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ABSTRACT

There has been an increased interest to forecast winds over complex terrain

under realistic stability conditions using spatial resolutions that are much finer than

the current practice. This goal is realizable thanks to the computational power of

graphics processing units (GPUs). This thesis investigates an immersed boundary

(IB) formulation and a turbulent inflow boundary condition within a multi-GPU

parallel incompressible wind solver. Katabatic flows over a sloped complex terrain

surface under stable stratification remain to be one of the least understood subjects

in atmospheric turbulence. Prandtl’s analytical solution for laminar katabatic flow is

used to develop an IB formulation to impose heat flux boundary conditions, and to

assess the formal accuracy of the proposed IB schemes. Direct numerical simulation of

turbulent katabatic flow is then performed to investigate the applicability of proposed

schemes in the turbulent regime. Additionally, a turbulent inflow boundary condition

formulation based on perturbations to the buoyancy field is also developed and studied

for a channel flow. Results show that a statistically neutral buoyancy field can serve

as a practical method to generate turbulent inflow conditions, and turbulent katabatic

flow simulations are sensitive to the specifics of the IB formulation. With these two

contributions, the current flow solver is closer to simulating winds over thermally

active complex terrain.
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CHAPTER 1

INTRODUCTION

Complex terrain covers 70% of the Earth’s land surface [11] and its meteorological

influence subsequently affects many aspects of human activity and interest. Research

on wind forecasting in mountainous terrain is significant to a long list of applications

such as weather prediction, air pollution and contaminant dispersion, aviation, moun-

tain warfare, UAV mission planning, snow pack prediction for drought planning, flash

flood prediction, forest fires, and wind energy; however, it is one of the overall least

understood aspects of atmospheric sciences. The physics of wind prediction embodies

fundamental concepts from fluid mechanics, heat transfer, turbulence, and thermo-

dynamics. Additionally, forecasting winds using supercomputers requires efficient

adoption of techniques from computational mathematics and parallel computing.

Research on wind forecasting in complex terrain is very active and continues

to interest organizations such as the U.S. Department of Energy (DOE) who re-

cently funded a multi-institution project [51] entitled “Wind Forecasting Improvement

Project in Complex Terrain.” It is within the mission of the DOE to see clean energy

technologies, like wind power, efficiently integrated into the power grid [52]—which

remains a challenge since wind power is a variable generation resource and electrical

loads on the grid must be instantaneously balanced to ensure resilient operation.

In order to balance electrical loads while incorporating wind energy, balancing au-



2

thorities must keep other energy resources, such as fossil fuel plants, on standby to

compensate for a shortfall in wind power, or curtail wind power when it exceeds

the forecast, wasting energy in both scenarios. Multiple studies conducted around

the 2008-2011 time-frame have shown an annual projected savings in the United

States (U.S.) of $1.6–$4.1 billion per year from a perfect forecast compared to the

state-of-the-art wind forecasting ability [28]. These savings were based on wind energy

supplying 20% of the nation’s electricity demand as projected by the DOE for the

2030–2040 time-frame (4.5% was the account in 2013) [52]. The greatest relative

benefit came from the first 10%–20% improvement in wind forecasts, with diminishing

marginal benefits in further approaching the perfect forecast. These studies show that

even incremental improvements in wind forecasting will bring significant cost savings

and grid reliability for the nation’s energy future.

In mountainous terrain, the wind is not only a result of the general air-mass

movement (synoptic wind), but is often heavily influenced by anabatic (upslope) and

katabatic (downslope) winds as well. Figure 1.1 illustrates these flows. Anabatic

winds are caused by solar heating of a slope, which in turn heats the air near its

surface. This surface heat flux reduces the density of the near-surface air relative to

air further from the slope at the same elevation. Buoyancy drives the near-surface air

up-hill where it will eventually deviate from the surface and continue rising thousands

of feet into the atmosphere creating complex weather patterns in mountainous regions.

Katabatic winds are caused by the opposite effect of surface cooling, typically at

night, and result in downhill winds. Anabatic and katabatic winds are known to play

a significant role in mountain meteorology. Upslope anabatic winds are accompanied

by upvalley winds during the day, and downslope katabatic winds are accompanied

by downvalley winds during the night. The valley winds are a result of temperature
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variation between the valley and nearby areas causing horizontal pressure gradients,

and by buoyancy forces along the valley. It is not uncommon for these thermally

driven flows to overpower synoptic flow and be the primary contributor to wind

within 100 to 6,000 ft of the surface [11]. These winds can also significantly affect

meteorology beyond these heights. For example, anabatic winds can contribute to

deep convection events that result in very damaging hail storms [5].

Figure 1.1: Some basic winds in complex terrain with thermally active surfaces.
Daytime conditions are on the left and nighttime conditions are on the right.

Compared to anabatic winds, our scientific understanding of katabatic winds

is less complete. The physics of katabatic flows is uniquely challenging, in which

low-level jets form near the surface and negative buoyancy acts to suppress vertical

turbulent exchange [10]. Well known katabatic winds include the mistral in southern

France, which flows from the snow-capped Alps down into the Rhone River Valley,

and the katabatic flow along the edge of the Greenland and Antarctic ice sheets, which

frequently reaches 62 mph [32]. A fundamental understanding of thermally driven
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flows and improved computer models are needed because wind turbines fall within the

region of the atmospheric boundary layer where such interesting physics take place.

Without an accurate representation of thermally active surfaces in simulations, the

significant influence of these winds is absent from a model of flow over complex terrain.

Theoretical development of complex terrain flows had its start as early as 1948

when Queney published a paper on inviscid flow over hills and mountains [42, 54].

In modern times, the advent of massively parallel computing has made it possible

to simulate and numerically investigate important non-linear physical processes in

complex terrain flows, such as turbulence and flow separation. To date, most research

has primarily focused on simulating neutrally stable flow over hills, which does not

include buoyancy and thermal effects. While simulating turbulent neutrally stable

flow remains challenging by itself, realistic wind simulation must include thermal

effects at the surface if we are to use wind forecasting in a predictive capacity for

wind energy grid integration.

1.1 Thesis Statement

This thesis will focus on developing two components of a comprehensive complex

terrain wind forecasting engine designed for parallel execution on clusters of graphics

processing units (GPUs). The first component of this thesis is the numerical formu-

lation of a thermally active surface where terrain is represented with the Cartesian

immersed boundary (IB) method. The second component of this thesis is the for-

mulation of a turbulent inflow boundary condition for large-eddy simulation (LES)

of winds. The IB method will be validated for fundamental katabatic flows in the

laminar and turbulent flow regimes using direct numerical simulations (DNS), and
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the turbulent inflow boundary condition will be validated against DNS of turbulent

channel flow.

Mesh generation for simulations of wind in complex terrain must be computation-

ally efficient to be practical and able to produce solutions at forecasting speeds. A

modern approach that is both automated and efficient is a structured Cartesian mesh

employing the IB method to represent complex geometry [44]. Rather than fit a mesh

to a geometry surface, the IB method immerses the geometry in a Cartesian mesh,

identifies nodes near the geometry surface, and then applies a reconstruction scheme

to the near surface nodes that implicitly represents the effect of the surface boundary

conditions on the fluid flow. Cartesian meshes are computationally more efficient

than their unstructured counterparts, as they fit well to the computer architecture

of modern graphics processing units. Most of the research accomplished to date has

focused on reconstructing boundary conditions for the momentum field. This thesis

will develop a reconstruction scheme to represent flux boundary conditions for the

energy field.

