
Boise State University
ScholarWorks

Computer Science Graduate Projects and Theses Department of Computer Science

9-1-2013

Evaluating the Presence of a Victim Cache on an
Arm Processor
Lakshmi Vidya Peri
Boise State University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boise State University - ScholarWorks

https://core.ac.uk/display/61737751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.boisestate.edu
http://scholarworks.boisestate.edu/cs_gradproj
http://scholarworks.boisestate.edu/cs

EVALUATING THE PRESENCE OF A VICTIM CACHE ON AN ARM PROCESSOR

by

Lakshmi Vidya Peri

A project

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

September 2013

© 2013

Lakshmi Vidya Peri

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the project submitted by

Lakshmi Vidya Peri

Project Title: Evaluating the presence of a Victim Cache on an ARM processor

Date of Final Oral Examination: 05 September 2013

The following individuals read and discussed the project submitted by student Lakshmi

Vidya Peri, and they evaluated her presentation and response to questions during the final

oral examination. They found that the student passed the final oral examination.

Gang-Ryung Uh, Ph.D. Chair, Supervisory Committee

Amit Jain, Ph.D. Member, Supervisory Committee

Jennifer Smith, Ph.D. Member, Supervisory Committee

The final reading approval of the project was granted by Gang-Ryung Uh, Ph.D., Chair of

the Supervisory Committee. The project was approved for the Graduate College by John

R. Pelton, Ph.D., Dean of the Graduate College.

i

ACKNOWLEDGEMENTS

I would like to thank Dr. Gang-Ryung Uh for his support, patience, guidance and

invaluable knowledge extended to me over the last few years. My project would not have

been possible without his unending support and mentoring. The help and support he

provided me in this journey have been invaluable to me to attain this goal. I am honored

and grateful to my committee members Dr. Amit Jain and Dr. Jennifer Smith who

provided time and energy to review this project.

 I would also like to thank my brother, Dr. Ramesh Peri and my sister-in-law,

Satya Vadlamani for standing by me like a rock at all the stages of my graduate education

without whose support this wouldn’t be possible. I am lucky to have my best friend,

philosopher and guide in my ever motivating parents. I would like to thank my friends

Prathyusha Kalapala, Rakesh Lohit, Subramanyam Venkataraman, Ganga Pavalarajah

and others who were of immense help. They helped me overcome stress and frustration

that I faced when I was hitting roadblocks and kept me focused and motivated towards

my goal and last but not the least, I thank the Sadguru and God for the immense grace

and blessings he has showered on me all through my life to make this possible.

ii

ABSTRACT

Mobile processor is a CPU designed to save power. It is found in mobile

computers and cell phones. A CPU chip, designed for portable computers, is typically

housed in a smaller chip package, but more importantly, in order to run cooler, it uses

lower voltages than its desktop counterpart and has more "sleep mode" capability. A

mobile processor can be throttled down to different power levels and/or sections of the

chip can be turned off entirely when not in use. ARM is a 32-bit reduced instruction set

computer (RISC) instruction set architecture (ISA). The relative simplicity of ARM

processors makes them suitable for low power applications. Hence ARM processors

account for approximately 90% of all mobile 32-bit RISC processors.

 Today, mobile processors are expected to run complex, algorithm-heavy,

memory-intensive applications which were originally designed and coded for general-

purpose processors. Due to this we see a huge impact of the memory latencies on the

execution time of applications. To reduce this impact and serve this kind of applications,

the relative complexity of ARM processors has increased in the last decade by the

inclusion of traditional methods like multiple issue of instructions, out-of-order

instruction execution and large, associative caches.

 Victim Caching is another method which can be used to reduce the execution time

and is currently not incorporated in the ARM processors. This method was proposed by

Norman P. Jouppi in his paper “Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers”. Victim Cache is

iii

defined as an extension to a direct mapped cache that adds a small, secondary, fully

associative cache to store cache blocks that have been ejected from the main cache due to

a capacity or conflict miss. These ejected blocks are likely to be needed again so storing

them in the secondary cache should increase performance and reduce the execution times.

Therefore for the Master's project we re-implemented the SimpleScalar simulator

for an ARM processor by incorporating the impact of Victim Cache. This re-

implementation of the ARM simulator gave a significant improvement in the

performance when various applications of MIBench benchmark suite were run on this

simulator. It is observed to have a reduction of 1.93% in the number of clock cycles used

and increase in the hit rate of Level 1cache by 2.7% over various Level 1 cache and

Victim cache configurations on an average. It is also observed that the benefit of Victim

cache increases as the size of Level 1 cache decreases and the performance boost

obtained by the processor in presence of a Victim cache is comparable to the performance

obtained when a Large, Associative Level 1 cache is used. Hence, incorporation of

Victim Cache to an ARM processor is highly advantageous to the current generation of

Mobile processors instead of using a Large, Associative Level 1 cache.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. i

ABSTRACT ... ii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. CONCEPTS .. 6

