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ABSTRACT 

Mobile processor is a CPU designed to save power. It is found in mobile 

computers and cell phones. A CPU chip, designed for portable computers, is typically 

housed in a smaller chip package, but more importantly, in order to run cooler, it uses 

lower voltages than its desktop counterpart and has more "sleep mode" capability. A 

mobile processor can be throttled down to different power levels and/or sections of the 

chip can be turned off entirely when not in use. ARM is a 32-bit reduced instruction set 

computer (RISC) instruction set architecture (ISA). The relative simplicity of ARM 

processors makes them suitable for low power applications. Hence ARM processors 

account for approximately 90% of all mobile 32-bit RISC processors. 

 Today, mobile processors are expected to run complex, algorithm-heavy, 

memory-intensive applications which were originally designed and coded for general-

purpose processors. Due to this we see a huge impact of the memory latencies on the 

execution time of applications. To reduce this impact and serve this kind of applications, 

the relative complexity of ARM processors has increased in the last decade by the 

inclusion of traditional methods like multiple issue of instructions, out-of-order 

instruction execution and large, associative caches. 

 Victim Caching is another method which can be used to reduce the execution time 

and is currently not incorporated in the ARM processors. This method was proposed by 

Norman P. Jouppi in his paper “Improving Direct-Mapped Cache Performance by the 

Addition of a Small Fully-Associative Cache and Prefetch Buffers”. Victim Cache is 
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defined as an extension to a direct mapped cache that adds a small, secondary, fully 

associative cache to store cache blocks that have been ejected from the main cache due to 

a capacity or conflict miss. These ejected blocks are likely to be needed again so storing 

them in the secondary cache should increase performance and reduce the execution times. 

Therefore for the Master's project we re-implemented the SimpleScalar simulator 

for an ARM processor by incorporating the impact of Victim Cache. This re-

implementation of the ARM simulator gave a significant improvement in the 

performance when various applications of  MIBench benchmark suite were run on this 

simulator. It is observed to have a reduction of 1.93% in the number of clock cycles used 

and increase in the hit rate of Level 1cache by 2.7% over various Level 1 cache and 

Victim cache configurations on an average. It is also observed that the benefit of Victim 

cache increases as the size of Level 1 cache decreases and the performance boost 

obtained by the processor in presence of a Victim cache is comparable to the performance 

obtained when a Large, Associative Level 1 cache is used. Hence, incorporation of 

Victim Cache to an ARM processor is highly advantageous to the current generation of 

Mobile processors instead of using a Large, Associative Level 1 cache. 
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CHAPTER 1. INTRODUCTION 

The world is rapidly moving towards using mobile devices extensively to communicate, 

travel with in-built GPS capabilities, browse the internet using Wi-Fi capabilities, read 

the books, news, articles, etc., play games, store data, listen to music, take pictures and 

videos, connect to other Bluetooth devices such as an automobile or a microphone 

headset or a television, remotely operate other electronic devices, capture data with 

integrated devices like barcode, RFID and smart card readers for business purposes, 

digitize notes and update themselves with all other day to day scholarly as well as routine 

chores. The applications of mobile devices are increasing at an exponential rate 

demanding mobile processors to be equipped to run complex, algorithm-heavy, memory-

intensive applications which were originally designed and coded for general-purpose 

processors. To serve these demands, mobile devices are supposed to have a lasting 

battery life, should be able to multitask and provide very high performance levels. Mobile 

devices use mobile processors to serve all this purposes.  

Mobile processor is a CPU designed to save power. A CPU chip designed for 

portable computers. It is typically housed in a smaller chip package, but more 

importantly, in order to run cooler, it uses lower voltages than its desktop counterpart and 

has more "sleep mode" capability. A mobile processor can be throttled down to different 

power levels and/or sections of the chip can be turned off entirely when not in use. In 

2011, producers of chips based on ARM architectures reported shipments of 7.9 billion 

ARM-based processors, representing 95% of smart phones, 90% of hard disk drives, 40% 
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of digital televisions and set-top boxes, 15% of microcontrollers and 20% of mobile 

computers [1]. 

