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Abstract. An iterative modulo scheduling is very important for compilers target-
ing high performance multi-issue digital signal processors. This is because these
processors are often severely limited by idle state functional units and thus the
reduced idle units can have a positively significant impact on their performance.
However, complex instructions, which are used in most recent DSPs such as mac,
usually increase data dependence complexity, and such complex dependencies
that exist in signal processing applications often restrict modulo scheduling free-
dom and therefore, become a limiting factor of the iterative modulo scheduler.

In this work, we propose a technique that efficiently reselects instructions
of an application loop code considering dependence complexity, which directly
resolve the dependence constraint. That is specifically featured for accelerating
software pipelining performance by minimizing length of intrinsic cyclic depen-
dencies. To take advantage of this feature, few existing compilers support a loop
unrolling based dependence relaxing technique, but only use them for some lim-
ited cases. This is mainly because the loop unrolling typically occurs an overhead
of huge code size increment, and the iterative modulo scheduling with relaxed
dependence techniques for general cases is an NP-hard problem that necessi-
tates complex assignments of registers and functional units. Our technique uses
a heuristic to efficiently handle this problem in pre-stage of iterative modulo
scheduling without loop unrolling.

Keywords: code generation and optimization, application specific embedded soft-
ware design, software pipelining, dependence analysis, high performance DSPs.

1 Introduction

Software pipelining uses the global cyclic scheduling concept to restructure loops such
that each iteration in a pipelined loop is made from instructions scheduled from different
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iterations of the original loop. Thus, the height of the rescheduled loop can be shortened
and therefore, the resource utilization for multiple functional units can be drastically im-
proved. Production C compilers for multi-issue DSPs typically use variants of iterative
modulo scheduling to implement software pipelining [5]. However, intrinsic cyclic data
dependences that exist in signal processing applications often restrict modulo schedul-
ing freedom and therefore, leave replicated functional units in DSPs underutilized.

To address this resource utilization problem, the objective of this document is two-
fold; to analyze the nature of the data dependences existing in various signal processing
applications, and to engineer effective compiler preprocessing strategy to help an exist-
ing modulo scheduler achieve a high quality loop schedule by relaxing data dependence
constraints. In particular, this document presents an effective preprocessing technique.
Since this technique directly amend intrinsic cyclic data dependences, neither code du-
plication nor additional hardware support is required and therefore, it is easier for C
compilers to implement. To measure the feasibility and effectiveness of our preprocess-
ing technique, the StarCore SC1400 DSP processor is used as the representative for
multi-issue based DSPs.

2 Terminology

Definition 1. A candidate loop for an iterative modulo scheduler is the loop with
branch-free body.1

Definition 2. Initiation Interval (II) of a candidate loop is the rate at which new loop
iteration can be started.

Definition 3. A recurrence circuit is a data dependence circuit that exists in a DDG,
which is formed from an instruction to an instance of itself.

Definition 4. Minimum recurrence bound (RecMII) is the maximum of all IIrc

which can meet the deadlines imposed from all the recurrence circuits existing in a
candidate loop.

Definition 5. Minimum resource bound (ResMII) is the smallest IIwhich can meet
the total resource requirements to complete one loop iteration of a candidate loop.

Definition 6. Minimum Initiation Interval (MII) is the maximum of RecMII and
ResMII.

Note that modulo scheduling requires a candidate loopII be selected before scheduling
is attempted. A smaller II corresponds to a shorter execution time. Since the MII
is a lower bound on the smallest possible value of II for which a modulo schedule
exists, the candidate loop II is initially set equal to the MII and increased until a
modulo schedule is obtained. Therefore, a preprocessing technique that lowers the MII
by reducing RecMII and/or ResMII can be quite an effective preparation to achieve
high loop initiation rate modulo schedules.