Most of the practical flows relevant to engineering applications and atmospheric

flows, in general, are high Reynolds (RE) number phenomena. These flows are

inherently turbulent. Because direct numerical simulation of turbulent flows, where

the smallest eddies need to be resolved in space and time, are prohibitively expensive

and beyond our reach, turbulence has to be parameterized in numerical simulation

of high-RE flows. Turbulence modeling has been the subject of intense research

since the sixties. Early efforts focused on the mean quantities, which led to several

Reynolds-averaged Navier-Stokes (RANS) solvers. For instance, the k-ǫ model has

been a popular choice for most internal flows and the Spalart-Allmaras model has

been popular for external aerodynamics [53]. The large-eddy simulation technique
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gained traction in the mid eighties, with increased popularity of computers, and

became applicable to a broader range of geometries with the advent of the dynamic

procedure [15]. However, the LES technique is uniquely different than the RANS

approach because a reliable LES simulation resolves energetic eddies of turbulent

flows and the statistics of those resolved motions must obey the statistical theory of

turbulence. Turbulent inflow boundary conditions for LES have been an active area

of research, since providing mean quantities with random fluctuations at an inflow

boundary is not sufficient to trip turbulence and lead to the so-called energy cascade

where larger eddies break into smaller eddies until they are dissipated by action of

viscosity [47].

Several methods have been explored for enabling turbulent inflow. A popular

method is to prescribe synthetic turbulence at the inlet based on expected turbulence

statistics. While this method sees much greater success than simply prescribing

random fluctuations at an inlet, it only approximates certain aspects of turbulent

flow, requires turbulence information that is not readily available for complex terrain

wind, and can require long fetches to break down into realistic turbulence [24]. A

method that perturbs the buoyancy field near the inlet in order to trip the natural

evolution of turbulence within a short fetch [34, 36] will be developed and investigated

in this thesis.

A challenge in weather modeling is the large-scale computing necessary to resolve

microscale effects. However, it is expected that in the 2018–2020 timeframe, exascale

computing will be available [14] that is capable of running a high-resolution model.

The exascale is likely to be accomplished through the use of GPUs as accelerators.

Currently, the worlds 2nd fastest supercomputer (Titan) utilizes GPUs for many-

core computing [50]. Due to a recent rapid increase in GPU programmability and
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capability, GPUs have the advantage over conventional processors in their ability to

achieve massive parallelism to solve complex problems [38].

The use of GPUs for many-core computing began in 2007 and there is still a lack

of simulation science software that can efficiently utilize these new supercomputing

tools. Since 2007, Boise State researchers have been developing a multi-GPU parallel

incompressible Navier-Stokes solver named GIN3D. GIN3D has seen as much as 15-

20x speedup factors compared to conventional processors [23, 49]. This thesis will

build upon the GIN3D effort and utilize GPUs as the next generation computing

platform. Wind simulations on GPU clusters will be a convincing demonstration of

how best to use future supercomputers.

Kestrel, a 32-node CPU/GPU high performance computing cluster [2], was the

primary computing resource used for this thesis. Kestrel was acquired through

a National Science Foundation Major Research instrumentation grant (Award #

1229709). Each node contains 2 Intel Xeon E5-2600 series processors (16 cores/32

threads) and 2 NVIDIA GPUs (44 Tesla K20 and 10 Quadro K5200 total). The

system uses a Mellanox ConnectX-3FDR Infiniband interconnect, has a total of 2 TB

of RAM with 64 TB Panasas Parallel File Storage, and uses PBSPro for complex

job scheduling. Figure 1.2 shows Kestrel in its machine room on-site at Boise State

University. Kestrel also powers a visualization wall of 40 connected 30-inch monitors

with 100 megapixels of clarity for studying high resolution images and simulation

results, as seen in Fig. 1.3.
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Figure 1.2: Kestrel high performance CPU/GPU computing cluster, named after
North America’s smallest falcon on account of its modest size.

Figure 1.3: Kestrel Viz-Wall used to visualize high resolution images and simulation
data.
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CHAPTER 2

TECHNICAL BACKGROUND

This chapter includes governing equations and numerical methods used in the flow

solver. To enable forecasting capabilities in the future, computations are performed on

clusters of GPUs using a multi-GPU parallel incompressible flow solver. An overview

of the computational performance from GPUs is presented.

2.1 Governing Equations

Flows with a Mach number less than 0.3 are typically treated as incompressible

in engineering practice [25]. This condition is met by the wind flows of interest here;

therefore, the incompressibility assumption is made. The governing equations for LES

of incompressible flows are the Navier-Stokes equations in filtered form given as,

∂uj

∂xj

= 0 (2.1)

∂ui

∂t
+

∂

∂xj

(uiuj) = −1

ρ

∂p

∂xi

+
∂

∂xj

(

2νSij − τij
)

+ Fi, (2.2)

where

Sij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

(2.3)



10

is the deformation tensor, and

τij = uiuj − uiuj (2.4)

is the tensor representing the interaction of the subgrid-scales on the resolved large-

scales. The overbar represents a filtered quantity, with the filter width typically

provided by the numerical mesh as ∆ = 3
√
dx · dy · dz [6]. Fi is a source, or body

force, that can be used to include bouyancy effects by the Boussinesq approximation

for incompressible flows with small temperature variation [12, 25]:

Fi = giρ∞β (T − T∞) , (2.5)

where gi is the gravitational acceleration, ρ∞ is the reference density, β is the thermal

expansion coefficient, T is the local temperature, and T∞ is the reference temper-

ature. The Boussinesq approximation is commonly used in wind modeling, and if

temperature differences are below 15oC, errors are of the order of 1% for air [12].

The temperature equation can be written as [20, 48]

∂T

∂t
+

∂

∂xj

(Tuj) =
∂

∂xj

(

γ
∂T

∂xj

)

+ Φ, (2.6)

where γ is the thermal diffusivity and Φ is a source term. For convenience, bouyancy,

b, can be solved for in place of T . Solving for buoyancy simply requires the substitu-

tion of b for T in Eq. 2.6 and modification of Fi and Φ. The Buoyancy form of the

energy equation is presented in Chapter 3.
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2.2 Numerical Methods

The governing equations were solved on a directionally-uniform Cartesian grid

using the projection algorithm [4]. The second-order central difference scheme was

used for spatial derivatives and time advancement was performed with the second-

order Adams-Bashforth scheme. The pressure Poisson equation was solved by a

geometric, three-dimensional multigrid method with a weighted Jacobi solver [21].

Large-eddy simulation was performed using a localized dynamic Lagrangian model

for subgrid-scale turbulence modeling [8, 15].

2.3 GPU Computing

High performance scientific computing has typically been done on clusters of

thousands of central processing units (CPUs) working in parallel to solve a problem;

however, within a single modern GPU, thousands of cores are available to perform

massively-parallel computations. While the original purpose of the GPU was for

rendering computer graphics, the advent of NVIDIA’s Compute Unified Device Ar-

chitecture (CUDA) in 2007 made GPUs more accessible to scientists for accelerating

scientific numerical algorithms [43]. Through the Message Passing Interface (MPI),

clusters of GPUs can be enabled to work in parallel.

The work of this thesis builds upon the multi-GPU parallel wind solver GIN3D

[8, 21, 22, 49] written in the C-based CUDA and MPI programming languages. MPI

is used to partition the data into large sections, and CUDA uses GPUs to execute

parallel instructions on individual data elements. In work by previous developers,

a GPU and CPU version of GIN3D was created for taking a direct measure of
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the performance of GPUs against CPUs. In these comparisons, GPUs had 15–20x

speedup factors over CPUs [22, 49].

As GIN3D became more advanced, the CPU version was abandoned in order to

focus on the GPU version, making direct comparison no longer possible. However,

GIN3D compute-performance has continued to be gauged through code-to-code com-

parison with OpenFOAM, a CPU-based community model [37]. Figure 2.1 compares

GIN3D performance on 2, 4, and 8 GPUs against OpenFOAM on 128, 256, and

512 CPU processors. The GPU cluster used for the simulations has two Intel Xeon

E5-2670 Sandy Bridge 2.60 GHz Eight Core processors with two Tesla K20 GPU cards

per compute-node. Nodes are connected with and Infiniband FDR (56 Gbps) switch.

