
ON DESIGNING COLLABORATIVE ROBOTIC SYSTEMS WITH

REAL-TIME OPERATING SYSTEMS AND WIRELESS NETWORKS

by

Andrew Jacob Wolin

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Engineering

Boise State University

December 2014

© 2014

Andrew Jacob Wolin

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Andrew Jacob Wolin

Thesis Title: On Designing Collaborative Robotic Systems with Real-Time Operating
 Systems and Wireless Networks

Date of Final Oral Examination: 21 November 2014

The following individuals read and discussed the thesis submitted by student Andrew Jacob
Wolin, and they evaluated his presentation and response to questions during the final oral
examination. They found that the student passed the final oral examination.

Sin Ming Loo, Ph.D. Chair, Supervisory Committee

John N. Chiasson, Ph.D. Member, Supervisory Committee

Hao Chen, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Sin Ming Loo, Ph.D., Chair of the
Supervisory Committee. The thesis was approved for the Graduate College by John R. Pelton,
Ph.D., Dean of the Graduate College.

iv

ACKNOWLEDGEMENTS

I would like to thank my Lord and Savior Jesus Christ. Apart from Him I can do

nothing. “Delight yourself in the Lord, and He will give you the desires of your heart.”

Psalm 37:4

I would like to thank my thesis advisor, Dr. Sin Ming Loo, for allowing me to

pursue this work. His knowledge and experience was an invaluable guide during the

research. I would like to thank committee members Dr. John Chiasson and Dr. Hao Chen

for their support, time, and guidance. They are true engineers, mathematicians, and

mentors. I would like to thank the highly talented members of the Hartman Systems

Integration Lab for sharing their experience and insight into the world of embedded

systems.

I would like to thank my father, Dale, who is an engineer by birth and has always

inspired new and interesting innovations. Thanks to my mother, Lois, who has always

gone to great lengths to take care of me. Thanks to my brother, Jason, a computer natural

who started programming an HP 48S in his early youth. Thanks to my brother, Joe, who

has been an inventor and entrepreneur even before graduating high school. Thanks to Jon

and Carol for their love and support.

I would like to thank my wife, Amy, for her bright smile and heart of gold. I

would like to thank my children who are constantly innovating, creating, and encouraging

me to do the same.

v

ABSTRACT

Robotic devices currently solve many real-world problems but do so primarily on

an individual basis. The ability to deploy large quantities of robots to solve problems has

not yet been widely embraced partially due to the complex nature of robotics and levels

of research investment.

Existing research in robot collaboration largely exists in the forms of models and

simulations. This work seeks to accelerate the next level of research in this area by

providing a low cost, collaborative capable robotic system. This platform can be used as

a gateway to transport simulations into physical representations. This research not only

presents a completed robot but also provides a guide for fellow researchers to use when

custom tailored systems are required.

Harnessing the power of robotic collaboration will inspire a new generation of

problem solving and eventually produce products that could even save lives. This work

demonstrates the principles and technologies needed to design robots in general and for

use in collaborative environments.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

ABSTRACT .. v

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS ... xv

CHAPTER 1: INTRODUCTION .. 1

1.1 Solving Problems with Robots ... 1

1.2 Solving Problems with Many Robots ... 2

1.3 Swarm Robotics vs Collaborative Robotics ... 2

1.4 Summary of Definitions for this Research.. 4

1.5 Thesis Framework ... 5

CHAPTER 2: PREVIOUS WORK AND EXISTING TECHNOLOGY 6

2.1 Group Robotics ... 6

2.2 Collaboration Using ZigBee Protocol ... 8

2.3 Existing Robotic Platforms ... 10

2.4 Summary ... 11

CHAPTER 3: THE DESIGN PROCESS ... 12

3.1 Task Dependency and Workflow.. 12

3.2 Summary ... 14

vii

CHAPTER 4: COMPONENT SELECTION ... 15

4.1 Integrated Motor Features ... 15

4.1.1 Encoders .. 16

4.1.2 Gear Reduction .. 16

4.2 Motors ... 16

4.2.1 Brushed DC ... 17

4.2.2 Stepper Motor .. 17

4.2.3 Servo Motor... 18

4.2.4 Continuous Rotation Servo Motor .. 19

4.3 Surplus Motors .. 20

4.3.1 Faulhaber 1524E006S123 ... 20

4.3.2 Motor Summary .. 20

4.4 Wheel and Hub ... 21

4.5 Microcontroller ... 23

4.6 Power Supply .. 24

4.7 Summary ... 28

CHAPTER 5: MECHANICAL DESIGN .. 29

5.1 Required Skillset ... 29

5.2 3D Printing Technologies ... 30

5.2.1 Form1 - Stereolithography (SLA) ... 31

5.2.2 Maker Bot 2 - Fused Deposition Modeling (FDM) 31

5.2.3 Shapeways - Selective Laser Sintering (SLS) 31

5.3 Design for Stability and Minimal Material ... 32

viii

5.3.1 Chassis Revision 1 - Initial Concept ... 32

5.3.2 Chassis Revision 2 - Material Reduction .. 33

5.3.3 Chassis Revision 3 - Motor Rotation .. 34

5.3.4 Chassis Revision 4 - Increase Stability ... 36

5.3.5 Summary of Build Material and Cost ... 37

5.4 Evaluation of Technologies .. 37

5.5 Summary ... 38

CHAPTER 6: HARDWARE DESIGN AND CONFIGURATION 39

6.1 Microcontroller Configuration .. 40

6.1.1 Boot Modes ... 40

6.1.2 Clock Source ... 41

6.1.3 Crystal Selection and Configuration ... 43

6.1.4 Clock Speed Configuration ... 48

6.2 Programming/Debugging .. 50

6.2.1 Serial Wire Debug ... 50

6.2.2 USART/UART/RS232 .. 52

6.2.3 Combining SWD and USART into One Cable 53

6.3 Power System.. 55

6.4 Motor Control ... 56

6.4.1 H-Bridge Circuit .. 56

6.4.2 Speed Control .. 57

6.4.3 Stopping vs Braking .. 58

6.5 Proximity Sensors ... 60

ix

6.5.1 LTE-302/LTR-301 IR Emitter and Detector 60

6.5.2 SFH 7773 Integrated IR Emitter and Detector 61

6.6 Communication ... 68

6.7 Assembled Motherboard PCB .. 69

6.8 Summary ... 71

CHAPTER 7: FINAL ASSEMBLY .. 73

7.1 Summary ... 75

CHAPTER 8: SOFTWARE DESIGN ... 77

8.1 Cooperative Scheduling .. 77

8.2 Preemptive Scheduling ... 78

8.3 Real-Time Operating System .. 78

8.4 Software Layers .. 79

8.5 Threading Model ... 80

8.6 Collaboration in Hardware and Software ... 81

8.6.1 Identical Code Base ... 81

8.6.2 Unique Identification... 81

8.6.3 Robot States... 82

8.6.4 Atomic Access to Hardware .. 83

8.7 Collaboration Algorithms ... 83

8.8 Summary ... 87

CHAPTER 9: TEST RESULTS AND HARDWARE VERIFICATION 88

9.1 Battery Pack Discharge Data .. 88

9.2 LTE-302/LTR-301 Proximity Circuit Test Results .. 89

x

9.2.1 LTE-302/LTR-301 Distance Measurements - Without Shroud 90

9.2.2 LTE-302/LTR-301 Distance Measurements - With Shroud 91

9.2.3 LTE-302/LTR-301 Shroud vs No Shroud Comparison 92

9.2.4 LTE-302/LTR-301 Noise Test .. 93

9.2.5 LTE-302/LTR-301 Response Time .. 94

9.3 FSH 7773 Proximity Sensor Test Results ... 95

9.3.1 Distance Measurement Data.. 95

9.3.2 FSH 7773 Ground Isolation .. 97

9.4 Proportional Derivative Controller ... 100

9.5 Testing Collaboration.. 103

9.6 Summary ... 105

CHAPTER 10: CONCLUSIONS AND FUTURE WORK ... 106

10.1 Mechanical Changes ... 106

10.2 Sensor Changes ... 107

10.3 Robot vs Wall Detection ... 108

REFERENCES ... 109

xi

LIST OF TABLES

Table 1.1 Group Robotics Naming Conventions .. 4

Table 4.1 Motor Relative Generalizations .. 16

Table 4.2 Motor Summary .. 21

Table 4.3 Battery Relative Generalizations .. 25

Table 4.4 LiPo/LiFePO4 Pack Cost Comparison ... 27

Table 4.5 LiPo / LiFePO4 Electrical Characteristics .. 27

Table 5.1 Material and Cost by Revision .. 37

Table 6.1 STM32F4 Boot Modes ... 41

Table 6.2 STM32F4 Memory Map of Bootable Regions ... 41

Table 6.3 Clock Options and Associated Speeds .. 42

Table 6.4 8 MHz crystal datasheet values ... 44

Table 6.5 Solutions to Equation 6.7 .. 46

Table 6.6 PLL Scale Factor Descriptions and Values .. 49

Table 6.7 RJ45 to SWD/RS232 Pinout ... 54

Table 6.8 Estimated Component Max Power Breakdown .. 55

Table 8.1 Robot State Structures... 82

xii

LIST OF FIGURES

Figure 2.1 Mesh Network ... 9

Figure 2.2 Star Network ... 10

Figure 3.1 Design Workflow .. 13

Figure 4.1 Brushed DC Motor .. 17

Figure 4.2 Stepper Motor ... 18

Figure 4.3 Servo Motor Breakdown ... 18

Figure 4.4 Continuous Rotation Servo ... 19

Figure 4.5 Motor Mounts and Hubs ... 22

Figure 4.6 Motor, Hub, and Wheel Disassembly ... 23

Figure 5.1 Mechanical Prototype - Revision 1 ... 33

Figure 5.2 Mechanical Prototype - Revision 2 ... 34

Figure 5.3 Mechanical Prototype - Revision 3 ... 36

Figure 5.4 Mechanical Prototype - Revision 4 ... 36

Figure 6.1 Hardware Block Diagram ... 39

Figure 6.2 Recommended layout for an oscillator circuit .. 47

Figure 6.3 SWDCLK signals - 16” jumper wires .. 52

Figure 6.4 RJ45 Ethernet Connector .. 53

Figure 6.5 RJ45 Programming / Debug Setup ... 54

Figure 6.6 H-Bridge Stop vs Brake .. 59

xiii

Figure 6.7 LTE-302 / LTR-301 IR Emitter / Detector Circuit 61

Figure 6.8 SFH 7773 Datasheet Schematic .. 64

Figure 6.9 MCP1702 - Dynamic Load Response... 64

Figure 6.10 Ground Isolation for SFH 7773 Power Supply ... 66

Figure 6.11 FSH 7773 Daughter Card.. 67

Figure 6.12 FSH7773 Proximity Sensor Daughter Cards .. 67

Figure 6.13 XBee Schematic and Debug LEDs ... 69

Figure 6.14 Robot Motherboard - Front ... 70

Figure 6.15 Robot Motherboard - Back ... 71

Figure 7.1 Robot Disassembled.. 73

Figure 7.2 Assembled Robot - Front .. 74

Figure 7.3 Assembled Robot - Back .. 74

Figure 7.4 Assembled Robot - Bottom ... 75

Figure 7.5 Robot with Programmer/Serial Port.. 75

Figure 8.1 Software Layers .. 80

Figure 8.2 Threading Model ... 81

Figure 8.3 Group Obstacle Avoidance ... 84

Figure 8.4 Outward Dispersion Algorithm... 85

Figure 8.5 Linear Dispersion Algorithm .. 86

Figure 8.6 Top Level Collaboration Algorithm ... 86

Figure 9.1 LiFePO4 vs LiPo - Discharge Data .. 89

Figure 9.2 No Shroud - 1 IR LED on ... 90

Figure 9.3 No Shroud - 3 IR LEDs on ... 90

xiv

Figure 9.4 No Shroud - 1 vs 3 IR LEDs on .. 91

Figure 9.5 Shroud - 1 IR LED on ... 91

Figure 9.6 Shroud - 3 IR LEDs on ... 92

Figure 9.7 Shroud - 1 vs 3 IR LEDs on .. 92

Figure 9.8 Shroud vs No Shroud - 3 LEDs on ... 93

Figure 9.9 No Shroud, 3 LEDs On, 5cm - 1 second noise test................................... 94

Figure 9.10 IR Phototransistor Response Time.. 95

Figure 9.11 FSH 7773 Left... 95

Figure 9.12 FSH 7773 Right .. 96

Figure 9.13 FSH Left vs Right ... 96

Figure 9.14 FSH 7773, 5cm - 1 second noise test .. 97

Figure 9.15 FSH 7773 - VDD using a common ground .. 98

Figure 9.16 FSH 7773 - V_LED using a common ground .. 98

Figure 9.17 FSH 7773 - VDD using ground isolation ... 99

Figure 9.18 FSH 7773 - V_LED using ground isolation ... 100

Figure 9.19 PD Error - Proportional Component ... 101

Figure 9.20 PD Error - Derivative Component .. 102

Figure 9.21 PD Error - Total .. 102

Figure 9.22 Multiple Robots .. 103

Figure 9.23 Robotic Collaboration Demonstration .. 104

xv

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

cm Centimeter

DC Direct Current

GPIO General Purpose Input/Output

IR Infrared

I/O Input/Output

I2C Inter-Integrated Circuit

IGRS Intelligent Grouping and Resource Sharing

ISR Interrupt Service Routine

LED Light Emitting Diode

mm Millimeter

mV Millivolt

PWM Pulse Width Modulation

PCB Printed Circuit Board

RF Radio Frequency

RTOS Real-Time Operating System

SPI Serial Peripheral Interface

TI Texas Instruments

USB Universal Serial Bus

UART Universal Asynchronous Receiver/Transmitter

1

CHAPTER 1: INTRODUCTION

1.1 Solving Problems with Robots

One of the most amazing displays of early robotics was the invention of a remote

controlled submergible boat. In 1898, Tesla demonstrated a contraption that was far

ahead of its time. It was able to receive radio signals, and therefore commands, to move

forward, turn, submerge, and toggle lights [1]. It was perhaps so far ahead of its time that

the idea of robotic minions was not ready to be accepted by the public or even the

military. Attempts at purely mechanical and analog robots were made during the early

1900s. The real fuel to the robotic revolution came with the invention of the solid state

transistor in 1947. As advancements in computing were made, robotic creations

followed. As programs were written to solve basic math problems the possibilities

became readily apparent for computers to join themselves to other electric and

mechanical machines.

One of the first robotic inventions ever produced, sold, and made to perform

useful work arrived in 1961. The robot was named Unimate and was used in a General

Motors assembly line to perform work that was difficult for humans to do. With

significant changes in the world since Tesla’s idea, society was ready to accept the idea

of robots assisting mankind [2].

Japan embraced robotic technologies and has since become the world leader in

use and manufacturing of robots both for industry and personal use. The International

2

Federation of Robotics reports that Japan was the largest producer of robots in the world

[3]. Japan has also taken an interest in humanoid robotics and has led several innovations

in that field. As an example, Japanese manufacturer Honda has produced the famous

humanoid robot ASIMO, an acronym for Advanced Step in Innovative MObility.

ASIMO is able to interact with people by recognizing human gestures, sounds, and

shapes.

1.2 Solving Problems with Many Robots

Solving a simple problem with a single robot, autonomous or semi-autonomous,

is by itself a challenging task. The rewards for meeting the challenge are huge and have

led to the betterment and saving of human lives through advanced prosthetics, wheel

chairs, and implants. From the depths of the ocean to distant mars, robots have served as

competent explorers into the unknown. Taking this technology and enabling it to work as

a group, collectively, is the idea behind collaborative problem solving with robotics [4].

1.3 Swarm Robotics vs Collaborative Robotics

Swarm robotics is a specific type of group robotics that has emerged over the last

ten years. It has produced very interesting collective behaviors inspired by insect groups.