2.1. Victim Cache and its Functionality... 6

2.2. Features of an ARM Cortex-A Series ... 7

2.2.1. Dhrystone MIPS ... 8

2.2.2. NEON Technology ... 8

CHAPTER 3. METHODOLOGY ... 10

3.1. SimpleScalar Toolset .. 10

3.2. MIBench Benchmark Suite ... 10

3.3. Implementation ... 11

3.3.1. Sim-cache Implementation ... 13

3.3.2. SimpleScalar ARM simulator Implementation 14

3.4. Implementation of a Static Simulator to Validate the Results 15

CHAPTER 4. RESULTS .. 17

4.1. Results Obtained ... 17

v

4.2. Validating the Results ... 31

CHAPTER 5. FUTURE WORK ... 32

CHAPTER 6. SUMMARY AND CONCLUSION ... 33

REFERENCES .. 35

vi

LIST OF TABLES

Table 4.1. MIBench benchmarks .. 17

Table 4.2. Comparison of results between SimpleScalar ARM Simulator and a trace

driven Cache Simulator... 31

vii

LIST OF FIGURES

Figure 2.1. Position of a Victim Cache ... 6

Figure 2.2. ARM Cortex-A8 ... 9

Figure 3.1. Modified cache_access function and Implementation of v_cache_access

function ... 14

Figure 4.1. Percentage Improvement in Hit rate of 256 Set Data L1 cache 20

Figure 4.2. Percentage Improvement in Hit rate of 128 Set Data L1 cache 20

Figure 4.3. Percentage Improvement in Hit rate of 64 Set Data L1 cache 21

Figure 4.4. Percentage Improvement in Hit rate of 32 Set Data L1 cache 21

Figure 4.5. Average Improvement in Hit rate for various for Data L1 configurations 22

Figure 4.6. Percentage of Victim cache Hit rate for 256 Set Data L1 cache 23

Figure 4.7. Percentage of Victim cache Hit rate for 128 Set Data L1 cache 24

Figure 4.8. Percentage of Victim cache Hit rate for 64 Set Data L1 cache 24

Figure 4.9. Percentage of Victim cache Hit rate for 32 Set Data L1 cache 25

Figure 4.10. Average Victim cache Hit rate for various Data L1 configurations 25

Figure 4.11. Percentage Reduction in Clock cycles used for 256 Set Data L1 cache 27

Figure 4.12. Percentage Reduction in Clock cycles used for 128 Set Data L1 cache 28

Figure 4.13. Percentage Reduction in Clock cycles used for 64 Set Data L1 cache 28

Figure 4.14. Percentage Reduction in Clock cycles used for 32 Set Data L1 cache 29

Figure 4.15. Average Percentage reduction in Clock cycles used for various Data L1

Configuartions... 29

viii

Figure 4.16. Comparison of Percentage Reduction in Clock cycles when Large,

Associative caches and Victm caches are used ... 30

1

CHAPTER 1. INTRODUCTION

The world is rapidly moving towards using mobile devices extensively to communicate,

travel with in-built GPS capabilities, browse the internet using Wi-Fi capabilities, read

the books, news, articles, etc., play games, store data, listen to music, take pictures and

videos, connect to other Bluetooth devices such as an automobile or a microphone

headset or a television, remotely operate other electronic devices, capture data with

integrated devices like barcode, RFID and smart card readers for business purposes,

digitize notes and update themselves with all other day to day scholarly as well as routine

chores. The applications of mobile devices are increasing at an exponential rate

demanding mobile processors to be equipped to run complex, algorithm-heavy, memory-

intensive applications which were originally designed and coded for general-purpose

processors. To serve these demands, mobile devices are supposed to have a lasting

battery life, should be able to multitask and provide very high performance levels. Mobile

devices use mobile processors to serve all this purposes.

Mobile processor is a CPU designed to save power. A CPU chip designed for

portable computers. It is typically housed in a smaller chip package, but more

importantly, in order to run cooler, it uses lower voltages than its desktop counterpart and

has more "sleep mode" capability. A mobile processor can be throttled down to different

power levels and/or sections of the chip can be turned off entirely when not in use. In

2011, producers of chips based on ARM architectures reported shipments of 7.9 billion

ARM-based processors, representing 95% of smart phones, 90% of hard disk drives, 40%

2

of digital televisions and set-top boxes, 15% of microcontrollers and 20% of mobile

computers [1].

The ARM architecture describes a family of RISC (reduced instruction set

computer)-based computer processors. The name was originally an acronym for

Advanced RISC Machine, and in its early days Acorn RISC Machine. ARM processors

require significantly fewer transistors than processors that would typically be found in a

traditional computer using a RISC based approach to design processors [1]. This

approach provides a lot of advantages. They are lower costs, less heat, and less power

usage, traits that are desirable for use in light, portable, battery-powered devices such as

smart phones and tablet computers. The reduced complexity and simpler design allows

companies to build a low-energy system on a chip for a mobile system incorporating

memory, interfaces, etc. The relative simplicity of ARM processors makes them suitable

for low power applications. Hence, ARM processors are used extensively in mobile

devices, including personal digital assistants (PDAs), tablets, mobile phones, digital

media and music players, handheld game consoles, calculators and computer peripherals

such as hard drives and routers. Hence ARM processors should provide high

performance.

The wide range of performance improvement techniques employed by hardware

designers together with the scale and intricacy of modern software systems has made it

very challenging and difficult to assess performance of a processor. Traditionally

performance of a processor is defined in terms of speed i.e.; if we were running a

program on two different processors, a processor which can get the job done first is

considered to have a better performance. As an individual processor, we are interested in

3

reducing the response time - the time between the start and completion of a task. This is

also referred to as execution time. In order to maximize the performance of a processor,

we have to minimize response time or execution time for some task. Thus, performance

and execution time of a processor X are related as [2] [3]:

 1.1.

Program execution time is the total time to complete a task which includes memory

accesses, input/output (I/O) activities, operating system overhead - everything. Processor

users and designers relate different metrics to determine the effect of a design change on

the performance of a processor. In this project we are confining ourselves to the CPU

performance, thus the bottom-line performance measure is CPU execution time. CPU

execution time is calculated using clock cycles and clock cycle time. A simple formula to

calculate CPU execution time is [2] [3]:

1.2.

Alternatively, since clock rate and clock cycle time are inverses,

1.3.