1 Production C compiler performs if-conversion to allow more loops to be modulo scheduled.
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3 Motivation

According to our benchmark with media applications for high performance DSP, vari-
ous applications manifest that critical path consisting by dependence relation is domi-
nant limiting factor that either fails candidate loops to be modulo scheduled or modulo
schedules with large critical path length. The C code fragment shown in Figure 1.(a) that
implements Global System for Mobile (GSM) algorithm. For the innermost loop body,
SC1400 production C compiler produces highly optimized assembly code as shown
Figure 1.(b), which is yet to be modulo scheduled.
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n. : AAU instruction

m. : ALU instruction

True Data Dependence, 
where i represents 

latency and j represents 
loop iteration difference

i/j Anti Data Dependence

i/j Ouput Data Dependence

i/j

1/0

1. move.f (r11)+,d8
Load pswVOld[i] to d8 and 
postincrement the array 
index by 2 bytes

2. move.l #32768,d10
Load L_ROUND, which is 
0x8000, to d10

4. move.f (r13)-,d9
Load pswVOld[-i] to d9 and 
postdecrement the array 
index by 2 bytes

3. mac  d8,d5,d10 d10 <- d10 +
    (pswVOld[i]*pswQntRc[j])

6. move.f (r14)-,d12
Load pswPOld[i] to d12 and 
postdecrement the array 
index by 2 bytes

n. AAU instruction m. ALU instruction

5. mac   d14,d9,d10 d10 <- d10 +
(pswVOld[-i]*pswQntRc[j])

7. mac   d3,d12,d10 d10 <- d10 + 
 (pswPOld[i]*pswQntRcSqd[j])

8. mac   -d3,d12,d10 d10 <- d10 -
 (pswPOld[i]*pswQntRcSqd[j])

SC140 Instruction Comments

...
for (i=0; i<=bound; i++) {

L_sum = L_mac(L_Round,pswVOld[i],pswQntRc[j]);
   L_sum = L_mac(L_sum,pswVOld[-i],pswQntRc[j]);
   L_sum = L_mac(L_sum,pswPold[i],pswQntRcSqd[j]);
   L_sum = L_msu(L_sum,pswPOld[i],SW_MIN);
   pswPNew[i] = extract_h(L_sum);
}
...

9. move.f d10,(r4)+

Store d10, which is L_sum, 
to pswPNew[i] and 
postincrement the array 
index by 2 bytes

(a) A candidate loop from half rate GSM

(b) An assembly code of figure (a)

(c) A data dependence graph of figure (b)

Fig. 1. An example of motivation

For analysis, let’s consider the anti and output dependencies in Figure 1.(c). These
dependencies are produced by that the result of move.l instruction is referred to the 8st
and 9st instructions in the loop body. Due to these recurrence circuits, the RecMII is
calculated to be 5 greater than ResMII2 as [5/2]=3 by Rau’s algorithm [5], and thus
the GSM candidate loop can be archived modulo scheduled loop in MII of 5. If it is
able to reduce RecMII to ResMII , a modulo scheduler can build a better scheduled
loop body. To this end, there will be explained what is a problem and how to achieve
RecMII to ResMII in a candidate loop in section 4 and section 5 respectively.

2 To support high computing needs, StarCore 1400 has 4 ALU units and 2 AGU units.
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4 Problem Formulation

To determine the amount of available instruction level parallelism in a candidate loop,
a data dependence analysis is performed. To that end our algorithms are performed on
data dependence graph, which is a directed graph with weighted vertices. We assume
that a data dependence graph (DDG) supplemented with delay information is used to
represent a loop. In a DDG, nodes represent the instructions in a program. An edge from
node i to node j indicates that there is a data dependence between them. Loop carried
dependences are indicated by edges with positive numbers beside them indicating their
dependence defined below. If node i produces a result at the current iteration and the
result will be used h iterations later by node j, then we say that the edge (i,j) has
a dependence distance λ and we use λij to indicate it. So for a data dependence not
crossing iterations, the λij is 0. δi (called delay) is used to indicate the number of clock
cycles node i needs to finish its execution.

Definition 7. Data Dependence Graph. A data dependence graph is a tuple (N, E,
λ, δ) where N is the set of nodes, E is the set of edges, λ = { λij ,∀(i,j)∈E } is the
dependence distance vector on edge set E, and δ = { δi,∀i∈N } is the delay function on
node set N.

For a pair of nodes on path P in a candidate loop, the minimum schedule distance
can be computed by: DP = δi - MII × λii, where the i are nodes on a DDG. It is a
dependence constraint of iterative modulo scheduling [5].