The ARM architecture describes a family of RISC (reduced instruction set 

computer)-based computer processors. The name was originally an acronym for 

Advanced RISC Machine, and in its early days Acorn RISC Machine. ARM processors 

require significantly fewer transistors than processors that would typically be found in a 

traditional computer using a RISC based approach to design processors [1]. This 

approach provides a lot of advantages. They are lower costs, less heat, and less power 

usage, traits that are desirable for use in light, portable, battery-powered devices such as 

smart phones and tablet computers. The reduced complexity and simpler design allows 

companies to build a low-energy system on a chip for a mobile system incorporating 

memory, interfaces, etc. The relative simplicity of ARM processors makes them suitable 

for low power applications. Hence, ARM processors are used extensively in mobile 

devices, including personal digital assistants (PDAs), tablets, mobile phones, digital 

media and music players, handheld game consoles, calculators and computer peripherals 

such as hard drives and routers. Hence ARM processors should provide high 

performance. 

The wide range of performance improvement techniques employed by hardware 

designers together with the scale and intricacy of modern software systems has made it 

very challenging and difficult to assess performance of a processor. Traditionally 

performance of a processor is defined in terms of speed i.e.; if we were running a 

program on two different processors, a processor which can get the job done first is 

considered to have a better performance. As an individual processor, we are interested in 
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reducing the response time - the time between the start and completion of a task. This is 

also referred to as execution time. In order to maximize the performance of a processor, 

we have to minimize response time or execution time for some task. Thus, performance 

and execution time of a processor X are related as [2] [3]: 

                 
                  1.1.  

Program execution time is the total time to complete a task which includes memory 

accesses, input/output (I/O) activities, operating system overhead - everything. Processor 

users and designers relate different metrics to determine the effect of a design change on 

the performance of a processor. In this project we are confining ourselves to the CPU 

performance, thus the bottom-line performance measure is CPU execution time. CPU 

execution time is calculated using clock cycles and clock cycle time. A simple formula to 

calculate CPU execution time is [2] [3]: 

                                  

                                                  

1.2.  

Alternatively, since clock rate and clock cycle time are inverses, 

                                  

 
                              

          
  

1.3.  

The above formula clearly indicates that the hardware designers can improve 

performance by either reducing the number of clock cycles required for a program or the 

length of a clock cycle. In this project, we are going to evaluate the performance of 

mobile processors and in particular ARM processors. Therefore, we are more interested 

in reducing the number of clock cycles required for a program by keeping the clock cycle 

time constant as we are considering only an ARM processor. Researchers worked on 
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reducing the clock cycles required by a program and came up with methods like multiple 

issue of instructions, out-of-order instruction execution and large, associative caches [3]. 

These methods have shown great impacts on the performance of a processor and hence 

processor manufacturers have incorporated these methods in their hardware designs and 

increased the relative complexity of processors in the last decade. The ARM Cortex-A8 

and higher versions of ARM processors have incorporated these methods [4]. 

 Victim Caching is another method which can be used to reduce the execution time 

and is currently not incorporated in the ARM processors [4]. This method was proposed 

by Norman P. Jouppi in his paper “Improving Direct-Mapped Cache Performance by the 

Addition of a Small Fully-Associative Cache and Prefetch Buffers” [5]. Victim Cache is 

defined as an extension to a direct mapped cache that adds a small, secondary, fully 

associative cache to store cache blocks that have been ejected from the main cache due to 

a capacity or conflict miss. These ejected blocks are likely to be needed again so storing 

them in the secondary cache should increase performance and reduce the execution times. 

 Hence the SimpleScalar ARM processor simulator is enhanced to incorporate the 

concept of victim cache to analyze the performance and power utilized. This project is 

driven by the following goals: 

1. Do we observe the advantage of a victim cache on an ARM processor? 

2. Is the advantage of incorporation of a victim cache comparable to that of a large, 

associative L1 cache in terms of performance? 

The rest of this report  is organized as follows. Chapter 2 describes the concept of victim 

cache and its functionality and features of ARM Cortex-A8. Chapter 3 provides an 

overview of the SimpleScalar toolset, MIBench benchmark suite and the implemented 
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methodology. Chapter 4 describes the simulator statistics in terms of performance and 

power utilized with various configurations of the L1 and Victim caches. Chapter 5 

discusses future work and Chapter 6 concludes. 
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CHAPTER 2. CONCEPTS 

2.1. Victim Cache and its Functionality 

Victim cache was originally proposed by Norman P. Jouppi [5] as an approach to reduce 

the conflict misses of direct mapped caches without affecting its fast access time. Victim 

cache is a fully associative cache, whose size is typically 4 to 16 cache lines, residing 

between a direct mapped L1 cache and the next level of memory. On a main cache miss, 

before going to the next level, the victim cache is checked. If the address hits in the 

victim cache the desired data is returned to the CPU and also promoted to the main cache 

by replacing its conflicting competitor. The data evicted from the main cache is 

transferred to the victim cache. In case of a miss in victim cache the next level of memory 

is accessed and arriving data fills the line in main cache while moving the current data to 

victim cache. In this case the replaced entry in the victim cache is discarded and, if dirty, 

written back to the next level of memory. The Figure 2.1. shows the position of a victim 

cache. 