The exact definition of swarm robotics is somewhat undefined. In general, the common

goal is to have the robotic group interact with each other, but not communicate with each

other using a single intelligent organizer like a computer [5]. Applying this limitation on

the discipline of swarm robotics forces the research to solve problems in a highly

redundant and scalable manner. The robots interact with each through similar

mechanisms found in ant colonies and bee hives. An excellent demonstration of swarm

3

robotics has been compiled at the Universite Libre de Bruxelles. The following series of

steps will demonstrate a simple algorithm to explain swarm robotics [6].

1) All robots are tasked to find a light hanging from the ceiling.

2) Initially all robots emit red light around their body.

3) If a robot detects another red robot, it changes direction and continues searching.

4) If a robot detects the light, it changes color to blue.

5) If a robot detects the now blue robot, it latches on and changes color to blue.

6) Once all robots detect the light, all are blue and latched together.

In this example, a problem has not necessarily been solved but the robots have

self-organized based on a simple set of rules. All of these activities are done using

passive forms of communication as the robots merely sense changes to neighboring

robots color. It is a completely different way to solve problems and has led to exciting

new possibilities.

Collaborative robotics does not fall into the exact guidelines of swarm robotics

since more advanced communication between robots is encouraged and required in order

to solve the problems of interest in a time-urgent manner. The most important and time-

urgent types of problems involve saving human life. In these types of scenarios, a person

could be lost or injured in an area dangerous for rescuers to enter such as a cave system

or fire. Other scenarios could be hikers lost in areas too large for humans to traverse

quickly. Using groups of robots, on the ground or in the air, to save lives will involve a

human response team that then deploys the group and receives instant feedback to the

status of the group and the locations of the individual members. Once a member detects

signs of life, or even the possibility, search crew efforts can be more efficiently focused

4

and concentrated. Since the members must travel potentially large distances from each

other, they cannot use the swarm mechanisms used by swarm robotics to interact. They

must communicate in an active way with each other to coordinate the large-scale work

and relay critical information such as discovery of the lost or wounded.

Many of the ambitions of swarm robotics agree with collaborative robotics in that

many robots, costing as little as possible, should be used to solve a problem. Unlike

swarm robotics, however, it is important to this innovation that there are few restrictions.

If the most effective solution is to have multiple groups of different types of robots

combine to solve the problem, then this is the superior solution until a new solution is

discovered.

1.4 Summary of Definitions for this Research

The terminology in this study conforms to existing terminology as best as

possible. The terms, “group,” “swarm,” “collaborative,” and “cooperative” are so similar

in lexical meaning that some well-placed definitions will aid in understanding the

differences. Table 1.1 describes the differences in order from generic to more specific.

Table 1.1 Group Robotics Naming Conventions

Naming Convention Description

Group Robotics A generic term describing many robots; they may or may not work
together.

Cooperative Robotics A slightly more specific type of group; they cooperate in some way but
exactly how they cooperate is undefined.

Swarm Robotics Specific swarm behavior rules are applied to the group of identical
robots and communication is only shared through passive signals, such
as color of a neighboring member.

Collaborative Robotics A group of robots, not necessarily identical, who communicate critical
information in order to best understand and solve a problem [7]. Swarm
rules can be applied to the collaborative process.

5

1.5 Thesis Framework

In order to provide a thorough guide to designing robots for collaboration, the

chapters that follow are presented in a logical order that follows the design process, from

start to finish. Chapter 2 evaluates the previous research that has been done in robotic

prototypes. Chapter 2 also looks at the existing studies of robotic collaboration to see if

the research is moving beyond models and simulations. In Chapter 3, a design process is

presented, which will be referred to throughout the rest of the chapters. Chapters 4, 5,

and 6 step through the critical decisions that must be made during component selection,

mechanical design, and hardware design. Chapter 6 also goes into detail regarding

specific configurations of the microcontroller since this is foundational to a successful

project. Chapter 7 contains the final assembly and considers the ramifications of overly

complicated designs. In Chapter 8, guidance is given through the presentation of a

software framework that takes advantage of a real-time operating system. Considerations

are also made regarding collaboration methods. Chapter 9 presents a thorough testing

process that will verify the hardware and provide valuable data for reference during

software development. Finally, conclusions and future research are made in Chapter 10.

6

CHAPTER 2: PREVIOUS WORK AND EXISTING TECHNOLOGY

This chapter focuses on existing technology in the field of design and fabrication

of collaborative robotics.

2.1 Group Robotics

Many forms of group robotics exist. Their application stretches from the bottom

of the ocean to the depths of space. Researchers at California’s Institute of Technology

Jet Propulsion Laboratory have begun work that will aid the construction of buildings on

Earth’s moon and even Mars [8]. Construction work such as this requires a collaborative

effort at times. Multiple types of robots are likely to be deployed and the technology

must exist where a robot can call upon another robot that has the specialized tool set to

solve the problem. Their work uses an outdoor-like laboratory setting to perform the

experiments. The robots are much larger than the platform proposed in this research and

consequently expensive. The low robot counts result in fewer collaborative tests. It

would be beneficial for the research to use scaled down versions of the hardware for

experimentations on a lab table. Once collaboration experiments have been performed on

the scaled model, the results can then be applied and further testing can continue on the

large-scale robots.

Collaboration can exist in group robotics at the autonomous and semi-autonomous

level. The collaborative robotic construction mentioned earlier will likely be monitored

and commanded by humans in a control center and therefore is considered semi-

7

autonomous. Research performed by Tauchi et al. [9] has demonstrated interesting

simulations where robots are assigned one of three different types of personalities and

then deployed into a fully autonomous mode. In order to collaborate most effectively, the

robots discover one another’s personalities and then solve a problem by grouping

according to the same personality. These simulations show the need for efficient

collaboration and have set the stage for additional research. The next logical step for this

research is to port the simulation to actual hardware that can support multiple threads and

task management.

Similar to the research described in [9], Wang et al. [10] have developed a model

where each robotic node has a concept of intention much like a human has intention to

solve problems. When multiple robots all share a common intention, resolution must be

made on how the robots will work together in order to solve the problem. This involves

fairly complex algorithms in order to overcome the inherent contention in collaborative

robotics. It uses negotiation prediction and an equilibrium matrix in order to keep

appropriate distance between the nodes. This research likely has interesting results but

only exists as a model and requires a physical platform to execute.

The Massachusetts Institute of Technology Computer Science and Artificial

Intelligence Laboratory (MIT CSAIL) has led several efforts toward collaborative

robotics. When using groups of robotics, several different control scenarios are possible.

The robots could be asked to work in complete autonomy without any input from the

user. In other situations, some input could be given to help direct the group towards a

solution. In both cases, a degree of randomness is involved due to the possibility of

communication links failing between nodes and unforeseen obstructions that render a

8

worker immobile. A mathematical model surrounding this type of randomness is called

the Markov Decision Process (MDP). Dibangoye et al. [11] have utilized this model in

collaborative robotics. Functional tasks have been demonstrated such as the ability to

recognize objects too large for a single robot to move and asking for assistance from

other available worker nodes.

2.2 Collaboration Using ZigBee Protocol

ZigBee is a RF communication protocol that adds mesh networking to the

802.15.4 radio protocol. The technology has grown rapidly since its conception and has

been adapted to robotic collaboration in many unique ways. One approach to group

robotics has adopted the Intelligent Grouping and Resource Sharing (IGRS) protocol as a

foundation for its collaboration mechanism. IGRS was initially designed to support the

resource sharing of PCs, TVs, Set Top Boxes, and mobile devices. As robotics begin to

act more and more like an appliance in the home and office, this protocol should likewise

be inherited by robotics. Zhiguo, Junming, Xu, Zhilang, and Jun have begun research in

this area and propose the use of ZigBee wireless communication between robotic nodes

which then integrate into an 802.11b/g/n home wireless network [12]. Their study is

largely focused on how to provide a scalable grouping strategy based on IGRS and

consequently lacks stable robotic test platforms to carry out the experiments.

Swarm robotics has taken an interest in ZigBee technology as well. The data that

is communicated in swarm robotics attempts to simulate the same types of data

exchanges that would happen in a colony of insects. Zhang and Gao [13] have evaluated

ZigBee for use in swarm robotics. They have found that the self-healing properties of the

network are critical in order to represent swarm behavior. If an ant is put out of

9

commission in a colony, another ant is readily available to take its place. In the same

way, ZigBee is able to re-route data in the event that a node is removed from the mesh

network. The network in Figure 2.1 represents the concept behind the mesh

implementation. Note that, while a client (aka router) is able to fail, the coordinator must

remain active.

Figure 2.1 Mesh Network

While a mesh network lends itself to swarm robotics, a star network is often

sufficient for some types of collaboration. A star network has several clients with a

coordinator that is often times connected to a computer. The sharing of data in this style

of network is relayed through the coordinator. Consequently the star network lacks the

self-healing feature of the mesh network but is simpler to implement and can use a higher

processing power central node. Wan et al. [14] have also evaluated and used ZigBee for

multi-robot communication but have chosen the star network instead of the mesh

10

network. This allows the use of real-time data manipulations on the higher powered PC

that connects to the coordinator. An illustration of a mesh network is seen in Figure 2.2.

Figure 2.2 Star Network

Many chipsets are available that implement the ZigBee protocol. The research in

[14] has selected the MG2455 manufactured by Radio Pulse. Much like the well-known

XBee module, the MG2455 is able to carry out mesh and star networking between

embedded systems. Two robots carried out experiments to demonstrate the usefulness of

ZigBee during collaboration.

2.3 Existing Robotic Platforms

An interesting robotic platform was developed in 2008 by researchers Chen and

Liou [15]. This platform rightly embraces the concept of using a real-time operating

system (RTOS) in order to abstract the hardware layer and provide functional task

management. RTOS platforms such as VxWorks, UC/OS-II and others existed during

this time. UC/OS-II, also known as Micrium, was chosen to control the robot. Micrium

is a highly capable RTOS, which has even been used on the Mars Curiosity Rover. It is

available free of cost to educational institutions but is a closed source project. Because it

is closed source, there are fewer resources available to researchers in need of free open

11

source solutions. The robot uses a hexapod leg system to move itself, which lends itself

to certain environments but as a consequence it is very slow to move about. This

platform is not designed for collaboration but does have desirable features such as a

layered software approach that depends on an RTOS.

2.4 Summary

As researchers continue to develop robotic collaboration models and simulations,

they will eventually need a physical platform to execute on. Examining the existing

research reveals that there is a need for a complete guide to the process of building a

robot from idea to conception. Many of the proposed models found in this research can

take advantage of a generic platform while others will need to specialize. This work

seeks to provide a viable robotic platform that can be used in many different areas of

research and provide a guide to the design process.

12

CHAPTER 3: THE DESIGN PROCESS

The design process involves a series of logical tasks. Some tasks can be done in

parallel. Others can only be completed sequentially. This chapter discusses the

workflow in general and describes the advantages of using teams to develop products that

involve many different disciplines. This design process will be referred to through the

rest of the chapters.

3.1 Task Dependency and Workflow

Before engaging in the development of a robotic system, a certain amount of

research should be performed. Figure 3.1 shows research as the top most phase in the

process. Both mechanical and hardware research should be done and existing

technologies leveraged when possible and appropriate. The component selection phase

and testing of these components must be completed prior to moving forward with the rest

of the design process. The mechanical design depends on the dimensions of motors,

battery packs, and PCB sizes. There are likely to be several iterations of component

selection, testing, and design. During this phase, the components are bread-boarded (if

possible) and tested to ensure compatibility with the design goals. Simultaneously,

mechanical prototypes can begin to be designed in Computer-Aided Design software.

Performing these tasks diligently allows unforeseen issues to be handled early on where

design changes can be easily accommodated. The exact tolerances and friction fittings

13

can be tested on small parts before fabricating large models, which will have a higher

cost to produce.

Figure 3.1 Design Workflow

After several phases of component selection, testing, and design, a final assembly

will emerge. Testing can then begin to ensure that all aspects of the mechanical design

combine together as required without problems such as wheel rub, screw alignment, and

ground clearance.

14

At this point, the software design can commit to design decisions that allow

further testing of the system. Several software components will have already been

written that tested the components during the initial selection process. These components

now need to be integrated into an application programming interface (API). Decisions

regarding the threading model and library layers should be made before actual code

production. The software design and testing phases will be repeated until all of the

hardware components have been verified. Once the robot is built and tested, the targeted

robotic research area of interest can begin.

The workflow allows for some phases to be done in parallel while other phases

cannot move forward until the previous phase completes. The mechanical and hardware

design can be done in parallel after some or all of the components have been decided on.

If for example a motor has been decided upon, modeling can begin to mount the motor

while bread-board testing can be done to verify circuit and software designs. This

assumes that multiple researchers are available. The process is much more linear if a

single researcher is tasked with the entire design.

3.2 Summary

When designing a system with many integrating components, it is critical to

prepare a plan. The plan helps prioritize tasks and dependency of tasks. This will

prevent significant errors that could be difficult to solve later in the design process.

15

CHAPTER 4: COMPONENT SELECTION

Robotic platforms typically integrate existing components from a variety of

manufacturers. Items such as motors and batteries for example are much too costly to

have custom fabricated for academic research purposes. For the initial phases of

collaborative robotic research, common low cost components are targeted since they are

able to achieve sufficient accuracy for useful testing. The mechanical, hardware, and

software design rely heavily on the physical dimensions and properties of these

components. The required characteristics and capabilities of the robots will help narrow

the search criteria during component selection. A certain level of commitment must be

made to these components before moving forward with the rest of the design. The

physical components for a wheeled platform are the motor, power supply, and wheel/hub

assembly. Considerations for each of these components are presented in the following

sections.

4.1 Integrated Motor Features

Before examining the different types of motors available, certain features should

be considered. Motors are often available with or without encoders, gear reduction, and

right angle output hubs. Some motors, such as servo motors, are actually systems that

contain encoder, gear, and output hub integrated into a single package.

16

4.1.1 Encoders

Both stepper and DC motors optionally have integrated encoders that can

determine the position of the motor shaft and send a pulse to the microcontroller for use

in a control loop [16]. When a stepper motor is given the command to move 10 steps,

there is only reasonable confidence that it actually moved 10 steps. An encoder built into

the motor will provide feedback to the microcontroller. It reports how many steps it

actually moved so that a measure of error can be taken and corrected. In a similar way,

power is applied to a DC motor and the encoder counts are fed into the MCU.

4.1.2 Gear Reduction

A DC motor by itself is of limited use without the aid of gear reduction in order to

achieve the necessary torque to move a meaningful amount of weight. In contrast, a

stepper motor has enough torque to direct drive a small robot. A DC motor with a gear

head will usually have much more torque than a stepper motor without a gearhead. For

this reason, DC motors in robotics often use a gear reduction system, which could be a

gearhead or pulley system.

4.2 Motors

Stepper motors and brushed DC motors are common and available platforms that

can be used in small robotic applications. Table 4.1 makes relative generalizations to

some of the key features of motors.

Table 4.1 Motor Relative Generalizations

 Permanent Magnet AC Induction Stepper Brushless
Voltage DC AC DC AC
Top Speed Medium High Slow Very High
Cost Low Medium Medium High
Precision Medium Low High Medium

17

4.2.1 Brushed DC

The brushed DC motor has existed much longer than a stepper motor and was

used as inspiration to invent the stepper motor. The armature rotates continuously as it

receives a constant or varying voltage. Control mechanisms are as simple as varying the

voltage to the motor. Due to the widespread use of DC motors, all shapes and sizes can

be found at reasonable prices. A DC motor is shown in Figure 4.1.

Figure 4.1 Brushed DC Motor

4.2.2 Stepper Motor

The stepper motor became popular in the early 1960s as a replacement for

expensive DC motors that required encoders for feedback. Several different types of

stepper motors exist with a variety of ways to control them. The general concept is that

the axially magnetized rotor will seek to align itself to a stator coil provided the correct

energizing sequence of the poles using four different input phases. Changing the input

phases repeatedly with logic from a microcontroller allows the stepper motor to rotate a

set number of degrees based on the number of poles and coils on the motor [17]. As long

as nothing binds or overloads the motor, a stepper can replace a DC motor with feedback.