Definition 8. Critical Recurrence Path. Let v be a node in DDG, for all cyclic paths
P passing through node v, if a path passes v and the schedule distance DPa(v, v)
≥ DPb

(v, v) where are {a, b∈P}, the path a is called the longest recurrence path or
critical recurrence path. Length of a critical recurrence path is then defined as

∑
i,j∈I

δi/λij , where I is an instruction set on Pa , in case of true, output dependencies. An
exception case that an anti dependence needs to minus latency of the last instruction on
it, since the last instruction of a recurrence path does not make any latency to the first
instruction of a path.

It is the shortest time it takes to complete a task represented by a critical recurrence
path in a candidate loop. However, instructions in a loop can be carried out in parallel
with finite resource of multi-issue processors, the time to complete the overall task may
be reduced by an additional hardware resource. Thus, maximum performance in the
candidate loop body will therefore be obtained by making the critical path as short
as possible using parallel execution of independent instructions cross iterations. We
achieve it by instruction re-selection to reduce length of a critical recurrence path.

Definition 9. Re-selectable Instruction Set. A reselectable instruction set means that
an instruction has semantically same instructions provided by instruction set architec-
ture (ISA). For instance, an imac da,db,dc instruction is to perform integer multipli-
cation and accumulation by one cycle which designed for frequent signal processing
on various DSPs. The imac can be transformed to integer multiply and add instruc-
tions that are impy da,db,de and add de,dc,df. Similarly, a complex instruction I can
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be transformed to a semantically equivalent instruction set I ′. We will refer the I in-
struction to a re-selectable instruction. In this paper, the following set of instructions in
StarCore 1400 ISA are considered for reselectable instructions: mac, imac, increment,
arithmetic shift right(left), sign extension, etc.

Definition 10. Critical Operand. The critical operand means that an operand com-
poses a critical path by naming recurrence. If there is a critical operand used in a
re-selectable instruction, we can reselect the instruction into semantically same one
with one or two unused registers. Since this unused register reduces live range of a crit-
ical operand, consequently it reduces length of a critical path if and only if it is anti or
output dependence.

To find such critical operands, we use a two dimensional array Reg live, which in-
cludes all variables’s live range of each basic block. By using this, we can easily find
that the critical operand in Figure 1 is d10 which composes the critical recurrence path.
However, it can not be applied register renaming for resolving a dependence constraint,
since the operand has roles of definition and use simultaneously. Thus, the depen-
dence circuit can not eliminate by traditional optimizing techniques such as register
renaming or SSA transformation without any hardware support. In that case,
the proposed instruction re-selection is a unique way to resolve such a dependence con-
straint.

Definition 11. Benefit Calculation. Original critical path length (CPL) is RecMII
in a candidate loop according to Definition 8. Assuming we were successful in identify-
ing re-selectable instructions and critical operands for a given candidate loop. We can
then reselect instruction I with critical operand into one of the semantically same in-
structions I ′ with an unused register. The unused register changes the critical operand’s
live range in short way which is to reduce RecMII consisting anti and output depen-
dence. Definition of benefit calculation for individual critical path is as follows:

CPL > CPL′, where CPL′ is critical path length applied instruction reselection
Bk = CPLk − CPL′

k, where k is critical path k ∈ P

It can be redefined for critical path set P :

BP = RecMII − MAX(CPL′)

To calculate the CPL′, we implemented a dry run stage which performs to replace
I to I ′, and then reconstruct DDG for computation the CPL′. The dry run stage does
not actually change a candidate loop code, it is just for measuring the CPL′.

Definition 12. Minimizing register need with Maximizing benefit problem. In the
Min-Max problem, along with Definition 9,10 and 11, we can reselect an instruction
I into I ′ with reducing RecMII . The problem is to identify a solution I in a power-
set of reselectable instructions, which is a basic candidate solution, S and to satisfy
the register file size constraint in Definition 13 and limited resource bound constraint
in Definition 14 with benefit per register need in maximized. If a semantically same
instruction of I∈S is assigned to a re-selectable instruction with critical operand on
DDG of a candidate loop, it should maximize



746 D. Cho et al.

cost(I) = (BP /Q(NP )),
where the Q(N) is register need described in Definition 13,

found an S and critical path set P . This optimizing procedure may increase register
need which occurs an overhead of code size increment, and thus we have trying to
reduce it with maximum cost.

Since search space S to find the optimum solution is consisting of all combination of re-
selectable instructions, the search space is exponentially increased. We try to efficiently
resolve this problem by three phase algorithm which is specifically described in next
section.

