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ABSTRACT

The ability of science to produce experimental data greatly surpasses our cur-

rent ability to effectively visualize, conceptualize, and integrate the vast volumes

of available data into a unified understanding of how complex biological systems

work. This inability is a hindrance to scientific progress, and is particularly daunting

when one considers multidimensional and shape-based observations as in the field

of regenerative biology. For example, for at least the last 200 years, scientists have

been interested in the exceptional ability of Planaria to regenerate lost tissues from

damage, and there is a large amount of experimental data available on this organism.

However, until recently, none of these experiments had been collected into a single

database. To this end, a repository (PlanformDB) has been created that includes

formal descriptions of planaria experiments, including morphological descriptions of

the worms using a graph formalism. PlanformDB opens the door to automated,

formal approaches for analyzing and understanding the large amount of available

experimental data for planaria.

This work seeks to automate the search for models of planaria regeneration against

the Planform database with experiments. Regeneration models not only help the

understanding of how planarians maintain their shape based on the experiments

observed up to today, but also provide a tool to predict the outcomes of future

experiments. An automated model discovery framework was setup to simulate the

experiments described in PlanformDB using an agent-based modeling platform com-
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bined with evolutionary search to identify plausible mechanisms for the biological

behavior. The automation has been achieved through the linking of the simulation

platform to PlanformDB and development of fitness metrics that enable the evolu-

tionary search.

The proposed fitness metrics were developed, implemented, and then evaluated by

assessing their fitness landscapes. A fitness landscape represents the range of possible

fitness values that can be assigned to various models. In this work, the roughness,

flatness, and the presence of local maxima in the fitness landscapes were evaluated

for the proposed fitness functions. To further test the utility of the proposed fitness

functions, a simple evolutionary search was performed.
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1

CHAPTER 1

INTRODUCTION

1.1 Problem Description

Robust regulatory control of organism morphology, including tissue and organ regen-

eration, appears in many different animal and plant kingdoms and species, and has

been extensively studied and analyzed by scientists [7, 21, 22]. Despite extensive effort

and focus on this core problem in biology, and bringing to bear the incredibly powerful

modern analytic tools developed by molecular biologists and bioninformaticians, the

problem of deriving, understanding, and learning to control the robust, large-scale

patterning properties of complex systems from the data about its components is yet

to be solved.

Take, for example, planaria worms. Planaria are free-living flatworms that exhibit

much of the complexity of the vertebrae systems: a well-defined nervous system

with most of the same neurotransmitters as human brains, eyes, intestinal tract,

and bilateral symmetry [2]. Planaria have the sensory capabilities to detect light

[11, 10], chemical gradients [30, 28], vibration [14], electric fields [11], magnetic fields

[13, 8], and weak γ radiation [9]. Yet even though the main components constituting

the planarian morphologies are known and have been described extensively, the
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features guiding the regulatory and patterning properties of planarians remain largely

unknown. An especially interesting feature of planaria worms that has been puzzling

the minds of scientists for over 200 hundred years is the flatworm’s ability to recover

from even severe injuries. In 1776, Peter Simon Pallas discovered that bisecting a

planarian organism did not kill it [35]. Instead, the two pieces of the cut worm

regenerated into two intact worms (Fig. 1.1a). In 1898, Thomas Morgan showed

that a cut worm piece constituting 1/279th of the total worm weight was able to

regenerate into a new worm with many internal organs and a bilateral symmetry

[31]. Since Pallas’ and Morgan’s discoveries, many more experiments have been

performed on planaria aiming to understand the mechanics behind the animal’s

remarkable regenerative capabilities [33], [23]. However, scientists still lack a complete

understanding of the planarian regeneration process [23].

In an attempt to explain the processes guiding the flatworm regeneration, several

models of planarian regeneration have been proposed. Among these models are the

gradient model [29], serial threshold theory of regeneration [38], reaction diffusion

mechanisms of patterning [39, 15], bioelectric - electrophoretic model [19], dorso-

ventral interaction model [17], and the intercalary regeneration model [1]. However,

not a single proposed model explains comprehensively the mechanisms of all the

known components of planarian regeneration, and it is likely that the worm utilizes a

complex combination of several of these strategies, and perhaps even strategies that

have yet to be elucidated, to achieve its robust regenerative ability. Unfortunately,

it is extremely difficult to develop a model by hand that can accurately explain

the hundreds of experiments performed on planaria worms currently found in the

literature. Even if such a model existed, with new experiments and findings being

continually published, the model is likely to need continued parameter adjustment
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and fine tuning in order to explain these experiments. The problem of finding a

regeneration model to fit all the experiments performed on planarians can be made

more tractable by using computational tools to assist researchers in model formation,

fine tuning, and testing.

A good example of such a tool is an evolutionary search algorithm combined with

a cell-based modeling platform (CellSim Genetic Algorithm, or CSGA) used by the

Andersen lab to discover and tune models of planarian regeneration [3]. Evolutionary

search algorithms are inspired by biological evolution and based on the principle of

survival of the fittest. Often regarded as generate-and-test algorithms, evolutionary

algorithms use operators like mutation and crossover on populations of individuals to

generate previously unseen individuals and test the goodness of these individuals via

fitness evaluation [37]. An automated evolutionary algorithm can be used to combine

and adjust the currently existing regeneration models to find a model that would be

able to explain all the planarian regeneration experiments.

A big issue in automatized model discovery is evaluation of regeneration models

against experiments found in the literature. Most regeneration models describe the

metabolic states of the worm, which are difficult to evaluate due to the temporal

variations in the worm’s metabolic states. Shape is a more objective way of assessing

and validating metabolic state of an organism. When defined using a standardized,

controlled vocabulary, shape allows organisms to be described in an unambiguous

fashion. Shape-based ontologies have been successfully applied to describing organ-

isms and separate organs in the fields of biology and medicine. For example, the EQ

method used entities (e.g., head, eye, tail) and associated qualities (e.g., small, round,

reduced length) to describe the phenotypes of mice [6]. The Edinburgh Mouse Atlas

Project (EMAP) implemented a spatio-temporal framework for capturing spatially
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organized and mapped data, in which a directed acyclic graph (DAG) was used to

represent is-a-part-of relationships between tissues and organs of a mouse embryo

[5]. Maglia et al. described a generic anatomical ontology that can be applied

to different amphibian species, where the anatomy of an organism is described as

a semantic network consisting of concepts and relationships, such as is-fused-to,

is-formed-from [27]. The utility of shape ontologies goes beyond the descriptions

of species phenotypes: shape formalisms have been applied in clinical diagnostics and

analysis of tumor growth [36].

One of the main reasons for the popularity of shape-based ontologies is flexi-

bility. Shapes of organisms or organs described using a standardized language can

be easily juxtaposed using computational methods. The computational flexibility

of shape-based ontologies works in favor of automatizing the search for planarian

regeneration models. Recently, the Levin lab at Tufts University developed a shape-

based formalism for describing planarian morphologies as graphs of connected regions

[26]. Flexible graph notation allows the organisms to be described in terms of nodes

connected by links at specific angles. This formalism led to the implementation of

a database for storing planarian morphologies and the experiments performed on

planarians reported in the literature (PlanformDB) [25]. The database stores the ex-

periment manipulations as a tree with planarian morphologies as leaves, which allows

representation of a variety of experiments that can be performed on planaria. The

Levin lab is working on populating this database (PlanformDB) with all experiments

performed on planaria currently found in literature.

The introduction of the database of experimental manipulations and outcomes will

revolutionize the process of creating and validating models of planarian regeneration.

Using PlanformDB, scientists will be able to search for morphologies that match the
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shape of the proposed regeneration model. While the majority of databases allow the

experiments to be searched by keywords, the PlanformDB database enables searching

experiments with the worm’s shape as the key. Graph comparison algorithms allow

discovery not only of exact morphology matches but also ones that are similar to

the sought-for shape. Graph-matching algorithms can be used to automate the

validation of proposed regeneration models against the regeneration experiments

found in literature. In addition to validation of regeneration models, the integration

of PlanformDB can help create new models of regeneration if combined with an

automatic tool to tweak the regeneration model parameters. CSGA perfectly fits the

description of such a tool.

I have integrated the database of experiments and their outcomes (PlanformDB)

into the CSGA evolutionary search engine with the aim of developing an automated

system for searching and validating computational models of development. In this

system, an experiment can be pulled from the database and simulated in the sim-

ulation platform. In the past, in order to specify an experiment to be run in the

cell-based platform, the user had to manually create a sheet of cells and specify

operations to be performed on the morphology, such as cuts and injection of lysis

or RNAi. This process of creating an experiment setup was painfully inefficient and

slowed down the search for computational models of the planarian regeneration. The

new automated system includes automatic access to the database for searching and

pulling the experiments and morphological outcomes to use during the evolutionary

search.

Models found by the evolutionary search can be evaluated against the planarian

experiments in PlanformDB. However, to evaluate models against experiments during

the evolutionary search, flexible fitness functions are needed. As a part of this work,
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I developed a fitness function in which cellular outcome for a model generated by

the simulation platform is converted into the graph representation and compared

against the target individual from PlanformDB using the graph edit distance metric

[12, 26]. The graph edit distance evaluator is a very flexible fitness function, since the

graph formalism can be used in simulation platforms other than CellSim. However,

a weakness of the graph edit distance evaluator is that it does not directly provide

molecular targets for individual cells, but rather operates at the abstract level of a

planarian morphology.

As a regeneration model is evaluated, it is beneficial to consider several features

of the simulation outcome, including the general shape of the worm and its metabolic

state. Fitness functions that evaluate an individual based on several features during

the evolutionary search are called multi-objective fitness functions and are used to

expand the evolutionary fitness landscape, as well as provide multiple search directions

for the evolutionary algorithm [20]. During the run of the evolutionary search, a set of

individuals resembling the target may be found. These individuals may differ slightly

by the sizes of their regions or by the constants in their metabolic networks, but

they all equally can be attributed as solutions. Using multiple fitness functions to

expand the evolutionary search will expand the set of acceptable individuals and thus

greatly speed up the search for regeneration models. Considering some of the features

may be in conflict with each other, by expanding the set of acceptable solutions, the

evolutionary search may find solutions that would be impossible to discover by using

a fitness function based only on one metric [18]. From these considerations, several

additional fitness functions were developed to evaluate the models of regeneration,

in addition to the already proposed graph edit distance fitness function. In this

work, three fitness evaluators are described and evaluated: the previously mentioned
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graph edit distance evaluator, and the overlay and difference distributions fitness

functions. Each fitness function is evaluated by formally analyzing the roughness

and flatness of the fitness landscapes produced by the evaluators. The utility of the

fitness functions is also addressed by performing a simple evolutionary search for a

target model capable of regenerating head and tail regions after a transverse cut is

performed on the individual.

1.2 Thesis Statement

1.2.1 Objectives

The aim of this thesis is to automate the evolutionary search and discovery of com-

putational models of planaria regeneration that faithfully reproduce experimental

outcomes reported in the literature. Automation of the evolutionary search required

development of flexible fitness metrics and integration with a database of existing

experiments and experiment outcomes. This thesis fulfills the following objectives:

1. To develop robust techniques for comparing cellular models from the simulation

platform to the search targets taken from the experiment database.