 

Figure 2.1. Position of a Victim Cache 
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The design of a first level cache always involves fundamental tradeoffs between miss rate 

and access time [6]. Direct mapped caches are simpler, easier to design and require less 

silicon area than set associative caches. The main disadvantage of a direct mapped cache 

is the high conflict miss rate where conflict misses typically account for 40% of all 

direct-mapped cache misses [6]. Conversely for caches with higher associativity the main 

advantage is lower miss rate, but they are more expensive and incur longer access times. 

The goal of a computer architect is to maximize performance while staying within cost 

and power constraints.  

Addition of a victim cache can ease this problem by reducing the conflict miss 

rate to the same extent as a set associative cache, but at the same time maintaining the 

critical hit access path of a direct mapped cache. Victim cache temporarily holds data 

evicted from the cache and, because of its fully associative property, it can 

simultaneously hold many blocks that would conflict in direct mapped cache. If the 

number of conflicting blocks are small enough to fit in victim cache, both the miss rate to 

the next memory level and the average access time will be improved due to relatively low 

miss penalty for fetching from victim cache. 

2.2. Features of an ARM Cortex-A Series 

The ARM Cortex-A series [4] applications processors provide an entire range of 

solutions for devices hosting a rich OS platform and user applications. These devices 

provide a scalable range of power-efficient performance points for their target 

applications. Cortex-A8 processor, based on the ARMv7 architecture is a high-

performance, symmetric, superscalar microarchitecture for dual-issue capability with a 

high frequency ranging from 600Mhz – 1Ghz through efficient, deep pipeline delivering 
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over 2000DMIPS of performance. It has an advanced branch prediction unit with greater 

than 95% accuracy and an integrated level 2 cache for optimal performance. It is a proven 

processor for end devices today due to its NEON technology for multi-media and SIMD 

processing [4]. 

2.2.1. Dhrystone MIPS 

DMIPS is Dhrystone MIPS. Dhrystone is a synthetic computing benckmark program 

developed in 1984 by Reinhold P. Weicker intended to be representative of system 

programming [1]. Dhrystone tries to represent the result more meaningfully than MIPS 

(million instructions per second) because instruction count comparisons between 

different instruction sets can confound simple comparisons. For example, the same high-

level task may require many more instructions on a RISC machine, but might execute 

faster than a single CISC instruction. Thus, the Dhrystone score counts only the number 

of program iteration completions per second, allowing individual machines to perform 

this calculation in a machine-specific way. Common representations of the Dhrystone 

benchmark are DMIPS obtained when the Dhrystone score is divided by 1757 (the 

number of Dhrystones per second obtained on the VAX 11/780, nominally a 1 MIPS 

machine) and DMIPS/MHz, where DMIPS results is further divided by CPU frequency, 

to allow for easier comparison of CPUs running at different clock rates. 

2.2.2. NEON Technology 

The ARM Advanced Single Instruction Multiple Data (SIMD) Extension, also known as 

NEON technology, is a 64/128-bit hybrid SIMD architecture developed by ARM to 

accelerate the performance of multimedia and signal processing applications [1]. NEON 
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is implemented as part of the processor, but has its own execution pipelines and a register 

bank that is distinct from the ARM register bank. Key features include aligned and 

unaligned data access, support for integer, fixed-point and single-precision floating point 

data types, tight coupling to the ARM core, and a large register file with multiple views. 

NEON instructions are available in both ARM and Thumb-2. 

The ARM compiler provides support for Cortex processors equipped with a 

NEON unit. To generate NEON instructions you must specify a Cortes processor that 

includes NEON technology on the command line, for example, --cpu=Cortex-A8. There 

is no NEON support for architectures before ARMv7. Figure 2.2. shows the block 

diagram of the ARM Cortex-A8 processor. 