Min-Max problem have to satisfy below two constraints simultaneously because a
proposed solution does not make any negative side effects.

Definition 13. Register File Size Constraint. We will refer the amount of register to
integer value as RT . The RT has a type of register file T={integer, float, address} which
kinds of type depend on architecture characteristics. This constraint is that a register
need Q(N) plus the number of physical registers R in a candidate loop code should be
less than RT . Thus, a proposed technique guarantees it does not make any spill code in
a candidate loop.

The amount of register need of a candidate loop by instruction reselection is represented
by the function Q(N) which is calculated based on the number of new operands for
equivalent instructions selected by branch and bound search strategy as described in
section 5.2.

Definition 14. Limited Resource Bound Constraint. The minimum resource bound
is classified to ResMIIalu and ResMIIagu which are a minimum bound of arithmetic
logic unit(alu) and address generation unit(agu). Since a proposed technique does not
make any candidate loop worse scheduled case by increasing ResMII in a candidate
loop, MAX(ResMII ′alu, ResMII ′agu) does not exceed RecMII’.

5 Solution of the Min-Max Problem

The critical path of Figure 1.(c) that decides completion time of the loop, even though
it has enough hardware resource for accelerating performance of the loop. This section
presents to resolve such a limitation using a novel framework based on a data depen-
dence graph.

A compiler eases a proposed preprocessing task by putting the candidate loop body
such that critical path are reduced whenever possible. For a given candidate loop, the
main task of our preprocessing solution is as follows.

Figure 2 shows overview of the proposed algorithm. It reduces a critical path of a
recurrence circuit which being formed by a complex (or compact) instruction by means
of the instruction reselection technique, which replaces it with a sequence instructions
that archives semantically equivalent instructions.

– Register File Size Constraint: spill code,
– Limited Resource Bound Constraint: detrimental to performance and code size,
– Bound Condition Constraint: compile time and code size increment.
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Find critical path

Branch and bound 
search for an 

optimum solution

Apply and iterate 
instruction 
reselection

Bound condition 
constraint

Rebuild DDG

yes

no, out.

Register file size
and limited resource

constraints

yes

Satisfy?
no, find second 

optimum.

Satisfy?

Fig. 2. Algorithm overview

If each phase does not satisfy three constraints of Min-Max problem, the procedure
must be stop its execution process or it abandon to find an optimum solution. Because
those safe-guards are designed to guarantee that the proposed technique never makes a
loop schedule worse in above various point of view.

5.1 Phase 1: Find Critical Recurrence Paths in a Candidate Loop

To reduce critical path length, it is essential to identify all recurrence circuits which
account for the critical path. For this task, we used the Tiernan’s[1] algorithm which
uses an exhaustive search to find all of the elementary circuits of a graph. The algorithm
is easily modified to find all of the elementary circuits with length. When the Tiernan’s
algorithm confirms the ith recurrence circuit Pi, which is (insti1→insti2→. . .→instin )
into array P shown in Figure 3, each edge in Pi is retrieved from the graph G to estimate
initiation interval (II). If the II > ResMII , the Pi is added to the EC list, which is
sorted in descending order by II as a key. For this task, Figure 3 C data structures used
to implement the Tiernen’s algorithm.

The II of the first element in the ECs list is RecMII and all the following elements
which share the same II are theRecMII circuits as a problem set of proposed instruction
reselection technique. The output of the first phase can classify ECs by below two types.

– Overlapped circuits by shared critical operands: a recurrence circuit path proper(or
nonproper) overlapped the other recurrence circuit path by a shared critical operand
on a candidate loop. For instance in Figure 1, there is proper overlapped recurrence
circuits by a shared operand d10 as {2-3-5-7-8} and {2-3-5-7-8-9}.

– Independent circuits: a recurrence circuit does not overlapped between other recur-
rence circuits.

In general, there are multiple overlapped recurrence circuits {c1,c2,. . .,cn} in a can-
didate loop body. It can be found a shared operand set and re-selectable instruction set
by means of live range analysis and reselectable instruction map table. If a solution I
obtaining from reselectable instructions with a shared operand can concurrently resolve
c1 and c2, consequently the register need Q(N) is less than a case of individually re-
solved the c1 and c2. To this end, the main role of bvect circuit and bvect op
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  struct EM_CT {
      unsigned char head; // inst number: head of the circuit
      unsigned char tail; // inst number: tail of the circuit
      unsigned char II;   // initiation interval
      unsigned char *insn;// reselectable instruction building 
                          // array used with instruction number
      unsigned char *P;   // recurrence circuit path building
                          // array used with instruction number
      bvect circuit;      // circuit representation in bit vector
      bvect op;           // critical operand in bit vector 
  };
  /* List of Elementary circuit (Recurrence Circuit)*/
  static struct List *Ecs; // linked list of Recurrence circuits,
                           // which is sorted in descending order
                           // with II as the key.