2. To automate the extraction of experiment manipulations and morphologies from

the experiment database to the cellular platform.

3. To automate application of experiment manipulations from the experiment

database to the cellular morphologies.
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1.2.2 Procedures

In order to achieve the proposed automation of evolutionary searches, the following

components have been implemented and integrated with the CellSim simulation

platform:

1. Fitness functions evaluate planarian regeneration models found during the

evolutionary search.

(a) Graph Edit Distance Fitness Function converts a CellSim simulation

snapshot into a graph representation. The converted graph is compared

against the target morphology from PlanformDB using a graph edit dis-

tance comparison technique [32] to yield the fitness value. The graph edit

distance algorithm was originally integrated and implemented to interface

with PlanformDB in C++ by Dr.Daniel Lobo as a part of Planform pro-

gram [24]. This work integrates the C++ implementation of the algorithm

with the Python implementation of the CellSim simulation platform and

the CellSim Genetic Algorithm evolutionary search platform.

(b) Overlay Fitness Function converts the target morphology graph from

PlanformDB into an intermediate polygon representation and overlays it

with the CellSim simulation snapshot. It then calculates how far each cell

in the snapshot is from becoming the desired region in the polygon target

morphology. The algorithm assigns each cell a subfitness between 0.0 and

1.0 based on how far that cell is from becoming the target region, and

calculates the final fitness value by averaging the subfitnesses of all cells in

the simulation snapshot.
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(c) Difference Distribution Fitness Function uses a statistical method

developed by Robert Osada that creates distribution signatures for both

the target morphology represented as a cellular snapshot and the CellSim

simulation outcome [34]. The two signatures are compared to yield the

fitness value that will guide the evolutionary search. This fitness function,

originally implemented by Dr. Timothy Andersen and Dr. Jeffrey W.

Habig in Python, is very slow and inefficient due to the limitations of the

Python interpreted language. This work improves the fitness function by

converting it into the C programming language, and thus greatly speeds

up the comparison process.

The graph edit distance and the overlay fitness functions interface directly with

the PlanformDB and pull the search targets from the database. The difference

distribution fitness function uses a cellular snapshot as the target, so it does

not interact with PlanformDB.

2. Experiment manipulation applicator automates performing of experiment

manipulations from the experiment database, such as cuts, on the cellular model

in the simulation platform.

3. Database reader extracts morphologies and experimental manipulations from

the experiment database.

4. Database writer saves planarian morphology descriptions to the experiment

database. During the GA run, scientists using CellSim and CSGA may be inter-

ested in observing the status of the evolutionary search by analyzing morphology

graphs for the discovered models and the fitness values these models received.
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This work provides the capability of saving unique models found during the

search to a morphology database associated with the current search.

1.3 Modeling a Classic Planaria Regeneration Experiment

To give a graphical motive for the automation of the evolutionary search, an exam-

ple of non-automated set up for running regeneration experiments on a simulation

platform is presented. As shown in the classic regeneration experiment (Fig. 1.1a),

when a worm is bisected laterally, the resulting fragments lack a head or tail region.

Each fragment has the potential to regenerate into independent, intact worms with

the appropriate shape and architecture over the course of roughly ten days. As a

validation of the cell-modeling platform (CellSim) for studying planaria regeneration,

Dr. Jeff Habig of the Andersen lab developed a model by hand that simulated these

simple experiments.

In the experiment, a simple worm architecture of 420 rectangularly arranged cells

is used as an abstraction for an intact worm (Fig. 1.1b). At the beginning of a

simulation, the head, trunk, and tail regions of the simulated worm are defined by

manually injecting one of three indicator resources into the appropriate cells (head,

hCell ; trunk, iCell ; tail, tCell). Each simulation is run for approximately 200 steps to

allow the network to reach homeostasis. As shown in panel 1 of Fig. 1.1b, simulated

worms consist of head (blue) and tail (purple) regions separated by a trunk (yellow).

Next, a transverse cut is simulated by manually injecting a resource, Lysis, into

a section of cells located at or near the mid-line of the worm. The injections of

resources such as hCell or Lysis into specific cells require the identification of cells
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Figure 1.1: This figure depicts a classic planaria regeneration experiment involving
a transverse cut of an intact worm, followed by the regeneration products for each
fragment. The real experiment is shown in (a) along with the (b) simulation and
(c) graph representations. In each case, the second panel represents the worms
immediately following the cut, whereas the third panel depicts the regeneration
outcome at a later time.
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that should be injected by manual calculation of the rectangular region coordinates

in the simulation where the cells are present. After the injection of Lysis, simulations

consisting of two worm fragments are advanced 200 steps prior to evaluating the

emergent outcomes.

As shown, the manual set up of even a simple experiment can be time-consuming.

In order to simulate the many experiments described in the literature, some level of

computational automation should be achieved.

1.4 Tools

1.4.1 Computational Platform and Evolutionary Search

CellSim, the computational platform used in this work, acts as a digital wet bench

and allows simulation of a variety of different scientific experiments performed on

planaria worms, like the one shown in Figure 1.1. CellSim includes a development

engine where the primary computational unit is a virtual cell. Each cell in the

platform acts as an autonomous agent and is capable of growing, dividing, dying,

and regulating metabolic and genetic networks in response to changes in its local

environment. To model the cell’s complexity, each cell can contain several subunits

capable of in-cell communication. Subunits provide spatially distinct internal cell

chemistry, facilitate cell growth and division, and provide internal and arbitrary cell

shaping capability. In this work, flatworm morphologies are simulated with a flat

sheet of genetically identical, autonomous cells, each consisting of one and two cellular

subunits. Three indicator resources (hCell, iCell, and tCell) have been introduced to
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Figure 1.2: CSGA evolutionary search flow.

CellSim to represent three main regions of a planaria worm, head, trunk, and tail,

respectively. Figure 1.1b shows worms simulated using one subunit cells.

In addition to the development engine, the CellSim computational platform in-

cludes an evolutionary search engine and selection to facilitate the discovery and

validation of planarian regeneration models. During the evolutionary search, CellSim

simulates an experiment and returns the cellular outcome of the experiment. The

cellular outcome produced by the simulation platform is compared to the target

morphological outcome, yielding a fitness value to guide the evolutionary search.

The flow of the evolutionary search performed in conjunction with the simulation

platform is shown in Figure 1.2. In the figure, the simulation starts off with an intact

worm consisting of head (blue), trunk (yellow), and tail (purple) regions. The worm

is simulated for 200 steps to reach a stable metabolic state, and then a transverse cut

is performed on the worm. The simulation runs for 200 more steps and the simulation

outcome of the morphology is evaluated against the target outcome. In the figure, the

target outcome is evaluated against a morphology represented as a Planform database

graph. However, the flexibility of CSGA does not require the target morphology to
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be of a particular representation. For example, the difference distribution fitness

function uses a hand-crafted CellSim simulation snapshot as the target morphology.

1.4.2 A Database for Storing Planarian Experiments

The automation of search for the models of planarian regeneration that fit all the pla-

narian experiments reported in the literature would be intractable without automatic

access to the described experiments and outcomes. Lobo et al. developed a graph

ontology for efficient storage, search, and mining of the regenerative experiments

performed on planaria worms [24]. Planform formally encodes a wide range of

morphologies, manipulations, and experiments. Instead of relying on imprecise and

ambiguous natural language descriptions of worms, Planform formalizes planarian

phenotypes using labeled mathematical graphs. A graph is an abstract representation

of a set of objects that can be connected to each other via edges. In Planform

formalism, the graph nodes represent body regions, while the edges describe the

adjacency between two regions. Nodes and edges can store geometric characteristics

of the worm anatomy, such as body region type, overall shape and size of regions, the

rotation of organs, and other properties.

The planarian wild-type morphology is characterized by a long flat body consisting

of three main regions: head, trunk, and tail (Figure 1.3a). The head region is most

anterior and contains two brain lobes and two eyes; the trunk contains the pharynx

(a muscular tube used for both food intake and waste disposal); the tail region is the

most posterior. A nerve cord runs along the length of the worm, starting in the brain

lobes and ending in the tail.
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Figure 1.3: A wild-type planarian organism (a), along with its graph representation
(b) in the Planform software tool.

Following the formalism, Figure 1.3b shows a schematic representation of the

morphology in Figure 1.3a, in which the circles denote vertices and red lines denote

edges. Each vertex is labeled with the region type it represents, such as head, trunk,

and tail. Region locations are stored as edge labels containing the distance, angle, and

location of the border between the two connected regions (represented as green dots

in Figure 1.3b). Region shapes are abstracted as a list of numerical parameters that

represent the distance between the center of the region and its border in a specific

direction (red dots connected to region vertices in Figure 1.3b). Non-connected

regions have four parameters corresponding to the right, anterior, left, and posterior

directions; regions connected to one region have three parameters corresponding to
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+90, +180, and +270 degrees with respect to the direction of the edge (head and tail

regions in Figure 1.3b); regions connected to more than one region have a parameter

for each bisector of every two consecutive edges (trunk region in Figure 1.3b). The

formalism can also represent organs, such as a ventral nerve cord, brain, and eyes, as

shown in Figure 1.3b; however, the organs are beyond the scope of this work and will

not be discussed here.

In addition to the formalism describing the shapes of planarians, the Levin lab

introduced formalism for experiment manipulations. The formalism includes four

basic manipulation types: remove (an area of the organism is cut out and discarded),

crop (an area of the organism is cut out and the rest is discarded), and join (two

worm pieces are grafted together). The manipulations performed in an experiment

are abstracted as a mathematical labeled tree, in which the nodes represent basic

manipulations and the edges connect manipulation outputs and inputs. The leaves

of the manipulation tree represent the morphologies used to start the experiment,

while the root of the tree presents the morphology whose regenerative capabilities are

tested. Figure 1.4 shows a simple experiment tree consisting of three nodes - one is

the starting morphology, and the rest are cuts performed on it. The root of the tree

is a morphology whose head and tail regions have been removed.

The above described formalisms for experiment manipulations and planarian shapes

are used as a schema for PlanformDB. PlanformDB is a database that has been

created to store all experiments performed on flatworm planaria published in the

literature. The population of the PlanformDB is currently underway. To facilitate

the use of the formalism and the Planform database, Lobo et al. designed and imple-

mented a software tool called Planform (Planarian formalization). Planform software

provides an intuitive GUI where users can view the experiments and morphologies
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Figure 1.4: A manipulation tree for an experiment involving removal of the head and
tail regions.

encoded in either the centralized database of planarian experiments published in

literature or with personal databases created by any user. Despite the flexibility of

Planform software, it does not provide any APIs to access the database experiments

and morphologies programmatically. As a part of this thesis, an API to read and

write to the database of planarian experiments is developed.
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1.4.3 A Sample Regeneration Model

One of the most interesting properties of planaria regeneration is their ability to

robustly regenerate head and tail regions in the correct orientation relative to the

starting worm. The Andersen lab set to explore the problem of how the worm is

able to determine whether the head, or tail (or both) is missing, and the proper

location for regeneration of the missing parts - without the added complexity of

regenerating other structures, such as eyes, intestinal tract, and nerve cord. To

explore this problem, and to facilitate the evaluation of different fitness metrics, a

simplified model of planarian regeneration has been hand-designed by the Andersen

lab that utilizes cell polarity as the basis for regeneration of the correct anterior and

posterior ends. The polarity of each cell is established using hPole and tPole resources

that the cell accumulates in opposite ends. The model is composed of a flat sheet

of 168 cells arranged as a rectangular abstraction of an intact worm. Every cell in

the polar model is autonomous but is controlled by an identical genetic network and

each cell knows exactly where the head and tail (north and south) regions are located

in relation to itself due to its internal polarity. Head, trunk, and tail regions in this

model are represented by cell state indicator molecules, hCell, iCell, and tCell, whose

homeostasis is ensured by a set or promoter genes.

