
AN INERTIAL MEASUREMENT SYSTEM

FOR HAND AND FINGER TRACKING

by

Edward Nelson Henderson

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

Boise State University

December 2011

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Edward Nelson Henderson

Thesis Title: An Inertial Measurement System for Hand and Finger Tracking

Date of Final Oral Examination: 14 October 2011

The following individuals read and discussed the thesis submitted by student Edward
Nelson Henderson, and they evaluated his presentation and response to questions
during the final oral examination. They found that the student passed the final oral
examination.

Dr. Thad Welch, Ph.D., P.E. Chair, Supervisory Committee

Dr. Elisa Barney Smith, Ph.D. Member, Supervisory Committee

Dr. Nadar Rafla, Ph.D. Member, Supervisory Committee

Dr. Hao Chen, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Dr. Thad Welch, Ph.D., P.E.,
Chair, Supervisory Committee. The thesis was approved for the Graduate College
by Dr. John R. Pelton, Ph.D., Dean of the Graduate College.

ACKNOWLEDGMENTS

This thesis would not have been possible without the generous support of the

professors and staff of the Boise State University College of Engineering, my thesis

committee members, and my advisor Dr. Thad Welch.

I would like to thank Dr. Thad Welch for his encouragement, advice, and wisdom

during my time at Boise State University. Dr. Welch has helped me through some

difficult times and he has been a true inspiration to me during my academic pursuits.

I greatly appreciate his willingness to take on this thesis even when the topic was

outside of his realm of focus.

I am grateful for the financial support that I received from Dr. Jim Browning and

the Crossed Field Amplifier project. I could not have afforded to stay in school and

finish this work without it.

I would like to thank Dr. Elisa Barney Smith for her tireless dedication to the

students of the Boise State College of Engineering. Dr. Barney Smith has been an

inspiration throughout my undergraduate and graduate career.

I greatly appreciate the efforts of Dr. Nadar Rafla and Dr. Hao Chen for being on

my thesis committee and for their time and efforts in reviewing this document.

A very special thank you goes to Mr. Paul G. Savage of Strapdown Analytics.

Mr. Savage very kindly offered his support in the area of Inertial Navigation Systems.

He answered my novice questions and provided practical techniques for implementing

the algorithms required for this thesis.

I am deeply indebted to a wonderful group of people that supported this effort by

iii

reviewing drafts of this thesis. First and foremost, I must thank Mrs. Donna Welch

who offered valuable insight and spent countless hours reviewing my drafts. My

brothers David and Daniel and my wife Vicki all took time to review and comment

on portions of this work. Finally, Tanner Moore assisted me in cleaning up what I

hope are the last remnants of missing commas, weak sentences, and typos.

My family has been very supportive during this process. I cannot thank them

enough for their understanding and patience. They are the true inspirations in my

life.

I would like to finish by saying that prayer and thanks to God are a regular part

of my life. God has opened many doors for me and provided opportunities where

none existed. At one point I thought I would never finish a bachelors degree; now I

am nearly done with a masters. Thank you, God.

And whatsoever ye do in word or deed, do all in the name of the Lord Jesus, giving

thanks to God and the Father by him. Colossians 3:17, KJV.

iv

ABSTRACT

The primary Human Computer Interfaces (HCI) today are the keyboard and

mouse. These interfaces do not facilitate a fluid flow of thought and intent from the

operator to the computer. A computer mouse provides only 2 Degrees of Freedom

(2DOF). Touch interfaces also provide 2DOF, but with multiple points, making the

touch interface far more expressive. The hand has 6 Degrees of Freedom (6DOF)

by itself. Combined with the motion of the fingers, the hand has the potential to

represent a vast array of differing gestures. Hand gestures must be captured before

they can be used as a HCI. Fortunately, advances in device manufacturing now make it

possible to build a complete Inertial Measurement Unit (IMU) the size of a fingernail.

This thesis documents the design and development of a glove outfitted with six

IMUs. The IMUs are used to track the finger and hand positions. The glove employs

a controller board for capturing IMU data and interfacing with the host computer.

Python™ software on the host computer captures data from the glove. MATLAB™ is

used to perform IMU calculations of the incoming data. The calculated data drives

a 3D visualization of the glove rendered in Panda3D™.

