dividing of Enterobryus samples into different well-supported 

clades suggests that molecular data would clarify species boundaries and likely lead to a 

splitting up of the genus.  The hint of association of these clades with host family or even 
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genus is tantalizing, but certainly there is not enough data, as yet, to support any 

delineation on that basis alone.  

On the other hand, the morphological distinctiveness (i.e. bilocular spores) and 

host association described for Eccrinidus matches its placement in the tree.  This genus is 

monotypic and the representative samples split off on a branch between Parataeniella 

and the rest of the Eccrinidae, thus being more closely related to other terrestrial, 

millipede-associated taxa.  Only two other species are recorded from glomerid hosts: 

Eccrinoides henneguyi and E. broelemanni.  Hibbits Galt (1971) hypothesized that 

Eccrinoides is closely related to the PAA clade.  However, the present analyses would 

suggest that the genus could be split along host lines, with the two glomerid-associated 

taxa being closely related to Eccrinidus and the two terrestrial isopod-associated taxa 

presumably falling out separately or aligning more closely with Parataeniella.  In fact, E. 

henneguyi is noted (Lichtwardt et al. 2001) to be very similar morphologically to 

Eccrinidus flexilis, but the spores of the former are not bilocular and have channels at 

each pole (Léger & Duboscq 1929a).  The Eccrinoides species found in terrestrial isopod 

hosts (E. helleriae and E. monticolae) both have the polar channels.  It seems 

questionable whether this single morphological character truly represents a homologous 

trait given the phenotypic plasticity among eccrinids.  Would the host-based/habitat 

clade-sorting patterns hold up and divide these species in a future analysis? Could the 

polar channels in the spores of Eccrinoides be a morphological intermediary between 

undivided and bilocular spores?  An in-depth, combined molecular and morphological 

analysis of these genera is warranted to elucidate these lingering questions. 
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The remaining genera (Arundinula, Enteromyces, Enteropogon, Leidyomyces, 

Passalomyces, Taeniella and Taeniellopsis) branch separately from one another, except 

for Passalomyces (for which no genomic samples were obtained) and those discussed 

above.  All but Arundinula, Enteropogon, and Taeniellopsis are monotypic.  In the case 

of Taeniella, three species were described at one point, but Lichtwardt et al. (2001) felt 

that character overlap prohibited proper delineation, and so they were all collapsed into T. 

carcini.  On the other hand, Hibbits Galt (1971) acknowledged the similarity and 

intraspecies variability of characters, but felt each species was distinguishable.  However, 

she sometimes observed T. carcini in the hindgut of the same hosts harboring Arundinula 

washingtoniensis.  Taeniella and Arundinula have morphological similarity to each other 

and produce spores with appendages (four on the former and two on the latter), but also 

exhibit variability of their hyphal morphotypes. Combined with the overlap in hosts, 

morphological differentiation of these species could be problematic. Certainly, as with 

Enterobryus, future combined morphometric/molecular studies covering the range of 

hosts of these genera are needed to disentangle possible phenotypic plasticity and niche 

partitioning of the host gut.   

Taeniella and the other crustacean-associated taxa (minus the terrestrially 

associated Parataeniella) form unsupported clades together while Eccrinidus is on a 

branch positioned near the millipede-associated Enterobryus spp.  Within the crustacean 

clade, subclade formation may be at least partially attributable to freshwater vs. marine 

habitat.  For example, Arundinula opeongoensis (White & Strongman 2008) and 

Astreptonema gammari are found in freshwater hosts and each form well-supported 

clades apart from marine taxa.  However, both of these genera contain marine taxa that 



139 
 

 

 

are not represented here.  Arundinula orconectis (Lichtwardt 1962) shares the same host 

as A. opeongoensis, and together they are the only two species in the genus from 

freshwater crayfish, rather than marine anomurids.  Based on the patterns observed here, 

the marine Arundinula could be expected to form a separate clade from these freshwater 

specimens.   

In contrast, Taeniellopsis (Poisson 1927) might be expected to align more closely 

with the marine Astreptonema pacificum.  Not only have described Taeniellopsis species 

been collected from the same amphipod host genus as A. pacificum (Orchestia spp.) 