The polarity model is capable of regenerating tissue damage from simple transverse

cut experiments. In response to a simulated cut, a Regeneration signal activates a

Regeneration pathway, which simultaneously promotes head and tail development

responses. The cut site only exposes one end of a cell to pick up the Regeneration

signal, dependent on the polarity of the cell in relation to the damage. The exposed

portion of the cell is then stimulated to regenerate either head if the exposed end is
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pointing north or tail if the exposed end is pointing south.
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CHAPTER 2

GRAPH EDIT DISTANCE FITNESS FUNCTION

2.1 The Graph Formalism for Comparing Worms

The challenge of automating the search for mechanistic interpretations of planarian

regeneration is made more tractable by the database and formalism developed to

describe experiments and their outcomes [24]. Automating the search process using

this data requires the ability to compare the results of simulation data to the graph

representations stored in the database. The conversion of the cell simulation results

into a graph representation has been chosen for a number of reasons, including

increased flexibility. For instance, an alternative modeling platform can be introduced

or substituted for CellSim with minimal changes as long as its output can also be

translated into this graph formalism. More importantly, many methods exist for

operating on, transforming, and comparing graphs, which can be included as part of

the fitness evaluation step of an automated evolutionary search. Among those are

the algorithms designed to measure the similarity between two graphs. From the

comparison algorithms, the graph edit distance algorithm is the most flexible and

powerful and was chosen as it deals with structural errors and any type of graph node

and edge labels [32].
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The graph edit distance is defined as the minimum number of distortions required

to transform one graph into another graph. These distortions are referred to as graph

edits, where each edit has a defined cost associated with it [32]. A particular sequence

of edit operations required to transform one graph into another is called an edit path,

and the total cost of the edit path is its graph edit distance. Graphs that are similar

to each other typically have small edit distances, whereas dissimilar graphs have large

edit distances. The cost of each type of graph edit operation varies and is dependent

upon the perceived severity of the operation. For example, the deletion of a node from

a graph is generally viewed as having a higher cost than a node parameter change.

Thus, the graph edit distance can be used as a similarity measure to compare and

order individuals within a population, and thus serve as a metric within a fitness

evaluation to guide the evolutionary search process.

Dr. Daniel Lobo adapted the graph edit distance algorithm to be used with the

planarian formalism graphs in PlanformDB [24]. The graph edit distance costs used

in the algorithm implementation are described in Table 2.1. The penalties are most

severe when differences exist between region numbers and connectivity than for region

size and linkage parameters.

Operation Cost
Insert/delete region 1500
Change region type 1000
Change region parameter 0.1 per unit changed
Insert/delete link 1000
Change link distance 0.1 per unit moved
Change link angle 0-100
Change link angle > 90 penalty 750

Table 2.1: This table presents the graph edit costs used for graph edit distance
calculations in this manuscript.
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As a part of this thesis, the C++ implementation of graph edit distance algorithm

has been incorporated with the CellSim simulation platform. Since the simulation

platform is implemented in Python, a Python to C++ interface has been developed to

pass the Python graph objects as parameters to the C++ graph edit distance library.

The interface between the simulation platform and graph edit distance library uses

the ctypes foreign function library, which includes C compatible database types and

capability of calling functions inside DLLs and shared libraries.

2.1.1 Design of a Connected Component Analysis Algorithm to Convert

Cell Simulation Output into Graph Representations

Planaria in the CellSim platform are composed of a collection of discrete cells rather

than interconnected regions. Thus, a first step to deriving a graph-based representa-

tion of the cell-based planaria is to translate the cells within a simulation snapshot

into discrete regions, and to determine which regions are connected to each other. In

order to do this, an algorithm that uses a connected component analysis approach

derived from similar methods used in computer vision and document analysis has

been developed [4]. The algorithm first iterates through all the cells in a snapshot

and assigns each cell a region type (e.g., head or tail). The assignment of cell type can

be complicated, examining many different factors for each cell, or can simply depend

on the molecular concentrations of some user-defined indicator resources associated

with a particular cell. Three resources, hCell (head), iCell (trunk), and tCell (tail)

have been defined to serve as cell-state indicators in this study. For this work, a

simple approach is used where a cell is assigned to a region type based on the highest

total concentration of each indicator resource. For example, a cell is assigned a trunk
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Figure 2.1: The assignment of a cell to a state depends on the molecular concen-
trations of cell-state indicators. The differentiate state of cells are color-coded to
enable visual distinction of cells and the composition of a region: head (blue), trunk
(yellow), and tail (purple). Within a given cell, the location of a given resource can
be distributed between the internal compartment (e.g., cytosol) and the surface (e.g.,
membrane). Concentrations of representative resources inside (I) and on the surface
(S) are provided. In this example, both Cell 1 and Cell 2 are assigned to a trunk
state and Cell 3 is assigned to a trunk state, since the concentrations of the indicator
molecules (iCell and tCell, respectively) for these states are the highest.

state if its concentration of iCell is greater than hCell and tCell, as shown in Figure

2.1. The approach of assigning a cell to a region based on the highest concentration

of an indicator resource is a simplification of reality, since many more factors may go

into differentiation of a cell in an organism. Chapter 3 examines a more complex way

of evaluating a cell’s region type.

After calculating cell type, the algorithm must determine all of the spatially

cohesive regions of cells sharing the same type using connected component analysis.

The connected component analysis algorithm (Algorithm 2.2) starts with a call to the

ProcessConnectedComponents function with a simulation snapshot as a parameter.

A simulation snapshot is a complete description of a particular step in a simulation;

this includes a list of all cells, including cell contents, resources, and locations.
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ProcessConnectedComponents(snapshot):

list = new list of connected components

for each unprocessed cell c in snapshot

comp = new connected component

add c to comp

set c as processed

GatherConnected(c, comp, snapshot)

add comp to list

for comp in components:

calculate parameters for comp

GatherConnected(c1, comp, snapshot):

for each unprocessed cell c2 in snapshot

if c1 and c2 are connected:

if c1 and c2 are not of the same type:

mark c1 and c2 as border cells

else:

add c2 to comp

set c2 as processed

GatherConnected(c2, comp, snapshot)

Figure 2.2: Pseudocode for connected component analysis recursive algorithm to
separate a list of cells taken from the simulation snapshots into discrete morphology
regions.

The ProcessConnectedComponents function iterates through all cells and calls the

GatherConnected function for each unassigned/marked cell.

The GatherConnected function recursively collects and marks all other cells in

the snapshot that belong to the same spatially cohesive region as the starting cell. A

cell is defined to be in the same spatially cohesive region as the starting cell if it is

of the same type as the starting cell and is either connected to the starting cell or to

some other cell already determined to be in the starting cell’s region. Two cells are

considered connected if the Euclidean distance between them is below a user-specified

threshold. Additionally, if two cells are close enough to each other to be considered
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connected, but are assigned to different regions because they are of different types,

those cells are identified as border cells. Border cells are used to determine which

regions are linked to each other.

Once each cell in the snapshot is assigned to a specific region, links between

regions are calculated. The algorithm determines how many neighbors each region is

connected to using the border cells found during the recursive process in Algorithm

2.2, and creates links between the connected regions. Two regions are be considered

linked if they share border cells.

By the graph formalism, each link between regions is parametrized by the distance

between the connected regions’ centers, the angle of the link measuring its tilt relative

to the x-axis, and the location along the link where the two regions meet. The number

of parameters for a region depends on the number of links it has. A component

parameter is defined as the Euclidean distance from the center of a region to a region

border in a specific direction. The center of a region is calculated by averaging the

spatial centers of every cell in a particular region. The border of a region is calculated

by finding the furthermost cell in a specific direction.

The connected component gathering algorithm allows the cell-based representa-

tion of the worm to be converted into a graph, and this graph can be subsequently

compared to a target graph pulled from the Planform database. The result of the

graph-to-graph comparison is used as a fitness value to guide the genetic algorithm

search process.
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2.1.2 Graph Edit Distance as a Fitness Function

Since the GA is designed to evaluate fitness values in the range of 0.0 to 1.0, the graph

edit value cannot be used by itself to measure the fitness of simulation outcomes, and

thus is converted as shown in Equation 2.1.

fitness =
5000

(distance+ 5000)
(2.1)

Initially, the simple inverse function of 1/(graph edit distance) was used to obtain

the GA fitness values. However, the fitness function values in such cases tended to

be very small even for relatively similar graphs due to sensitivity caused by the large

edit penalties in Table 2.1.

To come up with an equation for converting graph edit distance values to fitness

values that is capable of producing more intuitive fitness values, several morphology

graphs were evaluated using the graph edit distance fitness function. The graph

edit distance value for the tested graphs was converted into a value between 0.0 and

1.0 using Equation 2.1 with different constants in the range between 1 and 10000.

Constants above 10000 were excluded from the evaluation on the basis of generating

high fitness values for individuals with morphologies very dissimilar to the target.

Table 2.2 shows the graph edit distance and the fitness values produced for 13

different graphs (ID-1 though ID-13) compared against the target graph (ID-0). The

third column in the table displays graph edit distance values for graphs, while the

columns following it present the fitness values produced by using constants in the

column headers.
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Table 2.2: Evaluation of conversion equations to generate fitness values from graph
edit distance values. The first row presents the data for the graph of the target
individual. The first and second columns of the table show the ID and the image
of the morphology graph. The third column presents the graph edit distance value
obtained from comparison of the graph against the target graph using graph edit
distance algorithm. The fourth through the ninth column show the fitness value
produced by plugging in the constant in the column header into Equation 2.1.
ID Graph Distance 1 500 1000 3000 5000 10000

0 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 5009.0 0.0002 0.0908 0.1664 0.3746 0.4996 0.6663

2 7009.0 0.0001 0.0666 0.1249 0.2997 0.4164 0.5879

3 10008.8 0.0001 0.0476 0.0908 0.2306 0.3331 0.4998

4 5008.3 0.0002 0.0908 0.1664 0.3746 0.4996 0.6663

5 2000.0 0.0005 0.2000 0.3333 0.6000 0.7143 0.8333

6 2000.0 0.0005 0.2000 0.3333 0.6000 0.7143 0.8333

7 10000.9 0.0001 0.0476 0.0909 0.2308 0.3333 0.5000

8 10008.8 0.0001 0.0476 0.0908 0.2306 0.3331 0.4998

9 1698.4 0.0006 0.2274 0.3706 0.6385 0.7465 0.8548

10 1698.4 0.0006 0.2274 0.3706 0.6385 0.7465 0.8548

11 1000.0 0.0010 0.3333 0.5000 0.7500 0.8333 0.9091

12 2504.8 0.0004 0.1664 0.2853 0.5450 0.6662 0.7997

13 10.4 0.0874 0.9795 0.9897 0.9965 0.9979 0.9990
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The constants of 500 and 1000 both produced very low values to the individuals

tested, and thus were not optimal for the fitness conversion equation. The constant

of 10000, on the contrary, yielded fitness values that were too high and did not

maximize the differences between fitness values. In the last column of Table 2.2,

which corresponds to the constant of 10000, the fitness values range from .49 to 1.0,

which is not a very large fitness range for the individuals tested.