These motors are excellent options for robotic applications but do have design challenges

18

since the signaling must be absolutely precise in order for the motor to perform.

Resonance and noise can interfere with the control signals causing additional design

challenges. A stepper motor is shown in Figure 4.2.

Figure 4.2 Stepper Motor

4.2.3 Servo Motor

A servo motor is an embedded system that combines a DC motor, gear system, an

encoder or potentiometer for feedback, and a motor controller. These components are

packaged into a housing that provides a connector for the electrical connections and an

output shaft to drive movement.

Figure 4.3 Servo Motor Breakdown

19

There are a variety of different types of servo motors but common to most of

them is the control system. A 1-2 ms signal is sent to the servo, which determines which

way the servo should rotate. 1 ms will rotate the servo left 90°, 1.5 ms will hold the

servo at its center, and 2 ms will rotate the servo right 90°. The frequency of the signals

is between 50 and 400 Hz depending on the type of servo. This is the refresh rate of the

servo and consequently a higher signal frequency will provide more precise holding of

the output shaft.

The simplest servo motor uses a potentiometer to provide feedback to the control

circuit in order to determine absolute position. These types of servos only allow for 180°

of total rotation.

4.2.4 Continuous Rotation Servo Motor

There are continuous rotation servos available that are very inexpensive ($12-$20)

but they completely lack a feedback mechanism and therefore lose the ability to send

absolute positioning commands. Trossen Robotics offers highly advanced servo systems

that offer continuous rotation with absolute positioning and configurable parameters for

the control algorithm. This is an excellent platform for demonstrations of control theory

and robotics but the high feature set increases the cost. A low end robotic servo shown in

Figure 4.4 starts at $140.

Figure 4.4 Continuous Rotation Servo

20

4.3 Surplus Motors

4.3.1 Faulhaber 1524E006S123

The simplicity of a DC motor with an encoder and gearhead is an attractive option

but the cost for such a motor can be a few hundred dollars if purchased new. An

interesting surplus option was found for $23 that provides both the encoder and the

gearhead. The Faulhaber 1524E006S123 can be found from surplus dealers. In addition

to the gearhead and encoder, the motor comes with a 90° output shaft. Since the encoder

and gearhead add considerable length to the motor, the 90° output shaft allows a pair of

these motors to oppose each other vertically in a chassis, allowing for a narrow

wheelbase. Given the low price point, encoder, gearhead, and 90° output shaft, the

Faulhaber was chosen as the power train, which can be seen in Figure 4.6.

4.3.2 Motor Summary

Table 4.2 summarizes the characteristics and cost of the motors researched.

While a simple brushed DC motor is by far the least expensive, it requires additional

components such as gears and an encoder in order to make it useful for robotics

applications. A better approach uses a motor that has these features integrated into the

design. High end robotic servos are flexible for many uses and can be configured for

continuous rotation but come with additional cost. Ultimately, the surplus Faulhaber

1524E006S123 proved to have the best feature set and value for this particular

application.

21

Table 4.2 Motor Summary

Motor Type Nominal
Voltage

No Load
Current (A)

Stall
Current
(A)

Cost

RS395 Brushed
DC

12V 0.5 15 $5.25

SM-
42BYG011-
25-

Bipolar
Stepper

12V 0.33 0.6 $14.95

SM-S4203R Servo 5V 0.25 0.7 $13.95

RX-24F Continuous
Rotation
Servo

12V 0.5 2.4 $139.90

1524E006S123 Brushed
DC w/
Encoder,
Gearhead

6V 0.2 0.5 $23.95*

* Surplus

4.4 Wheel and Hub

It is often the case that a surplus motor will be readily available but will not come

with a means to attach the wheel. Robot component retailers such as Pololu, Banebots,

Trossen Robotics, SparkFun, and others offer various solutions to this problem. Figure

4.5 shows several different mount and hub options available for various motor and wheel

combinations.

22

Figure 4.5 Motor Mounts and Hubs

The output shaft of the Faulhaber measures 7 mm in length, 3 mm in diameter,

and has a flat surface for the set screw. Banebots offers a hub and wheel of appropriate

size that can mount to this motor. While the hub actually measures 10 mm (3 mm

beyond the length of the shaft), the set screw is centered and makes good contact with the

shaft. The Faulhaber motor, wheel, and hub are shown in Figure 4.6.

23

Figure 4.6 Motor, Hub, and Wheel Disassembly

4.5 Microcontroller

The embedded system requires a Microcontroller (MCU) to control the peripheral

components. The end goal requirements for the robot will help determine what features

are needed from the MCU. The number of peripherals, size of programmable memory,

and processor speed should support the design goals. When choosing up front to use a

real-time operating system, more programming space and speed should be considered.

Efficiency, battery life, and cost are important selection criteria during the design but the

goal is not to produce the cheapest, smallest, and most efficient design. The goal is to

provide a highly robust, capable, feature-rich platform that can be used as a generic

platform for individual and collaborative robotics. The power consumption of the robot

can later be scaled back if needed by changing the clock speed, disabling unused features,

and optimizing the code base.

Many different MCUs are available from manufacturers such as Microchip,

Atmel, Texas Instruments, and STMicroelectronics. STMicroelectronics has an

established commitment to supporting open source software and free-to-use tool chains.

24

This makes them an ideal supplier during research given the absence of licensing costs.

The STM32F4 is a series of microcontrollers produced by STMicroelectronics. The

particular model chosen from this family is the STM32F4VGT6, which is a 100-pin

version containing 100 MB of user programmable flash, 82 lines of IO, and multiple

ADC, I2C, SPI, UART, and USART modules. The device is capable of running up to

168 MHz, depending on the input clock configuration [18]. Many other features and

abilities are available but are not used for this project. Prototyping with this particular

processor is made convenient with an available demonstration board that provides access

to all of the pins and has an integrated programmer.

4.6 Power Supply

Once the motor and microcontroller have been selected, a properly sized (physical

and electrical) power source can be selected. Power supplies for robotic platforms can

range from gas engines to solar panels. The most popular choice is a battery or pack of

batteries. Common options include Sealed Lead Acid (Pb), Nickel Cadmium (NiCd),

Nickel Metal Hydride (NiMh), Lithium Ion (Li-ion), Lithium Polymer (LiPo), and

Lithium Iron Phosphate (LiFePO4). Nominal battery voltages range in value depending

on the technology selected and the number of cells used. Table 4.3 makes relative

generalizations to some of these common battery types.

25

Table 4.3 Battery Relative Generalizations

 Sealed Lead
Acid (Pb)

Nickel
Cadmium
(NiCd0

Nickel Metal
Hydride
(NiMh)

Lithium
Polymer
(LiPo)

Lithium Iron
Phosphate
(LiFePO4)

Cell Voltage 2V 1.2V 1.2V 3.7V 3.3V
Self
Discharge
Rate/Month

5% 20% 30% 3% 3%

Size Large Medium Medium Small Small
Charge
Times

Long Medium Short Medium Very Short

Cost Low Medium Medium Medium Medium-Low
Weight High Medium High Low Medium
Energy
Density

Low Medium Medium High High

Before selecting a battery, an estimation needs to be made concerning the target

power requirements. Table 6.8 calculates the burst current consumption to be 3.7A and

typical consumption to be approximately 1A. Lithium technology batteries have a rating

that is used to calculate the rated discharge current. This is known as the “c” rating.

Multiply the “c” rating by the amp hour capacity to find the discharge capabilities. Any

of the above listed battery technologies could have configurations to support these

voltage and current demands. The robot application will help determine what battery

technology is most appropriate. For a small form factor robot such as that in this work,

size, availability, and cost are the targeted features. LiPo and LiFePO4 batteries will be

examined further given their small size and low cost.

The motors in this work have a nominal voltage of 6V, followed by the infrared

(IR) modules using 5V, and finally the microcontroller and other ICs use 3.3V.

Regulators will source the battery pack and regulate down to these values. The Linear

Dropout Regulators (LDO) researched for this purpose typically have a dropout rating of

26

500mV or less. This suggests that when the pack is fully depleted, the voltage should be

6.5V or greater since a 6V regulator will be used for the motors. A 7.4V 2S LiPo pack

has a charged voltage of 8.4V and a fully discharged voltage of 5.5V although 6V is

typically used as a precautionary measure since over discharging a pack can damage it.

This pack will work but the full energy of the pack will not be utilized since the LDO

needs to regulate 6V and the dropout overhead is 500mV. In order to maximize runtime,

but reduce maximum speed, the motor supply can be reduced to 5V. This would allow

for the pack to drop to 5.5V even though the voltage would be cutoff at 6V for a margin

of safety. Regulating the motors to 5V is a reasonable option since maximum speed is

the least of concerns during a large part of the development process.

Using 5V for the motors provides another benefit in that LiFePO4 batteries can be

used. The majority of the discharge curve for a 2s LiFePO4 pack is 6v and above. This

allows for full use of the available battery capacity. LiFePO4 are a greener, safer

alternative to LiPo since they use iron and phosphate instead of the cobalt used in LiPo

batteries [19]. The concept of dangerous battery fires is nearly eliminated. Never leave

any battery on the charger unsupervised since electricity itself is inherently able to start

fire. They are not as energy dense as LiPo but considering the power demands of this

application, a 700mAh pack can provide 3.5A continuous current and 7A peak, which is

more than adequate. Another benefit of LiFePO4 is that they maintain their nominal

voltage until the very end of the discharge cycle unlike LiPo, which continuously drops

in voltage over the life of the discharge cycle. This benefit is of little concern for this

application since regulators are used but for something like a flashlight, the brightness

would not slowly diminish over time. One benefit of LiFePO4 that is of interest however

27

is the ability to charge 4 times faster than a LiPo. LiFePO4 also benefit in lower cost up

to 50% compared to LiPo as seen in Table 4.4.

Table 4.4 LiPo/LiFePO4 Pack Cost Comparison

 Manufacturer Cell Count Amp Hours (mAh) Cost

LiPo Turnigy 2 500 $4.39

LiFePO4 Zippy 2 700 $2.89

One major disadvantage of LiFePO4 over LiPo is their weight. A comparable

LiFePO4 can weigh 30-40% more than a LiPo. For a small robotics application, this

difference of 12 grams is of little concern. For a small, quadcopter, however this would

be a significant consideration. LiFePO4 will likely continue to gain in popularity given

the larger abundance of materials needed to make the battery and the greener impact on

the environment but they will not entirely replace LiPo given the greater weight and

lower discharge capabilities. The discharge curves of both packs will be evaluated during

testing. Both packs are available in similar enough sizes to fit into the target application,

allowing both technologies to be used and tested. Table 4.5 summarizes the electrical

characteristics of the two battery technologies considered for this application.

Table 4.5 LiPo / LiFePO4 Electrical Characteristics

 Min Voltage Nom Voltage Max Voltage Max Charge

LiPo 3.0V 3.7V 4.2V 1C

LiFePO4 2.0V 3.3V 3.6V 4C

28

4.7 Summary

The physical dimensions of the analyzed components are required in order to

begin the mechanical design phase. In order to properly choose the microcontroller and

supporting integrated circuits, the type of motor must be decided upon. Once the motor

and microcontroller have been chosen, a properly sized power supply can be chosen

based on size and electrical characteristics. The wheel diameter is critical in a robot since

the speed of the robot will depend on its size. The wheel diameter also dictates how

much physical space exists underneath the wheel axles. Components such as batteries

can utilize this space and streamline the design. Careful consideration and selection of

these components will prevent costly disruptions later in the design process due to

integration issues that could have been prevented. Modeling these components into a

mechanical design will reveal these issues and is the topic of the next chapter.

29

CHAPTER 5: MECHANICAL DESIGN

Once the mechanical and electrical components have been selected and verified to

be available from vendors, a chassis must be constructed. In a robotic system, the

mechanical design is a critical component to the success of the overall project. If the

embedded system is flawless in every aspect but lacks a solid foundation on which to

operate, the final design will have limited abilities. The components collected for the

robot are from various vendors without knowledge of how they will integrate together. A

customized enclosure is therefore required in order to bind the motors, wheels, battery,

and PCB together in a meaningful way. While wood and metal could be fabricated to

build a prototype, 3D printing is a much more attractive option. The following sections

describe the different types of 3D printing available. A modeling tool is then used to

integrate the physical components into a prototype. It is unlikely that the first prototype

will be perfect and consequently design changes will be required. These design changes

are discussed in order to benefit future designs and to prevent common problems.

5.1 Required Skillset

Before a design can be sent to a 3D printer for processing, it must first be

modeled in a Computer Aided Design (CAD) tool such as Solidworks, Sketchup, and

Rhino. Some of these tools require license or subscription fees, while others have free

versions with limited features. If a mechanical engineer is not able to assist with the

project, one of these tool sets must be learned in order to begin design of the model. It

30

can take many years to master the use of a CAD tool but basic usage can be learned in a

few days. This will allow for a sufficient prototype to be modeled that can serve as

housing for the system of components.

When modeling with the intent of sending the design to a 3D printer, there are

several factors to consider. Each printing technology and material will have a different

specification for minimum wall thickness. Know the minimum supported thickness

before starting a design in order to prevent re-work later on. It is important to design the

model with minimal total volume in order to reduce the manufacturing cost. When

possible, find non-load bearing faces and create windows or lattice structures in order to

reduce the total material. One strategy is to build the model as desired without concern

for total material and then find areas that can be removed without reducing the required

strength. Finding multiple uses for components is another way to reduce total material.

An example is to use the flat side of a battery pack to secure motors in place instead of

printing a mounting plate.

5.2 3D Printing Technologies

3D printing was inspired by the laser jet printer and has been in development

since the 1980s. The popularity of 3D printing has increased greatly over the last 5 years,

making it accessible and affordable to anyone with interest in mechanical design. The

options range from desktop 3D printers to companies that will print the design using

higher quality machines. For the robotic chassis developed for this work, three different

types of 3D printing were evaluated and used.

31

5.2.1 Form1 - Stereolithography (SLA)

The Form1 3D printer is a desktop printer developed by Formlabs, a company

started out of MIT in 2011. It uses a laser to emit ultra violet light through a tank of light

reactive resin onto a build platform [20]. Layer by layer the build platform moves up out

of the resin as the laser hardens each point on the model. The finished piece hangs from

the build platform like a stalactite. Depending on the structure of the model, build

supports could be required in order to hold the model in position during manufacturing.

Once completed, the model is bathed in isopropyl alcohol, dried, and the build supports

removed so that the model is all that remains. This was the primary printing technology

used to build the prototypes due to its accessibility and low resin cost.

5.2.2 Maker Bot 2 - Fused Deposition Modeling (FDM)

The Maker Bot 2 can use Poly Lactic Acid (PLA), a bioplastic derived from corn

starch [21]. This plastic is housed in a reel and then slowly pushed into a thermally

controlled emitter onto the build platform. FDM forms the model from the ground up,

making a stalagmite. Build supports are also required if the model has extrusions that

lack the necessary support. One model was printed using this technology and is in use by

the final design.

5.2.3 Shapeways - Selective Laser Sintering (SLS)

Shapeways is a company headquartered in New York with factories around the

world. Many different materials are available for use including wax, plastic, steel, silver,

and 14K gold amongst others. The most affordable and versatile material is a powder

called PA 2200 designed for sintering. Sintering is the heating process that binds the

powder together but does not solidify or melt it. A specialized machine will use a laser to

32

sinter this powder together layer by layer. Any voids that would normally require build

supports are instead filled with un-sintered powder [20]. Once completed, the resulting

model is pulled from the bin of powder precisely as designed.

5.3 Design for Stability and Minimal Material

It is highly probable that multiple design drafts will be required in order to arrive

at the final prototype. In the sub-sections that follow, the design process will be

explained using the lessons learned in each chassis revision. A total of four revisions

were produced, each one revealing new insight.

5.3.1 Chassis Revision 1 - Initial Concept

Figure 5.1 shows the first chassis designed for the robot in this work. Observe

that the battery housing is connected to the back of the robot and has windows instead of

solid walls. This reduces total model material but maintains an adequate structure.