Simulation was of the well-known lid-driven cavity problem on a 2563 mesh with

GIN3D using 0.6 the time step size of OpenFOAM. Speedup results are relative to

OpenFoam performance on 128 processors. For this case, the overall best performance

was on four GPUs (becuase the decomposition of the domain results in a better

occupancy on each GPU) with a speedup of 17× over OpenFOAM on 128 processors.

Two GPUs, which occupy one node, are even faster than OpenFOAM performance

on 512 processors, which occupy 32 nodes.
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Figure 2.1: GIN3D performance over OpenFOAM for the lid-driven cavity problem.
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CHAPTER 3

IMMERSED BOUNDARY METHOD

Mesh generation is an integral component of any CFD analysis. Depending on

the flow application, different meshing strategies are needed to obtain an accurate

simulation. For instance, in aerodynamic applications, such as flow over an airfoil,

it is essential to create a mesh that resolves the boundary layer consistent with the

vertical resolution requirement of the turbulence model at hand. It is not uncommon

for a CFD engineer to spend days to weeks creating a quality mesh driven by high

accuracy expectations from the CFD simulation. In aerospace design, error margins

are typically very low, justifying the time spent to create a quality mesh. However, the

situation is different for atmospheric flows. Field measurements often report data with

large uncertainty. Incomplete initial conditions and surface parameterizations are the

main source of error in atmospheric simulations. Additionally, the surface is always

aerodynamically rough, making it irrelevant to resolve a viscous boundary layer in

the aerodynamic sense. Therefore, atmospheric flow simulations are mainly driven by

the goal of obtaining a good quality forecast. Unlike engineering CFD applications

where a dedicated mesh generation software is used, in atmospheric flow simulation

codes, mesh generation is embedded within the flow solver. Either single-block terrain

following coordinates or an unstructured mesh are used to mesh the domain. In the

case of complex terrain, these approaches are prone to introducing errors due to
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skewness of individual cells.

The immersed boundary (IB) method has been proposed as an alternative meshing

approach for complex terrain wind simulations [44]. The origins of the IB method go

back to the work of Peskin in 1972 when he simulated the elastic motion of a heart [39].

Figure 3.1 depicts the essence of the IB method relative to other meshing strategies

that are commonly adopted in engineering CFD applications. Structured meshes

typically give faster CFD solution speeds because they better align with the structure

of computer architecture. Classical structured body-fitted (or surface-conforming)

meshes are computationally efficient, but require a manual procedure that involves

significant expertise and can take days to weeks for experienced users to complete.

Unstructured meshes can be generated automatically, but are not computationally

efficient and it can be difficult to avoid skewed cells that introduce errors into the

simulation, as mentioned previously. A modern approach that can be both auto-

mated and efficient is a structured Cartesian mesh employing the immersed boundary

method to represent complex geometry. Rather than fit a mesh to a geometry surface,

the IB method immerses the geometry in a Cartesian mesh, identifies nodes near

the geometry surface, and then applies a scheme to the near surface nodes that will

represent the effect of the geometry on the fluid flow. The IB method is independent of

geometry complexity, and structured Cartesian meshes are computationally efficient,

especially on GPUs. The IB method is an active area in CFD research with a variety

of implementation techniques under exploration.

The core idea of the IB method is to introduce a body force term, Fi, in the

momentum equations to enforce the boundary conditions on the flow field, seen in

the discretized u-component of the momentum equations as
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Figure 3.1: Depictions of meshing schemes with comments on mesh generation speed
and CFD solution speed below each scheme.

un+1

i − un
i

∆t
= RHSi + Fi, (3.1)

where RHSi includes convective, diffusive, and pressure gradient terms. Unlike body-

fitted meshes, computational grid nodes in the IB method do not align with the

exact location of the boundary. The issue of finding a suitable body force has been

a daunting task because of numerical stability issues. In 1997, Mohd-Yusof [31]

proposed a direct-forcing approach that alleviated stability constraints, which led

to a surge in the application of the IB method to fluid flow problems [30]. In the

direct-forcing method, velocity at the boundary can be prescribed as un+1

i = V n+1

i ,

leading to body force

Fi = −RHSi +
V n+1

i − un+1

i

∆t
, (3.2)

from Eq. 3.1. Substituting Eq. 3.2 into Eq. 3.1, the body force can be taken into

account implicitly by prescribing the velocity field, V n+1

i . Since complex geometry

boundaries are not coincident with the computational grid nodes, reconstruction

schemes are required to impose the proper velocity and other boundary conditions



17

on nodes near the solid geometry surface.

Previously in GIN3D, an IB method using discrete forcing with indirect imposi-

tion of the boundary conditions was implemented [7, 45]. Discrete forcing refers to

imposing IB forcing terms after the governing equations are discretized, rather than

calculating additional continuous terms in the governing equations. Indirect boundary

imposition refers to reconstructing variables at grid nodes in the fluid domain near

the solid boundary, rather than directly imposing the boundary conditions in the near

boundary computational grid to create a “sharp” interface.

Figure 3.2: Sketch of the general indirect boundary reconstruction scheme at an IB
node by projecting a line in the normal direction from the nearest triangular element
of the boundary into the fluid domain.

The velocity reconstruction scheme followed the approach in Gilmanov et al.

[17–19]. Figure 3.2 shows the implemented general indirect boundary reconstruction

scheme that projects a line in the normal direction from the nearest triangular

element of the immersed boundary (point a), through the IB node (point b), and

onto a Cartesian cell face in the fluid domain (point c). This line will be referred to

here as the IB line. Values at a are known as prescribed boundary conditions and

values at c are reconstructed by linear interpolation from the neighboring Cartesian
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grid nodes marked by Greek letters α, β, γ, and δ. In the case of linear velocity

reconstruction, another linear interpolation along the IB line between a and c is

performed to overwrite the current value at b.

3.1 Buoyancy Reconstruction Schemes

Much of the work done with IB methods has focused on reconstruction of the

velocity field and application to low and moderate Reynolds number flows. IB

treatment of boundary conditions for heat transfer has received less coverage despite

their significance in many engineering flows. Heat transfer boundary conditions can

be either Dirichlet (prescribed temperature) or Neumann (prescribed heat flux) type.

Reconstruction schemes developed for velocity boundary conditions can be applied

to impose a prescribed temperature boundary condition. In this work, focus is on

the IB treatment of Neumann boundary conditions for the temperature field. The

velocity reconstruction introduced in the beginning of Chapter 3 is of the IB type

that reconstructs flow variables at nodes in the fluid domain, as in Fadlun et al. [9],

Gilmanov et al. [19], Balaras [1], and Choi et al. [3]. Also common is the method

of reconstructing flow variables at nodes on the solid side of the immersed surface

instead, as in Gao et al. [13], Ghias et al. [16], Mittal et al. [29], and Lundquist et

al. [27]. This thesis reconstructs flow variables at nodes in the fluid domain. Five

reconstruction schemes are considered and the buoyancy quantity is solved for instead

of temperature, for convenience.

Scheme 1 uses the buoyancy gradient boundary condition at the surface and

computed buoyancy gradient in the fluid with a central difference to calculate the

buoyancy at the IB node, following Gilmanov et al. [19], as outlined in the following
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steps for a general scalar φ:

1. Calculate
(

∂φ
∂xi

)

at α-β-γ-δ in all three Cartesian coordinate directions (i =

1, 2, 3).