The constants of 3000 and 5000 could both potentially perform well in the evo-

lutionary search, since both of these constants have a big fitness range. However,

for some graphs, the constant of 3000 produced fitness values lower than we would

otherwise intuitively assign and that would be better at guiding the evolutionary

search. Consider, for example, an individual with an ID of 12. The first half of the

individual does not have a tail regenerated, while the second half has regenerated its

head region. This individual has shown that it is capable of regeneration and can

successfully regenerate a head region. Even without the tail regeneration in place,

intuitively this individual should not receive a fitness as low as .54, as yielded with the

constant of 3000. The fitness of 0.66 for this individual produced using the constant

of 5000 seems appropriate and intuitive. Therefore, the constant of 5000 was chosen

for an equation to convert graph edit distance values into fitness function values as

it produced an appropriately large range of fitness values and assigned most-intuitive

fitness values.
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CHAPTER 3

OVERLAY FITNESS FUNCTION

3.1 Comparing Two Morphologies by Overlaying a Graph

with a Blob of Cells

The graph edit distance evaluator is a very flexible fitness function, since the graph

formalism can be used in simulation platforms other than CellSim. However, the

graph edit distance evaluator may in some instances fail due to the coarse grained

nature of how it determines cell region type. The assignment of a cell to a region is

a very complex question, since many factors determine whether a cell belongs to a

particular region. The implementation of the component gathering algorithm uses a

very simple approach for determining the cell’s region relation. This approach may

not work well when a cell has the potential of becoming the sought-for region type.

For example, a cell that has hCell concentration of 0.1 and iCell concentration of 1.0

can potentially become an hCell, but this cell will be assigned to a trunk region. This

cell may get penalized by the graph edit distance evaluator if it expects the cell to

be of type head. As an alternative to the graph edit distance evaluator, the overlay

distance fitness evaluator has been developed. In contrast to the graph edit distance

evaluator, the overlay evaluator rewards a cell that is close to becoming the expected

region type, and will not penalize the cell as much.
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The overlay fitness function calculates the best fit of a morphology graph to a

cell-based model as shown in Figure 3.1. To create an overlay, the graph is scaled

so that the graph fits inside of the cellular morphology and matches the width of

the height of the morphology. For each cell in the cell-based morphology, the closest

graph region of the overlayed graph is found. The cell gets assigned a subfitness based

on how close the cell is to becoming the expected graph region.

Figure 3.1: In this example of overlaying a cellular morphology with a graph mor-
phology, the cellular morphology consists of three regions, head (red), trunk (blue),
and tail (green), while the overlayed graph only has a head and a trunk. When the
graph is overlayed with the cellular morphology, some of the cells do not match the
type of the overlayed graph (colored in black).

Classic experiments on planaria worms involve cuts separating a whole worm into

several parts. For example, if a transverse cut is performed on a planarian, as shown in

Figure 1.1, two cut pieces are expected to regenerate into complete worms. Therefore,

to evaluate the effectiveness of the regeneration model, each of the regenerated pieces

needs to be compared to the target.

Algorithm 3.2 shows pseudocode for the overlay difference evaluator. The Over-

layDifferenceEvaluator function of Algorithm 3.2 accepts two parameters: the cut up

worm, represented as a cellular snapshot in CellSim platform, and a list of graphs

to be overlayed with the cut up pieces. The cellular snapshot does not keep track

of cuts performed on the worm, and stores the cells of the cut up pieces in a single
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OverlayDifferenceEvaluator(snapshot, graphList):

Convert the cellular snapshot to blobs

Sort blobs based on their centers

Let cellSellsubfitnessSum = 0

For each blob:

Convert corresponding graph from graphList into 2D lines

For each cell in the cellular morphology snapshot:

Find closest graph line to the cell

Set expectedRegion to the region of closes the graph line

Calculate the cell subfitness

Add the cell subfitness value to cellSellsubfitnessSum

return cellSellsubfitnessSum / number of cells in a snapshot

Figure 3.2: Overlay difference fitness evaluator

list of cells. Since an overlay needs to be calculated for each cut up piece, or blob,

the cells in the snapshot cell list get separated into lists of blob cells. Each blob in

the blob list is matched with a corresponding graph in the list of target morphology

graphs provided by the user. Knowing the exact order of the blobs, the user can

provide the correctly ordered graph list constituting the target morphology, so that

the first blob is compared against the first graph, and so on. Providing a list of graphs

instead of one graph with several subgraphs was required because the graph ontology

of PlanformDB does not give any information about relative location of disconnected

subgraphs.

To calculate the overlay between a cellular-based blob and a graph, the graph

needs to be converted to 2D lines as discussed in Section 3.2. The closest 2D line

to a cell dictates what region a cell should be in order to match the graph’s region.

A subfitness value between 0.0 and 1.0 is calculated for each cell measuring how far

the cell is from becoming the expected region as shown in Equation 3.1. A cellular

subfitness is calculated by measuring the ratio between the concentration of the target
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molecule and the maximum concentration of an indicator molecule in a cell.

subfitness = max(
conc(target−mol)

conc(mol − with−maximum− concentration)
, 1) (3.1)

The final fitness of the model in the overlay evaluator is calculated by dividing

the sum of subfitness values for every cell in the organism by the number of cells.

3.2 Graph-to-Line Conversion

To calculate an overlay of a graph to a cellular blob, the dimensions of the graph

and the blob need to match. In the CellSim simulation platform and Planform graph

formalism, the coordinate systems are arbitrary and carry no spatial meaning. For

example, in the database and the simulation platform, the distance of 1 can mean

the distance in millimeters, centimeters, etc. Due to the lack of spatial meaning of

the coordinate systems, cellular and graph morphologies can be scaled in order to be

matched and compared to each other without any loss of information.

The graph formalism used to encode morphologies in the experiment database

stores morphology regions as graph nodes with parameters describing the general

node shape. Graph node links contain information about how far away connected

nodes are from each other and what their angle position is. For overlay to cover as

much of the cellular worm as possible, the graph is expanded geometrically through

conversion of the graph nodes into connected lines tracing the silhouette of the graph.

The graph formalism does not provide xy coordinate locations for region nodes and

links. So before the lines for regions can be computed, the graph nodes, parameters,
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and links need to be projected into an x-y coordinate system. The algorithm randomly

takes a node in the graph and assigns its center to the (0,0) coordinate. The coordi-

nates for the parameter points defining the shape of the node are calculated based on

the node’s center. Using the first node’s center coordinate and the distances to the

nodes this node is connected to, the algorithm recursively assigns the coordinates to

the rest of the nodes in the graph. Once the graph nodes, parameters, and links have

been projected into the x-y coordinate system, the points defining the silhouette of

the graph are computed.

The points in the graph-to-line conversion algorithm can be of three types: pa-

rameter points, link points, and points between border parameters. Figure 3.3 shows

a sample graph with the three point types indicated. In the graph formalism, a

parameter for a region indicates the distance from the region center to the parameter

point in a specific direction. Parameter points lie at the end of the parameters. Link

points lie on a border line that connects the centers of two nodes. For each parameter

point on a border between two regions, an additional point is calculated to help define

a more accurate shape of the worm for the overlay. In the figure, it is called a point

between border parameters. The calculated points for a node get connected into lines

and can be used to create the overlay.

To ensure that the graph converted into lines matches the dimensions of the

cellular blob, either the cellular morphology or the graph can be scaled. Cellular

morphologies consist of a large number of cells, and scaling of a cellular morphology

requires scaling to be performed on every cell. For the purpose of efficiency, the

scaling was chosen to be performed on the graph morphology instead of the cellular

morphology. The graph scaling factor is calculated by taking the minimum between

the blob-to-graph height ratio and the blob-to-graph width ratio. This approach
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Figure 3.3: Sample conversion of a two-node morphology graph into lines. Three
point types calculated during the conversion algorithm are indicated.

guarantees that the graph is within the blob, no matter whether it was generally

bigger or smaller than the blob before the scaling operation was applied. Once the

scaling has been performed, and the width and height of the graph match those of

the cellular blob, the final step of the conversion is to match the centers of the two

representations. Center matching is done by performing a transform on each 2D point

in the converted graph. The graph converted into lines that matches the dimensions

and the center of the cellular blob can be used to calculate the overlay fitness value.
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CHAPTER 4

DIFFERENCE DISTRIBUTIONS FITNESS FUNCTION

4.1 Comparing Two Morphologies by Calculating Difference

Distributions of Their Resources

While abstracting the worm morphology into regions allows a very flexible means

of comparison between the simulation platform outputs and the target PlanformDB

morphology, the graph representation may be too coarse-grained in certain instances

as discussed in Chapter 2. As an alternative to abstracting the cellular representation

of the worm in the simulation platform, the simulation outcome can be viewed as a

multidimensional vector, consisting of multiple features, such as molecular concentra-

tions and individual cell locations. Vectors for the simulation output and the target

may vary significantly, and so flexible comparison algorithms are needed to calculate

the differences between multidimensional vectors describing two distinct worms.

The problem of matching two multidimensional vectors is common in computer

vision where the similarity between 3D shapes is measured. Most 3D models tend

to have missing, wrongly-oriented, intersecting or disjoint polygons [34]. Since most

3D comparison algorithms rely on standarized 3D models with some sort of required

metadata, the traditional 3D matching methods cannot be used for comparing ar-

bitrary 3D shapes. Moreover, these traditional algorithms cannot handle shapes
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containing holes in the surface. To mitigate the limitations of traditional shape

comparison algorithms, Osada et al. proposed an algorithm to compare arbitrary

3D models using shape distributions [34]. Osada et al.’s algorithm calculates a

signature for each 3D shape by sampling from a shape function, which measures

geometric properties of a 3D model. For example, the samples for a shape can be

gathered by calculating distances between 3D points in the shape and then normalized

into a distribution. The normalization of a shape distribution allows Osada et al.’s

algorithm to be translation, rotation, and size-invariant. To compare two 3D shapes,

Osada et al.’s algorithm calculates the difference between the normalized distribution

signatures for the shapes.