 

Figure 2.2. ARM Cortex-A8
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CHAPTER 3. METHODOLOGY 

The following are the tools and methods we used to implement this project: 

3.1. SimpleScalar Toolset 

To accelerate hardware development, designers often employ software models of the 

hardware they build. In order to implement this project we need a software model of an 

ARM processor so as to re-implement the memory hierarchy model to incorporate a 

victim cache to the processor. SimpleScalar toolset provides an infrastructure for 

simulation and architectural modeling. It was written in 1992 as part of the Multiscalar 

project at the University of Wisconsin, under Gurindar Sohi’s direction [7]. The tool set 

includes sample simulators ranging from a fast functional simulator to a detailed, 

dynamically scheduled processor model that supports non-blocking caches, speculative 

execution, and state-of-the-art branch prediction. Hence we used the SimpleScalar toolset 

to implement this project.  

3.2. MIBench Benchmark Suite 

To evaluate the performance of an ARM like processor on incorporation of a Victim 

cache we will need ARM binaries to run on the SimpleScalar ARM simulator. We have 

to use a standard set of ARM binary applications for this purpose. MI-Bench benchmark 

suite is a free embedded benchmark suite which is representative of real world 

applications. Hence we used the MI-Bench benchmark suite to evaluate the presence of a 

victim cache on an ARM processor using the SimpleScalar simulator. 
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3.3. Implementation 

To enhance the SimpleScalar ARM processor simulator for victim cache, we first 

installed SimpleScalar ARM simulator (simplesim-arm) and understood its features. This 

simulator has a 5-stage pipeline with fetch, decode or allocate, execute, write back and 

commit stages implemented in ruu_fetch(), ruu_dispatch(), ruu_issue(), ruu_writeback() 

and ruu_commit() functions respectively. The implementation of these stages is discussed 

below: 

1. ruu_fetch(): Fetches the instructions. 

2. ruu_dispatch(): Decodes the instructions, allocates them into RUU(Register Update 

Unit) and LSQ(Load Store Queue) and input/output dependence chains are updated 

accordingly. 

3. ruu_issue(): Issues instructions to functional units to begin execution by checking if 

there is one available and ensures the instructions memory dependencies are satisfied 

using the lsq_refresh() function and schedules a writeback event. lsq_refresh() 

function locates ready instructions whose memory dependencies have been satisfied. 

This is accomplished by walking through the LSQ. 

4. ruu_writeback(): Writes back the completed operation results from the functional 

units to the RUU at this point and the output dependency chains of completed 

instructions are checked to determine if any dependent instruction has all of its 

register operands now. If so the instruction is inserted into the ready instruction 

queue. 
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5. ruu_commit(): It commits the results of the oldest completed entries from the RUU 

and LSQ to the architecture reg file. Stores in the LSQ commit their store data to the 

data cache at this point as well. 

The ARM processor simulator has Register Update Unit(RUU) and Load Store 

Queue(LSQ) of sizes 8 and 4 respectively with 12 functional units i.e., 4 Integer-ALU’s, 

1 Integer-MULT/DIV (IntMULT/IntDIV), 2 Memory Ports (RdPort, WrPort), 4 FP-adder 

(FloatADD, FloatCMP, FloatCVT) and 1 FP-MULT/DIV (FloatMULT / FloatDIV / 

FloatSQRT). The branch prediction is implemented in the simulator using 3 types of 

predictors namely Bimodal predictor, 2-level predictor and combining predictor with a 

BTB (Branch Target Buffer) each and the simulator’s instruction set is defined in the 

machine.def file. This ARM simulator implementation includes up to two levels of 

instruction and data cache (with any levels unified) and one level of instruction and data 

TLBs using a write back – write allocate cache write policy.  

We then installed the gcc-arm cross compiler i.e.; arm-linux-gnueabi and its 

utilities to generate ARM binaries and run on this simulator. We modified a regular 

expression in the pipeview.pl perl script  

from 

(/^\*S+(\d+)\S+(\w+)\S+(0x[0-9a-fA-F]+)/) 

to  

(/^\*S+(\d+)\S+(\w+)\S+(0x[0-9a-fA-F]+)\S+(\d+)\S+(0x[0-9a-fA-F]+)\n?$/) 

to view the pipeline stages correctly as this was incorrect and represented the instruction 

transition to a new stage in the pipeline. We could then visualize the occurrences of cache 

misses, TLB misses, branch mispredictions, branch misprediction detections and address 
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generation executions in the pipeline view using this perl script correctly and hence 

obtained a better understanding of the simulator’s working. We then wrote simple 5-10 

line ARM assembly instructions to test the concept of Victim cache on this ARM like 

processor simulator. 