Another way to reduce material is to convert solid square columns into I-beam shaped

columns. In many cases, this will retain the required strength but reduce the volume by

30% or more. In this design, an I-beam is used to support the PCB and motors, which

mount vertically. Despite adhering to some of the basic methods of material reduction, a

large amount of material, 70 𝑐𝑚3, was needed. If only one platform is needed, this could

be acceptable. Since robot collaboration requires several systems, a step towards material

reduction is desirable. The design process in Figure 3.1 suggests that the mechanical

design will require several iterations. Material reduction is one example of these design

changes.

33

Figure 5.1 Mechanical Prototype - Revision 1

5.3.2 Chassis Revision 2 - Material Reduction

Figure 5.2 shows a massive reduction in total material used for the robot chassis.

The total volume was reduced to 30 𝑐𝑚3 but retained the major features needed to

support the components. This was possible by implementing several major design

changes, some of which required different components. Looking again at the design

process in Figure 3.1, it is common and beneficial to consider components that have

different dimensions or properties that can solve a problem. The first method used to

reduce material in this design was to excavate all possible areas to a minimum but still

retain reasonable strength. The thinnest wall is 3 mm in width, which proved strong

34

enough for most areas except for the long and narrow sections on the sides. The second

method used to reduce material was to select a smaller battery that would fit underneath

the chassis, below the motor shafts. This lowers the center of gravity on the model and

removes the need for the bulky battery case. It also doubles as a securing plate to the

motors, preventing vertical movement.

Figure 5.2 Mechanical Prototype - Revision 2

5.3.3 Chassis Revision 3 - Motor Rotation

Unforeseen challenges can surface at any stage of the design process. One such

challenge occurred in this work between the component selection and mechanical design

35

phases. The Faulhaber DC motors chosen for this design have 90° output shafts but only

in one direction, left. This requires that one gearhead be disassembled and flipped 180°

so that it outputs on the opposing side, right. This process proved to be risky due to the

0.9 mm hex wrench required to perform the operation. The set screws would strip about

50% of the time, leaving the motor assembly as a left output only motor. A better design

for these particular motors is to house them without the need to change the direction of an

output shaft. This removes the possibility of damaging a motor and reduces the overall

assembly time. Figure 5.3 shows these design changes, which maintained approximately

the same total volume and solved the problem of motors requiring disassembly.

36

Figure 5.3 Mechanical Prototype - Revision 3

5.3.4 Chassis Revision 4 - Increase Stability

Solving a particular problem can sometimes reveal a new problem. In revision 3,

the skid support system and battery case took a step backwards. The arms that hold the

battery in place lacked enough supporting material to retain strength and were easily

broken. Revision 4 solves this problem by creating a single I-beam down the middle of

the model, removing the need for the remotely located support structures. The overall

volume increased by 3 𝑐𝑚3 but was deemed worthwhile given the added strength and

simplicity. Figure 5.4 shows the final mechanical design.

Figure 5.4 Mechanical Prototype - Revision 4

37

5.3.5 Summary of Build Material and Cost

A summary of the total volume and build cost for the chassis is presented in Table

5.1. For the Form 1 and Maker Bot prices, an 80% markup was added to account for the

build supports. Note that while the Form 1 and Maker Bot appear much cheaper, these

prices assume the unit has already been purchased as a capital cost and only the build

materials are accounted for.

Table 5.1 Material and Cost by Revision

Revision Dimensions (cm) Vol (𝒄𝒎𝟑) F1* MB* SW*

1 7.1w x 8.93d x 5.8h 70.2491 $18.97 $2.80 $64.67

2 7.1w x 5.23d x 6.698h 30.4016 $8.20 $2.19 $36.78

3 5.85w x 7d x 6.15h 30.5314 $8.24 $2.20 $36.87

4 5.85w x 6.6d x 5.822h 33.1806 $8.96 $2.39 $38.73

* F1 - Form 1, MB - Maker Bot, SW - Shape Ways

5.4 Evaluation of Technologies

All of the 3D printing technologies are effective tools for developing the chassis

of a small robot, each with its own set of advantages. The major advantage of using a

desktop 3D printer is that the model is finished in about 10 hours. Shapeways takes

approximately 2 weeks to produce and ship the model. Regarding build quality, the SLS

powder technology used by Shapeways is extremely precise and results in a pristine

model, free of build supports. Both SLA and FDM technologies use build supports,

which must be removed using a knife and diagonal cutters followed by sanding to

account for the remaining burs left behind. The SLA resin material sanded better than the

PLA plastic. All materials received the standoff screws well but the tolerances varied

between them. Some required a small amount of drilling while others did not. The

38

primary point being that each material must be evaluated for the particular use case.

Once a material is chosen, the model can be printed on a different platform but expect

slight differences in tolerances. Many prototypes were developed on the Form1 (SLA),

which led to the final design for the robot in this work. For the final product, one model

was ordered from Shapeways using SLS and another was printed on the Maker Bot 2

using FDM.

5.5 Summary

A 3D modeling program such as Solidworks or Sketchup is required in order to

produce the file that the printer will use to make the part. This modeling stage allows for

clearance issues to be detected before sending the design file to the printer. It also allows

for the visualization of many different configurations. While certain clearance issues can

be spotted in the design software, others are only discovered after the model has actually

been printed. Depending on the type of 3D printer, it may be difficult or impossible to

print a design. If this situation occurs, a redesign is required on the portion that fails to

print. In some cases, a redesign will not solve the problem, at which point a different

printing technology such as SLS should be considered.

39

CHAPTER 6: HARDWARE DESIGN AND CONFIGURATION

Similar to the mechanical design, the hardware design benefits from an iterative

approach that moves from the evaluation board, to the bread board, and to the final PCB.

This allows the individual components and hardware blocks to be verified before final

integration. Essential configuration aspects of the microcontroller are covered in this

chapter specifically targeting the STM32F4. Knowledge of these configurations are

required in order to correctly layout the components. Other microcontrollers will have

similar conventions especially concerning crystal selection. The power system, motor

control, proximity sensors, and communication modules are also covered. These can be

transported to other designs that do not use the STM32F as long as the MCU has the

required hardware blocks. Figure 6.1 shows the high level view of the microcontroller

and underlying hardware modules.

Figure 6.1 Hardware Block Diagram

40

6.1 Microcontroller Configuration

During the hardware design, it is critical to understand how the microcontroller

will boot and what it will use as a clock source. Some MCUs will have multiple boot

mode and clock source options. Other more advanced MCUs such as the STM32F4 have

many options. These options will determine the layout and supporting components.

6.1.1 Boot Modes

One of the very first operations of the STM32F4 is to jump to a particular

memory location. The STM32F4 has a sophisticated bootloader integrated into the chip.

This bootloader allows the system to boot from different regions of memory. At startup,

boot pins are used to select one out of three boot options:

1) Boot from user Flash

2) Boot from system memory

3) Boot from embedded SRAM

The second option, system memory, contains factory written firmware that

initializes the MCU to a state where user firmware can be programed into flash bank 1,

flash bank 2, or SRAM. Typically, user code is programmed into flash bank 1 so that

upon reset the code can be executed on the target platform. Since flash is used, the code

will be retained between power cycles. For faster debugging and prototyping, user code

can be quickly programmed into SRAM, where it can also be executed upon reset with

the limitation that the code is lost after a power cycle. Table 6.1 shows the boot pin

configurations that enable booting to the various regions. Table 6.2 shows the particular

section of the MCU memory map where booting takes place [22].

41

Table 6.1 STM32F4 Boot Modes

BOOT1 BOOT0 Boot Mode Description
x 0 User Flash Memory User Flash is selected as

the boot space
0 1 System Memory System memory is selected

as the boot space
1 1 Embedded SRAM Embedded SRAM is

selected as the boot space

Table 6.2 STM32F4 Memory Map of Bootable Regions

Memory Subsection Address

Block 1
(SRAM)

Reserved 0x2002 0000 - 0x3FFF FFFF
SRAM 0x2001 C000 - 0x2001 FFFF
SRAM 0x2000 0000 - 0x2001 BFFF

Block 0
(FLASH)

Reserved 0x1FFF C008 - 0x1FFF FFFF
Option Bytes 0x1FFF C000 - 0x1FFF C007
Reserved 0x1FFF 7A10 - 0x1FFF 7FFF
System memory + OTP 0x1FFF 0000 - 0x1FFF 7A0F
Reserved 0x1001 0000 - 0x1FFE FFFF
CCM data RAM 0x1000 0000 - 0x1000 FFFF
Reserved 0x0810 0000 - 0x0FFF FFFF
Flash 0x0800 0000 - 0x080F FFFF
Reserved 0x0010 0000 - 0x07FF FFFF
Alias to Flash, system
memory or SRAM
depending on BOOT pins

0x0000 0000 - 0x000F FFFF

6.1.2 Clock Source

The STM32F4 can use 3 different sources for its system clock; the High Speed

Internal (HSI), High Speed External (HSE), or the Phase Locked Loop (PLL). Note that

the PLL requires either the HSI or HSE clock. In a way, this means there are actually 4

clock sources; the HSI by itself, the HSE by itself, the PLL driven by the HSI, or the PLL

driven by the HSE. Table 6.3 shows these clock sources and the possible speeds

associated with them. The RCC clock configuration register (RCC_CFGR) contains bits

42

to both select the clock source and to check the status of which clock source is actually

being used since there are fall back mechanisms in the event one of the clock sources

fails [23].

Table 6.3 Clock Options and Associated Speeds

Source Min Max Unit
HSI
(standalone)

16 16 MHz

HSE
(standalone)

4 26(1) MHz

PLL
(using either HSI or HSE)

24 168 MHz

Choosing which clock source to use depends on the target application and

environment where the MCU will be used. The main reason external oscillators are used

is to gain accuracy, reduce startup time, and resist changes to temperature depending on

which type of external clock source is selected [24]. Anything from a simple RC circuit

to another IC can be used as an external clock source. A crystal resonator resists changes

to temperature better than the internal and IC-based clocks. It also has a faster startup

time. Temperature changes can cause 4% of fluctuation. If this accuracy is not a critical

factor, the internal oscillator can be used to save time and lower component count by 3

[18].

Changes in temperature are not critical for this particular robotic application.

However, the platform being designed is general purpose, which could be deployed to

uncontrolled environments in the future. An external clock source is therefore selected.

In addition, UART data communication does not use its own clock. It instead relies on

the system clock. It is therefore important to have the system clock be as accurate as

possible. The targeted radio communication uses UART, so with these factors in mind

43

the HSE crystal resonator was chosen. Since low power is not of critical consideration,

the maximum clock speed of 168 MHz is desired. To achieve this speed, the HSE will be

used to drive the PLL, which will multiply up the HSE crystal to the targeted speed. If

power consumption does become of interest, the HSE or HSI can be used in standalone

mode in order to evaluate power consumption at the lower clock speeds. The clock

source chosen for this application uses the PLL driven by the HSE.

Several peripheral clocks are derived from the system clock, such as the

Advanced High Performance Bus (AHB), the Low Speed Advanced Peripheral Bus

(APB1), and the High speed Advanced Peripheral Bus (APB2). These clocks can be

adjusted using the various prescalers. A low speed internal clock (LSI) is used for the

watch dog timer while an optional low speed external clock (LSE) can be used to run a

Real-Time Clock (RTC).

6.1.3 Crystal Selection and Configuration

Parallel resonance crystals contain a load capacitance value in the datasheet and

are the types of crystals to use for external clocks (as opposed to series resonance).

These crystals require 2 loading capacitors and possibly a resistor to make them function

correctly. Choosing these components incorrectly could cause damage to the oscillator or

prevent startup all together. The MCU manufacturer has supplied oscillator

characteristics in the data sheet and a thorough application note in order to help determine

the correct components to be used. The oscillator and microcontroller data sheets should

be used in conjunction in order to determine the correct load capacitors and resistor.

Table 6.4 contains the required values from the data sheet of a suggested 8 MHz crystal

that was verified to be suitable.

44

Table 6.4 8 MHz crystal datasheet values

Crystal ESR 𝑪𝑳 𝑪𝑶
FOXSLF/080-20 80Ω 20pF 7pF

Calculating the oscillator gain margin

Before calculating the components, the crystal specifications must be analyzed in

order to determine if it will work with the microcontroller. The gain margin is used to

decide this and gives a confidence level as to whether or not the oscillator will start. To

calculate the gain margin, the transconductance of the microcontroller inverter (𝑔𝑚) and

the critical transconductance of the crystal (𝑔𝑚𝑐𝑟𝑖𝑡) are taken as a ratio. The oscillator

will theoretically start if this margin is greater than 1. Changes in temperature and other

electromagnetic effects can cause this margin to drop below 1, resulting in oscillation

failure. The common rule of thumb is to have this value be greater than 5 [25]. The

transconductance of the microcontroller inverter (𝑔𝑚) is found in the data sheet for the

STM32F4 and is represented in Equation 6.1. Equations 6.1-6.9 are derived from the

manufacturers application note to calculate the correct components [26].

 𝑔𝑚 = 5𝑚𝐴/𝑉 (min)

6.1

The critical transconductance of the crystal (𝑔𝑚𝑐𝑟𝑖𝑡) is calculated using Equations

6.2, 6.3, and 6.4, where 𝐹 is the crystal frequency, 𝐶0 is the shunt capacitance, and 𝐶𝐿 is

the load capacitance.

 𝑔𝑚𝑐𝑟𝑖𝑡 = 4 × 𝐸𝑆𝑅 × (2𝜋𝐹)2 × (𝐶0 + 𝐶𝐿)2

45

6.2

 𝑔𝑚𝑐𝑟𝑖𝑡 = 4 × 30 × (2𝜋8 × 106)2 × (7 × 10−12 + 20 × 10−12)2

6.3

 𝑔𝑚𝑐𝑟𝑖𝑡 = 0.002158 = 0.221𝑚𝐴/𝑉

6.4

For correct compensation, the transconductance (𝑔𝑚) of the crystal should be

larger than the critical transconductance calculated in Equation 6.4. Equation 6.5 shows

that this is indeed the case.

 𝑔𝑚 > 𝑔𝑚𝑐𝑟𝑖𝑡 , 5𝑚𝐴/𝑉 > 2.158𝑚𝐴/𝑉

6.5

Taking the ratio of 𝑔𝑚 𝑎𝑛𝑑 𝑔𝑚𝑐𝑟𝑖𝑡 provides the gain margin.

 𝑔𝑎𝑖𝑛𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑔𝑚
𝑔𝑚𝑐𝑟𝑖𝑡

= 5
0.221

= 22.62

6.6

The oscillators gain margin is greater than 5 as recommended by the

manufacturer’s application note. The calculations provide confidence that the crystal will

start oscillating when energized. Note that the manufacture’s application note calculated

a gain margin of 44 using an unspecified transconductance value. Since that application

note was released in 2009, several new families of microcontrollers have been released,

so performing the calculations again for this particular MCU proved to be a good

practice.

46

Calculating the external load capacitors

Using an estimate that stray board capacitance (𝐶𝑠) is 10pF, Equation 6.7 solves

for possible solutions to the loading capacitor values.

𝐶𝐿 − 𝐶𝑠 =

𝐶𝐿1 ∗ 𝐶𝐿2
𝐶𝐿1 + 𝐶𝐿2

= 20𝑝𝐹 − 10𝑝𝐹 =
𝐶𝐿1 ∗ 𝐶𝐿2
𝐶𝐿1 + 𝐶𝐿2

6.7

Solving for 𝐶𝐿1 and 𝐶𝐿2 reveals many solutions, some of which are negative or not

common capacitor values. It is common practice to have the two values match. Table

6.5 shows some of the solutions to Equation 6.7.

Table 6.5 Solutions to Equation 6.7

𝑪𝑳𝟏 (𝒑𝑭) 𝑪𝑳𝟐 (𝒑𝑭)

5 -10

14 35

15 30

20 20

30 15

35 14

From Table 6.5, 20pF is the best solution for 𝐶𝐿1 and 𝐶𝐿2.