Fig. 3. Data structure EC

data structure entry of the EM CT in Figure 3 are to effectively determine (1) whether
the found RecMII recurrence circuits overlap by a shared critical operand and (2) how
many shared circuits can be simultaneously resolved by our preprocessing task with
that additional registers is minimized. To perform set related operations in a constant
time, the bvect structure of the EM CT data structure is exploited.

Figure 1.(c) shows DDG from the GSM code. The Tiernan’s algorithm confirms the
proper shared critical path = {2, 3, 5, 7, 8}and {2,3,5,7,8,9} by an operation of inter-
section between bvect circuits, and the length is 5 as anti, output dependence
respectively. At this time, this procedure finds a shared critical operand d10 and re-
selectable instruction as {3,5,7,8} on the critical path instructions. The critical operand
is only d10 which composes the circuit with live range from instruction 2 to instruction 8.

When the circuit confirmation procedure described above completes, our instruction
reselection technique consider that multiple RecMII recurence circuits {c1,c2,. . .,cn}
is required to perform the following analysis for code correctness before solution search
phase.

1. When critical operands and reselectable instructions are obtained, check the avail-
ability of registers as additional operands and determine register need for the addi-
tional operands by the function Q(N ) in Definition 13.

2. Determine whether an operand in between the c → tail and c → head instruc-
tions are used for memory operations; if true, then check for the memory depen-
dence between head and tail instructions.

3. If there exists no memory dependence and there exists one more available registers,
the next step is to search for maximum cost solution I by branch and bound strategy
described in next phase.

5.2 Phase 2: Branch and Bound Solution Search Strategy

An instance Π of Min-Max problem has the form (S,f) where S consists of a set of
candidate solutions, and f is a cost function as described in Definition 12. We use S′ as
subset of the S, which satisfy S′ ⊆ S. (S1,f) is a subinstance of (S0,f) if S1 ⊆ S0. When
no confusion can arise we will identify an instance by S′, its set of feasible candidate
solutions. An optimal solution to an instance S′ is an object x ∈ S′ which has maximum
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unsigned char *BB_Search(unsigned char *solution)
{

   /*i,k: integer
solution: instruction number pointer of current feasible solution

     cand_solution: initialized a set of basic candidate solution
PQ: priority queue

     cost: computes a cost
     Bound: check optimality of candidate solution*/

  Init_Bound();
 INSERT(cand_solution,PQ,cost(cand_solution));
 while(NONEMPTY(PQ)){            /*while there are feasible solutions ...*/

cand_solution=SELECT(PQ);    /*find solution with most cost value*/
        if(Bound(cand_solution)){/*and explore it ...*/

if(cost(cand_solution)>cost(solution)) /* if it find higher cost*/
solution = cand_solution;         /* then save it*/

           else{             /*otherwise apply the branching rule ...*/
Apply branching rule to generate power set of each basic

                  candidate solution as feasible solutions: N1, N2, ... ,Nk;
                              /*and store the power set of feasible solutions*/

              for(i=0;i<k;i++)
                INSERT(Ni,PQ,cost(Ni));

}
}

   }
 return(solution);

}

Fig. 4. Branch and bound algorithm for finding maximum cost I as a solution

cost; that is, for all y ∈ S′, f(x) > f(y). The goal of this branch and bound procedure
is to find an optimal solution for any given instance of Π . The basic branch and bound
procedure works as follows. An instance of a problem Π is analyzed, and if the max-
imum cost’s solution is not easily extracted, then this procedure generates powerset of
a set of basic candidate solution and cost is computed on the elements of the power-
set. Those elements whose cost does not reach a lower bound of some known (perhaps
non-optimal) solution’s cost can be discarded since they can not contribute to generate
an optimal solution. The remaining elements of powerset are repeatedly analyzed, gen-
erated, and bounded until an candidate solution whose cost does not exceed the most
cost object on any element of powerset, hence that element is an optimal solution. This
branch and bound procedure for finding a maximum cost I is used as follows.