3.3.1. Sim-cache Implementation 

We re-implemented sim-cache.c, a functional cache simulator which generates cache 

statistics for a user-selected cache and TLB configuration which include up to two levels 

of instruction and data cache (with any levels unified), and one level of instruction and 

data TLBs to incorporate victim cache to its memory hierarchy and gauge its effect. To 

re-implement sim-cache.c with victim cache functionality incorporated, we created 

another instance of the cache structure with victim cache functionality, modified the L1 

cache miss handler function and wrote a victim cache miss handler function in sim-

cache.c. In order to access the victim cache from a data L1 cache, we modified the cache 

access function (cache_access()) in cache.c as shown below. The cache_access() function 

needs a victim cache access function (v_cache_access()) which we implemented in the 

cache.c file showcasing the functionality of swapping the evicted cache lines back and 

forth between data L1 cache, victim cache and L2 cache. 
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Figure 3.1. Modified cache_access function and Implementation of v_cache_access 

function 

 

3.3.2. SimpleScalar ARM simulator Implementation 

The implementation was then extended to re-implement the sim-outorder.c by adding the 

latencies to access the memory hierarchy so as to calculate the number of clock cycles 

utilized as sim-outorder.c is a detailed micro-architecture timing model. The memory 

system is two-level and there is speculative execution support. This is a performance 

simulator, tracking the latency of all pipeline operations and hence provides us with 

statistics to evaluate the performance of a processor. The incorporation of victim cache 

functionality on this ARM like simulator is unique and more effective for the purpose of 

research in comparison to the other cache memory simulators as it is a complete micro 
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architectural timing model and generates the simulator statistics dynamically unlike other 

cache simulators which are trace driven and only generate cache statistics [8]. The other 

advantage of using this ARM like simulator is, it can also be throttled to different levels 

of processor complexity like choosing the number of instructions being issued, choosing 

the instruction execution to be in-order or out-of-order, choosing the instruction issue 

width for the purpose of superscalar implementation, choosing between the different 

types of branch predictors, etc. In order to test the advantage of Victim cache on an ARM 

Cortex-A8 like processor we choose the processor to be a dual issue in-order superscalar 

processor. 

3.4. Implementation of a Static Simulator to Validate the Results 

In order to validate the results obtained from this dynamic micro-architecture model of 

the ARM like SimpleScalar simulator, we need to test if the statistics of data L1 cache are 

generated correctly. Hence we implemented a static simulator to show the functionality 

of a data level 1 cache. This simulator was implemented in C programming language. It 

takes a trace of memory references as input and the configuration of the data level 1 

cache i.e.; number of sets, line size and associativity as arguments and generates an 

output determining the number of data level 1 cache assesses,  hits and  misses. The trace 

of memory references has the following format: 

<accesstype> : <hexaddress> 

Where <accesstype> can be characters: 

R – Indicates a Read access 

W – Indicates a Write access 
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And <hexaddress> is the starting address of the memory reference expressed as a 

hexadecimal number. This simulator first allocates memory for the data cache using the 

number of sets and each set is allocated memory based on the associativity of the cache. 

Then the trace file trace.dat is read by calling the readTrace() function and this stream of 

references is counted and stored.  

simulateDataCache() function simulates the functionality of data L1 cache by 

separating the set and tag from each memory reference and checks if the block of 

memory is valid in the set and if the tag matches. If the block is valid and if the tag 

matches, it is a Hit in the data L1 cache else, it is a Miss. When it’s a Hit, the least 

recently used variable “lru” is updated and dirty bit of the block is set if the memory 

reference access type is “W”. When it is a Miss, the valid bit of the block which is 

obtained after replacing the least recently used block is set, the “lru” variable is updated 

and the dirty bit is set if the memory reference access type is “W”. The data L1 cache 

memory statistics are then printed. These results will be compared to the results obtained 

from the SimpleScalar ARM like simulator.  