2. Linear interpolate these to c to get
(

∂φ
∂xi

)

c
.

3. Then the normal gradient of φ at c is

(

∂φ

∂n

)

c

= na · (∇φ)c , (3.3)

where na is the surface normal vector at a.

4. With the normal φ gradient boundary condition at the surface,
(

∂φ
∂n

)

a
, and the

known normal φ gradient at c,
(

∂φ
∂n

)

c
, linear interpolate along the IB line to the

midpoint between b and c to determine
(

∂φ
∂n

)

bc
.

5. Linear interpolate to bring φ from α-β-γ-δ to c, giving φc.

6. The value of φ at the IB node is then calculated using a central difference

approximation

φb = φc −∆sbc

(

∂φ

∂n

)

bc

, (3.4)

where ∆sbc is the distance along the IB line from b to c.

In step 1, Gilmanov et al. did not propose a method for calcualting the first deriva-

tives, so they are assumed to be approximated with a second order accurate central

difference, shown here in 1D for uniform mesh spacing ∆z:
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(

∂φ

∂z

)

k

=
φk+1 − φk−1

2∆z
, (3.5)

where k represents grid index. Scheme 1 was proposed by Gilmanov et al. for re-

construction of pressure—it was not tested carefully for other scalars using analytical

solutions.

The remaining Schemes 2 through 5 are unique to this thesis, as far as the author

is aware. Scheme 2 assumes the φ gradient along the IB line from a to c is constant.

Analogous to Eq. 3.4, a central difference using the φ gradient boundary condition is

used to calculate the buoyancy at the IB node,

φb = φc −∆sbc

(

∂φ

∂n

)

a

. (3.6)

Scheme 3 is identical to Scheme 1, except first derivatives in Step 1 are approxi-

mated with a one-sided difference when an IB node would be included in the regular

central difference stencil. Thus, the use of IB node values in the reconstruction is

avoided. The second order accurate one-sided difference used is shown here in 1D for

uniform mesh spacing ∆z [48]:

(

∂φ

∂z

)

k

=
−3φk + 4φk+1 − φk+2

2∆z
. (3.7)

Scheme 4 assumes the φ gradient along the IB line from a to b is constant and

moves this gradient to b. To calculate φ at the IB node, a second order accurate one-

sided difference is used that includes the φ gradient at b and two cell face intersection

points from the fluid. This reconstruction requires an additional fluid point not

shown in Figure 3.2, referred to here as d, where the IB line intersects the next cell
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face after point c. Values of φ are brought to d through linear interpolation from

neighboring Cartesian grid points in the same way values are brought to c through

linear interpolation from α, β, γ, and δ. The reconstruction is performed by solving

for φb in the following equation from Ferziger and Perić [12]:

(

∂φ

∂n

)

b

=
−φd (hc − hb)

2 + φc (hd − hb)
2 − φb[(hd − hb)

2 − (hc − hb)
2]

(hc − hb) (hd − hb) (hd − hc)
, (3.8)

where h refers to the distance from the surface of each respective point b, c, and d.

Equation 3.8 is the version of Eq. 3.7 for non-uniform grid spacing.

Scheme 5 is identical to Scheme 3, except in Step 4 the φ gradient is interpolated

along the IB line to b, rather than the midpoint between b and c. The reconstruction

of φb then follows Scheme 4 using Eq. 3.8.

3.2 Immersed Boundary Method Validation

Simulations of katabatic flow on an infinite plane inclined at slope angle α were

used to validate the different immersed boundary reconstruction schemes for buoy-

ancy. In 1942, Prantdtl published the one-dimensional model for laminar natural

convection flow of a viscous stably-stratified fluid along a uniformly cooled or heated

sloping plane [41]. Figure 3.3 illustrates the slope flow model of Prandtl for the

case of a uniformly cooled sloping plane, leading to katabatic flow characterized by a

low-level down-slope jet topped by weak up-slope return flow, with both velocity and

bouyancy approaching zero far from the surface.

Fedorovich and Shapiro [10, 46] have published a non-dimensional form of the

Prandtl model solution with the following formulation:
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Figure 3.3: Sketch of the Prandtl model of laminar katabatic flow on an infinite plane
with constant surface buoyancy flux.

un = sin(zn/
√
2)exp(−zn/

√
2), (3.9)

bn = cos(zn/
√
2)exp(−zn/

√
2), (3.10)

where

zn = zν−1/2N1/2sin1/2α, (3.11)

un = uν1/2N3/2B−1

s sin1/2α, (3.12)

bn = bν1/2N3/2B−1

s sin1/2α. (3.13)

In the above equations, subscript n refers to normalized quantities, u is velocity

parallel to the slope, z is the normal distance from the slope surface, b is buoyancy (b =
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gθ/Θr, g is the gravitational acceleration, θ is the potential temperature perturbation,

Θr = cnst is the reference potential temperature value), ν is the kinematic viscosity

equal to the thermal diffusivity, N is the Brunt − V äisälä (or buoyancy) frequency

(N2 = (g/Θr)
(

dΘe/dz
′
)

, Θe is the environmental potential temperature), Bs is the

surface buoyancy flux (Bs = −ν (db/dz) |z=0), and α is the slope angle. Furthermore,

this analytical solution has the boundary conditions u(0) = 0, (dbn/dzn) |zn=0 = −1,

and un → 0, bn → 0 as zn → ∞.

Buoyancy effects can be included in the incompressible Navier-Stokes equations by

the Boussinesq approximation with buoyancy forcing terms in the momentum equa-

tions. As shown by Fedoravich and Shapiro [10], the momentum balance equations

for the slope flow case depicted in Fig. 3.3 have the following form:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − ∂p

∂x
+ ν

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

+ b sinα, (3.14)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − ∂p

∂y
+ ν

(

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)

, (3.15)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − ∂p

∂z
+ ν

(

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)

+ b cosα, (3.16)

with the heat balance given by

∂b

∂t
+ u

∂b

∂x
+ v

∂b

∂y
+ w

∂b

∂z
= ν

(

∂2b

∂x2
+

∂2b

∂y2
+

∂2b

∂z2

)

−N2 (u sinα + w cosα) . (3.17)

In the above equations, u, v, and w are velocity components in the up-slope, cross-

slope, and slope-normal directions, respectively; p is pressure, b sinα and b cosα are

buoyancy forcing terms, and the Prandtl number is assumed to be one, yielding equal

momentum and temperature diffusivities.
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3.2.1 Laminar Katabatic Flow Simulation

The formulation by Fedorovich and Shapiro of Prandtl’s analytical solution for

laminar katabatic flow was used to assess the formal accuracy of the different im-

mersed boundary reconstruction schemes for buoyancy. Simulation settings were:

• Slope angle: α = 30o;

• Surface buoyancy flux: Bs = −0.005 m2/s3;

• Brunt− V äisälä (buoyancy) frequency: N = 1 s−1;

• Kinematic viscosity: ν = 0.0005 m2/s;

• Thermal diffusivity: γ = 0.0005 m2/s;

• Domain slope-normal length: H = 1.27 m;

• Uniform Numerical grid spacing, ∆, of the grid convergence study:

0.005 m, 0.0025 m, 0.00125 m;

• Lateral boundary conditions: periodic;

• Lower boundary condition: no-slip for velocity, constant surface-flux for buoy-

ancy;

• Upper boundary condition: free-slip for velocity, zero buoyancy.

IB schemes were tested by immersing a flat plate near the bottom of the Cartesian

mesh such that none of the numerical grid nodes coincided with the surface. IB nodes

were 0.25∆ above the flat plate.