Step1 A basic candidate solution set Ib is found by marking re-selectable instruction
into insn entry in EM CT which have equivalent instruction on critical paths
in a candidate loop.

Step2 The branch and bound procedure is invoked for finding a maximum cost(I) with
solution space S → 2Ib .

Step3 If a solution I does not satisfy constraints in Definition 13 and 14, this procedure
should be stop, and remove it from the insn entry of EM CT. This procedure
goes to step2 until the candidate solution set will be empty, and search again in
a solution space without the invalid I .

In Figure 4, the principal data structure is a priority queue which stores solutions
with an associated priority given by the function cost. The queue is accessible only
by the following three operators: NONEMPTY, which returns true if and only if
the priority queue is nonempty; SELECT, which removes and returns the solution in
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the priority queue with highest cost value; and INSERT, which inserts an solution
into the priority queue with its associated cost value. The variable solution serves to
record instruction number of the most-cost feasible solution currently known during
the search process.

For instance of GSM code in Figure 1, critical path set P and critical operand set
are identified in phase-1. From the results of the first phase, a basic candidate solution
set Ib={3,5,7,8} is obtained from the candidate loop body by reselectable instruction
map table. The basic candidate solutions generate a set of solution space {φ, 3, 5, 7, 8,
(3,5), (3,7), (3,8), (5,7), (5,8), (7,8), (3,5,7), (3,5,8), (3,7,8), (5,7,8), (3,5,7,8)}. But, the
branch and bound procedure discards the element 3 and 8 by heuristically chosen lower
bound ,which we used 0.5, because those elements does not contribute an optimum
solution. Remaining solution space has cost(5)=2/2=1, cost(7)=2/1=2, cost(5,7)=2/2=1.
Consequently, the search module has returned a solution instruction I as instruction 7.

5.3 Phase 3: Apply I → I′ and Iterate of Instruction Reselection Procedure

Step1: Reselection. To explain our technique to lower the RecMII of recurrence
circuits formed by loop-carried anti and/or output dependencies, consider the SC1400
instruction sequence in Figure 1.(c), which forms the excessive RecMII=5 of the half
rate GSM candidate loop. The careful analysis on recurrence circuit, that exists in this
candidate loop, leads us to realize that these loop-carried dependencies are nothing but
artifacts from the scheduling-insensitive DSP code generator which selects instructions
whose source and destination requires to be the same register.

1. move.f  (r11)+,d8
2. move.l  #32768,d10
3. mac     -d8,d5,d10
4. move.f  (r13)-,d9
5. mac     d14,d9,d10
6. move.f  (r14)-,d12
7a. mpy     d3,d12,d11
7b. add     d11,d10,d11
8. mac     d3,d12,d11
9. move.f  d11,(r4)+D
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instruction reselection
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(c) Data Dependence Graph (DDG) 
after instruction reselection

1. move.f  (r11)+,d8
2. move.l  #32768,d10
3. mac     -d8,d5,d10
4. move.f  (r13)-,d9
5. mac     d14,d9,d10
6. move.f  (r14)-,d12
7. mac     d3,d12,d10
8. mac     d3,d12,d10
9. move.f  d10,(r4)+C
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(a) SC140 instructions before 
instruction reselection
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Fig. 5. GSM code applied the solution

In order to eliminate loop-carried anti and/or output dependencies, which being cre-
ated from the use of these types of instructions for a candidate loop. We selectively
undo the DSP code generation to recover scheduling freedom for a candidate loop in
the following two steps. First, reselect a complex (or a compact) instruction by replac-
ing it with a sequence of instructions that achieves semantically equivalent instructions.
Second, place the output value of the dismantled instruction to a different register to
eliminate original loop-carried anti and/or output dependencies.
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As an illustration, the 7th mac instruction in Figure 5.(a) can be reselected into
7(a)th and the 7(b)th in Figure 5.(b) instructions with register renaming as shown in
Figure 5.(b). When this modification is made, the loop-carried anti dependence from
the 9th back to the 2nd instructions and the loop-carried output dependence from the
8th back to the 2nd instructions in Figure 5.(a) are both eliminated. Figure 5.(c) depicts
the dismantled recurrence circuits. As a result, the original RecMII = 5 of the half
rate GSM candidate loop is effectively lowered to 3 and thereby, the higher loop initi-
ation rate 3 is achieved. The modified schedule results in 20% and 4.7% improvement
of the SC1400 DSP resource utilization and loop performance respectively.