The above formula clearly indicates that the hardware designers can improve

performance by either reducing the number of clock cycles required for a program or the

length of a clock cycle. In this project, we are going to evaluate the performance of

mobile processors and in particular ARM processors. Therefore, we are more interested

in reducing the number of clock cycles required for a program by keeping the clock cycle

time constant as we are considering only an ARM processor. Researchers worked on

4

reducing the clock cycles required by a program and came up with methods like multiple

issue of instructions, out-of-order instruction execution and large, associative caches [3].

These methods have shown great impacts on the performance of a processor and hence

processor manufacturers have incorporated these methods in their hardware designs and

increased the relative complexity of processors in the last decade. The ARM Cortex-A8

and higher versions of ARM processors have incorporated these methods [4].

 Victim Caching is another method which can be used to reduce the execution time

and is currently not incorporated in the ARM processors [4]. This method was proposed

by Norman P. Jouppi in his paper “Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers” [5]. Victim Cache is

defined as an extension to a direct mapped cache that adds a small, secondary, fully

associative cache to store cache blocks that have been ejected from the main cache due to

a capacity or conflict miss. These ejected blocks are likely to be needed again so storing

them in the secondary cache should increase performance and reduce the execution times.

 Hence the SimpleScalar ARM processor simulator is enhanced to incorporate the

concept of victim cache to analyze the performance and power utilized. This project is

driven by the following goals:

1. Do we observe the advantage of a victim cache on an ARM processor?

2. Is the advantage of incorporation of a victim cache comparable to that of a large,

associative L1 cache in terms of performance?

The rest of this report is organized as follows. Chapter 2 describes the concept of victim

cache and its functionality and features of ARM Cortex-A8. Chapter 3 provides an

overview of the SimpleScalar toolset, MIBench benchmark suite and the implemented

5

methodology. Chapter 4 describes the simulator statistics in terms of performance and

power utilized with various configurations of the L1 and Victim caches. Chapter 5

discusses future work and Chapter 6 concludes.

6

CHAPTER 2. CONCEPTS

2.1. Victim Cache and its Functionality

Victim cache was originally proposed by Norman P. Jouppi [5] as an approach to reduce

the conflict misses of direct mapped caches without affecting its fast access time. Victim

cache is a fully associative cache, whose size is typically 4 to 16 cache lines, residing

between a direct mapped L1 cache and the next level of memory. On a main cache miss,

before going to the next level, the victim cache is checked. If the address hits in the

victim cache the desired data is returned to the CPU and also promoted to the main cache

by replacing its conflicting competitor. The data evicted from the main cache is

transferred to the victim cache. In case of a miss in victim cache the next level of memory

is accessed and arriving data fills the line in main cache while moving the current data to

victim cache. In this case the replaced entry in the victim cache is discarded and, if dirty,

written back to the next level of memory. The Figure 2.1. shows the position of a victim

cache.

Figure 2.1. Position of a Victim Cache

7

The design of a first level cache always involves fundamental tradeoffs between miss rate

and access time [6]. Direct mapped caches are simpler, easier to design and require less

silicon area than set associative caches. The main disadvantage of a direct mapped cache

is the high conflict miss rate where conflict misses typically account for 40% of all

direct-mapped cache misses [6]. Conversely for caches with higher associativity the main

advantage is lower miss rate, but they are more expensive and incur longer access times.

The goal of a computer architect is to maximize performance while staying within cost

and power constraints.

Addition of a victim cache can ease this problem by reducing the conflict miss

rate to the same extent as a set associative cache, but at the same time maintaining the

critical hit access path of a direct mapped cache. Victim cache temporarily holds data

evicted from the cache and, because of its fully associative property, it can

simultaneously hold many blocks that would conflict in direct mapped cache. If the

number of conflicting blocks are small enough to fit in victim cache, both the miss rate to

the next memory level and the average access time will be improved due to relatively low

miss penalty for fetching from victim cache.

2.2. Features of an ARM Cortex-A Series

The ARM Cortex-A series [4] applications processors provide an entire range of

solutions for devices hosting a rich OS platform and user applications. These devices

provide a scalable range of power-efficient performance points for their target

applications. Cortex-A8 processor, based on the ARMv7 architecture is a high-

performance, symmetric, superscalar microarchitecture for dual-issue capability with a

high frequency ranging from 600Mhz – 1Ghz through efficient, deep pipeline delivering

8

over 2000DMIPS of performance. It has an advanced branch prediction unit with greater

than 95% accuracy and an integrated level 2 cache for optimal performance. It is a proven

processor for end devices today due to its NEON technology for multi-media and SIMD

processing [4].

2.2.1. Dhrystone MIPS

DMIPS is Dhrystone MIPS. Dhrystone is a synthetic computing benckmark program

developed in 1984 by Reinhold P. Weicker intended to be representative of system

programming [1]. Dhrystone tries to represent the result more meaningfully than MIPS

(million instructions per second) because instruction count comparisons between

different instruction sets can confound simple comparisons. For example, the same high-

level task may require many more instructions on a RISC machine, but might execute

faster than a single CISC instruction. Thus, the Dhrystone score counts only the number

of program iteration completions per second, allowing individual machines to perform

this calculation in a machine-specific way. Common representations of the Dhrystone

benchmark are DMIPS obtained when the Dhrystone score is divided by 1757 (the

number of Dhrystones per second obtained on the VAX 11/780, nominally a 1 MIPS

machine) and DMIPS/MHz, where DMIPS results is further divided by CPU frequency,

to allow for easier comparison of CPUs running at different clock rates.