In order to generate a trace of the format <accesstype>:<hexaddress> used by the 

static simulator, the SimpleScalar ARM like simulator was modified to add an additional 

line of code. The line of code added is: 

if((cp->name[0]==’d’) && (cp->name[1]==’l’) && (cp->name[2]==’1’)) 

printf(“%c:0x%x\n”, cmd==Read?’R’:’W’, addr); 

where cp is the cache structure and cmd is the variable for Read and Write accesses. The 

results obtained from the static simulator are then compared with the results obtained 

from the dynamic micro-architecture SimpleScalar ARM like simulator. 
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CHAPTER 4. RESULTS 

4.1. Results Obtained 

The results of the re-implemented ARM simulator were obtained on 32bit Ubuntu OS by 

running the ARM processor simulator with dual issue of instructions and in-order 

speculative execution support using MIBench benchmark suite.  

The benchmarks used are tabulated below along with their description: 

Table 4.1. MIBench benchmarks 

MIBench 

Benchmarks 
Description 

Adpcm 
Adaptive differential pulse-code modulation is a form of 

pulse code modulation(PCM) that produces a digital signal 

with a lower bit rate than standard PCM. 

Blowfish Blowfish is a keyed, symmetric block cipher encryption 

algorithm which provides good encryption rate in software. 

Jpeg 

JPEG is a commonly used method of lossy compression for 

digital photography. The degree of compression can be 

adjusted, allowing a selectable tradeoff between storage size 

and image quality. 

Patricia 

Practical Algorithm To Retrieve Information Coded in 

Alphanumeric (PATRICIA) is an algorithm which provides a 

flexible means of storing, indexing, and retrieving 

information in a large file, which is economical of index 

space and of reindexing time. 

Quicksort 

Quick Sort is a divide and conquer algorithm which first 

divides a large list into two smaller sub-lists: the low 

elements and high elements and then recursively sorts the 

sub-lists. 

Sha SHA short for Secure Hash Algorithm is a family of 

cryptographic hash functions. 

String Search 

String Search algorithms, sometimes called string matching 

algorithms, are an important class of string algorithms that 

try to find a place where one or several strings are found 

within a larger string or text. 
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The directly mapped data L1 cache configurations used are: 

1. 1KB (32 Lines, 32B/Line) 

2. 2KB (64 Lines, 32B/Line) 

3. 4KB (128Lines, 32B/Line) 

4. 8KB (256Lines, 32B/Line) 

The small fully associative victim cache configurations used are: 

1. 0.125KB (4Lines, 32B/Line) 

2. 0.25KB (8Lines, 32B/Line) 

3. 0.5KB (16Lines, 32B/Line) 

We plotted the percentage improvement in the total number of clock cycles taken to 

run the MIBench benchmark suite binaries, percentage improvement in the data L1 cache 

hit rate and victim cache hit rate. We observed that the number of clock cycles taken to 

run these binaries is less in number with the presence of a victim cache in the memory 

hierarchy. This is due to the increase in the number of data L1 cache hits.  

Figure 4.1. shows the percentage improvement in the hit rate of data L1 cache 

with 256 sets. This depicts an average of 0.78% improvement in the data L1 cache hit 

rate over all the benchmarks and configurations.  

Figure 4.2. shows the percentage improvement in the hit rate of data L1 cache 

with 128 sets. This depicts an average of 1.98% improvement in the data L1 cache hit 

rate over all the benchmarks and configurations.  
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Figure 4.3. shows the percentage improvement in the hit rate of data L1 cache 

with 64 sets. This depicts an average of 3.19% improvement in the data L1 cache hit rate 

over all the benchmarks and configurations.  

Figure 4.4. shows the percentage improvement in the hit rate of data L1 cache 

with 32 sets. This depicts an average of 4.85% improvement in the data L1 cache hit rate 

over all the benchmarks and configurations.  

It is observed that the improvement is the maximum when we have a 0.5KB, 

32B/Line fully associative victim cache with all the configurations of directly mapped 

data L1 cache. Also Figure 4.5.shows that the improvement is the most when a smaller 

data L1 cache is being used. It is also noticed clearly that there is a great advantage in 

using a victim cache in the memory hierarchy as the average improvement in the hit rate 

is about 2.7% over all the configurations. The benchmark jpeg shows the maximum 

improvement, possibly because it is memory intensive and sha shows the least 

improvement because it already has a high data L1 hit rate. 
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Figure 4.1. Percentage Improvement in Hit rate of 256 Set Data L1 cache 

 

 

Figure 4.2. Percentage Improvement in Hit rate of 128 Set Data L1 cache 
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Figure 4.3. Percentage Improvement in Hit rate of 64 Set Data L1 cache 

 

 

Figure 4.4. Percentage Improvement in Hit rate of 32 Set Data L1 cache 
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Figure 4.5. Average Improvement in Hit rate for various for Data L1 configurations 

 

Figure 4.6. shows the comparison of hit rate of victim cache when it is added as 

an extension to a directly mapped data L1 cache of 256 sets. It depicts that, on an average 

over all the benchmarks and configurations the victim cache has a hit rate of about 

57.48%. 