Since the preprocessing is iterated until the II of a DDG cannot be further low-
ered, all the possible opportunities are typically exhausted with proposed instruction
reselection technique.

Step2: Iteration. All above sequence is done, then the recurrence circuit is reduced
to lower EC element. If the procedure satisfies the Definition 15, overall procedure is
repeated to resolve until bound condition is achieved for the best loop performance.

Definition 15. Bound Condition Constraint, It is RecMII > ResMII which con-
dition determines whether the reselection technique completely resolves the Min-Max
problem of a candidate loop or not. If this condition does not satisfy at any moment, the
algorithm procedure must be stop. The reason is that ResMII is to become a limiting
factor of loop performance in iterative modulo scheduling.

6 Experiment Result

This section describes the results of a set of experiments to illustrate the effectiveness
of the iterative preprocessing algorithm described in previous section, which is imple-
mented for the StarCore SC1400 V0.96 production C compiler. The experimental input
is a set of candidate loops obtained from DSPStone, MediaBench, half-rate GSM, en-
hanced full rate GSM, and other industry signal application kernels. Table 1 lists the
benchmarks used in the experiments.

In order to isolate the impacts on performance and code size purely from our pre-
processing techniques, two sets of executables for the SC1400 multi-issue DSP are
produced for the benchmarks listed in Table 1;

Table 1. Benchmarks used in the Experiments

complex FFT FFT Matrix FIR

Matrix1x3

ConvolutionLMSFIR2DIM

ComFFT FFT Matrix FIR

Mat1x3

ConvLMSFD

Program

Acronym

128 point 
complex FFT

Integer stage 
scaling FFT

Generic matrix 
multiply

Finite impulse 
response filter

1x3 matrix 
multiply

Convolution
Least mean 

squared adaptive 
filters

2 dimensional
 Finite 

Response Filter
Description

Half rate GSM

GSMaf

aflateRecursio
n function (a 

part of 
decoder)

Full rate 
GSM

GSMad

Add module
(a part of 
decoder)

Full rate GSM

GSMut

Utcount 
module 

Full rate GSM

GSMdec

Efsabser2if 
module 

MPEG2 decoder

MPEG2s

Spatscal module

MPEG2 
decoder

MPEG2r

Recon module

Program

Acronym

Description
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– ORIG: fully optimized one with original V0.96 production compiler, and
– PRE: fully optimized one with the revised V0.96 production compiler with our

preprocessing techniques proposed.

With these two sets of executables, we measured (1) cycle counts with the StarCore
cycle count accurate simulator simsc100, and (2) code size with the StarCore utility
tool, sc100-size. The performance improvements (decrease in cycle counts) and
code size increase due to our preprocessing techniques were measured in percent, using
the formula ((PRE− ORIG)/ORIG) ∗ 100.

0 5 10 15 20 25

ComFFT

FFT

Matrix

GSMdec

FIR

Mat1x3

GSMaf

GSMut

GSMad

Conv

LMS

FD

30

15.66

19.87

4.04

26.7

29.5

15.6

14.1

4.73

20.3

5.2

25.9

1.31

MPEG2r

MPEG2s 0.3

0.03
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ComFFT

FFT

Matrix

GSMdec

FIR

Mat1x3

GSMaf

GSMut

GSMad

Conv

LMS

FD

30 65

28

23.2

15.3

13.40

26.90

3.70

 63.1

17.6

60

2.05

6.9

0.65

MPEG2r

MPEG2s 0.54

(a) Performance improvement (%) (b) Code size increment (%)

Fig. 6. Percent wise number of cycles reduction and code size increase compared to the original

Figure 6.(a) reports the performance improvements, which is based on the proposed
technique. The overall performance improvement from the preprocessing techniques
ranges from 0.03% to 29.5%, and the average performance improvement is 14.99%.
Considering there is no modification made to the existing iterative modulo scheduler
and the performance comparison is made to highly optimized SC1400 DSP code, the
performance gain from our preprocessing was impressive.