Future work using the glove would include improved IMU algorithms and devel-

opment of gesture pattern recognition.

v

TABLE OF CONTENTS

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF CODE LISTINGS . xiii

LIST OF ABBREVIATIONS . xv

1 INTRODUCTION . 1

1.1 The Human Computer Interface . 2

1.2 History of Computer Interfaces . 5

1.3 Motion Capture . 10

1.3.1 Video Motion Capture Techniques . 11

1.3.2 Inertial Measurement Motion Capture . 12

1.3.3 Hand and Finger Motion Capture . 14

1.4 Glove History . 15

1.4.1 Early Gloves . 15

1.4.2 Accelerometer Based Gloves . 15

1.5 Inertial Based Glove Motion Capture . 20

1.5.1 The GyroGlove . 23

vi

2 INERTIAL MEASUREMENT SYSTEMS . 24

2.1 A Brief History of Inertial Measurement . 24

2.2 Inertial Measurement Key Concepts . 27

2.2.1 Comparison of Global Positioning System and Inertial Mea-

surement Units . 28

2.2.2 Inertial Measurement Unit Types . 28

2.2.3 Coordinate Systems . 29

2.2.4 Navigation Reference Frames . 32

2.3 The Mathematics of Inertial Navigation . 36

2.3.1 Reference Frame Transformations . 36

2.3.2 Direction Cosine Matrix Updates . 41

2.3.3 Accelerometer Updates . 43

2.3.4 Inertial Measurement Unit Initial Alignment 43

2.3.5 Error Sources for Inertial Measurement 46

2.4 Summary . 46

3 HARDWARE AND SOFTWARE TOOLS . 47

3.1 Board Design Tools . 47

3.2 Board Assembly Tools . 49

3.3 System Testing Equipment . 50

3.4 Firmware Development Tools . 51

3.4.1 Processor Configuration and Debug . 51

3.5 Software Development Tools . 52

3.5.1 Python™ Language . 52

3.5.2 MATLAB™ Environment . 54

3.5.3 Panda3D™ Library . 55

vii

4 GYROGLOVE SYSTEM DEVELOPMENT 57

4.1 GyroGlove Design . 57

4.1.1 Data Handling . 58

4.1.2 Glove Versions . 59

4.2 Hardware Design . 60

4.2.1 Inertial Measurement Units . 60

4.2.2 Controller Board . 64

4.3 Firmware Design . 68

4.3.1 Gyro Command Processor . 71

4.3.2 I2C Transaction Primer . 72

4.3.3 I2C Master . 75

4.3.4 IMU and IMUManager . 75

4.3.5 Packet Data Rate Calculations . 81

4.4 Software Design . 81

4.4.1 Python™ . 82

4.4.2 Panda3D™ . 84

4.4.3 MATLAB™ . 85

4.4.4 MATLAB™ Mex Functions . 88

5 RESULTS . 90

5.1 Hardware Results . 91

5.2 Software Results . 91

6 CONCLUSION AND FUTURE WORK . 93

REFERENCES . 95

A Python™ GLOVESERVER SOURCE CODE 99

B Panda3D™ Python™ SOURCE CODE . 123

viii

C MATLAB™ CODE . 126

D MATLAB™ MEX CODE . 154

E FIRMWARE CODE DOXYGEN OUTPUT 159

ix

LIST OF TABLES

4.1 IMU Class Run Method Initial State Table . 77

x

LIST OF FIGURES

1.1 ENIAC Computer at the University of Pennsylvania[13] 6

1.2 The UNIVAC 1 - First Commercial Computer[3] 6

1.3 The First Computer Mouse and Screen . 7

1.4 The Apple™ Macintosh™[2] . 7

1.5 Early Trackball Device[6] . 8

1.6 Space Navigator three-dimensional Mouse[7] . 9

1.7 Xsense™ Biomech™ Suit[9] . 13

1.8 Xsense™ MTx™ Sensor[8] . 13

1.9 Acceleration Sensing Glove[24] . 16

1.10 Early and Commercial AcceleGlove . 17

1.11 Vietnamese Sign Language Glove[11] . 17

1.12 KHU-1 Korean Accelerometer Glove[23] . 18

1.13 Glove Proposed by P. Asare[10] . 19

1.14 Body Reference Frame for Finger . 21

2.1 A simplified drawing of the ship’s inertial navigation system[15]. 26

2.2 An illustration of a frame translated relative to the reference frame. . . . 30

2.3 An illustration of frame translated and rotated relative to the reference

frame. 31

2.4 An illustration of the body frame axes for the right hand. 31

2.5 An illustration of the ECI coordinate system. 33

xi

2.6 An illustration of the ECEF coordinate system. 34

2.7 An illustration of rotation and translation of coordinate system. 37

2.8 Coordinate system rotation about the z-axis with angle ψ. 38

2.9 Coordinate system rotation about the z-axis with angle ψ and the

y′-axis with angle θ. 39

2.10 Coordinate system rotation about the z-axis with angle ψ, the y′-axis

with angle θ and the x′′-axis with angle φ. 39

4.1 Block Diagram of GyroGlove . 58

4.2 The GyroGlove . 59

4.3 3D PCB Render of the IMU Board . 61

4.4 GyroGlove IMU . 61

4.5 Controller Board . 65

4.6 Controller Board Plane Layers Detail . 65

4.7 Block Diagram of GyroGlove Controller and IMU Boards 66

4.8 GyroGlove Firmware Architecture Block Diagram 69

4.9 I2C Start and Stop Transactions . 73

4.10 I2C Write Transaction . 73

4.11 I2C Read Transaction . 73

4.12 I2C Combined Transaction . 74

4.13 Partial State Machine Diagram for the IMU Class 76

4.14 GloveServer GUI . 82

4.15 UML Diagram of the Python™ GloveServer . 83