 𝐶𝐿1 = 𝐶𝐿2 = 20𝑝𝐹

6.8

Calculating the drive level and external resistor

The drive level must be calculated and checked to see if it is greater than or less

than the 𝐷𝐿𝑐𝑟𝑦𝑠𝑡𝑎𝑙 value found in the data sheet. The drive level for FOXSLF/080-20 is

47

given as 100uW [27]. The actual drive level that will be presented to the oscillator from

the microcontroller must be calculated while the oscillator is running with the capacitors.

If the drive level is less than the 100uW rating, then no additional resistor is required. If

it is greater, a resistor is required in order to not damage the crystal from excessive

vibration. Measuring the current flowing into the crystal is an involved process requiring

additional prototyping and test equipment such as a current probe or low impedance

scope probe. Fortunately, the STM32F4 data sheet provides current measurements for

two different oscillators, one of which is similar in specification to the one used in these

calculations (the FOXSLF/080-20). The drive level in Equation 6.9 shows that it is

sending nearly 12 times less power than the maximum ratting of 100uW and therefore

does not require resistor 𝑅𝐸𝑋𝑇.

 𝐷𝐿 = 𝐸𝑆𝑅 × 𝐼𝑄2 = 30 × (532 × 10−6)2 = 8.5𝑢𝑊

 6.9

Oscillator PCB configuration

Figure 6.2 shows the recommended PCB layout from the manufacturer with the

loading capacitors 𝐶𝐿1𝑎𝑛𝑑 𝐶𝐿2 [26]. As stated above, 𝑅𝐸𝑋𝑇 is not needed. Short traces

and the use of a ground plane are encouraged in order to isolate signals and reduce noise.

Figure 6.2 Recommended layout for an oscillator circuit

48

Observations regarding crystal selection

Going back and forth between the gain margin formula and available oscillator

parameters revealed that it was very easy to have a gain margin greater than 5 if the

crystal used was in the 8 MHz range or less. The STM32F4 microcontroller can use

crystal values from 2-26 MHz. Available crystals have a tradeoff between effective

series resistance 𝐸𝑆𝑅 and load capacitance 𝐶𝐿. Lowering the load capacitance will cause

the 𝐸𝑆𝑅 to rise and vice versa. If 25 MHz is used for the oscillator the best gain margin

found was 2.3. Some references suggests a margin of 2 to 3 as sufficient margin which

suggests that perhaps the rule of 5 is over protective [25]. There is however no reason to

use a 25 MHz clock if the PLL will be used as the clock source since any speed between

24 MHz and 168 MHz can be configured for the system clock using even a 4 MHz

crystal. Since the FOXSLF/080-20 8 MHz crystal provides a margin of 22, much greater

than 5, this was the chosen crystal.

6.1.4 Clock Speed Configuration

Contrary to initial intuition, a higher speed crystal does not result in higher system

clock speed. The Phase Locked Loop (PLL) is the mechanism used to multiply a clock

input. To avoid jitter, there is a recommended input clock speed of 2 MHz [23]. Since

the acceptable ranges for the HSE are between 4 and 26 MHz, it does not matter which

crystal is chosen because it will have to be divided down to 2 MHz before entering the

voltage controlled oscillator (VCO) of the PLL. Since a 2 MHz input frequency is

recommended, a crystal value that is evenly divisible by two is desirable. It was

discovered in Section 6.1.3.5 that the higher the crystal clock frequency the lower the

gain margin and hence a risk of oscillator startup failure. Considering these factors, a 4

49

MHz or 8 MHz crystal makes for a good choice, while a 25 MHz clock makes things

more difficult and provides no additional benefits unless perhaps it was used without the

PLL and exactly 25 MHz was needed for an application.

To set the system clock speed, the prescalers and multipliers must be correctly

configured in order to prevent overclocking or underclocking sections of the hardware.

Table 6.6 describes the function of each factor and its calculated value.

Table 6.6 PLL Scale Factor Descriptions and Values

Factor Name Description Calculated Value
PLLM Division factor for the main PLL (PLL)

and audio PLL (PLLI2S) input clock
8

PLLN Main PLL (PLL) multiplication factor for
VCO

336

PLLP Main PLL (PLL) division factor for main
system clock

2

The system clock can now be configured to run at the maximum frequency of 168

MHz using the PLLM, PLLN, and PLLP factors in Equations 6.10 – 6.12.

 𝑃𝐿𝐿 output clock = VCO frequency/PLLP = 336/2 = 168𝑀𝐻𝑧

6.10

 VCO output = VCO input × PLLN = 1MHz × 336 = 336MHz

6.11

 VCO input = PLL input / PLLM = 8MHz/8 = 1MHz

6.12

Note that the reference manual recommends the VCO input speed to be 2 MHz in

order to reduce jitter. It is impossible to reach a 168 MHz system clock if 2 MHz is used.

A VCO input of 1 MHz was used instead since this is an even division of 2 MHz. These

50

factors are then written to the RCC PLL configuration register (RCC_PLLCFGR). Upon

system reset, the HSI oscillator is used as the system clock until the selected clock source

becomes ready as indicated by the status bits. A clock source switch is then allowed and

if successful the status bits will reflect the new clock source that now uses the new

scaling factors. The main PLL configuration parameters cannot be changed once the PLL

is enabled [23].

6.2 Programming/Debugging

6.2.1 Serial Wire Debug

The Serial Wire Debug (SWD) protocol is used in many ARM processors as an

alternative to the traditional JTAG protocol for debugging and trace. Note that SWD still

uses the JTAG protocol as its foundation but implements a two wire connection instead

of six. Consequently SWD does not replace JTAG but instead provides a simpler method

to connect to it. While the SWD protocol itself only requires two wires, a ground and

reset line are also required in order to hold the processor in reset while being

programmed [28].

The STM32F4 Discovery evaluation board provides an onboard debug module

known as STLink, which can be used to program the on board microcontroller or an

external microcontroller embedded in a project. For ease of use and cable routing, 2 8”

jumper wires (16” total length) were used to program the MCU. The STLink utility was

however unable to recognize that a chip was connected. The fast solution to the problem

was to use single 8” jumper wires but this made the programming board awkwardly close

to the target PCB. Probing the SWDCLK and SWDIO lines during a program operation

revealed that the clock was significantly degraded. Figure 6.3 shows the clock signal

51

with significant overshoot. Note that this clock actually works and will allow the chip to

be programmed but this is due to the additional capacitance of the probe. Once the probe

is removed, the chip is no longer recognized by STLink. The actual overshoot and

undershoot is so significant, there are likely double clocks happening.

For variable cable lengths ARM recommends introducing signal buffering with an

inline 100Ω resistor [29]. Before considering a signal buffer it is common practice to add

series resistance of a few hundred ohms in order to alter the RC time constant and

improve the rising edge of the signal. Adding 330Ω series resistors with the SWDCLK

and SWDIO signals improved the signal quality and allowed the chip to be recognized by

STLink. Figure 6.3 shows the original signal followed by the improved signal.

a) overshoot/undershoot

52

b) improved signal - added series 330Ω resistor

Figure 6.3 SWDCLK signals - 16” jumper wires

6.2.2 USART/UART/RS232

Universal Synchronous-Asynchronous Receiver/Transmitter (USART) and

Universal Asynchronous Receiver/Transmitter (UART) are protocols used during serial

data transmission, which disassemble bytes of data into bits and then reassembles the bits

back into the original byte. RS232 (Recommended Standard 232) is a set of electrical

standards used for transmitting data between electronic devices and is commonly used

with USART/UART. It was developed in 1962 and is still a common method for data

transfer due to its simplicity and stability [30]. USART differs from UART in that a

clock is shared between the transmitter and receiver in order to synchronize the data.

This allows for a more efficient data transfer since start and stop bits are not needed.

UART requires that synchronization data must be continuously sent in order to maintain

an artificial clock. Since USART is more efficient over UART, it will be used for data

communication. Depending on the chip configuration, the STM32F4 has up to 4 USART

and 2 UART hardware modules for transmitting data. Native RS232 ports on laptops are

53

extremely rare today. Future Technology Devices International Ltd. (FTDI) makes a

USB cable with an integrated chip that performs the required level shifting and USB

protocol encapsulation. This cable and the STM32F4 Discovery board connect to the

custom RJ45 cable, which then connects to the PCB for ease of use.

6.2.3 Combining SWD and USART into One Cable

During the debug stage of an embedded system, many programming and debug

cycles are done. This is a fairly straight forward process when the board can remain

stationary next to the workstation. With a robotic application, the entire system needs to

be disconnected, placed in the test environment, tested, and then reconnected for further

adjustments to the program. Seven wires are needed to connect both the SWD and

RS232 ports to the programmer and USB RS232 cable. Initially, jumper wires can be

used to connect each of the appropriate pins on the board but this quickly becomes

tiresome and consumes approximately 30 seconds for each iteration. Another option is to

have two separate headers, a 4 pin for the SWD and a 3 pin for the RS232. This is better

but time is still taken to ensure that the polarity is correct so the total time is reduced to

approximately 10 seconds. The fastest cabling solution is a single cable where polarity is

solved with the shape of the connector. An RJ45 Ethernet connector has 8 pins and

robust housing to ensure a correct and solid connection after many connects and

disconnects, making it a suitable candidate for 2 seconds or less connection time [31].

Figure 6.4 RJ45 Ethernet Connector

54

Table 6.7 shows the pinout from the RJ45 connector to the SWD and RS232

modules.

Table 6.7 RJ45 to SWD/RS232 Pinout

RJ45 Pin Color Scheme Module Description Destination Pin
1 White/Orange RS232 RS232 GND FTDI GND
2 Orange RS232 RS232 TX FTDI RXD
3 White/Green RS232 RS232 RX FTDI TXD
4 Blue SWD GND - SWD SWD 3
5 White/Blue SWD SWDCLK SWD 2
6 Green SWD SWDIO SWD 5
7 White/Brown SWD NRST SWD 4
8 Brown UNUSED UNUSED

A custom cable is then made that breaks the connections out to the respective

programmer and USB cable as seen in Figure 6.5.

Figure 6.5 RJ45 Programming / Debug Setup

55

6.3 Power System

Lithium Polymer (LiPo) and Lithium Iron Phosphate (LiFePO4) batteries were

targeted for the power source given the high energy density, small form factor, and low

cost. An initial estimate shows that at peak power consumption, the entire system could

consume approximately 16 Watts of power. Typical power consumption during

operation will be significantly less since the motors are not both on at the same time all

the time and the LEDs/Radio are also not on all the time. In order to measure the actual

power consumption during operation, a current sense IC will be used. Table 6.8 shows

the component power breakdown and then estimates the peak power.

Table 6.8 Estimated Component Max Power Breakdown

Component Quantity Voltage Used Est. Current Est. PWR
Faulhaber Motor 2 6V 1000 mA 6 W
STM32F4 MCU 1 3.3V 400 mA 1.32 W
XBEE Radio 1 3.3V 50 mA 165 mW
IR LED 3 5V 400 mA 3000 mW
FSH7773 IR LED 2 3.3V 400 mA 1320 mW
UV LED 1 3.3V 30 mA 99 mW
LED various 7 3.3V 1400 mA 4620 mW
Total 3.88A 16.524W

Given these peak estimates, the primary supply chosen for the system of

components is a 500mAh two cell (7.4v) LiPo battery with a JST connector rated for 20-

30c discharge. The pack weighs 32 grams and measures 14.5mm x 31mm x 57.5mm. A

similar LiFePO4 pack has also been selected but has 700mAh 6.6v rating. The

dimensions are important since the chassis was designed to fit these packs underneath the

wheel axels. The chassis allows for additional parallel battery packs to be mounted on

the back for longer duration tests.

56

6.4 Motor Control

6.4.1 H-Bridge Circuit

A mechanism is required to control the direction and speed of the brushed DC

motors. In order to provide the ability to rotate the motor shaft forward and backward, an

h-bridge is commonly used. The simplest h-bridge circuit involves 4 transistors and 4

diodes arranged so that digital logic can control the direction of current flow. Additional

analog circuity is required if additional features are desired, such as brake and speed

control. Several integrated circuits are available that integrate one or more h-bridge

circuits into a single low cost package. The TI SN754410, TI DRV8833, and Toshiba

SN754410 were evaluated for this project. The SN754410 is considered a quadruple

half-h driver also known as a dual full h-bridge driver. A dual full h-bridge is capable of

driving 2 DC motors forward and backward independently. While the SN754410 worked

well on the breadboard, it consumed too much space on the final board since it is a

through hole component. The DRV8833 initially appeared to be a valid candidate but

proved to have a design that required 4 PWM inputs as compared to others that only

require 2. The DRV8833 also uses a package developed by TI known as a “Power

Package” or PWP. This package is considerably smaller than other h-bridge ICs but

requires that the bottom center of the package be grounded to the PCB in order to

maximize heat transfer. This requires that the part be re-flowed, which adds to the

assembly time of the unit. Ultimately, the Toshiba SN754410 IC was chosen since it was

a surface mount part that did not require reflow and only required 2 power inputs to

control the speed.

57

6.4.2 Speed Control

In a DC motor, the armature is the current carrying mechanism that spins inside

the casing in order to produce power when used as a generator or to convert power to

mechanical torque via the shaft output. Equation 6.13 shows that the motor speed is

proportional to the back EMF of the armature 𝑉𝐸 and is inversely proportional to the field

flux 𝜙, which depends on the field excitation current [32].

𝑀𝑜𝑡𝑜𝑟 𝑆𝑝𝑒𝑒𝑑 =

𝑉𝐸
𝜙

6.13

Since the field flux is typically a constant, changing the back EMF is used to vary

the speed of the motor. The back EMF is the opposing force of the motor that is

overcome by the applied EMF delivered by a power source. Considering the total

voltage drop across the motor as the back EMF plus the drop due to the current and

internal resistance of the motor, it is clear that varying the armature voltage will

consequently vary the motor speed.

 𝐴𝑟𝑚𝑎𝑡𝑢𝑟𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑉𝐸 + 𝐼𝐴𝑅𝐴

6.14

The motor of interest is rated for 6V but it has been determined through

experimentation that supplying 5V to the motor still produces enough speed for

interesting work in the lab. Consequently, the voltage range targeted for this application

is 0-5V. In order to vary this voltage, pulse width modulation (PWM) can be used.

PWM produces an average voltage by pulsing the supply voltage, 5V in this case, high

for a percentage of time and low for a percentage of time. The total time is the period of

the square waveform. The amount of high versus low is the duty cycle, which can be

58

controlled using a microcontroller. The frequency of this square wave is adjustable and

often in the range of a few kHz to 10 kHz+ depending on the motor.

6.4.3 Stopping vs Braking

Most h-bridge ICs provide the ability to brake the DC motor as opposed to simply

cutting power to it. This is often called “short braking” because shorting the terminals of

a motor will dissipate the generated electrical energy into the armature. In order to not

exceed the electrical ratings of the motor, a resistor is placed across the armature

terminals to dissipate the generated energy [33]. This is done inside the h-bridge IC and

is known as dynamic braking. To measure the difference between stopping and braking,

the encoder outputs and PWM inputs were observed on an oscilloscope. The signals are

not related in time and therefore require that a single sweep be triggered and saved for

analysis. Figure 6.6 shows the difference between a stop and brake under a no load

condition. Observe that the stop condition shows 16/141 pulses of the encoder after

power is cut whereas the brake condition only produces 1/141 pulses. Comparatively, this

is an 11% error vs 0.7% error. Clearly dynamic braking or “short braking” is desired

when precise movements are required.

59

Figure 6.6 H-Bridge Stop vs Brake

60

6.5 Proximity Sensors

6.5.1 LTE-302/LTR-301 IR Emitter and Detector

The LTE-302 is a 940nm IR emitter built into a square side emitting package. It

is spectrally and mechanically matched to work with its counterpart the LTR-301

phototransistor. The side looking package reduces, if not eliminates, the need to baffle

the detector from the emitter. The phototransistor is a NPN type Bipolar Junction

Transistor (BJT). NPN is not an acronym. It instead represents the configuration of

silicon with respect to the Emitter (N-Type semiconductor), Base (P-Type

semiconductor), and Collector (N-Type semiconductor). An N-Type semiconductor has

a spare negatively charged electron while the P-Type has a spare positively charged

electron or “hole.” In a NPN phototransistor, current is allowed to flow once enough

voltage is built between the base and emitter via the photoelectric effect. As a result, no

current flows when it is dark, and the resistance across the emitter and detector is high.