 Figure 4.7. shows the comparison of hit rate of victim cache when it is added as 

an extension to a directly mapped data L1 cache of 128 sets. It depicts that, on an average 

over all the benchmarks and configurations the victim cache has a hit rate of about 

54.55%. 

Figure 4.8. shows the comparison of hit rate of victim cache when it is added as 

an extension to a directly mapped data L1 cache of 64 sets. It depicts that, on an average 

over all the benchmarks and configurations the victim cache has a hit rate of about 

54.56%. 
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Figure 4.9. shows the comparison of hit rate of victim cache when it is added as 

an extension to a directly mapped data L1 cache of 32 sets. It depicts that, on an average 

over all the benchmarks and configurations the victim cache has a hit rate of about 

51.76%. 

Figure 4.10. shows the comparison of average hit rate for each of the data L1 

cache configuration and the average hit rate of all the victim cache and data L1 cache 

configurations is observed to be 54.59% which is very low compared to data L1 cache 

average hit rate of 97.89%. It is also observed that as the size of data L1 cache is 

decreasing the victim cache hit rate is also decreasing. This is an expected behavior from 

the victim cache as most data locality is already filtered and exploited by the data L1 

cache. 

 

Figure 4.6. Percentage of Victim cache Hit rate for 256 Set Data L1 cache 
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Figure 4.7. Percentage of Victim cache Hit rate for 128 Set Data L1 cache 

 

 

Figure 4.8. Percentage of Victim cache Hit rate for 64 Set Data L1 cache 
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Figure 4.9. Percentage of Victim cache Hit rate for 32 Set Data L1 cache 

 

 

Figure 4.10. Average Victim cache Hit rate for various Data L1 configurations 
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Figure 4.11. shows the comparison of percentage reduction in the clock cycles 

utilized on a data L1 cache of 256 sets. The performance of the ARM like processor is 

observed to be enhanced by 0.57% on an average for all the benchmarks and 

configurations.  

Figure 4.12. shows the comparison of percentage reduction in the clock cycles 

utilized on a data L1 cache of 128 sets. The performance of the ARM like processor is 

observed to be enhanced by 1.54% on an average for all the benchmarks and 

configurations.  

Figure 4.13. shows the comparison of percentage reduction in the clock cycles 

utilized on a data L1 cache of 64 sets. The performance of the ARM like processor is 

observed to be enhanced by 2.4% on an average for all the benchmarks and 

configurations.  

Figure 4.14. shows the comparison of percentage reduction in the clock cycles 

utilized on a data L1 cache of 32 sets. The performance of the ARM like processor is 

observed to be enhanced by 3.19% on an average for all the benchmarks and 

configurations.  

It is observed that the smallest data L1 cache with a 0.5KB 32B/Line Victim 

cache has the best performance improvement over all other configurations used. Figure 

4.15. shows the comparison of average percentage reduction in the clock cycles utilized 

on all the data L1 cache and victim cache configurations. It is clearly noticeable that the 

performance of the ARM like processor is enhanced by 1.93% on average in the presence 

of a Victim cache over all the Victim cache and data L1 cache configurations. The 
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benchmark jpeg shows the maximum benefit and sha shows the least benefit due to high 

and low utilization of victim cache respectively. 

 

Figure 4.11. Percentage Reduction in Clock cycles used for 256 Set Data L1 cache 
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Figure 4.12. Percentage Reduction in Clock cycles used for 128 Set Data L1 cache 

 

 

Figure 4.13. Percentage Reduction in Clock cycles used for 64 Set Data L1 cache 
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Figure 4.14. Percentage Reduction in Clock cycles used for 32 Set Data L1 cache 

 

 

Figure 4.15. Average Percentage reduction in Clock cycles used for various Data L1 

Configuartions 
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These statistics also clearly depict that the combination of a small directly mapped 

data L1 cache with a small fully associative victim cache gives the best performance and 

hit rate results in comparison to the other combinations used. Therefore using a victim 

cache in combination with a directly mapped L1 cache is advantageous over using only a 

directly mapped L1 cache. 