Figure 3.4 shows comparison for the normalized down-slope velocity for Schemes

1–3 (results from Schemes 4 and 5 are shown for turbulent katabatic flow in Section
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3.2.2 only). While Schemes 2 and 3 lie on top of the analytical solution, Scheme 1 as

proposed by Gilmanov et al. [19] clearly falls short for the peak velocity of the low

level jet. In Step 1 of Scheme 1, buoyancy gradient approximation in the slope-normal

direction of the fluid domain is done using a central difference that includes the IB

node, which is not ideal because the IB node value needs to be reconstructed. In

other words, because of the extent of the central difference stencil, values in the fluid

domain cannot be calculated independent of the IB node. Scheme 3 resolves this

issue by using a second order accurate one-sided finite difference scheme that does

not include the IB node. Central differences are still used in directions parallel to

the slope. Figure 3.5 shows comparison for normalized buoyancy. Discrepancies in

buoyancy are less apparent, but Scheme 1 shows low buoyancy values near the surface.

Formal investigation of the order of accuracy through a grid convergence study

of a scheme reveals its suitability in different numerical simulation strategies. In

large-eddy simulation, a minimum of second order accuracy globally is desirable.

Furthermore, large deviations from the expected order of accuracy can indicate imple-

mentation errors. The order of accuracy of Schemes 2 and 3 was formally investigated

in a grid convergence study shown in Figures 3.6 and 3.7, respectively. As expected

in both schemes, first order accuracy was observed locally at the IB node by the L∞

norm, and second order accuracy of the solution was observed globally by the L1 and

L2 norms.

It should be noted that linear velocity reconstruction was used in Schemes 1 and

2, while parabolic velocity reconstruction was used in Scheme 3. Parabolic velocity

reconstruction refers to calculating the velocity at the IB node from a solution to

u = A · ∆s2 + B, where A and B are solved for using the prescribed velocity at

the surface and the computed velocity in the fluid. As will be shown in Section
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3.2.2, parabolic velocity reconstruction gave more promising results with Scheme 2 in

simulations of turbulent katabatic flow; afterwards, parabolic velocity reconstruction

was studied with Scheme 3 in the laminar regime.

u
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Figure 3.4: Comparison of normalized down-slope velocity from different buoyancy
reconstruction schemes with the analytical solution of the Prandtl model for laminar
katabatic flow.
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Figure 3.5: Comparison of normalized buoyancy from different buoyancy reconstruc-
tion schemes with the analytical solution of the Prandtl model for laminar katabatic
flow.
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Figure 3.6: Grid convergence study of Scheme 2 with linear velocity reconstruction.
The L∞ norm shows first order accuracy locally at the IB node, and the L1 and L2

norms show second order accuracy globally.
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Figure 3.7: Grid convergence study of Scheme 3 with parabolic velocity reconstruc-
tion. The L∞ norm shows first order accuracy locally at the IB node, and the L1 and
L2 norms show second order accuracy globally.
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3.2.2 Turbulent Katabatic Flow Simulation

Schemes that produce satisfactory results in the laminar regime may not readily

extend to turbulent flow regimes. Because the first implementation of Scheme 1

failed to reproduce the analytical solution, it was not considered in the turbulent

flow regime. Consequently, the applicability of Schemes 2–5 was considered in the

turbulent regime by conducting direct numerical simulation (DNS) for the turbulent

counterpart of the Prandtl model of katabatic flow. DNS of these flows has been

studied extensively by Fedorovich and Shapiro [10], in which they derived an integral

slope-flow Reynolds number as ReI = |Bs|/νN2 sinα. Values of ReI greater than 3000

are considered to have reasonably developed turbulence. For reference, the laminar

simulation in Section 3.2.1 had an ReI = 20. Settings for the turbulent simulations

conducted here were:

• Slope angle: α = 60o;

• Surface buoyancy flux: Bs = −0.5 m2/s3;

• Brunt− V äisälä (buoyancy) frequency: N = 1 s−1;

• Kinematic viscosity: ν = 0.0001 m2/s;

• Thermal diffusivity: γ = 0.0001 m2/s;

• Domain size: (X × Y × Z×) = 0.64 m× 0.64 m× 1.6 m;

• Numerical grid dimensions: (NX ×NY ×NZ) = 257× 257× 641;

• Uniform numerical grid spacing: ∆ = 0.0025 m;

• Lateral boundary conditions: periodic;
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• Lower boundary condition: no-slip for velocity, constant surface-flux for buoy-

ancy;

• Upper boundary condition: free-slip for velocity, zero-flux buoyancy.

With these settings, ReI = 5773. Given the analog of the Kolmogorov microscale

Lm = ν3/4|Bs|−1/4, the resolvability condition for DNS [40] is met by ∆ ≤ 2Lm.

Figure 3.8 shows a volume rendering of the instantaneous velocity magnitude,

and Fig. 3.9 shows a 2D slice of the instantaneous buoyancy field with vertical

suppression of turbulence by stable stratification. Transition to turbulence occurred

through a Kelvin-Helmholtz shear instability, as seen in Fig 3.10. In absence of

an analytical solution for turbulent katabatic flow, IB schemes are compared to

simulations using a body-fitted mesh in GIN3D. Mean velocity profiles from Schemes

2–5 are compared with a body-fitted mesh simulation in Fig. 3.11. Both linear and

parabolic velocity reconstruction were used with Schemes 2–5. Though these schemes

gave good agreement with the analytical solution in laminar simulations, errors in

the peak velocity of the low level jet are easily seen for Schemes 2, 3, and 5 in DNS.

Compared to linear velocity reconstruction, parabolic velocity reconstruction had the

effect of decreasing the peak velocity for all schemes, which brought Scheme 2 close

to agreement with the body-fitted result, but moved the other schemes farther away.

Scheme 4 with linear velocity reconstruction agreed well with the body-fitted mesh

simulation and showed only slight deviation near the up-slope return flow region. As

in the laminar case, discrepancies in buoyancy are less apparent in Fig. 3.12; however,

Scheme 4 with linear velocity reconstruction agreed well with the body-fitted mesh

simulation for this plot as well.
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Of the schemes implemented in the present work, Scheme 4, unique to this thesis,

gave the best performance and has proven suitable to DNS of turbulent katabatic

flow on a sloped plane. Future work would be validation of Scheme 4 in cases that

include more complex geometry, such as flow over a heated cylinder or sphere. The

next step would be extension to simulating wind in complex terrain with thermally

active surfaces.

Figure 3.8: Volume rendering of instantaneous velocity magnitude from direct nu-
merical simulation of turbulent katabatic flow. The simulation is for an infinite plane
inclined at slope angle α = 60o, however, the slope is rotated down into an isometric
view here to better show the turbulence throughout the domain.
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Figure 3.9: 2D slice of the instantaneous buoyancy field from direct numerical
simulation of turbulent katabatic flow.
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Figure 3.10: Kelvin-Helmholtz instability during transition to turbulence shown in
a 2D slice of the instantaneous buoyancy field from direct numerical simulation of
turbulent katabatic flow.



34

u(m/s)
-5 -4 -3 -2 -1 0

z
(m

)

0

0.5

1

1.5
Body-fitted
Scheme 2, Linear u
Scheme 2, Parabolic u
Scheme 3, Linear u
Scheme 3, Parabolic u

(a)

u(m/s)
-5 -4 -3 -2 -1 0

z
(m

)

0

0.5

1

1.5
Body-fitted
Scheme 4, Linear u
Scheme 4, Parabolic u
Scheme 5, Linear u
Scheme 5, Parabolic u

(b)

Figure 3.11: Comparison of down-slope velocity from different buoyancy reconstruc-
tion schemes with a body-fitted mesh simulation for direct numerical simulation of
turbulent katabatic flow.
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Figure 3.12: Comparison of buoyancy from different buoyancy reconstruction schemes
with a body-fitted mesh simulation for direct numerical simulation of turbulent
katabatic flow.
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CHAPTER 4

TURBULENT INFLOW FOR THE LARGE-EDDY

SIMULATION TECHNIQUE

Large-eddy simulation (LES) is a turbulence modeling technique in which the

filtered form of the Navier-Stokes equations are solved. Unlike the Reynolds-averaged

Navier-Stokes (RANS) technique where only the largest integral scale of the flow field

is resolved, the goal in LES is to resolve eddies down to the filter cutoff. Turbulent

eddies are commonly divided into three ranges:

• Energy-containing range—the largest eddies, which are anisotropic and are

affected by the boundary conditions of the flow;

• Inertial subrange—small isotropic eddies which are still large enough for inertial

effects to dominate and viscous effects to be negligible;

• Dissipation range—the smallest eddies, which are isotropic, dominated by vis-

cous effects, and are responsible for essentially all of the energy dissipation.