As infrared light is introduced to the sensor, more current flows from collector to emitter,

and the resistance between collector and emitter is reduced.

These effects can be used for proximity detection since light reflects off solid

objects such as walls. A voltage divider in conjunction with an analog-to-digital

converter (ADC) can be used to measure the voltage changes between the emitter and

collector. Since the V_CE nominal voltage of the LTE-301 is 5V, a metal oxide

semiconductor field effect transistor (MOSFET) is required to switch the circuit on and

off using the microcontroller’s 3.3V logic levels. The ability to switch individual emitter

detector pairs is required to prevent sensor A’s emitter being detected by sensor B’s

detector.

61

When nothing is in front of the phototransistor, only the ambient infrared will be

detected and this base level can be marked in firmware as the obstruction free value. In

the same way, an object is placed in front of the detector and its digital value is marked as

the obstruction nearby value. Figure 6.7 shows the emitter with a 270Ω current limiting

resistor and the detector acting as the second resistor in a voltage divider. IRR enables

the circuit and ADCR is sampled by the MCU’s ADC port. Note the importance of the

27k resistor in the voltage divider. The MCU’s ADC voltage supply is allowed to go up

to 5V, allowing voltage measurements up to 5V, but in this design it was configured to

use 3.3V. Since 3.3V is the maximum value that the MCU is configured to measure, the

voltage divider should be configured to output 0-3.3V.

Figure 6.7 LTE-302 / LTR-301 IR Emitter / Detector Circuit

6.5.2 SFH 7773 Integrated IR Emitter and Detector

The SFH 7773 integrated circuit is produced by OSRAM containing two different

phototransistors and an 840nm IR emitter. This allows the chip to detect both ambient

62

and infrared light. It has many configuration registers such as LED current, integration

time, and trigger modes, which allow it to be used in a variety of ways. It uses the I2C

protocol for communication but has one major weakness for robotics applications in that

the address cannot be changed. This requires that each sensor have its own I2C port on

the MCU. The SFH 7773 is designed specifically for smartphone use in order to detect

when the phone is next to a face in order to turn off the backlight and save energy. It also

adjusts the screen brightness based on the ambient light present. For cell phone use, only

one SFH 7773 is needed and therefore additional addressing options were not in the

design.

The SFH 7773 is able to detect objects between 0-15 cm away depending on the

configuration options [34]. To achieve this maximum distance, LED current has been set

to the maximum value of 200mA and the integration time also set to the maximum time

of 2.5mS.

There are many advantages to using an IC with features found in the SFH 7773.

Separate emitter detector components often require a baffle in order to prevent flooding

the detector but the integrated package provides this baffle by default. Without additional

circuitry, separate emitter detector pairs can also be impacted by ambient light in such a

way that recalibration is often required as the light changes. For example, if the sensor is

used outside, the IR emitted by the sun will vary widely depending on cloud movements.

A room mixed with tungsten and fluorescent lamps will have different IR intensities

depending on where the sensor is in relation to the light sources. Since the target

application is robotic, ambient light suppression is of interest. The SFH 7773 has taken

this into account and bursts the LED on at 667 kHz for 3ms and then makes the data

63

available after 7ms [35]. When the emitter receives the 667 kHz light that has reflected

off of a nearby object, the internal circuit applies a filter to suppress the unwanted DC

noise.

Because the target environment for this sensor is a cell phone, the sensor design

took advantage of the two different power supplies that would exist in such an

environment. The LED inside the SFH 7773 is intended to be driven directly from a

single cell 3.7v LiPo battery. The IC itself is to be powered from the regulated 3.3V

supply found on the PCB. The datasheet schematic in Figure 6.8 shows separate ground

and voltage pins for these supplies [34]. Since this robotic application uses a 7.4v LiPo,

additional design factors need to be considered. Because fast response time is desired for

navigation, the LED is programmed to sample every 10ms. This creates noise at 100 Hz

on the ground plane that powers the LED. In early stages of development for this project,

these grounds were tied together. It was discovered that the noise was beyond the

filtering capabilities of the IC and its recommended decoupling capacitors. While the

chip still functioned, the I2C data had erratic values that did not meet the data sheet

specifications. It is theorized that the chip was constantly being reset by the power

disruptions.

64

Figure 6.8 SFH 7773 Datasheet Schematic

In order to overcome the 100 Hz noise found on the common ground plane

several modifications were made to the design. The primary goal is to emulate the DC

power supply that the IC is expecting for the LED power. A dedicated 3.3V regulator

was placed near the SFH 7773 to power the LED. Several different regulators were

considered but ultimately the MCP1702 was chosen due to its low cost. The low price

point comes with performance tradeoffs that must be taken into account. Figure 6.9

shows the load response of the MCP1702 after receiving a 100mA load step [36].

Figure 6.9 MCP1702 - Dynamic Load Response

65

In order to overcome a volt or more of voltage sag and overshoot, 100uF

capacitors were placed at the input and output of the regulator. While these capacitors

added to the cost of the regulator, the total cost was still nearly a dollar less than the high

performance regulators. Despite the dedicated regulator and load capacitors, the issue of

the common ground plane still requires attention. In a cell phone application, a dedicated

ground trace would route directly from the GND_LED pin of the SFH 7773 to the ground

of the battery. This prevents the pulsating LED ground currents from interfering with the

logic power supply. In order to provide similar ground isolation, a separate ground pour

was laid around the FSH 7773 and its decoupling capacitors. A bridge onto the island

was placed for V_LED and a bridge off of the island was placed for GND_LED. These

paths have enough physical distance from the logic ground power pins to reduce

interference. To prevent capacitive coupling between the relatively large capacitors and

the top copper layer, a restricted routing zone was placed above the components. Figure

6.10 shows the Eagle CAD board view of this design.

66

Figure 6.10 Ground Isolation for SFH 7773 Power Supply

Since the main board is vertically mounted and forward facing on the robot,

daughter cards need to be mounted at 90° angles in order to sense nearby objects or walls

to the left and right. The 7-pin header in Figure 6.10 (bottom) holds a right angle female

header that receives the FSH 7773 breakout board. Figure 6.11 shows the CAD layout of

the daughter card containing the FSH 7773, decoupling caps, and pull-up resistors for I2C

lines SDA and SCL. The jumper is used to connect the pull-up resistors if the main board

67

or bread-board test environment does not already have pull-up resistors. The emitter and

detector are mounted in such a way that the detector is always in front of the emitter

regardless of whether the card is on the left or right side of the robot. Figure 6.12 shows

the daughter cards after assembly.

Figure 6.11 FSH 7773 Daughter Card

Figure 6.12 FSH7773 Proximity Sensor Daughter Cards

68

6.6 Communication

Various forms of RF communication exist that can be used for wireless data

transport. Bluetooth, 802.11 b/g/n WiFi, and 802.15.4 have the means to communicate

data between embedded systems. Extensive research exists in the area of wireless sensor

networks using the ZigBee protocol. ZigBee uses the 802.15.4 radio standard and builds

a networking layer on top of it. This allows for mesh, star, and other network

configurations. The existing research and designs for wireless sensor networks can

integrate into this robotic platform as it has an XBee radio module in the design. XBee

has added yet another layer to the 802.15.4 standard in that they have taken the ZigBee

protocol and have implemented it into a modular block of hardware that has additional

microprocessor-like functionality. Figure 6.13 shows how the XBee not only provides a

mechanism to use ZigBee, but it also provides GPIO functionality through DIO 0-3. It is

often the case that data is being sent but the packets are not decoding correctly on the

firmware side. To assist in debugging, red and yellow LEDs have been added to the RX

and TX lines as a means of providing visual feedback to the developer during

communication transactions.

69

Figure 6.13 XBee Schematic and Debug LEDs

6.7 Assembled Motherboard PCB

The PCB was professionally fabricated and the 100+ parts were manually

soldered to the board. The majority of the components use surface mount technology and

require extra care when soldering in order to prevent bridges between pins and

overheating the part. Figure 6.14 shows the side of the PCB that will face the front of the

robot. The PCB mounts vertically on the robot, which allows for forward interacting

sensors to directly mount to the PCB. Through hole components require the legs to be

bent so that the sensor can face the appropriate direction. Figure 6.15 shows the back

side of the PCB, which holds a small percentage of the components. The XBEE radio,

RJ45 programming connector, and power management components have been placed on

the back side to prevent overly complicated routing on the top layer. De-coupling

70

capacitors have been placed beneath ICs whenever possible in order to provide the most

effective reduction of power ripples.

Figure 6.14 Robot Motherboard - Front

71

Figure 6.15 Robot Motherboard - Back

6.8 Summary

The hardware design contains many different subsystems that should be tested on

a modular basis. Knowledge of the boot modes, crystal selection, and clock speeds are

needed during the early stages of the embedded system design. A faster high speed

72

crystal does not equate to a higher total clock speed when using the phase locked loop.

Establishing this understanding from the start allows for a much safer design choice

regarding the crystal selection. Testing each of the subsystems using an evaluation board

and bread board revealed numerous issues. These issues were resolved before fabricating

the PCB. Similar to 3D printing, certain issues were discovered after PCB fabrication.

This requires wire wrap fixes and trace cutting. In the revised PCB, the routing mistakes

were fixed and a RJ45 connector was added to ease the programming process. Issues will

arise when integrating and prototyping the embedded system. Solving these issues

invariably leads to new creative solutions, which can be leveraged in future designs.

73

CHAPTER 7: FINAL ASSEMBLY

When designing robots for collaboration, it is important to keep the final

assembly in mind. Reducing the total number of parts will reduce the assembly time if

numerous robots are to be built. In this particular design, only two Phillips head screws

are required. These screws hold the PCB to the chassis while the rest of the components

are friction fit into the chassis. The battery acts as a holding mechanism to prevent the

motors from sliding out of place. Total assembly time is less than one minute. The PCB,

chassis, battery pack, and motors assemble together as seen in Figures 7.1, 7.2, 7.3, 7.4,

and 7.5.

Figure 7.1 Robot Disassembled

74

Figure 7.2 Assembled Robot - Front

Figure 7.3 Assembled Robot - Back

75

Figure 7.4 Assembled Robot - Bottom

Figure 7.5 Robot with Programmer/Serial Port

7.1 Summary

The final assembly of all the components into the chassis is a significant

milestone in a robotic project. This step reveals any clearance issues that were not

accounted for in CAD. As mentioned in the hardware design chapter, an RJ45 port was

76

added to the final PCB design. During final assembly, the motor mount clearance was

overlooked. For a prototype of one or two robots, a small amount of dremel work can

remedy this problem. Details like this are of much more concern if many units had been

fabricated, all of which would now require re-work.

77

CHAPTER 8: SOFTWARE DESIGN

In an embedded system, the terms firmware and software are often

interchangeable. When a real-time operating system (RTOS) is running on the

microcontroller, it is more appropriate to use the term software since a large amount of

the underlying hardware has been abstracted. In this chapter, key operating system

concepts are discussed, such as cooperative and pre-emptive scheduling. The layered

architecture and threading models are discussed, all of which are good design practices

for any embedded system.

8.1 Cooperative Scheduling

The simplest code structure in an embedded system will run without direct use of

an operating system. Cooperative scheduling is an operating system concept but is still

used indirectly in embedded system code. Without an operating system, a main code

loop is constructed that sequentially executes functions. The main loop can be thought of

as a process and each of the functions can be thought of as tasks. Coding practices

recommend that function calls use as little of the processing unit as necessary so that

other blocks of code can execute on time. This is sometimes referred to as the “good

citizen” model. Problems with this model arise when functions do not behave as a good

citizen and take more time from the processor than what is agreed upon. This can be due

to a bug in the code or an unforeseen delay on a sensor reading.

78

8.2 Preemptive Scheduling

A more advanced embedded system will start to incorporate a solution to the

problem of “bad citizens” found in the cooperative scheduling. An interrupt service

routine (ISR) is a hardware component of the microcontroller that will execute a block of

code provided a trigger. A timer is often used as a trigger so that the code will execute at

designated intervals. Other triggers could be the push of a button or an exceeded

threshold from a sensor reading. Preemptive scheduling uses ISRs to prevent tasks from

running beyond their allowed number of clock cycles. This is called the time quantum

and can be configured to meet application-specific needs. Preemptive scheduling

algorithms will use the concept of priority in order to optimize performance. This design

allows each task to be assigned a priority level ranging from most important to least

important. The algorithm can then evaluate the tasks that are in a ready queue and

appropriately allow critical applications to run ahead of least critical applications. In a

robotic system, it is very important to not allow the robot to damage itself or property.

Since obstacle avoidance is of high priority, this should be given precedence over less

critical tasks such as collaboration work.

8.3 Real-Time Operating System

An operating system changes into a Real-Time Operating System (RTOS) once it

can meet or guarantee timing deadlines. An RTOS is also characterized by the ability to

make rapid context switches, which is the ability to switch between tasks. The RTOS is

also extremely small in size since it is typically executed on embedded hardware.

ChibiOS has been selected as the RTOS to be used in this work given the widespread use

in 32-bit ARM microcontrollers such as the STM32F4. It maintains an open source code

79

base, which has allowed for extensive adaptations in many different fields of use. Other

open source projects such as LCD library uGFX have assumed the same attitude of

cooperation and provided compatible APIs that integrate into ChibiOS. ChibiOS is not

the only RTOS that will run on the STM32F4. Other RTOSs can also be used such as

FreeRTOS, Micrium, and RTLinux.

8.4 Software Layers

Using a real-time operating system suggests by default that a layered approach

will be used in the software design. The RTOS provides the first layer of abstraction to

the hardware and also adds the critical scheduling mechanisms needed to support

threading and task management. The microcontroller requires an initial configuration in

order to start the hardware modules used in the application. After this is successfully

executed, the APIs are made available to the developer, including the serial port, I2C,

ADC, PWM, and timers (both virtual and physical). Routines are developed based off of

these APIs in order to share data, and navigate and map terrain based off of sensor

readings. A complete set of routines have been developed for this work to verify the

hardware functionality.

These functions have been built into layers, each layer unable to function without

the layer beneath as shown in Figure 8.1. This practice allows for high code re-use and

portability since application-specific details are removed through abstraction.

80

Figure 8.1 Software Layers

8.5 Threading Model

One of the major benefits to using an RTOS is the ability to create functional

blocks of code, which can be organized into separate threads or tasks. The RTOS allows

a thread to be created for tasks like sensor sampling. The thread can be given a priority

in order to allow more or less clock time to be used for its execution. Each thread is then

given a quantity of time to use the clock in a round robin style of rotation. Even though a

sensor might take 10ms of time or more to come back with a value, code execution need

not halt altogether. The motors can continue to drive forward while another thread

maintains the counts of the encoders. Once the sensor does return with data, the thread

then finishes execution and responds accordingly. Procedural programming is arguably

the simplest form of programming but does not lend itself to highly complex tasks.

Multi-threaded systems, in some ways, allow for easy to understand procedural threads to

be run in a highly efficient manner. An example of how threads work in a robotic system

is shown in Figure 8.2.

81

Figure 8.2 Threading Model

8.6 Collaboration in Hardware and Software

8.6.1 Identical Code Base

When mass deploying large numbers of systems, it is important to design the code

so that the same software can be used on each robot. This allows for the project to scale

with minimal complications. Managing multiple code bases is inefficient and prone to

human error.

8.6.2 Unique Identification

In order to collaborate with many systems, and maintain identical software, there

still exists a need to uniquely identify each robot. Many of the same concepts behind

operating systems and task management begin to apply at the system level. Each robot

needs its own unique identifier so that collaboration routines can execute tasks based on

the states of each robot. Robots are assigned levels of availability much like tasks are

assigned priority in an operating system. If for example a robot was in the process of

82

climbing a narrow ramp and was not able to safely turn around, it would set an

appropriate availability level so that the coordinator would not ask for assistance from

that robot. In the case of the microprocessor in this work (STM32F4VGT6), the chip

itself has a unique 96-bit identifier stored at 0x1FFF7A10. A table of friendly names is

easily built in order to associate the identifier with “robot_1”. This provides easily

recognizable debug outputs for development. If the microcontroller does not have a

unique identifier, the wireless radio certainly will. In this work, the radio is detachable,

which makes it less desirable for use as a unique identifier. Robot_1 could have

robot_2’s radio if the radios were put into a box and then randomly re-attached. Tying

the uniqueness to the chip prevents this scenario.