2.2.2. NEON Technology

The ARM Advanced Single Instruction Multiple Data (SIMD) Extension, also known as

NEON technology, is a 64/128-bit hybrid SIMD architecture developed by ARM to

accelerate the performance of multimedia and signal processing applications [1]. NEON

9

is implemented as part of the processor, but has its own execution pipelines and a register

bank that is distinct from the ARM register bank. Key features include aligned and

unaligned data access, support for integer, fixed-point and single-precision floating point

data types, tight coupling to the ARM core, and a large register file with multiple views.

NEON instructions are available in both ARM and Thumb-2.

The ARM compiler provides support for Cortex processors equipped with a

NEON unit. To generate NEON instructions you must specify a Cortes processor that

includes NEON technology on the command line, for example, --cpu=Cortex-A8. There

is no NEON support for architectures before ARMv7. Figure 2.2. shows the block

diagram of the ARM Cortex-A8 processor.

Figure 2.2. ARM Cortex-A8

10

CHAPTER 3. METHODOLOGY

The following are the tools and methods we used to implement this project:

3.1. SimpleScalar Toolset

To accelerate hardware development, designers often employ software models of the

hardware they build. In order to implement this project we need a software model of an

ARM processor so as to re-implement the memory hierarchy model to incorporate a

victim cache to the processor. SimpleScalar toolset provides an infrastructure for

simulation and architectural modeling. It was written in 1992 as part of the Multiscalar

project at the University of Wisconsin, under Gurindar Sohi’s direction [7]. The tool set

includes sample simulators ranging from a fast functional simulator to a detailed,

dynamically scheduled processor model that supports non-blocking caches, speculative

execution, and state-of-the-art branch prediction. Hence we used the SimpleScalar toolset

to implement this project.

3.2. MIBench Benchmark Suite

To evaluate the performance of an ARM like processor on incorporation of a Victim

cache we will need ARM binaries to run on the SimpleScalar ARM simulator. We have

to use a standard set of ARM binary applications for this purpose. MI-Bench benchmark

suite is a free embedded benchmark suite which is representative of real world

applications. Hence we used the MI-Bench benchmark suite to evaluate the presence of a

victim cache on an ARM processor using the SimpleScalar simulator.

11

3.3. Implementation

To enhance the SimpleScalar ARM processor simulator for victim cache, we first

installed SimpleScalar ARM simulator (simplesim-arm) and understood its features. This

simulator has a 5-stage pipeline with fetch, decode or allocate, execute, write back and

commit stages implemented in ruu_fetch(), ruu_dispatch(), ruu_issue(), ruu_writeback()

and ruu_commit() functions respectively. The implementation of these stages is discussed

below:

1. ruu_fetch(): Fetches the instructions.

2. ruu_dispatch(): Decodes the instructions, allocates them into RUU(Register Update

Unit) and LSQ(Load Store Queue) and input/output dependence chains are updated

accordingly.

3. ruu_issue(): Issues instructions to functional units to begin execution by checking if

there is one available and ensures the instructions memory dependencies are satisfied

using the lsq_refresh() function and schedules a writeback event. lsq_refresh()

function locates ready instructions whose memory dependencies have been satisfied.

This is accomplished by walking through the LSQ.

4. ruu_writeback(): Writes back the completed operation results from the functional

units to the RUU at this point and the output dependency chains of completed

instructions are checked to determine if any dependent instruction has all of its

register operands now. If so the instruction is inserted into the ready instruction

queue.

12

5. ruu_commit(): It commits the results of the oldest completed entries from the RUU

and LSQ to the architecture reg file. Stores in the LSQ commit their store data to the

data cache at this point as well.

The ARM processor simulator has Register Update Unit(RUU) and Load Store

Queue(LSQ) of sizes 8 and 4 respectively with 12 functional units i.e., 4 Integer-ALU’s,

1 Integer-MULT/DIV (IntMULT/IntDIV), 2 Memory Ports (RdPort, WrPort), 4 FP-adder

(FloatADD, FloatCMP, FloatCVT) and 1 FP-MULT/DIV (FloatMULT / FloatDIV /

FloatSQRT). The branch prediction is implemented in the simulator using 3 types of

predictors namely Bimodal predictor, 2-level predictor and combining predictor with a

BTB (Branch Target Buffer) each and the simulator’s instruction set is defined in the

machine.def file. This ARM simulator implementation includes up to two levels of

instruction and data cache (with any levels unified) and one level of instruction and data

TLBs using a write back – write allocate cache write policy.

We then installed the gcc-arm cross compiler i.e.; arm-linux-gnueabi and its

utilities to generate ARM binaries and run on this simulator. We modified a regular

expression in the pipeview.pl perl script

from

(/^*S+(\d+)\S+(\w+)\S+(0x[0-9a-fA-F]+)/)

to

(/^*S+(\d+)\S+(\w+)\S+(0x[0-9a-fA-F]+)\S+(\d+)\S+(0x[0-9a-fA-F]+)\n?$/)

to view the pipeline stages correctly as this was incorrect and represented the instruction

transition to a new stage in the pipeline. We could then visualize the occurrences of cache

misses, TLB misses, branch mispredictions, branch misprediction detections and address

13

generation executions in the pipeline view using this perl script correctly and hence

obtained a better understanding of the simulator’s working. We then wrote simple 5-10

line ARM assembly instructions to test the concept of Victim cache on this ARM like

processor simulator.