Credible LES simulation aims to resolve a portion of the so-called inertial subrange

of turbulence [40]. Compared to RANS, this is a computationally expensive task as

eddies have to be resolved that are much smaller than the integral scale both in time

and space. The fundamental assumption in LES is that eddies smaller than the filter

cutoff scale, which are referred to as subgrid scale (SGS) in literature, are isotropic in
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nature, and a simple eddy viscosity model would be sufficient to parameterize their

effect on the flow field. Therefore, in LES, we refer to resolved andmodeled stresses. In

order to capture the correct stress field, resolved eddies need to simulate the energy

cascade process in which larger eddies break into smaller eddies and the smallest

eddies are dissipated by the action of the SGS eddy viscosity model. In a direct

numerical simulation (DNS) of turbulence, all scales are resolved by the simulation,

and the eddies with the smallest physical scale, known as the Kolmogorov scale, are

dissipated by the action of the physical viscosity. Therefore, DNS is computationally

very expensive and only feasible for a few fundamental problems. To this end, there

is a great interest to broaden the application of LES to practical problems. However,

there are several scientific challenges to achieving this goal. Proper formulation of

inlet conditions is one of them. Unlike the RANS technique, one cannot simply define

a mean profile at the inlet as it does not initiate the energy cascade in the simulation.

A turbulent inflow boundary condition is needed to sustain the energy cascade within

the simulation domain. A plethora of research has been done in this particular area.

Perhaps the simplest method to generate realistic turbulence in LES is to run a

periodic standalone simulation in which flow is forced through a periodic (or cyclic)

domain until turbulence becomes fully developed [47]. The solution at the outlet is

imposed as the inlet condition. This method avoids prescribing an inlet and does

not require additional computation once the flow is developed; however, the inlet is

essentially the wake of an infinite series of identical domains in front of the domain

of interest. Pre-cursor methods avoid a false wake as an inlet by running a periodic

standalone simulation in a domain that represents the correct inflow condition, and

then using the solution in a vertical plane parallel to the flow in this auxiliary

domain as the inlet condition for the domain of interest. Issues of the pre-cursor
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method include periodicity in the inflow (based on the auxiliary domain period),

storage requirements for each inflow database of interest, and subsequent slowdown

of computations during file reading.

Recycling methods avoid running auxiliary simulations and database storage by

reinserting the solution from a vertical plane inside the domain of interest back onto

the inlet at each time step [26]. In this method, turbulence becomes fully developed

between the inlet and cyclic planes, yet periodicity remains an issue. Avoiding

any kind of periodicity or recycling, Synthetic turbulence methods directly prescribe

an inlet condition based on expected turbulence statistics [24]. While synthetic

turbulence methods approximate certain aspects of turbulent flow, they can require

long fetches to break down into realistic turbulence. Equally important, the previous

three approaches do not readily extend to complex geometry flows.

The buoyancy perturbation method has been proposed in recent work by Muñoz-

Esparza et al. [34, 36] in simulations of the atmospheric Ekman flow. This method

triggers the development of realistic turbulence by applying perturbations to the

buoyancy field near the domain inlet. This allows a mean velocity profile to be

prescribed at the inlet, with turbulence naturally emerging in the flow after a short

fetch. Details of this method are discussed in the next section.

The buoyancy perturbation method by Muñoz-Esparza et al. was not applied

to LES with near-wall resolution, in which the filter and grid are sufficiently fine to

resolve 80% of the energy in the velocity field throughout the entire domain [40],

which is done often in LES of engineering flows. Furthermore, the method has not

been applied to a well-studied turbulence modeling validation case, for which profiles

of Reynolds stresses from DNS can be used to investigate the turbulence quality.

This thesis modifies and extends the work of Muñoz-Esparza et al. to generic flow



39

problems. Specifically, the well-known turbulent channel flow with a mean logarithmic

profile is considered using near-wall resolution, and the effect of globally neutral

buoyancy perturbations on the Reynolds stress turbulence statistics is studied.

4.1 Buoyancy Perturbation Method

Muñoz-Esparza et al. [34, 36] have shown that perturbations to the buoyancy field

near the inlet boundary can trigger the development of turbulence within a relatively

short fetch for a neutrally stratified atmospheric boundary layer (ABL) flow. The

application of interest was nesting a LES domain within a mesoscale atmospheric flow

simulation using the Weather Research and Forecasting (WRF) Model framework.

For reference in judging the turbulence quality, comparison of velocity spectra in each

study was made with a periodic standalone simulation of the LES domain. Random

perturbations of specified amplitude bounds were added directly to the potential

temperature field. Of the perturbation methods explored in [34], the cell perturbation

method was found to perform best in regard to turbulence development within the

shortest fetch, and ease of implementation with a low computational cost. Stacked

square cells of 8 × 8 grid points in the horizontal plane were specified in the LES

domain near the inlet, in which pseudo-random potential temperature perturbations

uniformly distributed in the interval [−0.5, + 0.5] K were applied, as depicted

in Figure 4.1. Turbulence wavelengths lower than approximately 6∆x are rapidly

dissipated in WRF, therefore 8∆x was selected as the perturbation cell size.

Upon further study of the cell perturbation method, Muñoz-Esparza et al. [35, 36]

found the optimum Eckert number, Ec, and dimensionless perturbation time scale,

Γ, to be Ec = 0.2 and Γ = 1 in equations
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Figure 4.1: Top view sketch of the cell perturbation method used by Muñoz-Esparza
et al. [34] in which pseudo-random perturbations uniformly distributed in the interval
[−0.5, + 0.5] K were applied to the potential temperature field in 8 × 8 grid-point
horizontal planes (perturbation cells) stacked near the inlet to trigger the development
of natural turbulence.

Ec =
U2
g

cpθ̃pm
, (4.1)

Γ =
tpU1

dc
, (4.2)

where Ug is the geostrophic wind, cp is the specific heat capacity at constant pressure,

θ̃pm is the maximum perturbation amplitude, tp is the perturbation time at which the

next potential temperature perturbation is applied, U1 is the velocity magnitude at

the first vertical grid point imposed at the boundary of the LES domain, and dc is

the diagonal of the cell. Optimum results were obtained when perturbation cell size

corresponded to the fully resolved inertial subrange wavelengths of the turbulence,

rather than the energy-containing range. The cell perturbation method was found
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to develop realistic turbulence within a shorter fetch compared to a synthetic turbu-

lence method, and is attractive because it is simple to implement, computationally

inexpensive, and requires minimal turbulence information.

4.2 Buoyancy Box Perturbation Method for General Turbu-

lent Inlet Boundaries

In this thesis, an implementation analogous to the cell perturbation method by

Muñoz-Esparza et al. [34, 36] has been developed within the multi-GPU parallel

incompressible wind solver GIN3D. While Muñoz-Esparza et al. primarily made

comparison with velocity spectra of turbulence at a point above the ground in a peri-

odic standalone simulation, the interest of this thesis is a more rigorous investigation

of turbulence statistics by observing profiles of mean velocity and Reynolds stresses

compared to DNS. To this end, the turbulent channel flow case has been chosen for

study, as it is a fundamental test case for turbulence models and has extensive DNS

data on turbulence statistics readily available.