8.6.3 Robot States

With each robot uniquely identifiable using the chip id, a list can be generated of

available robots (or nodes). Each node is a resource with an associated data structure that

represents its state and attributes. Table 8.1 shows how each structure relates to each

robot in the form of an array containing doubly linked lists. The collaboration routine is

then able to make intelligent decisions to optimize use of each node based on health,

availability, location, and power level.

Table 8.1 Robot State Structures

 Health Availability Location Power Level

robot_1 [0-2] [0-1] [x,y] [0-9]

robot_2 [0-2] [0-1] [x,y] [0-9]

robot_n [0-2] [0-1] [x,y] [0-9]

83

8.6.4 Atomic Access to Hardware

Each robot must be equipped with a means to communicate with each node. This

communication enables collaboration and is done using an 802.15.4 wireless radio in this

work. The collaboration routine can run on a computer local to the network, which is

acting as a coordinator. The collaboration routine can also be distributed across all of the

available nodes. For this work, the use of a coordinator was used. In either case, atomic

(or exclusive) access to the data structures is required in order to prevent race conditions.

Operating systems use mechanisms such as semaphores and mutexes to properly control

the access to critical areas of code. These same concepts can be applied to the larger

problem of multiple independent systems sharing data.

8.7 Collaboration Algorithms

In general, an algorithm is a set of rules, simple or complex, which are used by a

device to make decisions. The device could be a human, robot, or anything that can take

action based on the results of the algorithm. Algorithms in robotics give a form of

intelligence and enable autonomous behaviors. In individual robotics, maze-solving

algorithms (never intended to be used with robots) can be used to allow a robot to find

the exit to a maze.

An algorithm needs to be custom tailored in order to meet the specific design and

end goal criteria. In a system of robots, a collaboration algorithm must be developed in

order to efficiently manage their locations and activities. The algorithms developed will

also depend on the type of network used for the system. If a star network is used, the

central computer will run the algorithms and issue orders to the client robots. If a mesh

network is used, the algorithms run individually on all of the nodes and each member

84

must resolve conflict using shared data. The robot may only have data from a few

neighboring nodes and must make decisions without knowledge of every robot’s current

state.

An applicable task to collaborative robotics is to create a map of a large area.

This could be a square mile of land requiring containing landmines, which need to be

disarmed. If a star network was used to solve this problem, the algorithm would be

designed to disperse the individual robots into optimal intervals and then send them on

task to mark the landmines. Large obstructions in the area will require the robots to

navigate around them. This will lead to scenarios where robots must not collide with

each other. If a faster route around the obstacle is discovered by a nearby robot, an

intelligent decision can be made to have robots re-route and take the new path. A level of

uncertainty must be accounted for. The algorithm must decide if it is better to continue

around an object of unknown size, or turn around and take a known path around the

object. This scenario is depicted in Figure 8.3.

Figure 8.3 Group Obstacle Avoidance

85

As the number of units increase, the time required to solve a problem should

decrease. This is true until the number of units becomes so many that more time is spent

avoiding collision with other robots. This is another area where algorithms will be used

to evaluate the number of robot detections compared to the number of fixed obstacle

collisions. If robots are clustered together, preventing efficient movement, action can be

taken to allow the robots to disperse to different regions.

Keeping track of the number of robot-to-robot collusions allows a threshold to be

set. Once this threshold is exceeded, algorithms tailored for specific situations can be

applied. In the case of congestion, the logic in Figure 8.4 can be applied in order to

resolve the conflict.

1) If surrounded by neighbors, stop moving.
2) If movement forward is possible, move forward.
3) If movement left is possible, move left.
4) If movement right is possible, move right.
5) If movement backward is possible, move backward.

Figure 8.4 Outward Dispersion Algorithm

If the robots were placed in the center of a room in a group all facing one

direction, this algorithm would evenly disperse them from the center out. Changing the

order or removing certain steps will have significant effects on the group. If line 5 was

completely removed, the robots would only advance forward and more time would be

required to evenly disperse them. If line 5 is moved up to the third position as shown in

Figure 8.5, the movement outward would be more elongated since forward and backward

movement has a higher precedence over lateral movements.

86

1) If surrounded by neighbors, stop moving.
2) If movement forward is possible, move forward.
3) If movement backward is possible, move backward.
4) If movement left is possible, move left.
5) If movement right is possible, move right.

Figure 8.5 Linear Dispersion Algorithm

In the collaboration demonstration of this work, the algorithm is very simple.

Data sharing allows each robot to stay on task until a critical update occurs. The critical

update in this scenario is that the light has been detected and assistance is needed. A

visualization of this algorithm can be seen in Figure 8.6.

Figure 8.6 Top Level Collaboration Algorithm

87

Algorithms will often nest within other algorithms. In the scenario in Figure 8.6,

two additional algorithms will execute once assistance has been requested. In this work,

two robots are searching for the target. When assistance is requested, the algorithm is

simple, send the only available robot. If many robots were tasked, the coordinator must

search through a list based on current states such as distance, availability, and tool set (if

the robots were not identical). Once the designated robot(s) are selected to assist, they

must run a modification of the original top-level algorithm, which allows them to reach

the appropriate destination.

8.8 Summary

A layered approach is often taken in any embedded system even if an RTOS is

not used. It is however valuable to maintain this style of coding when using an RTOS

since it provides the same benefits of portability and readability. The use of threads to

manage logical blocks of code provides more of a software development environment

compatible to algorithm and collaboration research. While threads can simplify some

aspects of the logic, it introduces new factors that must be kept in mind such as

concurrent access to the same device. It should be noted that while the RTOS does

provide benefits of abstraction, the ability to navigate datasheets is still required in order

to solve the problems that will invariable arise. In order to allow system collaboration,

care must be taken when managing shared resources. Operating system concepts such as

mutexes and semaphores prevent race conditions. Collaboration algorithms are required

in order to efficiently manage large resource pools.

88

CHAPTER 9: TEST RESULTS AND HARDWARE VERIFICATION

Testing the individual components and subsystems before the final integration

gives a certain degree of confidence that the entire system will function as designed.

There are however many new issues and design challenges that can arise after integration.

Electrical resonance and noise are common problems. The same set of tests done on a

standalone basis should be executed on the final design. In this section, battery pack

discharge data is analyzed in order to assess the value of LiFePO4 batteries in robotic

applications. In addition, the LTE-302/LTR-301 proximity circuit and FSH 7773 sensors

are tested to ensure proper functionality given various configurations. To test the entire

system as a whole, a proportional derivative controller is used to autonomously navigate

the robot down a corridor. Collaboration is demonstrated through a group problem

solving exercise.

9.1 Battery Pack Discharge Data

As mentioned in the component selection chapter, two different battery types can

be used to power the system. It is important to note that the two packs are very similar in

size and price but the amp hour rating of each pack is different. Figure 9.1 helps to

illustrate the discharge differences between LiFePO4 and LiPo. Since the 5V regulator

for the motors requires 500mV of overhead, operation should terminate at 5.5V. The

microcontroller will monitor the current sense IC for this value and then halt execution.

In the case of the LiPo pack, the entire capacity can be used, which lasts 35 minutes

89

given a 700mA load. In the case of the LiFePO4, the pack sinks to 5.5V after 56 minutes

due to its higher capacity. The pack can safely be discharged to 4V, so the last 2 minutes

of runtime is unused. While both packs can be used, the LiFePO4 has a better value

proposition for robotics since it is slightly cheaper, safer, more environment friendly, and

can accept 4 times the charge rate over LiPo. The negative aspects of LiFePO4 batteries,

weight and discharge rate, have low impact for small robots.

Figure 9.1 LiFePO4 vs LiPo - Discharge Data

9.2 LTE-302/LTR-301 Proximity Circuit Test Results

In order to verify the traditional IR sensing circuit from Figure 6.7, a series of

tests were performed on the assembled robot with and without a shroud. The shroud is

placed around the phototransistor to prevent ambient light interference. In theory this

makes sense, but actual data will be used to make the final decision on whether or not to

use a shroud. In addition, the amount of IR light emitted will be evaluated. In theory the

more light emitted, the more light reflected and a higher change in resistance can be

detected. Turning on more LEDs comes at the cost of more power. Testing will show

90

how many IR LEDs are needed in order to detect a distance of 5 cm (the distance needed

to turn around without scraping the chassis against an obstacle).

9.2.1 LTE-302/LTR-301 Distance Measurements - Without Shroud

Figure 9.2 shows the response when 1 IR LED is on and Figure 9.3 shows the

same test but when 3 IR LEDs on. Figure 9.4 makes the comparison clear and illustrates

that all 3 available LEDs should be turned on in order to detect the target distance of 5

cm. It is also clear that 5-6 cm is the maximum distance that can be reliably detected.

Figure 9.2 No Shroud - 1 IR LED on

Figure 9.3 No Shroud - 3 IR LEDs on

91

Figure 9.4 No Shroud - 1 vs 3 IR LEDs on

9.2.2 LTE-302/LTR-301 Distance Measurements - With Shroud

Placing a shroud (masking tape) around the phototransistor and performing the

same tests as done without the shroud reveals some interesting points. Figures 4.4 and

4.5 show the same tests as done before with 1 LED on and 3 LEDs on. Figure 9.7

summarizes the data and again shows that 3 LEDs are required to reach 5 cm reliably.

Figure 9.5 Shroud - 1 IR LED on

92

Figure 9.6 Shroud - 3 IR LEDs on

Figure 9.7 Shroud - 1 vs 3 IR LEDs on

9.2.3 LTE-302/LTR-301 Shroud vs No Shroud Comparison

In order to determine if a shroud should be used, the data in Figure 9.8 is

considered. The maximum range when a shroud is used is slightly less than the version

of the test without a shroud. While ambient light is prevented from interfering from the

sensor, it also appears that some of the intended radiation is unable to be received. Note

that these emitter and detectors are side emitting and a shroud could be more beneficial

93

on the 5 mm round versions that are available. Operation without the use of a shroud is

the recommended configuration provided this data.

Figure 9.8 Shroud vs No Shroud - 3 LEDs on

9.2.4 LTE-302/LTR-301 Noise Test

Since this is an analog circuit, a certain amount of noise is to be expected. The

analog-to-digital converter will track this noise as it produces the digital values. Figure

9.9 shows the amount of standing noise that exists from 5 cm distance over a 1 second

period of time. There is approximately 100 units of variance out of the 4096 units

available from the 12-bit ADC equating to 2.4% error. This value is important to know

so that this variance can be accounted for correctly in firmware.

94

Figure 9.9 No Shroud, 3 LEDs On, 5cm - 1 second noise test

9.2.5 LTE-302/LTR-301 Response Time

Before this circuit can be properly utilized for proximity detection, the response

time of the phototransistor needs to be known. In Figure 9.10, it can be seen that it takes

approximately 3ms for the phototransistor to transition between its minimum and

maximum values. This is in response to a step input, which is the IR LED turning on.

95

Figure 9.10 IR Phototransistor Response Time

9.3 FSH 7773 Proximity Sensor Test Results

9.3.1 Distance Measurement Data

The same sets of experiments were performed on the FSH 7773 proximity sensor

where possible. Since the IC handles the analog-to-digital conversion internally, the data

is read from the I2C bus. Figures 9.11 and 9.12 show the left and right sensor daughter

card readings as the obstacle moves from 0 to 30 cm away. The range extends to at least

12 cm reliably and resembles an inverse square plot. Figure 9.13 compares the two

sensors and verifies that they are indeed identical in performance. This characteristic will

prove valuable when applying these measurements to a control algorithm since no

calibration will be required.

Figure 9.11 FSH 7773 Left

96

Figure 9.12 FSH 7773 Right

Figure 9.13 FSH Left vs Right

The noise test for the FSH 7773 shows a large amount of improvement over the

previously analyzed proximity circuit. While there is only 8 bits of resolution with the

FSH 7773, the data is much less noisy. Figure 9.14 shows that there are only 2 units of

change out of 256 units of resolution equating to 0.7% error.

97

Figure 9.14 FSH 7773, 5cm - 1 second noise test

9.3.2 FSH 7773 Ground Isolation

As mentioned in Section 6.5.2, the FSH 7773 sensors were designed for use in

cell phones and consequently required additional design considerations. Figures 9.15 and

9.16 show the shared standing noise when measuring the voltage to the IC’s logic and the

IC’s LED power. As the LED pulses on and off with a 200mA load, the common ground

path causes the IC to reset and fail to operate.

98

Figure 9.15 FSH 7773 - VDD using a common ground

Figure 9.16 FSH 7773 - V_LED using a common ground

After applying the ground isolation techniques described in Section 6.5.2, the

measurements were again taken to verify beneficial changes. Figure 9.17 shows the logic

99

power supply to the IC while using an isolated ground. The abrupt voltage changes

found previously have been removed and a stable power supply has been provided to the

IC. Figure 9.18 shows the LED power supply as it reacts to the dynamic load response of

the regulator. The noise is no longer coupled to the IC’s logic power supply as intended

by the design.

Figure 9.17 FSH 7773 - VDD using ground isolation

100

Figure 9.18 FSH 7773 - V_LED using ground isolation

9.4 Proportional Derivative Controller

In order to demonstrate interesting autonomous movement of the robot, a narrow

corridor is used as a testing ground. The robot shall traverse the corridor and maintain

safe distance from the left and right walls. Once the robot reaches the end of the corridor,

it shall rotate 180° and return. If the robot is able to perform this routine several times

without becoming unstable, then all parts of the hardware will have been verified

including the software API. With this verified, additional collaboration functions can be

built.

The proportional derivative controller is a sum of the proportional error and

derivative error. The result is the total error from the zero position. The zero position in

this case is the center line of the corridor. Figure 9.19 shows the amount of error seen by

the robot as it begins navigating 7 cm away from the center line. Each 100 unit of

division on the y-axis represents approximately 1 cm of distance. Using this reference, it

101

can be seen that there was approximately 2 cm of overshoot and that stability was

reached after 8 seconds.

Figure 9.19 PD Error - Proportional Component

The derivative component of a PD controller prevents excessive overshoot when

large corrections are required. Without the derivative component, the robot would

overcorrect so much that it would actually face one of the walls, get confused, and begin

to spin somewhat randomly in an attempt to correct for error. Figure 9.20 shows the

derivative component as it accounts for changes in error with respect to time.

102

Figure 9.20 PD Error - Derivative Component

Combining both of these components into the total error allows this sum to be

used for error correction as the robot navigates the corridor. The pulse width modulation

controller uses this error value and proportionally adjusts the speed of each motor

(positively or negatively), which results in a stable system. This data is not intended to

show success of the controller but instead to show the successful integration of all

components.

Figure 9.21 PD Error - Total

103

9.5 Testing Collaboration

With all of the components successfully verified, the notion of collaboration can

begin to take shape. The key component to designing robots for collaboration is the

ability to build multiple units with minimal time and cost. In this work’s example, a

minimal number of components were chosen in order to reduce the complexity and build

time. A second unit was built with minimal effort and is seen in Figure 9.22.

Figure 9.22 Multiple Robots

As mentioned in Section 6.6, an XBEE radio was chosen to communicate with the

robots. Robot collaboration can take advantage of both mesh and star networks, which

XBEE supports. In order to demonstrate a simple form of collaboration with these

systems, a star network was chosen.

104

With communication now possible between the two robots, a scenario can be

constructed that can demonstrate the usefulness of group robotics. A problem that group

robotics can solve is the need to locate something of interest in a large area. This could

be hazardous waste, a fire, or an injured person in a building. When multiple robots are

deployed to find the unit of interest, different actions can be taken once the unit is found.