3.3.1. Sim-cache Implementation

We re-implemented sim-cache.c, a functional cache simulator which generates cache

statistics for a user-selected cache and TLB configuration which include up to two levels

of instruction and data cache (with any levels unified), and one level of instruction and

data TLBs to incorporate victim cache to its memory hierarchy and gauge its effect. To

re-implement sim-cache.c with victim cache functionality incorporated, we created

another instance of the cache structure with victim cache functionality, modified the L1

cache miss handler function and wrote a victim cache miss handler function in sim-

cache.c. In order to access the victim cache from a data L1 cache, we modified the cache

access function (cache_access()) in cache.c as shown below. The cache_access() function

needs a victim cache access function (v_cache_access()) which we implemented in the

cache.c file showcasing the functionality of swapping the evicted cache lines back and

forth between data L1 cache, victim cache and L2 cache.

14

Figure 3.1. Modified cache_access function and Implementation of v_cache_access

function

3.3.2. SimpleScalar ARM simulator Implementation

The implementation was then extended to re-implement the sim-outorder.c by adding the

latencies to access the memory hierarchy so as to calculate the number of clock cycles

utilized as sim-outorder.c is a detailed micro-architecture timing model. The memory

system is two-level and there is speculative execution support. This is a performance

simulator, tracking the latency of all pipeline operations and hence provides us with

statistics to evaluate the performance of a processor. The incorporation of victim cache

functionality on this ARM like simulator is unique and more effective for the purpose of

research in comparison to the other cache memory simulators as it is a complete micro

15

architectural timing model and generates the simulator statistics dynamically unlike other

cache simulators which are trace driven and only generate cache statistics [8]. The other

advantage of using this ARM like simulator is, it can also be throttled to different levels

of processor complexity like choosing the number of instructions being issued, choosing

the instruction execution to be in-order or out-of-order, choosing the instruction issue

width for the purpose of superscalar implementation, choosing between the different

types of branch predictors, etc. In order to test the advantage of Victim cache on an ARM

Cortex-A8 like processor we choose the processor to be a dual issue in-order superscalar

processor.

3.4. Implementation of a Static Simulator to Validate the Results

In order to validate the results obtained from this dynamic micro-architecture model of

the ARM like SimpleScalar simulator, we need to test if the statistics of data L1 cache are

generated correctly. Hence we implemented a static simulator to show the functionality

of a data level 1 cache. This simulator was implemented in C programming language. It

takes a trace of memory references as input and the configuration of the data level 1

cache i.e.; number of sets, line size and associativity as arguments and generates an

output determining the number of data level 1 cache assesses, hits and misses. The trace

of memory references has the following format:

<accesstype> : <hexaddress>

Where <accesstype> can be characters:

R – Indicates a Read access

W – Indicates a Write access

16

And <hexaddress> is the starting address of the memory reference expressed as a

hexadecimal number. This simulator first allocates memory for the data cache using the

number of sets and each set is allocated memory based on the associativity of the cache.

Then the trace file trace.dat is read by calling the readTrace() function and this stream of

references is counted and stored.

simulateDataCache() function simulates the functionality of data L1 cache by

separating the set and tag from each memory reference and checks if the block of

memory is valid in the set and if the tag matches. If the block is valid and if the tag

matches, it is a Hit in the data L1 cache else, it is a Miss. When it’s a Hit, the least

recently used variable “lru” is updated and dirty bit of the block is set if the memory

reference access type is “W”. When it is a Miss, the valid bit of the block which is

obtained after replacing the least recently used block is set, the “lru” variable is updated

and the dirty bit is set if the memory reference access type is “W”. The data L1 cache

memory statistics are then printed. These results will be compared to the results obtained

from the SimpleScalar ARM like simulator.

In order to generate a trace of the format <accesstype>:<hexaddress> used by the

static simulator, the SimpleScalar ARM like simulator was modified to add an additional

line of code. The line of code added is:

if((cp->name[0]==’d’) && (cp->name[1]==’l’) && (cp->name[2]==’1’))

printf(“%c:0x%x\n”, cmd==Read?’R’:’W’, addr);

where cp is the cache structure and cmd is the variable for Read and Write accesses. The

results obtained from the static simulator are then compared with the results obtained

from the dynamic micro-architecture SimpleScalar ARM like simulator.

17

CHAPTER 4. RESULTS

4.1. Results Obtained

The results of the re-implemented ARM simulator were obtained on 32bit Ubuntu OS by

running the ARM processor simulator with dual issue of instructions and in-order

speculative execution support using MIBench benchmark suite.

The benchmarks used are tabulated below along with their description:

Table 4.1. MIBench benchmarks

MIBench

Benchmarks
Description

Adpcm
Adaptive differential pulse-code modulation is a form of

pulse code modulation(PCM) that produces a digital signal

with a lower bit rate than standard PCM.

Blowfish Blowfish is a keyed, symmetric block cipher encryption

algorithm which provides good encryption rate in software.

Jpeg

JPEG is a commonly used method of lossy compression for

digital photography. The degree of compression can be

adjusted, allowing a selectable tradeoff between storage size

and image quality.

Patricia

Practical Algorithm To Retrieve Information Coded in

Alphanumeric (PATRICIA) is an algorithm which provides a

flexible means of storing, indexing, and retrieving

information in a large file, which is economical of index

space and of reindexing time.

Quicksort

Quick Sort is a divide and conquer algorithm which first

divides a large list into two smaller sub-lists: the low

elements and high elements and then recursively sorts the

sub-lists.

Sha SHA short for Secure Hash Algorithm is a family of

cryptographic hash functions.

String Search

String Search algorithms, sometimes called string matching

algorithms, are an important class of string algorithms that

try to find a place where one or several strings are found

within a larger string or text.