(Lichtwardt et al. 2001), but also the representative voucher here is an early diverging 

lineage to the PAA clade (Fig. 1.1).  The sequence data for that sample is incomplete and 

its placement is unsupported, but the intermediate position could reflect its simultaneous 

affinity for the amphipod and marine clades.  Morphological dimensions of the three 

Taeniellopsis species overlap (Poisson 1927; Poisson 1929; Manier 1970), and the main 

distinguishing features to separate them from Astreptonema are lack of microthalli and 

spore mother-cells.  While there was no suggestion of a microthallus-like structure for 

any species, Poisson (1929) did mention “enigmatic protuberances” on some T. flexilis 

hyphae  and the mother-cells of some Astreptonema spp. are not as conspicuous or well 

defined as those of Alacrinella or Arundinula (Lichtwardt et al. 2001).   

Another correlated character among eccrinids is location within the host.  

Arundinula (Leger & Duboscq 1906) and Enteromyces (Lichtwardt 1961) are the only 

two genera found to inhabit the foregut (Lichtwardt et al. 2001), Enteromyces exclusively 

so and Arundinula in both fore- and hindgut (but A. opeongoensis has only been recorded 

from the hindgut so far).  Enteromyces hyphae are distinct in that they have a multiple 
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holdfast system giving them a “tuft”-like appearance (Leidyomyces is the only other 

eccrinid with this generalized growth form), but they have a spore mother-cell similar to 

Arundinula.  The foregut hyphae of Arundinula are morphologically distinguishable from 

those in the hindgut, having thicker cell walls as well as variability in hyphal length and 

curvature, and spores produced.  As the most complex, Hibbits Galt (1978) described A. 

hapalogaster with six different hyphal forms.  She also reported rare holocarpic cleavage 

for hyphal morphotypes of that species and A. washingtoniensis (1971), some cells of 

which rounded up into a spherical form, but their function was not clear.  Duboscq et al. 

(1948) hypothesized that these rounded cells were gametes, but no evidence has been 

acquired for or against this idea.  Similarly, Enteropogon spp. have four hyphal 

morphotypes with spore mother-cells, some of which produce “rounded up” cells 

suggested to play a role in a (as yet unconfirmed) sexual process (Hibbits Galt 1978; 

Chien & Hsieh 2001).  Enteropogon hyphae are different from Arundinula in that they 

form scalariform fusions with one another and are only found in the hindgut (Hibbits Galt 

1978).  The function of these cells and confirmation of these hyphal morphotypes as true 

conspecifics remains to be determined.  It is interesting to note that Lichtwardt et al. 

(2001) questioned the legitimacy of Enteropogon (but not the distinctiveness of E. 

sexuale), as its morphology strongly resembles that of Enterobryus.  The type species 

(Enterobryus elegans) was taken from a millipede, and considering the apparent 

polyphyly of the genus and the significant correlation of host type with the phylogeny, 

Enteropogon should remain a separate genus at least until more specimens of anomurid-

associated taxa are obtained. 
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Finally, both Leidyomyces and Passalomyces are found in the guts of passalid 

beetles and, indeed, may cohabit a single individual host.  Beetle guts are convoluted as 

the length of the gut is more than that of the insect itself, and these genera are physically 

separated along it, with Leidyomyces found in the anterior hindgut and Passalomyces in 

the posterior hindgut (Lichtwardt et al. 1999).  In addition to this partitioning within the 

host, Passalomyces has only been recorded from tropical areas, whereas Leidyomyces has 

been found in those same areas plus at sites in North America (Lichtwardt et al. 1999; 

Lichtwardt et al. 2001).  Morphologically, Leidyomyces grows in “tufts” of hyphae 

attached to a multiple holdfast structure or individually, and Passalomyces produces only 

flattened, disk-like, thick-walled spores.  The three Leidyomyces sp. samples from 

Guatemala and Mexico form a well-supported clade, but the L. attenuatus sample from 

Australia is sister to that clade with support only from BI and MP.  Whether the 

divergence between these specimens is more attributable to geographic isolation, a 

difference in host genus, or is indicative of Leidyomyces sp. as a new species (or a 

combination of these factors), is unclear.  Future phylogeographic evaluations of these 

genera will help explicate these issues, but are worthy of consideration in these social 

beetles (Schuster & Schuster 1985). 
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