Finally, none of the benchmarks in Figure 6.(a) reports the performance degradation.
This is not a mishap, but due to the fact that our algorithm is designed to apply the
techniques only when the additional operations for our preprocessing can be placed in
non-RecMII recurrence circuits.

Figure 6.(b) reports the code size increase, which is based on proposed technique.
Since the technique reduces the Ex-RecMIIs of a given candidate loop, the exist-
ing modulo scheduler discovers instruction level parallelism across more loop iteration
boundary and as a result, achieves the better modulo schedule. Considering the size of
the prologue and epilogue grow proportionally as more loop iterations of the candi-
date loop get overlapped for the final schedule, the code size increase is unavoidable.
However, due to our preprocessing to resolve restricted scheduling freedom, the exist-
ing scheduler achieves better modulo schedule with the same number of loop iterations.
Therefore, there is no impact on the code size while achieving good improvement on
performance such as MPEG2r, GSMdec, GSMad on Figure 6.(b). We had obtained two
insight through this benchmarking as follows.

1. The techniques can take performance improvement without the overhead if it does
not build more overlapped iterations in a candidate loop kernel. The reason is that
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the code increment was composed almost of prologue and epilogue code that pro-
portionally grow the number of overlapped iterations.

2. The code size impact can overwhelm the results of performance improvement in
two cases of that the first is if a candidate loop code takes more than half of the
whole code size, the second is if the execution time of a candidate loop code is
relatively small to the total execution time such as Mar1x3, MPEG2s.

For the benchmarks listed in Figure 6.(b), the overall code size increase from the pre-
processing techniques ranges from 0% to 63.1%, and the average increase is 14.38%.
However, note that the benchmarks in Table 1 are critical loop kernels which typically
account for 5% - 10% of entire application code size. By carefully applying the prepro-
cessing to the mission critical loops with profiling, the overall code size increase can be
moderated. In addition, we recognize a research on code size reduction technique for
software-pipelined loops [7]. The reported solution is based on a novel retiming func-
tion to reduce prologue and epilogue code sections with predication. However, we did
not employ this solution for our preprocessing techniques to reduce code size.

7 Related Work

The detrimental effects of excessive RecMII from loop-carried dependences were also
noticed by Lam. In particular, she observed that excessive RecMII is typically caused
between a value being defined by a high latency operation (e.g., multiplication and
memory load) and its subsequent use. To effectively lower this excessive RecMII, Lam
pioneered a compiler technique, referred to as Modulo Variable Expansion (MVE),
that removes loop-carried anti and output dependences in recurrence circuits [3]. Since
MVE achieves the desired removal with loop unrolling followed by register renaming,
high loop unrolling factor might incur tremendous increase in code size and register
pressure. Another drawback of this scheme is that those candidate loops which execute
for a multiple number of times the unrolling factor can only be properly accommodated.
To overcome this problem, either peeling candidate loops for some number of loop
iterations or adding a branch out of the unrolled loop body are required.

To duplicate the effect of MVE without loop unrolling, Huff proposed an innova-
tive rotating register files as an architectural feature in a hypothetical VLIW processor
similar to Cydrome’s Cydra 5 [4]. Since Huff technique still requires a large number of
architected rotating registers to support MVE without code expansion, Tyson and et al.
ameliorated Huff technique with register queues and rq-connect instruction [6]. In their
technique, register queues share a common name-space with physical register files. As
a consequence, the architected rotating register space is no longer a limiting factor.

8 Conclusion

This work has been motivated by our on-going project to build an optimizing com-
piler backend for a commercial multi-issue media processor under development. On
our platform, we saw a variety of instructions specifically designed to accelerate me-
dia applications, and among them there were complex and compact instructions such
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as imac, sxt.l. Not only those complex instructions may have good effect for their per-
formance but also they make a dependence relation more complex than before. In our
efforts to resolve this dependence constraint, we found that no previous compilers had
addressed this optimization problem seriously before. For this reason, we opted to pur-
sue our research to devise an effective algorithm that tackles this problem efficiently.

To address this particular problem, this paper describes compiler optimizations that
preprocess embedded DSP applications loop kernels such that their intrinsic data de-
pendences can be relaxed for effective modulo scheduling. The presented strategy is
implemented for StarCore SC1400 version 0.96 production compiler backend. As a
result of the implementation, 15% average runtime improvement is made for various
signal processing applications.
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