To generalize the turbulent inlet for engineering and atmospheric flows, there are

several differences in the present buoyancy perturbation implementation compared

to that of Muñoz-Esparza et al. in WRF. For the fine meshes used to resolve the

viscous sublayer in turbulent channel flow, cell regions with vertical height, rather

than the horizontal plane cell regions used in WRF, are better suited to perturb the

buoyancy field. The goal is to perturb a volume of fluid with dimensions that relate

to certain length scales of the turbulence (to be discussed in the next paragraph). As

a volume of fluid is resolved by an increasingly fine mesh, the net effect of uniformly

distributed pseudo-random perturbations in horizontal planes within the volume will
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increasingly approach zero. Therefore, the method implemented in this thesis will

maintain a perturbation cell height and be referred to as the box perturbation method.

For coarse meshes without near-wall resolution, a box height of one vertical grid cell

∆z may be appropriate, as was used in WRF.

As mentioned previously, Muñoz-Esparza et al. obtained optimum results when

perturbation cell size was below the energy-containing range and corresponded to the

fully resolved inertial subrange wavelengths of the turbulence. In order to prescribe

perturbation box dimensions that fulfill this condition, an estimate of the inertial

subrange for each case is required, as well as the threshold at which turbulence

wavelengths are rapidly dissipated for the employed numerical schemes and models.

Similar to WRF, turbulence wavelengths lower than approximately 6∆ are rapidly

dissipated in GIN3D, therefore 8∆ was considered the minimum box dimension in

the horizontal directions with respect to each ∆x and ∆y grid spacing. In order to

estimate the inertial subrange for turbulent channel flow, the following turbulence

length scales were consider, listed from largest to smallest:

• Lo—outer scale of the turbulence characterizing the largest eddies;

• LDI—demarcation between the inertial subrange and the dissipation range;

• η—Kolmogorov microscale describing the smallest turbulent eddies.

The Kolmogorov microscale can be estimated from [25]

η

Lo

≈ Re
−3/4
L , (4.3)

and
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ReL =
∆ULo

ν
, (4.4)

where Lo is taken as the channel half height, δ, ∆U is the velocity difference taken as

the peak mean velocity at δ, and ν is the kinematic viscosity. Then, the demarcation

between the inertial subrange and the dissipation range can be found as LDI = 60η

from Pope [40]. In the present work, perturbation box dimensions in the horizontal

direction were chosen to be near the average between Lo and LDI , which was above

the 8∆ minimum and assumed to be in the inertial subrange. The box height was

chosen to be near 2LDI .

Continuing with key differences, the update time, tp, was constant with height in

WRF, but is a function of the inlet velocity, Uin(z), here:

tp =
Xp

Uin(z)
, (4.5)

where Xp is the box length in the streamwise direction. This approach results in

an update time that is consistent with the local time needed to advect the flow

across the wavelength perturbed by a box. Perturbations to the temperature field

are applied as a source term in the heat balance equation, rather than directly

adding to the temperature variable, as in WRF. This is seen as a more stable

approach. Maximum perturbation source amplitudes, Φ̃pm, have been prescribed by

considering the simplified heat balance equation that ignores transport and diffusion

of temperature for a fluid element traversing a perturbation box during perturbation

time, tp, as follows:

Φ̃pm =
∆T

tp
(4.6)
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where ∆T is the change in temperature. Dividing both sides of Eq. 4.6 by the

uniform inlet temperature T∞ to normalize, and defining a temperature intensity,

Ti ≡ ∆T/T∞, yields

Φ̃pm =
TiT∞

tp
. (4.7)

Substuting Eq. 4.5 into Eq. 4.7 gives the final form:

Φ̃pm =
TiT∞Uin(z)

Xp

. (4.8)

Pseudo-random temperature source perturbations uniformly distributed in the inter-

val [−Φ̃pm, + Φ̃pm] are then applied to perturbation boxes near the inflow boundary.

Equation 4.8 is proposed as a consistent way to prescribe maximum perturbation

source amplitudes based on presumed temperature intensity, considering that the

temperature source must be greater for fluid elements that traverse a perturbation

box within a smaller perturbation time if the same buoyancy forcing is desired. In

this way, the inlet boundary condition is prescribed by providing a Ti and Uin profile,

as well as perturbation box dimensions and the number of boxes in the stream-wise

direction from the inlet.

4.3 Buoyancy Box Perturbation Method Validation

Flow visualization of results for LES of turbulent channel flow with friction Reynolds

number 395 (defined by Reτ = uτδ/ν, where uτ is the friction velocity) is shown in

Fig. 4.2 for the box perturbation method. Laminar incoming flow is seen to be tripped

by the random perturbations to the temperature field, leading to a fully developed
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turbulent flow. The effect of perturbation boxes on temperature near the inlet can

be seen in Fig. 4.3. Simulation settings were:

• Friction velocity: uτ = 1.194× 10−2 m/s;

• Kinematic viscosity: ν = 1.511× 10−5 m2/s;

• Thermal diffusivity: γ = 2.119× 10−5 m2/s;

• Thermal expansion coefficient: β = 3.430× 10−3 K−1;

• Reference density: ρ∞ = 1.205 kg/m3;

• Reference temperature: T∞ = 293.0 K

• Gravitational acceleration: g = 9.810 m/s2;

• Channel half height: δ = 0.5 m, 831.1η;

• Domain size: (X × Y × Z×) = 6πδ × πδ × 2δ;

• Numerical grid dimensions: (NX ×NY ×NZ) = 769× 129× 257;

• Numerical grid spacing: (∆x×∆y ×∆z) = 0.01228m×0.01236m×0.003922m;

• Span-wise boundary condition: periodic;

• Top & bottom boundary condition: no-slip velocity, zero normal gradient tem-

perature;

• Inlet: logarithmic law of the wall, u+ = 1/κ ln y+ + B, for velocity (where

u+ = U(z)/uτ , y
+ = uτz/ν, κ = 0.41, and B = 5.2) [40], T∞ for temperature;

• Outlet: Convective outlet for velocity, zero normal gradient temperature
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• Lagrangian dynamic subgrid-scale eddy viscosity model;

• Perturbation boxes in the x-direction from the inlet: 6;

• Perturbation box dimensions: (Xp × Yp × Zp) = 449.1η × 452.1η × 143.4η.

Buoyancy effects are included by the Boussinesq approximation with buoyancy forc-

ing, FB, in the z-component of the momentum equations as [12, 25]:

FB = gρ∞β (T − T∞) , (4.9)

where T is the local temperature. To maintain stability, a weighted average between

upwind and central difference was used in solving for temperature [20], with 25%

upwinding. Muñoz-Esparza et al. found 3 perturbation cells to give optimum results;

however, the number of perturbation boxes in the x-direction from the inlet was

chosen to be 6 in the present work because this showed more uniform turbulence

generation with the box perturbation method.

Figure 4.4 shows the mean velocity profiles using three different Ti values (5 ×

10−4, 7 × 10−4, 9 × 10−4) that were uniform in time and space in each simulation.

The first 2πδ of the domain in the stream-wise direction was ignored in all statistics.

Comparison is made with the theoretical logarithmic law of the wall and DNS per-

formed by Moser et al. [33]. Ti = 9×10−4 gives the best agreement from the wall into

the log region, where it then falls the farthest below the DNS in the channel center.

Figure 4.5 zooms in on the channel center where it can be seen that Ti = 5 × 10−4

has the best agreement with the DNS in the log-law region.