18

The directly mapped data L1 cache configurations used are:

1. 1KB (32 Lines, 32B/Line)

2. 2KB (64 Lines, 32B/Line)

3. 4KB (128Lines, 32B/Line)

4. 8KB (256Lines, 32B/Line)

The small fully associative victim cache configurations used are:

1. 0.125KB (4Lines, 32B/Line)

2. 0.25KB (8Lines, 32B/Line)

3. 0.5KB (16Lines, 32B/Line)

We plotted the percentage improvement in the total number of clock cycles taken to

run the MIBench benchmark suite binaries, percentage improvement in the data L1 cache

hit rate and victim cache hit rate. We observed that the number of clock cycles taken to

run these binaries is less in number with the presence of a victim cache in the memory

hierarchy. This is due to the increase in the number of data L1 cache hits.

Figure 4.1. shows the percentage improvement in the hit rate of data L1 cache

with 256 sets. This depicts an average of 0.78% improvement in the data L1 cache hit

rate over all the benchmarks and configurations.

Figure 4.2. shows the percentage improvement in the hit rate of data L1 cache

with 128 sets. This depicts an average of 1.98% improvement in the data L1 cache hit

rate over all the benchmarks and configurations.

19

Figure 4.3. shows the percentage improvement in the hit rate of data L1 cache

with 64 sets. This depicts an average of 3.19% improvement in the data L1 cache hit rate

over all the benchmarks and configurations.

Figure 4.4. shows the percentage improvement in the hit rate of data L1 cache

with 32 sets. This depicts an average of 4.85% improvement in the data L1 cache hit rate

over all the benchmarks and configurations.

It is observed that the improvement is the maximum when we have a 0.5KB,

32B/Line fully associative victim cache with all the configurations of directly mapped

data L1 cache. Also Figure 4.5.shows that the improvement is the most when a smaller

data L1 cache is being used. It is also noticed clearly that there is a great advantage in

using a victim cache in the memory hierarchy as the average improvement in the hit rate

is about 2.7% over all the configurations. The benchmark jpeg shows the maximum

improvement, possibly because it is memory intensive and sha shows the least

improvement because it already has a high data L1 hit rate.

20

Figure 4.1. Percentage Improvement in Hit rate of 256 Set Data L1 cache

Figure 4.2. Percentage Improvement in Hit rate of 128 Set Data L1 cache

0

0.5

1

1.5

2

2.5

3

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% Improvement in Hit rate of 256 Set Data L1 cache

0

1

2

3

4

5

6

7

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% Improvement in Hit rate of 128 Set Data L1 cache

21

Figure 4.3. Percentage Improvement in Hit rate of 64 Set Data L1 cache

Figure 4.4. Percentage Improvement in Hit rate of 32 Set Data L1 cache

0

1

2

3

4

5

6

7

8

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% Improvement in Hit rate of 64 Set Data L1 cache

0

1

2

3

4

5

6

7

8

9

10

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% Improvement in Hit rate of 32 Set Data L1 cache

22

Figure 4.5. Average Improvement in Hit rate for various for Data L1 configurations

Figure 4.6. shows the comparison of hit rate of victim cache when it is added as

an extension to a directly mapped data L1 cache of 256 sets. It depicts that, on an average

over all the benchmarks and configurations the victim cache has a hit rate of about

57.48%.

 Figure 4.7. shows the comparison of hit rate of victim cache when it is added as

an extension to a directly mapped data L1 cache of 128 sets. It depicts that, on an average

over all the benchmarks and configurations the victim cache has a hit rate of about

54.55%.

Figure 4.8. shows the comparison of hit rate of victim cache when it is added as

an extension to a directly mapped data L1 cache of 64 sets. It depicts that, on an average

over all the benchmarks and configurations the victim cache has a hit rate of about

54.56%.

0

1

2

3

4

5

6

256 Sets L1 128 Sets L1 64 Sets L1 32 Sets L1 Average

Average Improvement in Hit rate for various Data L1
configurations

23

Figure 4.9. shows the comparison of hit rate of victim cache when it is added as

an extension to a directly mapped data L1 cache of 32 sets. It depicts that, on an average

over all the benchmarks and configurations the victim cache has a hit rate of about

51.76%.

Figure 4.10. shows the comparison of average hit rate for each of the data L1

cache configuration and the average hit rate of all the victim cache and data L1 cache

configurations is observed to be 54.59% which is very low compared to data L1 cache

average hit rate of 97.89%. It is also observed that as the size of data L1 cache is

decreasing the victim cache hit rate is also decreasing. This is an expected behavior from

the victim cache as most data locality is already filtered and exploited by the data L1

cache.

Figure 4.6. Percentage of Victim cache Hit rate for 256 Set Data L1 cache

0

20

40

60

80

100

120

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% of Victim cache Hit rate for 256 Set Data L1 cache

24

Figure 4.7. Percentage of Victim cache Hit rate for 128 Set Data L1 cache

Figure 4.8. Percentage of Victim cache Hit rate for 64 Set Data L1 cache

0

20

40

60

80

100

120

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% of Victim cache Hit rate for 128 Set Data L1 cache

0

10

20

30

40

50

60

70

80

90

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% of Victim cache Hit rate for 64 Set Data L1 cache

25

Figure 4.9. Percentage of Victim cache Hit rate for 32 Set Data L1 cache

Figure 4.10. Average Victim cache Hit rate for various Data L1 configurations

0

10

20

30

40

50

60

70

80

90

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% of Victim cache Hit rate for 32 Set Data L1 cache

48

49

50

51

52

53

54

55

56

57

58

256 Sets L1 128 Sets L1 64 Sets L1 32 Sets L1 Average

Average Victim cache Hit rate for various Data L1
configurations

26

Figure 4.11. shows the comparison of percentage reduction in the clock cycles

utilized on a data L1 cache of 256 sets. The performance of the ARM like processor is

observed to be enhanced by 0.57% on an average for all the benchmarks and

configurations.