4.16 Google Sketchup™ Drawings Used in the Panda3D™ 3D Visualizer 84

4.17 GloveGui UML Diagram . 86

4.18 MATLAB™ Glove GUI . 87

xii

LIST OF CODE LISTINGS

4.1 I2C Class Creation . 69

4.2 Initialization of the IMUManager Class and the IMU Classes 70

4.3 Initialization of the HardwareSerial and GyroCommandProcessor Classes 70

4.4 GyroAcc Main Loop . 71

4.5 GyroCmdProcessor Loop Example . 72

4.6 IMU Class ProcessTransaction Method . 77

4.7 IMU Manager Loop Method . 78

4.8 IMU Manger SendPacket Method . 79

A.1 Top Level . 100

A.2 IMU Manager . 105

A.3 Application Programming Interface . 106

A.4 Packet Handling . 116

A.5 User Interface . 121

B.1 3D Server . 124

C.1 GloveGui Top . 127

C.2 GloveGui Base . 130

C.3 GUI Base . 134

C.4 Platform IMU . 137

C.5 Glove IMU . 141

C.6 IMU Core . 147

C.7 Hand Kinematics . 151

xiii

D.1 GyroGlove Main . 155

D.2 GyroGlove Client . 156

xiv

LIST OF ABBREVIATIONS

ADC analog-to-digital converter

API application programming interface

ASG acceleration sensing glove

ASL American sign language

BOM bill of materials

CAD computer aided design

DPS degrees per second

DCM direction cosine matrix

DOF degree of freedom

ECEF earth centered earth fixed

ECI earth centered inertial

ENIAC Electronic Numerical Integrator And Computer

ESGN electrostatic gyro navigator

GUI graphical user interface

GPS global positioning system

HCI human computer interface

xv

Hz Hertz

IMU inertial measurement unit

ICE in-circuit emulator

IFOG interferometric fiber optic gyro

INS inertial navigation system

IR infrared

I2C inter-integrated communications

JTAG joint test action group

KBPS kilobits per second

MEMS microelectromechanical systems

NED north east down

PARC Palo Alto Research Center

PC personal computer

PCB printed circuit board

PDA personal data assistant

POS point-of-sale

QFN quad flat-pack no lead

SIGGRAPH Special Interest Group on Computer Graphics and Interactive

Techniques

SINS ship’s inertial navigation system

xvi

SRI Stanford Research Institute

SPI serial peripheral interface

TQFP thin quad flat pack

UNIVAC I UNIVersal Automatic Computer I

USB universal serial bus

UML unified modeling language

2D two-dimensional

3D three-dimensional

6DOF 6 degrees of freedom

xvii

1

CHAPTER 1

INTRODUCTION

Recent advances in microelectromechanical systems (MEMS) technology have reduced

the size of accelerometer and gyroscope devices to the point where it is practical to

construct an inertial measurement unit (IMU) with 6 degrees of freedom (6DOF) the

size of a fingernail. A glove designed with a complete IMU placed at the tip of each

finger can capture the motion of the fingers, and be used for gesture recognition. This

thesis outlines the design and implementation of such a glove. Hand gestures tracked

using such a glove can be used to control computer functions currently accessed using

a keyboard and mouse. Gesture capture has the potential to significantly advance

the current state of human computer interfaces (HCI).

A set of IMUs were designed along with a controller for managing them. A total of

six IMUs were then assembled into a glove, mounted one per finger, one on the thumb,

and one on the back of the hand. Data from this glove was captured, processed, and

visualized on a personal computer (PC).

This thesis begins with some background information and relevant history. Chap-

ter 1 includes a review of the history of HCI and some background information

about inertial navigation. The chapter presents several types of motion capture.

The chapter concludes with an introduction to the capture technique used for this

thesis.

Chapter 2 presents the topic of inertial navigation systems. The chapter begins

2

with a history of inertial navigation leading up to the current state-of-the-art in the

field. Section 2 defines key concepts needed to understand inertial navigation. The

chapter concludes with the theoretical and mathematical background required for

such systems.

Chapter 3 is a reference for the hardware and software used on this project,

including a summary of the test equipment, software development tools, and assembly

tools.

Chapter 4 presents the GyroGlove and provides an overview of this project, along

with discussions of key topics. The hardware design is presented with block diagrams

and descriptions of major components. The chapter provides high level details about

the microprocessor firmware, MATLAB™ , Python™ , and C++ software.