Figure 4.6 shows the Reynolds shear stress, and clearly depicts a relationship of

increasing magnitude with increasing Ti. This direct relationship is also seen in the
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Figure 4.2: Flow visualization of the box perturbation method applied to channel flow
with Reτ = 395. Top shows iso-contours of Q criterion colored by velocity magnitude.
Bottom shows velocity magnitude.

normal Reynolds stresses, indicating that Ti may be tuned to better match the correct

turbulence statistics. In this case, Ti = 5 × 10−4 gave a close fit with the DNS for

Reynolds shear stress and the normal stress in the y-direction (Fig. 4.8). All values

of Ti gave an overshoot for the maximum normal Reynolds stress in the x-direction,

shown in Fig. 4.7. The normal Reynolds stress in the z-direction can be seen in

Figure 4.9, where each value of Ti produced high stresses in the center of the channel.

Earlier simulations were conducted with a constant maximum perturbation source

amplitude, Φ̃pm, which effectively gives Ti a profile with the lowest value in the center

(this relationship can be seen in Eq. 4.8, considering that Uin(z) increases away from

the wall). The resulting normal Reynolds stress in the z-direction, shown in Figure

4.10, was lower in the channel center, indicating that these stresses may be controlled

by a variable Ti profile to improve agreement with the DNS.
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Figure 4.3: Visualization of the effect of perturbation boxes on temperature near the
inlet from a slice with a stream-wise normal. The box perturbation method applied
to channel flow with Reτ = 395.
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Figure 4.4: Mean velocity profiles from the box perturbation method applied to
channel flow with Reτ = 395. DNS performed by Moser et al. [33].
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Figure 4.5: Close-up of the channel center for the mean velocity profiles in Fig.
4.4. The box perturbation method applied to channel flow with Reτ = 395. DNS
performed by Moser et al. [33].
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Figure 4.6: Comparison of the normalized τ13 component of the Reynolds stress tensor
from the box perturbation method applied to channel flow with Reτ = 395. DNS
performed by Moser et al. [33].
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Figure 4.7: Comparison of the normalized τ11 component of the Reynolds stress tensor
from the box perturbation method applied to channel flow with Reτ = 395. DNS
performed by Moser et al. [33].



52

y+
10 -2 10 0 10 2

v
v
/
u
2 τ

0

0.5

1

1.5

2

2.5

3
T

i
 5 x 10 -4

T
i
 7 x 10 -4

T
i
 9 x 10 -4

DNS
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from the box perturbation method applied to channel flow with Reτ = 395. DNS
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The box perturbation method developed in this thesis shows promise as a simple

method with low computational cost for generating turbulent inflow in LES of engi-

neering and atmospheric flows. It has been shown that Reynolds stresses are sensitive

to temperature intensity, Ti, and agreement with DNS can likely be improved to an

acceptable level by varying Ti to have lower values at heights with lower Reynolds

stresses. Guidance on choosing such a Ti profile has not been thoroughly explored.

While sensitivity of the mean velocity profile and Reynolds stresses to Ti has been

investigated, the sensitivity to changes in perturbation box dimensions and number

of boxes from the inlet remains a topic for future work.
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CHAPTER 5

SUMMARY

5.1 Buoyancy Reconstruction Schemes

Immersed boundary (IB) method on a structured Cartesian grid is well suited for

including complex terrain geometry in wind simulations because it is computationally

efficient and avoids errors possible in body-fitted meshes from skewed cells. Much of

the work done with IB methods has focused on reconstruction of the velocity field,

while treatment of boundary conditions for heat transfer has received less coverage

despite their significance in many engineering flows. In this thesis, five schemes have

been introduced to reconstruct buoyancy in the near surface IB node based on the

buoyancy gradient boundary condition in fundamental katabatic flows. These schemes

were implemented and studied within the multi-GPU parallel wind solver GIN3D.

Scheme 1, by Gilmanov et al. [19], uses the buoyancy gradient boundary condition

at the surface and known buoyancy gradient in the fluid together with a central

difference along the IB line to calculate the buoyancy at the IB node. Approximation

of the buoyancy gradient in the fluid was done using a central difference that included

the IB node, which in turn polluted the solution such that laminar katabatic flow could

not be accurately simulated. The remaining schemes are unique to this thesis, as far

as the author is aware. Scheme 2 avoids approximation of the buoyancy gradient in

the fluid, and assumes a constant gradient, equal to the boundary condition, in a
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central difference along the IB line to calculate the buoyancy gradient at the IB node.

Scheme 3 is identical to Scheme 1, except approximation of the buoyancy gradient in

the fluid is done using a second order accurate one-sided difference that excludes the

IB node. Scheme 4 also avoids approximation of the buoyancy gradient in the fluid.

The surface buoyancy gradient is moved to the IB node and used in a second order

accurate one-sided difference with two cell face intersection points from the fluid to

calculate the buoyancy at the IB node. Scheme 5 is identical to Scheme 3, except it

interpolates the buoyancy gradient to the IB node and then proceeds as in Scheme

4 with a second order accurate one-sided difference to calculate the buoyancy at the

IB node.

Schemes 2 and 3 had good agreement with the analytical solution for laminar

katabatic flow, and showed first order accuracy locally and second order globally.

Results for Schemes 4 and 5 were shown for turbulent katabatic flow only. Success in

laminar flows does not readily extend to the turbulent regime. Therefore, direct

numerical simulation (DNS) of turbulent katabatic flow was performed to assess

the true performance of these schemes. Scheme 4 combined with linear velocity

reconstruction agreed well with body-fitted mesh results in DNS of turbulent katabatic

flow. Future work would apply Scheme 4 in cases with heat transfer on more complex

geometries, such as a cylinder or sphere, and in simulating wind in complex terrain

with thermally active surfaces.

5.2 Buoyancy Box Perturbation Method

Large-eddy simulation (LES) of turbulent flow resolves the large eddies, which

extract energy from the mean flow and are highly dependent on the geometry and
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boundary conditions of the domain, while modeling smaller eddies that exhibit a more

universal, isotropic behavior. An ongoing challenge in extending the LES technique

to practical engineering flows is the need to generate turbulent inflow conditions

that can trigger and sustain the expected energy cascade of turbulence in the flow

domain. Several methods for generating realistic turbulent inflow conditions have

been proposed, each with strengths and weaknesses, yet the topic of turbulent inflow

boundary conditions remains an active research area.

Muñoz-Esparza et al. [34, 36] proposed the cell perturbation method—random

potential temperature perturbations in square horizontal planes stacked near the

inlet—to give variable buoyancy forcings that trip the natural evolution of turbu-

lence within a short fetch for the atmospheric Ekman flow. This thesis followed

the perturbation idea of Muñoz-Esparza et al., and proposed a new turbulent inlet

boundary condition based on perturbing the flow field through random temperature

sources in small boxes that divide up the inlet region. This new procedure is called the

box perturbation method. The inlet boundary condition is prescribed by providing

a temperature intensity and incoming velocity profile, as well as perturbation box

dimensions and the number of boxes in the stream-wise direction from the inlet.

Validation of this method was done using turbulent channel flow, a case fundamental

to studies on turbulent inlet methods. Results show that agreement with turbulence

statistics from DNS of channel flow can likely be improved to an acceptable level

by controlling the temperature intensity profile in the box perturbation method.

This new method, unique to this thesis, shows promise as a simple method with

low computational cost for generating turbulent inflow in LES of engineering as well

as atmospheric flows. Future work would involve determining a guide in choosing a

temperature intensity profile for a particular case, studying the sensitivity to changes
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in perturbation box dimensions and number of boxes from the inlet, and extension of

the box perturbation method to simulation of complex terrain winds.
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