Just like 3D shapes, simulation outcomes of planaria regeneration models are

multidimensional objects that may have missing structures, such as cells, genome

regulatory regions, or metabolic equations. Simulation outcomes may also be rotated

differently than the target due to the experiment setup, and thus significantly vary

from the target in a structural, though not necessarily in an functional, way. In

this work, Osada et al.’s difference distribution algorithm has been incorporated as

a GA fitness function that can compare simulation outcomes to the target outcome.

The difference distribution fitness evaluator computes a statistical signature, or a

difference distribution histogram, for the internal state of the worm by considering

concentrations of specific molecules and locations of individual cells. Fitness value

of the simulation outcome is calculated by comparing the difference distribution

histograms of the simulation outcome and the target outcome.

Algorithm 4.1 shows how the distribution signature can be calculated. The main

function of the algorithm (distribution) first takes samples (takeSamples) and then
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creates the normalized difference distribution histogram for the simulation outcome

(createDistribution).

In the default implementation, distances between two points are taken exhaus-

tively for every pair of cells. The samples gathered include distances between the cell

centers of mass and molecular concentrations of cells. For each sample, the distance

between two cells is computed by calculating the sum of squared differences of cells’

locations and molecular contents (processCells).

As an alternative to exhaustive sampling, stochastic sampling can be specified

in which only a certain number of measurements are taken for randomly chosen

cells. To get a more precise distribution of the simulation outcome, a subunit-to-

subunit distance can be computed. The subunit-to-subunit difference processor uses

the processCellSubunits function, which iterates over all subunits in two cells and

compares the subunits’ locations and molecular contents. The subunit-to-subunit

processor is more compute intensive, but it also allows a more accurate representation

of the simulation model’s shape and location of molecular contents.

The obtained samples are used to construct a difference distribution histogram by

counting how many samples fall into each of B fixed size bins (calculateDistribution

in Algorithm 4.1). The number of samples that falls in each bin is normalized by

dividing the sample count for a bin by the total number of samples taken.

Once difference distributions histograms for the simulation outcome and the target

are constructed, the dissimilarity between histograms is computed. As shown in

Algorithm 4.2, absolute difference is computed for every matching value in each bin,

yielding an array of absolute differences. The values in this array are summed into the

variable differenceSum, and this value is normalized using Minkowski LN norm [34].
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distribution():

takeSamples()

createDistribution()

takeSamples():

for cell1 in cells:

for cell2 in cells:

processCells(cell1, cell2)

processCells(cell1, cell2):

sum = 0;

sum += calcSquaredDifference(cell1.x, cell2.x)

sum += calcSquaredDifference(cell1.y, cell2.y)

sum += calcSquaredDifference(cell1.z, cell2.z)

for each molecule mol:

sum += calcSquaredDifference(

mol concentration in cell1,

mol concentration in cell2)

add sum to the list of measurements

calculateDistribution():

let binCounts be an array of size B

let measurementCount be the size of measurements

for each measurement in measurements:

binCountIndex = calculate the bin for the measurement

binCounts[binCountIndex]++

normalize each binCount in binCounts by measurementCount

Figure 4.1: Distribution calculation using using a cell processor
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absoluteDifference(a,b):

return |a-b|

calculateFitness()

//get a list of absolute differences of two bins

absoluteDifferences = map(absoluteDifference, bins1, bins2)

differenceSum = sum all the absolute differences in the absoluteDifferences

return 1 - differenceSum/2.0

Figure 4.2: Fitness calculation using difference distributions

As an alternative to Minkowski LN norm, distribution histograms can be compared

using any standard methods, such as Kolmogorov-Smirnov distance, Kullback-Leibler

divergence distances, Bhattacharyya distance, and others [34].
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CHAPTER 5

EXPERIMENT DATABASE READER AND WRITER

The PlanformDB of planarian experiments is an invaluable tool for searching the ex-

periments reported in the literature. To provide access to PlanformDB and the ability

to add new experiments into the database, the Levin lab implemented an executable

GUI program called Planform that allows users to view, search, and manually edit

database morphologies and experimental manipulations [24]. Being the sole access

point to the database, Planform allows for only manual modification of the database

and does not provide APIs to read and write to the database programmatically.

Without programmatic access to PlanformDB, utilizing the database in the evo-

lutionary search and the simulation platform is inefficient. Running experiments,

injecting worms with Lysis, and creating cellular morphologies by injecting head

and tail indicators would be performed manually and thus would be time-consuming.

To alleviate this problem and allow automatic retrieval of information pertinent to

planarian experiments, a database reader and writer that can programmatically access

and manipulate PlanformDB have been created.

The database reader and writer represent the SQLite database entities as Python

classes that can be accessed and manipulated by CellSim and CSGA. Figures 5.1

and 5.2 show the UML diagrams for the Python classes that represent a database
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morphology and an experiment, respectively. The structure of these classes reflects

the database schema of PlanformDB described in Section 1.4.2.

5.1 Experiment Database Reader of Morphologies and Ex-

periments

Just like in PlanformDB, the main Python class representing a planarian is called

Morphology, as shown in Figure 5.1. Each morphology consists of interconnected

regions (class Region) such as head, trunk, and tail. A region knows exactly what

other regions it is connected to by maintaining a list of region links (class RegionLink).

A region also knows what organs are contained within it, such as spot organs (eyes,

brain lobe, pharynx) and line organs (ventral nerve cord). The current work did

not deal with morphologies containing organs; however, the implementation of the

classes was designed so that in future studies organs can be incorporated into the the

evolutionary search.

The main Python object pertaining to a PlanformDB experiment is represented

by the Experiment class, as shown in Figure 5.2. An Experiment object knows

what instance of PlanformDB it comes from as well as the name it is encoded

with in the database. Each Experiment object stores a tree of manipulation actions

(class Manipulation) that are performed on a worm as a part of the experiment. A

Manipulation object keeps a reference to the root of the manipulation tree, where

each tree node is represented as a ManipulationAction object. There are four types

of manipulation actions specified in the PlanformDB schema: crop action (class

CropAction), remove action (class RemoveAction), join action (class JoinAction), and
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Figure 5.1: UML diagram for the Planform database morphology.

morphology action (class MorphologyAction). The four action classes in Python were

implemented to inherit from the base ManipulationAction class, since they all share

attributes, including the name of the manipulation and the reference to the child

manipulation action. CropAction and RemoveAction objects store a list of points

representing an area that should be respectively cropped or removed from a planarian

morphology. The JoinAction represents the grafting of two manipulation action

subtrees, while the MorphologyAction simply stores the reference to the Morphology

object on which the manipulations are to be performed.

Python objects representing planarian morphologies and experiments performed

upon them can be obtained by directly communicating with the Planform SQLite

database. To this end, a Python interface for reading and writing to the experiment

database was implemented. Figure 5.3 shows a UML diagram for the database reader

capable of extracting Planform experiments and morphologies. The modules are

adapted to call SQLite queries on PlanformDB using sqlite3 Python library. In

Figure 5.3, DBReader class acts as the generic interface to the database that can
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Figure 5.2: UML diagram for the Planform database experiment.

connect to an SQLite database and call SELECT statements on it to retrieve values

from a specified table. DBExperimentReader and DBMorphologyReader classes use

the DBReader class to access the PlanformDB and extract values pertinent to the

experimental manipulations performed on planaria as well as planarian morphology

graphs.

To extract a planarian morphology from PlanformDB, the DBMorphologyReader

class calls the processMorphology function, which takes morphology name or ID as a

parameter. This function creates a blank Morphology object and calls the processRe-

gions function, which in turn creates an initially empty list of morphology regions and

iterates over the regions in PlanformDB, creating Python Region objects and adding

them to the region list. As each Region object is created, the processRegionParams

is called, which reads parameters representing the general shape of planarian region

morphology.
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Figure 5.3: UML diagram for the Planform database reader.

DBMorphologyReader provides the capability to automatically retrieve morpholo-

gies to be used as targets during the CSGA evolutionary search. Since in addition to

the morphology descriptions, PlanformDB stores experiment manipulation descrip-

tions, it is crucial to provide capabilities to read the experiment manipulations as

Python objects to fully automate the evolutionary search. The DBExperimentReader

class is responsible for reading an experiment from PlanformDB and constructing

an Experiment object that can be eventually used on a cellular morphology in the

simulation platform. The functions used by the experiment reader are shown in Figure

5.3. Just like the DBMorphologyReader, the DBExperimentReader gradually creates
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the Python objects representing an experiment (processExperiment), a manipulation

(processManipulation), a tree of manipulation actions (processActionSubtree), as well

as the specific manipulation actions (processMorphologyAction, processRemoveAc-

tion, processCropAction, processJoinAction). The created Experiment object can

then be used by the manipulation applicator described in Chapter 6 to perform the

PlanformDB experiment on the cellular morphology from the simulation platform.

5.2 Experiment Database Writer of Morphologies

During the evolutionary search, large numbers of unique individuals are generated.

Even though the individuals produced by the genetic algorithm are automatically

evaluated by the fitness function and selected for further generation cycles, extra

human checking may be needed to examine the progress of the evolutionary search.

Since graphical representation of planarian morphologies is a lot more user-friendly

than the XML files describing regeneration models in CSGA and CellSim, it is deemed

useful to save unique individuals discovered by the GA into the PlanformDB. To

this end, a Python module has been designed to write morphology Python objects

to a user-specified database. Embedded in the evolutionary search, this module

automatically saves unique morphologies to a database tied to the currently performed

search.

Figure 5.4 shows the UML diagram of the database writer class (class DBMorphol-

ogyWriter). The writer class contains a reference to a Python sqlite3 cursor object

that references an instance of the PlanformDB and allows it to send simple SQLite

queries. The top level functions of the writer provide the capability to insert and
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Figure 5.4: UML diagram for the Planform database writer.

(1) SELECT Id FROM Morphology WHERE Name=’Wild type’

(2) INSERT INTO Morphology (Id, Name ) VALUES

(

(SELECT max(Id) FROM Morphology )+1,

’Wild type’

)

(3) DELETE FROM Morphology WHERE Id=’17’

Figure 5.5: Sample SQLite queries to call to PlanformDB.

delete morphology graphs with specified names to and from the database. These two

functions are implemented using three basis functions, insert, select, and delete, which

in turn execute the SQLite’s basic INSERT, SELECT, and DELETE commands.

To demonstrate the usage of these functions, consider SQL commands depicted in

Figure 5.5. Command (1) gets the ID of the morphology, which has the name ‘Wild

type’ in the Planform database. Command (2) inserts a new row into the morphology

table with the name of ‘Wild type’ and an ID, which is one higher than the biggest

ID in the table. To run queries (1)-(3), select, insert, and delete functions defined in

Figure 5.4 get called with the parameters shown in Figure 5.6.
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(1) select(

location = "Morphology",

paramToSelect = "Id",

restriction = "WHERE Name=’" + "Wild type" + "’"

)

(2) insert(

location = "Morphology",

paramList = "Name",

valueList = [’Wild type’],

restriction = ""

)

(3) delete(

location = "Morphology",

restriction = "WHERE Id=’" + str(17) + "’"

)

Figure 5.6: Sample calls of Python database writer functions.
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CHAPTER 6

AUTOMATED EXPERIMENT EXTRACTION AND

APPLICATION

The CellSim simulation engine provides a simple, easy-to-use graphical tool to select

and manipulate cells as shown in Figure 6.1. With this tool, a user can inject various

resources, such as Lysis and region indicators, into selected cells.