Figure 4.12. shows the comparison of percentage reduction in the clock cycles

utilized on a data L1 cache of 128 sets. The performance of the ARM like processor is

observed to be enhanced by 1.54% on an average for all the benchmarks and

configurations.

Figure 4.13. shows the comparison of percentage reduction in the clock cycles

utilized on a data L1 cache of 64 sets. The performance of the ARM like processor is

observed to be enhanced by 2.4% on an average for all the benchmarks and

configurations.

Figure 4.14. shows the comparison of percentage reduction in the clock cycles

utilized on a data L1 cache of 32 sets. The performance of the ARM like processor is

observed to be enhanced by 3.19% on an average for all the benchmarks and

configurations.

It is observed that the smallest data L1 cache with a 0.5KB 32B/Line Victim

cache has the best performance improvement over all other configurations used. Figure

4.15. shows the comparison of average percentage reduction in the clock cycles utilized

on all the data L1 cache and victim cache configurations. It is clearly noticeable that the

performance of the ARM like processor is enhanced by 1.93% on average in the presence

of a Victim cache over all the Victim cache and data L1 cache configurations. The

27

benchmark jpeg shows the maximum benefit and sha shows the least benefit due to high

and low utilization of victim cache respectively.

Figure 4.11. Percentage Reduction in Clock cycles used for 256 Set Data L1 cache

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% Reduction in Clock cycles used for 256 Set Data L1 cache

28

Figure 4.12. Percentage Reduction in Clock cycles used for 128 Set Data L1 cache

Figure 4.13. Percentage Reduction in Clock cycles used for 64 Set Data L1 cache

0

1

2

3

4

5

6

7

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% Reduction in Clock cycles used for 128 Set Data L1 cache

0

1

2

3

4

5

6

7

8

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% Reduction in Clock cycles used for 64 Set Data L1 cache

29

Figure 4.14. Percentage Reduction in Clock cycles used for 32 Set Data L1 cache

Figure 4.15. Average Percentage reduction in Clock cycles used for various Data L1

Configuartions

0

1

2

3

4

5

6

7

8

9

ad
p

cm
/v

1
6

ad
p

cm
/v

4

ad
p

cm
/v

8

b
lo

w
fi

sh
/v

1
6

b
lo

w
fi

sh
/v

4

b
lo

w
fi

sh
/v

8

jp
eg

/v
1

6

jp
eg

/v
4

jp
eg

/v
8

p
at

ri
ci

a/
v1

6

p
at

ri
ci

a/
v4

p
at

ri
ci

a/
v8

q
so

rt
/v

1
6

q
so

rt
/v

4

q
so

rt
/v

8

sh
a/

v1
6

sh
a/

v4

sh
a/

v8

ss
ea

rc
h

/v
1

6

ss
ea

rc
h

/v
4

ss
ea

rc
h

/v
8

A
ve

ra
ge

% Reduction in Clock cycles used for 32 Set Data L1 cache

0

0.5

1

1.5

2

2.5

3

3.5

256 Sets L1 128 Sets L1 64 Sets L1 32 Sets L1 Average

Average % Reduction in Clock cycles used for various Data
L1 configurations

30

These statistics also clearly depict that the combination of a small directly mapped

data L1 cache with a small fully associative victim cache gives the best performance and

hit rate results in comparison to the other combinations used. Therefore using a victim

cache in combination with a directly mapped L1 cache is advantageous over using only a

directly mapped L1 cache.

Figure 4.16. shows the comparison of percentage reduction in clock cycles on a

4KB directly mapped data L1 cache when different victim cache configurations and large

associative L1 cache configurations are used.

Based on the obtained results the advantage of using a small fully associative

victim cache with a directly mapped L1 cache is comparable to that of a large associative

cache in terms of performance but large, associative caches are expensive, utilize more

area and more control units are incorporated in the design. Hence we can infer that the

incorporation of a victim cache with a directly mapped cache is advantageous even over

an associative cache for an ARM like processor.

Figure 4.16. Comparison of Percentage Reduction in Clock cycles when Large,

Associative caches and Victm caches are used

6.15

6.2

6.25

6.3

6.35

6.4

6.45

Comparison of % Reduction in Clock Cycles used
with a 4KB directly mapped L1 cache

4 KB L1 with 0.5 KB VC

4 KB L1 with 0.25 KB VC

4 KB L1 with 0.125 KB
VC

8 KB L1 4-Way
Associative

8 KB L1 8-Way
Associative

31

4.2. Validating the Results

In order to validate the obtained statistics we generated a trace file for the jpeg

benchmark using the SimpleScalar ARM simulator for an 8KB directly mapped L1 cache

which contains memory references of the following format:

<R/W>:0xaddr

We fed this trace file with the stream of memory references to another cache

memory simulator that was implemented. This cache memory simulator simulates the

functionality of data L1 cache. It takes the trace file and provides the cache statistics like

number of cache accesses, hits, and misses. These statistics were compared with the

obtained results from the SimpleScalar ARM simulator. This comparison is tabulated

below and we can see that the results match and hence are validated.

Table 4.2. Comparison of results between SimpleScalar ARM Simulator and a trace

driven Cache Simulator.

8KB Directly

Mapped L1 Cache

SimpleScalar ARM

Simulator
Cache Simulator

Accesses 35624660 35624660

Hits 35217221 35217221

Misses 407439 407439

32

CHAPTER 5. FUTURE WORK

The incorporation of a victim cache can be extended to higher end processors which are

designed with high efficiency, superscalar, out-of-order execution support, speculating

dynamic length pipeline in-order to evaluate performance as this project was done to

evaluate the performance of a highly efficient, dual issue superscalar, in-order,

speculative dynamic length pipeline processor which is like ARM Cortex-A8. Victim

Cache can also be incorporated in the memory hierarchy design of multi-core processors

as the next generation mobile processors highly rely on multi-core processors so as to test

the their performance improvement by incorporating it both on local and shared caches

and having a proper mechanism to handle the valid blocks in the L1 cache.