Figure 4.16. shows the comparison of percentage reduction in clock cycles on a 

4KB directly mapped data L1 cache when different victim cache configurations and large 

associative L1 cache configurations are used. 

Based on the obtained results the advantage of using a small fully associative 

victim cache with a directly mapped L1 cache is comparable to that of a large associative 

cache in terms of performance but large, associative caches are expensive, utilize more 

area and more control units are incorporated in the design. Hence we can infer that the 

incorporation of a victim cache with a directly mapped cache is advantageous even over 

an associative cache for an ARM like processor. 

 

Figure 4.16. Comparison of Percentage Reduction in Clock cycles when Large, 

Associative caches and Victm caches are used 
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4.2. Validating the Results 

In order to validate the obtained statistics we generated a trace file for the jpeg 

benchmark using the SimpleScalar ARM simulator for an 8KB directly mapped L1 cache 

which contains memory references of the following format: 

<R/W>:0xaddr 

We fed this trace file with the stream of memory references to another cache 

memory simulator that was implemented. This cache memory simulator simulates the 

functionality of data L1 cache. It takes the trace file and provides the cache statistics like 

number of cache accesses, hits, and misses. These statistics were compared with the 

obtained results from the SimpleScalar ARM simulator. This comparison is tabulated 

below and we can see that the results match and hence are validated. 

 

Table 4.2. Comparison of results between SimpleScalar ARM Simulator and a trace  

driven Cache Simulator.  

8KB Directly 

Mapped L1 Cache 

SimpleScalar ARM 

Simulator 
Cache Simulator 

Accesses 35624660 35624660 

Hits 35217221 35217221 

Misses 407439 407439 
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CHAPTER 5. FUTURE WORK 

The incorporation of a victim cache can be extended to higher end processors which are 

designed with high efficiency, superscalar, out-of-order execution support, speculating 

dynamic length pipeline in-order to evaluate performance as this project was done to 

evaluate the performance of a highly efficient, dual issue superscalar, in-order, 

speculative dynamic length pipeline processor which is like ARM Cortex-A8. Victim 

Cache can also be incorporated in the memory hierarchy design of multi-core processors 

as the next generation mobile processors highly rely on multi-core processors so as to test 

the their performance improvement by incorporating it both on local and shared caches 

and having a proper mechanism to handle the valid blocks in the L1 cache. 

An additional concept of predicting the reusability of victim blocks will help in 

the performance improvement of a processor as L1 cache and victim cache do not 

distinguish between victims that are likely to be used again and those that are not. If a 

prediction mechanism determines the reusability of an evicted L1 cache block it will be 

placed in the victim cache else it can be written back into the second level of the memory 

hierarchy.  This concept will enable obtaining a larger number of L1 cache hits by 

predicting if a cache block will be reused. Hence this could be a concept for speculation 

in the future to improve performance of processors. 
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CHAPTER 6. SUMMARY AND CONCLUSION 

This project incorporated a victim cache functionality on an ARM like processor 

simulator to evaluate its performance. This was done in-order to improve the 

performance of current generation mobile processors as 90% of mobile processors used 

are ARM processors [1]. The simplescalar ARM simulator was re-implemented with the 

incorporation of the concept of victim cache for this purpose. Various ARM binaries 

from the MIBench benchmark suite were run on this simulator to obtain the performance 

statistics. These results were then verified using another static cache memory simulator. 

The scope of work in this project included analysis and experiments to analyze the 

following questions. 

1. Do we observe the advantage of a victim cache on an ARM processor? 

2. Is the advantage of incorporation of a victim cache comparable to that of a large, 

associative L1 cache? 

The answers to the above questions can be found in the discussion that follows. We 

observed that the performance of an ARM like processor is improved by 1.93% when a 

victim cache is used as an extension to a directly mapped L1 cache and the statistics 

obtained with the incorporation of a victim cache are comparable to statistics obtained 

when the L1 cache is large and associative. Therefore using a victim cache is more 

beneficial over using associative caches as they are more expensive. This benefit varies 

for different applications. These results were obtained by taking an average of all the 

results of the MIBench benchmark suite. Based on the obtained results it was established 
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that a smaller directly mapped L1 cache with a small fully associative victim cache gives 

the best performance results by improving the L1 cache hit rate. Hence an ARM 

processor with a victim cache will be advantageous to the mobile devices as it depicts a 

significant improvement in the performance enabling them to be more efficient. 
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