The CellSim GUI software works great for manually manipulating individual

worms; however, to perform such manipulations on a large number of individuals,

as is required by the evolutionary search, an automated setup is required. The

experiment setup in CSGA involves design and implementation of a custom Python

fitness evaluator to select desired cells for manipulation and perform the experiment

on them during the simulation run. Typically, a custom evaluator only works for the

experiment for which it is written. In order to change the experiment or the manipu-

lated morphology, the code for the custom Python evaluator has to be hand-adjusted

or sometimes entirely rewritten. This process is not only inefficient but also prone

to human errors. To alleviate the problem of hand-adjusting code for every new

experiment and to automate the manipulation application on large populations of

cellular morphologies in the simulation platform, a Python module has been created

that provides translation of the experiment setup encoded in PlanformDB into the

experiment setup in CellSim.
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Figure 6.1: The graphical user interface for the CellSim simulation platform.

For demonstration of how the developed module automates the experiment appli-

cation in CellSim and CSGA, consider Figure 6.2. The figure depicts a PlanformDB

experiment that involves removal of a rectangular region defined as a list of four

Cartesian points from a wild-type morphology (Fig. 6.2a). In PlanformDB termi-

nology, the points forming the rectangular region of a manipulation action are called

action points. To be compatible with the cellular worm, action points get converted

into the x, y, z coordinate space of the CellSim simulation platform, and are pasted

onto the cellular morphology (Fig. 6.2b). The cells falling inside the rectangular

region formed by the action points are then extracted and manipulated according to

the experiment specification.
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Figure 6.2: Example of applying a PlanformDB experiment manipulation (injection
of Lysis) to a cellular model in CellSim.

The manipulation application module consists of three classes, each class respon-

sible for a single task. The first class translates manipulation action points from

the PlanformDB coordinate system to the CellSim coordinate system. The second

class calculates what cells in the manipulated morphology fall within the area inside

the polygon formed by the action points. The third class acts as the coordinator and

keeps track of the PlanformDB experiment manipulation and the cellular morphology.

The UML diagram depicted in Figure 6.3 shows Python classes designed to auto-

mate the extraction of cells on which the experiment has to be performed. The main

class, ManipulationApplciator, contains a reference to a list of cells represented as

CellDescription objects, which constitute the cellular morphology, and a PlanformDB

experiment represented as an Experiment object. ManipulationApplicator serves as
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Figure 6.3: UML diagram for the PlanformDB experiment manipulation applicator.

the coordinator for the cell extraction process, and uses two helper classes, PointTo-

PointTranslator and CellsGeometryCalculator, to translate action points and extract

the cells to be manipulated upon. PointToPointTranslator class scales the points

describing the manipulation action in the database to match the scale of the cellular

morphology. Given the translated and scaled polygon points and a list of cells, the

CellsGeometryCalculator class determines what cells fall inside of the polygon formed

by the action points.
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manipulationApplicator = ManipulationApplicator(experiment, cells)

cells = manipulationApplicator.getCellsToManipulate()

class ManipulationApplicator:

getCellsToManipulate():

get experiment action points

for each point in points:

PointToPointTranslator.translate(point)

return CellsGeometryCalculator.getCellsInsidePolygon(translated points)

class PointToPointTranslator:

tralslate(point):

rescalePoint(point)

movePoint(point)

rescalePoint(point):

point.x = point.x * width ratio

point.y = point.y * height ratio

movePoint(point):

point = point + worms’ center location in CellSim

class CellsGeometryCalculator:

getCellsInsidePolygon(polygon):

initialize an empty list as cellsInsidePolygon

for each cell in morphology cells:

if not cellIsOutsidePolygon(cell, polygon):

add cell to cellsInsidePolygon list

return cellsInsidePolygon list

cellIsOutsidePolygon(cell, polygon):

create a ray going from (cell x, cell y) to (infinity,cell y)

for each polygon side of polygon:

if polygon side intersects ray:

return false

return true

Figure 6.4: Pseudocode for extraction of points falling inside the manipulation
polygon formed by action points
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Figure 6.4 shows the pseudocode to extract cells falling inside the polygon for

a region removal experiment. The pseudocode to extract cells outside the polygon

for a crop experiment is very similar and will not be discussed here. The algorithm

starts by creating a ManipulationApplicator object, and calling the getCellsToMa-

nipulate function. The getCellsToManipulate function retrieves action points from

the Experiment object and translates them into an x, y, z coordinate system by

calling PointToPointTranslator’s translate function. Translation of a point involves

re-scaling of the point’s x and y coordinates by width and height ratios and moving

the point by the cellular worm’s center. The height and width ratios used in point

scaling are computed by dividing the cellular worm’s height by graph worm’s height

and cellular worm’s width by graph worm’s width, respectively. An action point is

moved to correspond to the CellSim worm’s center since in PlanformDB morphologies

are always centered at the (0,0) coordinate, while in CellSim the center of the worm

may be any coordinate.

Once the action points are translated into CellSim’s coordinate system, CellsGe-

ometryCalculator can extract the cells to be manipulated. To get the cells inside

the polygon formed by the action points, getCellsInsidePolygon function gets called

with a list of translated action points as a parameter. The getCellsInsidePolygon

function creates an empty list to store the cells found to be inside the polygon and

iterates over all the cells in the morphology, checking if an examined cell falls inside

the polygon. If a cell is inside the polygon, it is added to the list. To determine if a

cell is inside the polygon, an infinite ray parallel to the x-axis and pointing towards

positive infinity is projected from the cell. The ray is tested against every side of the

polygon to check for intersection. If this ray intersects polygon lines an odd number

of times, the cell is determined to be inside the polygon, otherwise the cell is outside
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[16]. The list of cells determined to be inside the polygon is used by the simulation

platform for experimental manipulations, such as injection of Lysis.



55

CHAPTER 7

RESULTS

7.1 Evaluation of the Cellular Snapshot-to-Graph Conver-

sion Algorithm

During an evolutionary search, large numbers of unique individuals are generated and

must be evaluated against the target individual encoded in the database. To ensure

that converted graph representations are intuitive and to evaluate the use of the

graph edit distance metric for ordering individuals in the population, an evaluation

of the conversion algorithm was performed. To this end, a number of worms with

distinct morphologies was generated by hand using the simulation platform, and their

snapshots were converted into graph representations using the conversion algorithm.

The simplest individuals that can be represented by the simulation platform include

worms with discrete regions, whereas more complicated morphologies consisting of

regions contained within other regions can also exist. Just considering the basic

morphologies, the number of individuals that can be formed and the fitness landscapes

for the genetic algorithm are infinite, and therefore the conversion algorithm was

tested using simple individuals before considering more complicated morphologies.

As shown in Table 7.1, a series of distinct worms (ID 1-13) were generated for

comparison with a desired target (ID 0). In each case, the worm representations
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included two fragments to simulate the state of worms following a single transverse

cut. Each worm was generated by injection of the appropriate cell-state resource

(i.e. hCell, tCell, and iCell) to create the desired regions within the worm frag-

ments, resulting in different permutations of head, tail, and trunk regions. Every

test morphology was converted to a graph (Table 7.1, Morphology Graph) using

the connected component analysis conversion algorithm. No discordance was found

between the graphs generated by the conversion algorithm and those expected upon

visual inspection of the simulation output. Thus, the algorithm was working as

expected on these simple morphologies.

During an evolutionary search, the genetic algorithm needs to compare individuals

to the target and reward those individuals that are most likely to turn into the

target, that is, possess a reaction network capable of proper regeneration. The genetic

algorithm assigns fitness values based upon how evolutionally close the individual is

to the target, with closer individuals getting higher fitness values. A fitness value of

1.0 is awarded to an individual with a perfect match to the target and is the ultimate

goal of a search. Thus, the graph edit distance was calculated between each test

individual and the target and those values were converted into a fitness value (Table

7.1).

The target individual, when compared to itself, yielded a graph edit distance

value of 0.0, because when two individuals are identical, the distance between them

measured by the graph edit distance algorithm is 0. Using Equation 2.1 (defined in

Section 2.1.2), the distance of 0.0 translates to a fitness value of 1.0, which in our
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Table 7.1: Single cut morphology experiment results for simulation snapshot to graph
conversion and graph edit distance comparison
ID Simulation Snapshot Morphology Graph Fitness Value Edit Distance

0 1.000 0

1 0.500 5009

2 0.416 7009

3 0.333 10009

4 0.500 5008

5 0.714 2000

6 0.714 2000

7 0.333 10001

8 0.333 10009

9 0.746 1698

10 0.746 1698

11 0.833 1000

12 0.666 2505

13 0.998 10
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genetic algorithm search indicates the target morphology has been found. Morphology

13 in Table 7.1 is a slight variation of the target morphology, where its heads are

several cell layers thinner than the heads of the target, and as expected has the next

best fitness value (0.998). In general, high fitness values for morphologies such as

number 13 are expected as their regions are connected and oriented the same as the

target. When compared to the target, morphologies that consist of three regions in

each worm fragment received higher fitness values than morphologies having one or

two regions. For example, morphology 6 was rated higher than morphology 4. Again,

this is because the graph edit distance costs included a much larger penalty for the

deletion of a region than with a change to the type of region.

Conversion of a simulation snapshot into the graph is an O(N2) algorithm where

N is the number of cells in an individual. The wild-type morphology had 420 cells,

but since the transverse cut removed four rows of cells, the morphologies used in

this experiment consisted of 364 cells. The conversion algorithm ran in less than 1.3

seconds for every morphology in Table 7.2. The run time of the graph edit distance

calculation grows exponentially with the size of the graphs (number of nodes, or in

our case to the number of regions in the two morphologies)[32]. However, since the

number of regions in each morphology tested was at most 6, the graph edit distance

algorithm finished in less than 1 millisecond for all morphologies.

7.1.1 Cell Connectivity Distance Threshold Effects on Region Determi-

nation

A comparison of more complicated morphologies highlighted the need for a flexible

distance threshold in the component gathering algorithm. Since the cells in the
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Threshold Snapshot Graph Fitness Edit Distance

1 1.000 0

1 0.250 15029

2 0.999 7

2 0.664 2528

3 0.999 6

Table 7.2: Threshold value influence on snapshot to graph conversion algorithm

simulation have radii of 0.5 units, the Euclidian distance between two adjacent cells

can be as low as one. However, using a very rigid measure for identifying neighboring

cells and determining the borders of regions can have dramatic effects on the graph

conversion. For example, consider the morphology of the second individual shown in

Table 7.2. In this individual, thin lines of trunk cells dissect the head and tail regions

into a number of potentially distinct heads and tails if the borders are considered

rigidly. Comparison of this individual with the target results in a very high graph

edit distance due to the cost associated with having multiple heads. However, in the

context of a evolutionary search, this individual may be very close to producing the

target morphology.