An additional concept of predicting the reusability of victim blocks will help in

the performance improvement of a processor as L1 cache and victim cache do not

distinguish between victims that are likely to be used again and those that are not. If a

prediction mechanism determines the reusability of an evicted L1 cache block it will be

placed in the victim cache else it can be written back into the second level of the memory

hierarchy. This concept will enable obtaining a larger number of L1 cache hits by

predicting if a cache block will be reused. Hence this could be a concept for speculation

in the future to improve performance of processors.

33

CHAPTER 6. SUMMARY AND CONCLUSION

This project incorporated a victim cache functionality on an ARM like processor

simulator to evaluate its performance. This was done in-order to improve the

performance of current generation mobile processors as 90% of mobile processors used

are ARM processors [1]. The simplescalar ARM simulator was re-implemented with the

incorporation of the concept of victim cache for this purpose. Various ARM binaries

from the MIBench benchmark suite were run on this simulator to obtain the performance

statistics. These results were then verified using another static cache memory simulator.

The scope of work in this project included analysis and experiments to analyze the

following questions.

1. Do we observe the advantage of a victim cache on an ARM processor?

2. Is the advantage of incorporation of a victim cache comparable to that of a large,

associative L1 cache?

The answers to the above questions can be found in the discussion that follows. We

observed that the performance of an ARM like processor is improved by 1.93% when a

victim cache is used as an extension to a directly mapped L1 cache and the statistics

obtained with the incorporation of a victim cache are comparable to statistics obtained

when the L1 cache is large and associative. Therefore using a victim cache is more

beneficial over using associative caches as they are more expensive. This benefit varies

for different applications. These results were obtained by taking an average of all the

results of the MIBench benchmark suite. Based on the obtained results it was established

34

that a smaller directly mapped L1 cache with a small fully associative victim cache gives

the best performance results by improving the L1 cache hit rate. Hence an ARM

processor with a victim cache will be advantageous to the mobile devices as it depicts a

significant improvement in the performance enabling them to be more efficient.

35

REFERENCES

1. "ARM Architecture," [Online]. Available:

http://en.wikipedia.org/wiki/ARM_Architecture. [Accessed 16 August

2013].

2. David A. Patterson, John L. Hennessy, Computer Organization and Design,

The Hardware-Software Interface., 4th ed., 2011.

3. John L. Hennessy, David A. Patterson, Computer Architecture, A

Quantitative Approach., 4th ed., 2007.

4. "Cortex-a," [Online]. Available:

http://www.arm.com/products/processors/cortex-a/index.php. [Accessed 16

August 2013].

5. Norman P Jouppi, "Improving Direct-Mapped Cache Performance by

Addition of a Small Fully-Associative Cache and Prefetch Buffers," in

Proceedings, The 17th Annual International Symposium on Computer

Architecture., March 1990.

6. "CPU Cache," [Online]. Available: http://en.wikipedia.org/wiki/CPU_cache.

[Accessed 16 August 2013].

7. "SimpleScalar Toolset," [Online]. Available: www.simplescalar.com.

36

[Accessed 10 September 2011].

8. "Victim Cache Simulator," [Online]. Available:

http://www.ecs.umass.edu/ece/koren/architecture/VCache/home.htm.

9. Paul Genua, "A Cache Primer," in Freescale Semiconductor AN2663 Rev. 1.,

Austin TX, 2004.

10. Umang Choudhary, Pratik Phadke, Vasundhara Puttagunta, Supreeth

Udayashankar, "Analysis of Sub-block Placement and Victim Caching

Techniques.," [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.9684.

[Accessed 19 August 2013].

11. Afrin Naz, Mehran Rezaei, Krishna Kavi and Philip Sweany, "Improving

Data Cache Performance with Integrated Use of Split Caches, Victim Cache

and Stream Buffers.," in Proceedings of the 2004 workshop on MEmory

performance: DEaling with Application, systems and architecture, 2004.

12. James E. Bennett, Michael J. Flynn, "Reducing Cache Miss Rates Using

Prediction Caches.," 1996. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.9004.

[Accessed 17 August 2013].

13. Gokhan Memik, Glenn Reinman, William H. Mangione-Smith, "Reducing

enery and delay using efficient victim caches.," in Proceedings of the 2003

international symposium on Low power electrinics and design, 2003.

37

14. Dimitrios Stiliadis, Anujan Varma, "Selective Victim Caching: A Method to

Improve the Performance of Direct-Mapped Caches," IEEE Transactions on

Computers, 1997.

15. Walter W. Schilling jr, Mansoor Alam, "The Impact of Prefetching and

Victim Caching on Computer Systems Performance," [Online]. Available:

http://citeseer.uark.edu:8080/citeseerx/viewdoc/summary;jsessionid=4801C

E22DAC7C30FE1C69096B09A4D33?doi=10.1.1.40.5887. [Accessed 18

August 2013].

16. Samira M. Kham, Daniel A. Jimenez, Doug Burger, Babak Falsafi, "Using

dead blocks as a virtual victim cache.," in Proceedings of the 19th

international conference on Parallel architectures and compilation

techniques., 2010.

	Boise State University
	ScholarWorks
	9-1-2013

	Evaluating the Presence of a Victim Cache on an Arm Processor
	Lakshmi Vidya Peri

	tmp.1391101976.pdf.EpT27