If, for example, a contaminated object was detected, other robots could navigate to that

location and assist with cleanup disposal.

For the robots in this work, the following scenario has been constructed. Two

robots are inserted into a hallway system at different locations. They are both tasked to

find an item of interest, in this case an LED flashlight. Once the light is found by one

robot, that robot will send a signal to the other robot indicating that the unit has been

found and assistance is required. The other robot will then navigate to that location. This

experiment is shown in Figure 9.23.

Figure 9.23 Robotic Collaboration Demonstration

105

9.6 Summary

The hardware verification process described in this chapter provides benefits

beyond simple confirmation that the components integrate without conflict. The data

collected can now be assembled into a datasheet for the robot, which will become a

reference when writing the software. The testing performed for this platform collected

the response times and distance capabilities of the proximity sensors. It also revealed that

using a shroud around the phototransistor reduced ambient light interference but had a

detrimental effect on the maximum range. The ground noise issues discovered earlier in

the prototyping process have been solved. In order to ensure a complete and functional

design, a routine should be generated that will exercise all components of the system.

For this work, a proportional derivative controller was used to navigate the robot back

and forth down a corridor without becoming unstable, thus proving a successful design.

Successfully building a second robot with minimal effort proves that the design is

suitable for collaborative robotics. Multiple systems are easily added to form a group

that can be used to demonstrate collaboration techniques and algorithms.

106

CHAPTER 10: CONCLUSIONS AND FUTURE WORK

Designing and fabricating robots for collaborative behavior is a challenging task

that requires persistence in order to overcome the many obstacles that come with

embedded and mechanical systems. Breaking the entire task into manageable phases

allows the project to reliably grow as each component will have reliance on the others.

For the system in this work, all aspects of the initial design goals have been meet and

verified on the final assembly. The mechanical design was crucial in order to provide a

stable platform for the embedded system, motors, and battery pack to integrate into an

autonomous robot. The value of quick turn prototyping systems was made clear as both

3D printing and PCB fabrication services were utilized.

This platform uses the latest software and microprocessor technologies and can

provide a suitable stepping stone for researchers of collaborative robotics. The research

also serves as a guide to others and seeks to inspire and accelerate the design process.

Further revisions of this platform will advance the capabilities even further. The

following suggestions are made as avenues where design changes could be made and

features could be added.

10.1 Mechanical Changes

The chassis could benefit from an analysis of the skid plates that keep the robot

from tilting forward and backwards. The skid pads use Teflon pieces cut to shape as a

means of reducing friction while sliding across the labs test table. On a clean lab table,

107

this option is viable and was the primary test location for this research. Other tests are

likely to be done on the floor where more complex navigation scenarios can be

constructed. The robot by no means was ever designed to go off road, but the smooth

floor of a university should certainly be an option. It was discovered that dirt on tiled

floors, hardly visible to the human eye, eventually accumulated on the wheels and caused

the robot to loose traction. The skid pads would catch somewhat abruptly and at times

place too high of a demand on the PD controller, resulting in wall collusions. One

solution to this problem could be to remove the pads and simply allow the robot to rock

back and forth slightly as it moves forwards and backwards. This would change the

angle of the skid plates and reduce the amount of area the plates are in contact with the

ground.

10.2 Sensor Changes

The FSH 7773 sensor IC proved to be a highly reliable and robust sensor package

that integrates well into robotic systems. The LTE-302 / LTR-301 voltage divider circuit

on the other hand proved to disappoint when it came to its range abilities. While it was

able to detect enough distance to avoid collusion, there was little room for error. It also

had no means to cope with ambient light changes. For these reasons, it is recommended

to replace the LTE/LTR components with a forward facing FSH 7773 IC. Since the FSH

7773 does not have configurable addressing, an additional I2C module is required. The

microcontroller chosen has a total of three I2C hardware modules and one is currently

unused.

108

10.3 Robot vs Wall Detection

In order to map a room, robots must be able to detect and react differently to the

presence of a robot that it would if it detects some other stationary obstacle. An

ultraviolet LED has been added to the center of the robot in this work that could be used

for this purpose. Next to the ultraviolet LED is an ambient light sensor that was

originally intended to detect the presence of ultraviolet light coming from an oncoming

robot. The ambient light sensor detects all visible wavelengths of light making it

impractical to use as the sensor for robot detection. A better approach is to use an

ultraviolet sensor such as the Rohm Semiconductor ML8511. This sensor will ignore the

ambient light wavelengths that are not of interest. Since the emitter and sensor are only

mounted on the front of the robot, only head on collisions can be detected. A solution to

emit UV in a uniform manner around the robot would be an interesting area of research.

109

REFERENCES

[1] PBS, "TESLA Inside the Lab Remote Control," [Online]. Available:

http://www.pbs.org/tesla/ins/lab_remotec.html.

[2] Carnegie Mellon, "Robot Hall of Fame - Unimate," [Online]. Available:

http://www.robothalloffame.org/inductees/03inductees/unimate.html.

[3] International Federation of Robotics, "Industrial Robot Statistics," [Online].

Available: http://www.ifr.org/industrial-robots/statistics/.

[4] Campbell, Adam and A. S. Wu, "Multi-agent role allocation: issues,

approaches, and multiple perspectives," 2010.

[5] Sahin and Erol, "Swarm Robotics: From Sources of Inspiration to Domains of

Application," Middle East Technical University, Ankara, 2005.

[6] Christensen and A. Lyhne, "Morphogenesis: Shaping swarms of intelligent

robots," Universite Libre de Bruxelles, July 2007. [Online]. Available:

http://videolectures.net/aaai07_christensen_mssir/.

[7] Gokhale and A. A., "Collaborative Learning Enhances Critical Thinking,"

1995. [Online]. Available:

http://scholar.lib.vt.edu/ejournals/JTE/v7n1/gokhale.jte-

v7n1.html?ref=Sawos.Org.

[8] A. Stroupe, T. Huntsberger, A. Okon, H. Aghazarian and M. Robinson,

"Behavior-Based Multi-Robot Collaboration for Autonomous

Construction Tasks," Intelligent Robots and Systems, pp. 1-6, 2005.

110

[9] M. Tauchi, Y. Sagawa, T. Tanaka and N. Sugie, "Collaboration among a

Group of Self-Autonomous Mobile Robots with Diversified

Personalities," in 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Sendal, Japan, 2004.

[10] X.-j. Wang and C.-y. Shi, "Collaboration planning and conflict resolution

among multi autonomous robots," in Intelligent Robots and Systems

'94. 'Advanced Robotic Systems and the Real World', Munich, 1994.

[11] Dibangoye, Amato, Buffet and Charpillet, "Exploiting Separability in

Multiagent Planning with Continuous-State MDPs," in Proceedings of

the Thirteenth International Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS-14), Paris, France, 2014.

[12] S. Zhiguo, W. Junming, L. Xu, W. Zhiliang and T. Jun, "IRGS Protocol

Based Mobile Service Robot Positioning and Multi-robot," in

Proceedings of the 30th Chinese Control Conference, Yantai, China,

2011.

[13] B. Zhang and S. Gao, "The study of ZigBee technology's application in

swarm robotics system," in Artificial Intelligence, Management

Science and Electronic Commerce (AIMSEC), Deng Leng, 2011.

[14] J. Wan, Y. Wang, Q. Qin and Y. Li, "Multi-robots' communication system

based on ZigBee network," in International Conference on Electronic

Measurement & Instruments, Beijing, 2009.

[15] C.-H. Chen and S.-T. Liou, "An Embedded Computing Platform for Robot,"

in 2008 IEEE International Conference on Sensor Networks,

Ubiquitous, and Trustworthy Computing, Taichung, 2008.

[16] A.P.Godse. and V.S.Bagad, Mechatronics and Microprocessor, 1st ed.,

Technical Publications Pune, 2009, pp. 2-58.

[17] TI, "Motor Control - Stepper Motors," [Online]. Available:

111

http://www.ti.com/lsds/ti/apps/motor/stepper_motors/overview.page.

[18] STMicroelectronics, "STM32F405xx Datasheet," June 2013. [Online].

Available:

http://www.st.com/web/en/resource/technical/document/datasheet/DM

00037051.pdf.

[19] Hobbico, "LiFe Source Lithium Iron Phosphate Battery Instructions,"

[Online]. Available: http://manuals.hobbico.com/hca/lifesource-

manual-v2.pdf.

[20] THRE3D, "3D Printing Processes," [Online]. Available:

https://thre3d.com/how-it-works/3d-printing-process.

[21] 3. Systems, "3D Printing Materials," [Online]. Available:

http://www.bitsfrombytes.com/content/3d-printing-materials.

[22] STMicroelectronics, "AN2606 STM32 microcontroller system memory boot

mode," June 2011. [Online]. Available:

https://my.st.com/public/STe2ecommunities/mcu/Lists/cortex_mx_st

m32/Attachments/18225/AN2606.pdf.

[23] STMicroelectronics, "RM0090 STM32F405xx/07xx reference manual,"

February 2014. [Online]. Available: http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/reference_manual/DM

00031020.pdf.

[24] Williamson and Tom, "AP-155 Oscillators for Microcontrollers," Intel, 1983.

[25] Phillips, "AN00085 - Start up behavior of the UAA3220TS crystal oscillator,"

[Online]. Available:

http://www.nxp.com/documents/application_note/AN00085.pdf.

[26] STMicroelectronics, "AN2867 Application note Oscillator design guide for

ST microcontrollers," [Online]. Available: http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/application_note/CD0

112

0221665.pdf.

[27] Fox, "HC49SLF Crystal Datasheet," [Online]. Available:

http://www.foxonline.com/pdfs/hc49slf.pdf.

[28] ARM, "ARM Debug Interface v5 Architecture Specification," 8 February

2006. [Online]. Available:

http://www.pjrc.com/arm/pdf/doc/ARM_debug.pdf.

[29] ARM, "RVI and RVT System Design Guidelines," 2010. [Online]. Available:

http://infocenter.arm.com/help/topic/com.arm.doc.dui0517b/DUI0517

B_system_design_reference.pdf.

[30] I. Poole, "EIA RS 232 Standard," [Online]. Available: http://www.radio-

electronics.com/info/telecommunications_networks/rs232/eia-rs232-c-

d-standards.php.

[31] FCI, "8 POL SHALLOW LATCH CONNECTOR," 31 August 2012.

[Online]. Available:

http://portal.fciconnect.com/Comergent//fci/drawing/c-bmj-0102.pdf.

[32] Barnes and Malcolm, Practical Variable Speed Drives and Power Electronics,

Elsevier Lincare House: IDC Technologies, 2003, pp. 21-23.

[33] Keljik and J. J., Electricity Four: AC/DC Motors, Controls and Maintenance,

9 ed., Ohio Electric Motors, 2009, p. 85.

[34] OSRAM, "SFH 7773 Ambient Light and Proximity Sensor with Integrated IR

Emitter," 1 March 2013. [Online]. Available: http://www.osram-

os.com/Graphics/XPic0/00082442_0.pdf/SFH%207773,%20Lead%20

(Pb)%20Free%20Product%20-%20RoHS%20Compliant.pdf.

[35] OSRAM, "Application Note SFH 7773," 12 December 2011. [Online].

Available: http://www.osram-

os.com/Graphics/XPic9/00063497_0.pdf/Proximity%20Sensor%20SF

H%207773.pdf.

113

[36] Microchip, "MCP1702 Datasheet," 2010. [Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/22008E.pdf.

	ON DESIGNING COLLABORATIVE ROBOTIC SYSTEMS WITH REAL-TIME OPERATING SYSTEMS AND WIRELESS NETWORKS
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	1.1 Solving Problems with Robots
	1.2 Solving Problems with Many Robots
	1.3 Swarm Robotics vs Collaborative Robotics
	1.4 Summary of Definitions for this Research
	1.5 Thesis Framework

	CHAPTER 2: PREVIOUS WORK AND EXISTING TECHNOLOGY
	2.1 Group Robotics
	2.2 Collaboration Using ZigBee Protocol
	2.3 Existing Robotic Platforms
	2.4 Summary

	CHAPTER 3: THE DESIGN PROCESS
	3.1 Task Dependency and Workflow
	3.2 Summary

	CHAPTER 4: COMPONENT SELECTION
	4.1 Integrated Motor Features
	4.1.1 Encoders
	4.1.2 Gear Reduction

	4.2 Motors
	4.2.1 Brushed DC
	4.2.2 Stepper Motor
	4.2.3 Servo Motor
	4.2.4 Continuous Rotation Servo Motor

	4.3 Surplus Motors
	4.3.1 Faulhaber 1524E006S123
	4.3.2 Motor Summary

	4.4 Wheel and Hub
	4.5 Microcontroller
	4.6 Power Supply
	4.7 Summary

	CHAPTER 5: MECHANICAL DESIGN
	5.1 Required Skillset
	5.2 3D Printing Technologies
	5.2.1 Form1 - Stereolithography (SLA)
	5.2.2 Maker Bot 2 - Fused Deposition Modeling (FDM)
	5.2.3 Shapeways - Selective Laser Sintering (SLS)

	5.3 Design for Stability and Minimal Material
	5.3.1 Chassis Revision 1 - Initial Concept
	5.3.2 Chassis Revision 2 - Material Reduction
	5.3.3 Chassis Revision 3 - Motor Rotation
	5.3.4 Chassis Revision 4 - Increase Stability
	5.3.5 Summary of Build Material and Cost

	5.4 Evaluation of Technologies
	5.5 Summary

	CHAPTER 6: HARDWARE DESIGN AND CONFIGURATION
	6.1 Microcontroller Configuration
	6.1.1 Boot Modes
	6.1.2 Clock Source
	6.1.3 Crystal Selection and Configuration
	Calculating the oscillator gain margin
	Calculating the external load capacitors
	Calculating the drive level and external resistor
	Oscillator PCB configuration
	Observations regarding crystal selection

	6.1.4 Clock Speed Configuration

	6.2 Programming/Debugging
	6.2.1 Serial Wire Debug
	6.2.2 USART/UART/RS232
	6.2.3 Combining SWD and USART into One Cable

	6.3 Power System
	6.4 Motor Control
	6.4.1 H-Bridge Circuit
	6.4.2 Speed Control
	6.4.3 Stopping vs Braking

	6.5 Proximity Sensors
	6.5.1 LTE-302/LTR-301 IR Emitter and Detector
	6.5.2 SFH 7773 Integrated IR Emitter and Detector

	6.6 Communication
	6.7 Assembled Motherboard PCB
	6.8 Summary

	CHAPTER 7: FINAL ASSEMBLY
	7.1 Summary

	CHAPTER 8: SOFTWARE DESIGN
	8.1 Cooperative Scheduling
	8.2 Preemptive Scheduling
	8.3 Real-Time Operating System
	8.4 Software Layers
	8.5 Threading Model
	8.6 Collaboration in Hardware and Software
	8.6.1 Identical Code Base
	8.6.2 Unique Identification
	8.6.3 Robot States
	8.6.4 Atomic Access to Hardware

	8.7 Collaboration Algorithms
	8.8 Summary

	CHAPTER 9: TEST RESULTS AND HARDWARE VERIFICATION
	9.1 Battery Pack Discharge Data
	9.2 LTE-302/LTR-301 Proximity Circuit Test Results
	9.2.1 LTE-302/LTR-301 Distance Measurements - Without Shroud
	9.2.2 LTE-302/LTR-301 Distance Measurements - With Shroud
	9.2.3 LTE-302/LTR-301 Shroud vs No Shroud Comparison
	9.2.4 LTE-302/LTR-301 Noise Test
	9.2.5 LTE-302/LTR-301 Response Time

	9.3 FSH 7773 Proximity Sensor Test Results
	9.3.1 Distance Measurement Data
	9.3.2 FSH 7773 Ground Isolation

	9.4 Proportional Derivative Controller
	9.5 Testing Collaboration
	9.6 Summary

	CHAPTER 10: CONCLUSIONS AND FUTURE WORK
	10.1 Mechanical Changes
	10.2 Sensor Changes
	10.3 Robot vs Wall Detection

	REFERENCES