A flexible threshold parameter has been introduced to reduce the rigidity of region

definitions, which allows neighboring regions separated by thin regions to be merged in

the final graph representation. In the example just discussed, increasing this threshold

value allows the multiple head regions to be lumped into a single head region. The

graph edit distance of this worm is much lower, resulting in a fitness value close to
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1.0.

A second example highlighting the importance of this parameter to component

gathering is presented at the bottom of Table 7.2. This worm represents a classic

experiment that involves separating the head region into two fully-developed heads.

These two heads are separated physically and should be classified as two-headed. A

threshold parameter of less than three results in the desired graph conversion in our

algorithm, whereas the larger value results in a worm with a single head.

These two examples show the necessity of a flexible parameter for determining

local regions during a GA run. In the first case, a low threshold was shown to

penalize a morphology that was very similar to the target, whereas a high threshold

inappropriately favored a morphology containing a physical gap between head regions.

An optimal threshold depends upon the modeling platform and project, but in this

work and from an evolutionary perspective a threshold of two was optimal.

7.2 Evaluation of the Proposed Fitness Functions

The overlay, difference distributions and graph edit distance fitness functions have

been evaluated to determine how well each fitness function performs in the evo-

lutionary search. To this end, a hand-crafted polar regeneration model described

in Section 1.4.3 is used. The head (represented by hCell) and tail (represented

by tCell) regulatory regions of the genome have been chosen to be used in the

evaluation process of the fitness functions. The evaluation assessed a property called a

fitness landscape, exhibited by fitness functions in evolutionary algorithms. A fitness

landscape represents the possible fitness values for all variations of entities being
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evaluated. In the analysis performed, the evaluated entity is the polar regeneration

model, and the variables are the regulatory region effects attached to head and tail

promoter genes. Regulatory region effects control how much of a given molecule is

being produced in maintaining homeostasis of the regeneration model.

Analysis of a fitness landscape involves examining how gradual the landscape is,

considering that the most gradual fitness landscapes are the easiest to search. Gradual

nature of a landscape can be assessed by examining the flatness and the roughness of

the landscape. A flat landscape is considered to be undesirable because it does not

provide a direction for the search to proceed, while a rough landscape with lots of

local maxima is undesirable because the search may get stuck at the local maxima. In

a rough landscape, the search will see the current solution as the best one compared

to solutions surrounding it. Therefore, the most searchable fitness landscape is the

one in which, at every landscape point, the slope provides search direction for better

solutions.

The first step of evaluation was to analyze how knockouts of varying severity affect

the fitness landscape formed by different fitness functions. A gene can be knocked

out by setting the gene regulatory region effects to zero. Head and tail genes were

knocked out from the polar regeneration model and then gradually returned back to

the model by restoring a fraction of the regulatory region effects. The model was then

simulated in the CellSim simulation platform and the outcome was evaluated against

the target morphology using three fitness functions.

The fitness landscape in Figure 7.1 shows how fitness values of the regeneration

models are affected by the presence of genes promoting head (Fig. 7.1(a)) and tail

(Fig. 7.1(b)) regions. The knocked out genes, as shown by x-axis, were gradually
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restored to the model until the gene regulatory region effects were the same as those

of the original model. As a fraction of the regulatory region effect was restored to

the model, the model was simulated in CellSim and evaluated using the three fitness

functions.

In Figures 7.1(a) and 7.1(b), the difference distributions and overlay fitness values

gradually rise with the increasing regulatory region effect and reach 1.0 when the

regulatory region effect is the same as that of the target morphology. The graph edit

distance evaluator has not performed as well as the overlay and difference distributions

evaluators. The fitness line is not gradual, with many large dips present throughout.

With the smaller regulatory region effects, the simulation often yields outcomes

consisting of disconnected cells constituting a region. Due to the component gathering

algorithm used in the graph edit distance evaluator to convert simulation outcomes to

graphs, the disconnected region cells are converted into separate regions. The graph

edit distance algorithm assigns large penalties to graphs with extra regions, thus

lowering the fitness values of the simulation outcomes significantly, which explains

the big fitness value drops in the figures.

To illustrate how morphologies with disconnected cells affect graph edit distance

fitness values, consider the worm in Figure 7.2. In the figure, the cellular worm on the

left is generated in the CellSim simulation platform, while the worm on the right is

the graph representation of the worm obtained using the cellular-to-graph conversion

algorithm. The gray cells in the cellular morphology do not contain head, trunk, or

tail indicator molecules due to small head and tail regulatory region effects, so these

cells are of undefined region type. When the morphology is converted into graph, the

undefined cells are assigned their own regions (Fig. 7.2). The extra regions in the

graph, such as extra undefined regions, cause the graph to be given large penalties
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(a) Fitness function performance on model with gradual restoration
of an hCell regulatory region.

(b) Fitness function performance on model with gradual restora-
tion of an tCell regulatory region.

Figure 7.1: Fitness function evaluation on polar model with two gene regulatory
regions removed independently and gradually returned. The x-axis shows the effect
value of the knocked out regulatory region. The y-axis presents the fitness value
assigned to the simulated model with a given promoter effect. The graph edit distance
function fitness is shown in yellow, overlay in blue, and difference distributions in red.
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Figure 7.2: A cellular morphology generated in CellSim using a model with small
head and tail regulatory region effects as well as its graph representation.

when it is compared against the target graph, lowering the fitness value significantly.

In the case with the worm in Figure 7.2, it got assigned a graph edit distance of 6000

and the fitness value of 0.45.

In addition to evaluating the fitness functions on independent hCell and tCell

knockouts, the evaluators were tested on a combined knockout performed on the

polar model, where both hCell and tCell regulatory regions were knocked out si-

multaneously. Figure 7.3 plots the fitness landscapes of a model where both hCell

and tCell promoter genes are knocked out at the start and gradually restored to the

model. In the figure, the x-axis shows the regulatory region effect of hCell, the y-axis

the effect of tCell, and the z-axis the fitness value assigned by a given fitness function

to the simulation outcome.

The overlay (Fig. 7.3(a)) and the difference distributions (Fig. 7.3(b)) fitness

functions performed well in this evaluation, yielding gradual and therefore searchable

fitness landscapes. The graph edit distance fitness function (Fig. 7.3(c)) produced a
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(a) Overlay fitness function performance.

(b) Difference distributions fitness function perfor-
mance.

(c) Graph edit distance fitness function performance.

Figure 7.3: Fitness function evaluation of the polar model with hCell and tCell
promoters knocked out and gradually returned.
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very rough surface with many local maxima.

An interesting feature of the resultant graphs for the overlay and difference distri-

butions fitness landscapes was the flat rectangular area in the x-axis range [0, 2.27] and

the y-axis range [0,2.27] where the fitness did not change a lot despite the promoter

effect increase. The simulation outcomes with regulatory region promoter effects

within that range did not contain any hCell and tCell molecules. I hypothesized

that due to relatively high decay rates (0.2) of the hCell and tCell molecules in the

polar regeneration model, the injected hCell and tCell were not able to stabilize

with small promoter region effects for these resources. Only at effects of about 2.27

the regulatory region effects were able to overcome the decay rate and stabilize the

examined resources at concentrations higher than zero.

To test the hypothesis that decay rates were affecting the fitness landscapes, the

decay rates of hCell and tCell in the polar model were lowered from 0.2 to 0.075.

Decay rates lower than 0.075 cause the stable concentrations of hCell and tCell

to become very large, and therefore were not considered. Using the models with

lower decay rates, the fitness values assigned to the simulated models were plotted

with gradually increasing regulatory region effects (Fig. 7.4). The resultant overlay

and difference distributions fitness landscapes plots show that the lower decay rates

allowed the hCell and tCell molecules to start producing at lower fitness values,

causing the flat areas of the landscape to become smaller (Fig. 7.4(a) and 7.4(b)).

The lower decay rate also greatly increased the areas with high fitness values in

overlay and graph edit distance fitness landscapes, making those landscapes highly

searchable.

It it curious to note that while the graph edit distance and overlay maximum
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(a) Overlay fitness function performance.

(b) Difference distributions fitness function perfor-
mance.

(c) Graph edit distance fitness function performance.

Figure 7.4: Fitness function evaluation of the polar model with low hCell and
tCell decay rates in which hCell and tCell regulatory regions were knocked out
and gradually returned.
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and minimum fitness values stayed in the same range as in the experiment with

higher hCell and tCell decay rates, the lowest fitness value of difference distributions

dropped from 0.76 to 0.53. Comparing the difference distributions fitness landscapes

of the two experiments (Fig. 7.3(b) and 7.4(b)), it can be seen that the landscape in

Figure 7.4(b) is a lot steeper and spans a larger part of the z-axis space, ranging from

0.53 to 1.0. This can be explained by the higher stable hCell and tCell concentrations

in the model with lower decay rates. Since the difference distributions evaluator relies

on the differences in molecular concentration, models with knocked out regions differ

more from the target with high stable concentrations compared to the target with

lower stable concentrations.

To conduct a more formal evaluation of the fitness landscapes in Figures 7.3 and

7.4, the landscapes were compared to the landscape of an ideal fitness function. Also

the flat regions in the resultant fitness landscapes were analyzed and the local maxima

were counted.

For simplicity, an ideal fitness function landscape is a plane that intersects the

points at the minimum and the maximum region promoter effects (that is, a plane

that intersects (0,0) and (6,6) where the fitness values for models with hCell and

tCell regulatory region effects are 0 and 1 respectively). For each point in the fitness

landscape, the expected ideal fitness function point was computed, and the sum

squared difference between the ideal and the actual fitness values were calculated.

The total sum of all the differences between ideal and actual fitness values yielded

the value we used to rank fitness functions. Table 7.3 ranks the fitness landscapes

from Figures 7.3 and 7.4 by their difference from the ideal fitness function landscape.

The smaller values in the table indicate that the fitness landscapes are more similar
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to the ideal, while larger values show that the fitness landscape differs from that of

the ideal landscape.

Fitness function name Difference with ideal
Difference Distributions 0.033
Overlay 0.034
Graph Edit Distance 0.192
Overlaydecay=0.075 0.271
Difference Distributionsdecay=0.075 0.741
Graph Edit Distancedecay=0.075 1.261

Table 7.3: Comparison of fitness function landscapes to the ideal fitness function
landscape.

The difference distributions and overlay fitness functions are ranked first, since

they show the smoothest transition in the landscape. Prior to evaluation, the graph

edit distance fitness function landscapes were expected to perform the worst for

models with both normal and low decay rates. However, the graph edit distance

landscape for a model with the normal decay rate turned out to be more similar to

the ideal fitness function than the overlay and difference distribution landscapes for

models with low decay rates.

Each fitness landscape was evaluated by examining its flat areas and local maxima.

The flatness of a landscape was analyzed by calculating the number of flat surfaces,

where a flat surface consists of at least three adjacent points with the same fitness

value. Also the analysis of how much of the total landscape surface is occupied by flat

areas was performed. Specifically, the percentage occupied by the biggest flat surface

and the sum of all flat surfaces were calculated. Table 7.4 presents the data obtained

during the landscape flatness analysis calculated for the three fitness functions, sorted

by the total flat area percentage.
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Name # Flat Max Flat % Total Flat %
Graph Edit Distancedecay=0.075 6 0.68 0.93
Overlay 17 0.15 0.91
Overlaydecay=0.075 13 0.36 0.86
Difference Distributions 13 0.34 0.70
Graph Edit Distance 20 0.12 0.69
Difference Distributionsdecay=0.075 13 0.08 0.38

Table 7.4: Statistics obtained from analyzing the flatness of the fitness landscapes.
The first column shows the name of the landscape analyzed. DiffDist refers to the
difference distributions evaluator and Graph to the graph edit distance evaluator.
The second column presents the total number of flat surfaces in the landscape, the
third column shows the percentage of the total landscape occupied by the biggest flat
surface, and the last column shows the percentage of the landscape occupied by the
flat surfaces.

As expected from the landscape figures, the graph edit distance landscape for the

model with low decay rate has the largest percentage occupied by the flat areas. The

landscape also yielded the biggest flat surface and the smallest number of flat areas. In

Figure 7.4(c), the largest flat area is the surface marked dark red, where the individual

fitnesses are 1.0. The difference distributions fitness function for a model with low

decay rate yielded a landscape with the smallest percentage occupied by flat areas.

Due to fluctuations in molecular concentrations and the difference distributions’ high

reliance on the metabolic state of the worm, fitness values fluctuated as well, thus

producing a rougher landscape. It is interesting to note that the landscape that

generated the majority of flat areas was formed by the graph edit distance fitness

function. In Figure 7.3(c), the landscape is very rough, with lots of jumps throughout,

but most of the jumps form small flat surfaces of at least three points, which are

deemed as flat surfaces by the analysis.

To analyze the roughness of the fitness landscapes, the number of local maxima

found in a landscape was counted. Here, local maximum is one or more points with
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very similar fitness values surrounded by points with smaller fitness (z-axis) values

(Fig. 7.5). As expected, the graph edit distance fitness landscape proved to be the

roughest, having the largest number of local maxima. Due to the lack of flat areas in

the difference distributions fitness landscapes as well as the fitness fluctuations that

tend to happen in this fitness function, the difference distributions fitness landscapes

proved to be next in landscape roughness. The overlay fitness landscapes proved to

be very smooth in the roughness evaluation with a very small number of local maxima

present.

Name # Local Maxima
Graph Edit Distance 18
Difference Distributionsdecay=0.075 14
Difference Distributions 10
Overlay 4
Graph Edit Distancedecay=0.075 2
Overlaydecay=0.075 0

Table 7.5: Statistics obtained from analyzing the roughness of the fitness landscapes.
The first column shows the name of the fitness landscape, and the second column
shows the number of local maxima in the landscape.

To further test the utility of the proposed fitness functions, an evolutionary search

for the target model was set up, where the starting model of normal decay rate had

the genes promoting head and tail regions knocked out. As the search progressed,

at the end of each generation a mutation operator modified the regulatory region

effects, a 2-point crossover was performed on the selected individuals, and the model

was simulated in the cellular platform for 200 steps until the metabolic stability was

achieved. At step 200, a transverse cut was performed on the worm and the simulation

was ran for 200 more steps to allow the regeneration processes to take place. Once

the simulation was finished, simulation outcomes were evaluated against the target
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outcome using one of the fitness evaluators. To evaluate the performance of different

evaluators on the evolutionary search, a time series graph for each of the three fitness

functions was created (Fig.7.5). In a time series graph, the highest fitness value found

in a given generation (y-axis) is plotted against time, or the generation count (x-axis).

Figure 7.5: A time series graph for an evolutionary search for a target capable of
producing stable head and tail regions.

Figure 7.5 presents the average time series for five consecutive GA searches. In

each of the five searches, the overlay and difference distributions fitness functions were

able to find the target relatively fast: overlay in 10 and difference distributions in 17

generations. The graph edit distance fitness function found the target in four of the

five of the GA search runs; however, it got stuck on the local maximum during the

fifth run, where the fitness did not go over 0.71 even after the evolutionary search

ran for 500 generations. This explains why the graph edit distance time series curve

in Figure 7.5 is significantly below the overlay and graph edit distance curves. The

possibility of the search getting stuck at a local maximum can be visually explained

by the examination of the fitness landscape for the graph edit distance (Fig. 7.3(c)).
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Due to a large number of local maxima, it is very easy for the search to get stuck in

one of them.

7.2.1 Difference Distributions Fitness Function Evaluation

In order to construct a histogram in the difference distributions evaluator, each cell

in the cellular morphology has to be compared against every other cell, making

the complexity of the algorithm O(N2). Considering that the creation of difference

distributions has to be performed for every model generated during the evolutionary

search process, it is crucial to construct distributions quickly and efficiently. Speedup

and efficiency are the main reasons for rewriting the Python module for creating

difference distribution histograms into a C implementation.

To access the speedup provided by the C implementation of difference distribution

histogram creator, histograms were constructed for several CellSim simulation snap-

shots. The runtime of histogram construction for C and Python implementations as

well as the speedup achieved by the new C implementation are shown in Table 7.6.

The conversion of the difference distributions histogram creator code from Python

to C has provided a 72 times speedup on average as seen in Table 7.6. This distinction

is crucial, especially in such a time-dependent application as the CellSim genetic

algorithm, which has to process hundreds of morphologies in order to find the target.

In addition to providing the speedup assessment of the histogram creator C im-

plementation, this work examined how intuitive the difference distributions evaluator

is at assigning fitness values to various morphologies. The difference distributions

fitness function was used to evaluate the polar regeneration model from Section 1.4.3
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Morphology C runtime Python runtime Speedup
target 0.062 4.758 76.239
htht 0.063 4.725 74.693
htlhtl 0.087 4.907 56.520

hh 0.064 4.974 77.592
ttlttl 0.065 4.878 74.889

hthhth 0.071 4.912 68.842
tttttt 0.066 4.846 73.834

tt 0.090 4.831 53.689
tltl 0.065 4.806 74.339

htttth 0.065 4.809 73.545
tthhtt 0.064 4.879 76.212
hthhtt 0.065 4.985 76.595

Average 0.070 4.964 72.162

Table 7.6: The runtime of difference distribution histogram creator implementations
in C and Python for morphology in column one are shown in columns two and three,
respectively. The speedup provided by the C implementation of the histogram creator
is shown in column four. The last row of the table shows the average runtimes.

with various permutations of head, trunk, and tail region promoters knocked out.

Table 7.7 shows the difference distribution histograms and fitness values assigned by

the difference distributions evaluator to the examined models. In the evaluation, the

difference samples were collected by using a subunit-to-subunit difference processor

described in Section 4.1, which were in turn converted into a ten-bin distribution

histogram.

In Table 7.7, the Distribution column shows the distributions created for the

evaluated morphologies. In the plot, the x-axis represents bin indexes ranging from 0

to 9, while the y-axis shows the normalized count of samples that fell within a given

bin index during the histogram creation.

By examining the distribution plots, it can be seen that the difference distribution

histograms for models with knocked out head and tail promoters look very similar.
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Variations in the regenerated head and tail thickness on the cut borders are due

to the differences in histograms, and thus in fitness values. The same observation

is true about histograms for individuals with head and trunk, tail and trunk, and

just trunk regions knocked out. Consequently, the individuals with similar difference

distributions histograms were assigned similar fitness function values.

It is curious to note that the fitness of the model with head, trunk, and tail

promoters knocked out is higher than the fitness of the models with only trunk and

tail genes knocked out. For the model with three knocked out region promoters,

the histogram differences are only attributed to the differences in subunit locations.

There are few differences in molecular concentrations in the model because the con-

centrations of assessed molecules (head, trunk, and tail region promoters) are all zero.

This behavior of the difference distributions fitness function is not very favorable from

the evolutionary search perspective, as it favors models that may sway the search and

potentially cause it to go in the wrong direction.
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Mutation Distribution Cellular morphology Fitness

None 1.0

Head Knockout 0.842

Tail Knockout 0.804

Trunk Knockout 0.747

Head Trunk Knockout 0.723

Head Tail Knockout 0.758

Trunk Tail Knockout 0.705

Head Trunk Tail Knockout 0.731

Table 7.7: Difference distributions for morphologies with different gene knockouts
performed. The first row in the table presents the difference distribution data for the
target morphology.
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CHAPTER 8

CONCLUSIONS

8.1 Automation of Search for Regeneration Models

This work automated the search for planarian regeneration models that fit the ex-

periments reported in the literature. To this end, a flexible evolutionary search,

a cellular simulation platform, and a database of planarian experiments have been

combined. Several flexible fitness functions have been implemented in order to support

the search for different features of planarian regeneration models, such as shape,

metabolic networks, and genome.

The automated platform has provided extraction of morphologies and experiments

from the Planform database of planarian experiments and reduced the manual design

and parameter tuning of models in the CellSim platform. The extracted planarian

experiment descriptions can be automatically applied to the cellular morphologies in

CellSim by specifying the name of the experiment and the cellular morphology to be

manipulated.

This work performed the initial assessment of fitness functions that are capable of

guiding the evolutionary search most effectively. Evaluation of fitness landscapes

produced by the overlay, graph edit distance, and difference distributions fitness
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functions shows that the graph edit distance evaluator is not as robust as the overlay

and difference distribution evaluators due to the roughness of the surface and the

potential of getting stuck at local maxima. The overlay and difference distributions

fitness functions proved to be robust, and were capable of finding a target individual

within 15 generations on a simple evolutionary search run. A closer look at the

difference distributions fitness function showed that this evaluator does not always

produce fitness values favorable to the evolutionary search. In short, out of the fitness

functions examined, the overlay evaluator proved to be the most intuitive from the

evolutionary standpoint as well as robust.

All in all, the automated components implemented as a part of this work provided

a good start for finding new models of planarian regeneration against the experiments

reported in the literature.

8.2 Future Work

8.2.1 Organs

This work used the abstracted representations of planaria worms by considering the

region information of the morphologies. To expand the representational complexity

of planaria worms, the next step of this research will be to add organ support

to the simulation platform and the fitness functions. The organ support to the

simulation platform can be added by introducing a combination of indicator molecules

representing organs.
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8.2.2 Combination of Fitness Functions

The three fitness functions implemented in this work provide different assessments

of planaria worm features. As discussed in Section 1.1, the main reasons for having

a multi-objective fitness function is to provide multiple possible directions of the

evolutionary search and speed up the search. This work evaluated the fitness functions

separately. However, for future work it is crucial to assess fitness function performance

when the functions are used in combination with each other. It will be equally

important to determine how much each fitness function should contribute to the final

fitness used to guide the evolutionary search.

8.2.3 Cellular Morphologies Beyond One Layer

In this work, the morphology abstractions consisted only of a single layer of cells. As

a part of future studies, it will be interesting to examine morphologies that not only

contain organs but also a more complex shape consisting of several layers of cells.
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