Chapter 5 presents the results of the GyroGlove project and discusses those aspects

that were successful, as well as those that were not. Chapter 6 presents conclusions

and a discussion about the possible future for the GyroGlove project.

1.1 The Human Computer Interface

The idea behind this thesis stems from an interest in inertial navigation systems

(INSs) and a desire to use this technology to improve how users interact with their

computers. Computers are useful in a wide range of applications, but the mechanisms

used to interact with them have changed very little over the past decade or two.

Engineers use computers for the design and modeling of mechanical, electrical,

and architectural systems. Artists use computers to create two-dimensional (2D) and

three-dimensional (3D) still graphics, as well as animated 3D scenes. Computers

manage point-of-sale (POS) transactions in many industries. In the medical field,

computers schedule patient visits, monitor vital signs, and facilitate face-to-face

interaction between patient and doctor via remote presence. Auto mechanics use

computers to perform vehicle diagnostic tests and to search for the proper repair

3

procedure. Aircraft cockpits, once dominated by dials and needles, are filled with

computer-generated displays. It is difficult to find an area in modern society where

computers do not play some type of role. As ubiquitous as computers are, the

mechanisms that we use to interact with them have barely changed over the past

two decades.

Various techniques for computer interaction have been developed and those tech-

niques continue to evolve. Unfortunately, the currently available mechanisms still

present a huge bottleneck when interacting with modern computers capable of per-

forming many tasks simultaneously. A computer will spend over 90% of its processor

time waiting for user input. Experienced computer users can think about a sequence

of tasks much quicker than they can initiate them. The need to point to menu items,

click, drag, and select hinders the potential efficiency of many day-to-day tasks.

Computer operating systems and most programs support shortcut keys. Such

combinations involve sequences of keys combined with the CONTROL, ALT, and

SHIFT keys. Shortcuts can speed experienced users through common operations, but

the learning curve is generally quite long and many users never gain the experience

to use more than a few.

More expressive interface devices would allow the user to access relevant menus

more quickly, be more precise when selecting options, and offer a more natural means

of interacting with programs. An ideal HCI would become a natural extension of our

bodies and allow for a wide range of expressions to rapidly and effectively indicate

the user’s intentions to the computer system.

The technologies available for interacting with the computer are an important

driver of the way that software is written. Most software uses menus, drop-down

lists, and pop-up menus. Such mechanisms are far from ideal, but they are the best

options available given the current state of HCI. Software tools designed for 3D

modeling often use a combination of key presses and mouse moves for rotating an

4

object. A more natural way to interact with a 3D object would be to reach out and

grab the object with your hand. Such a natural gesture would be easy to learn. New

developments in the state-of-the-art for HCI devices will bring associated changes to

the software written for those devices. Big changes in the HCI would have a major

impact on how we work with computers, but the industry is still waiting for the next

big breakthrough.

Some devices have made great strides in the right direction. The iPhone™ intro-

duced a new interface mechanism. When the iPhone™ was released, touch screens

were not new, but they had yet to be utilized beyond a few niche application areas.

Nonetheless, the trend in smart phones is definitely toward the touch screen interface.

The new interface mechanisms for portable devices have been a large step in the

right direction. The touch interfaces on the iPhone™, iPad™, and Android™ devices

are vastly superior to the interface used on previous handheld interfaces, such as the

stylus. The new touch interfaces have revolutionized the handheld device marketplace.

These handheld devices are making an impact in areas traditionally dominated by

the PC. iPad™s have blurred the lines between a handheld device and a computer,

with many of the common PC tasks easily accessible on these new devices. Small

computer devices like the iPad™ have begun to replace the PC for tasks such as web

surfing, basic e-mail, gaming, reading, and similar applications. However, the PC

will continue to be the preferred platform for more intensive applications such as

engineering, 3D mechanical design, graphics design, and similar applications.

There have been some attempts to use the touch interfaces on more traditional

computers. Several computer manufacturers have produced computers with a touch

panel in additional to the typical mouse and keyboard. It is not clear that these

improvements have been particularly successful in the market place. One challenge is

user familiarity and comfort. It would take time for users to accept and embrace these

new touch panel interfaces. Another challenge is that most programs are not written

5

specifically for such an interface. Programs for touch devices such as the iPhone™

have been written specifically to use the touch interface while programs on the typical

computer have not. The combination of the program interfaces and user familiarity

make the introduction of these interfaces a huge marketing challenge. Widespread

market penetration for new technologies like touch panels would require a significant

increase in usability — enough of an increase to offset the typically slow adoption

rates of such technology innovations. Current touch technologies do not offer enough

of an increase to drive such adoption.

Computers have made huge leaps in processing power in the past decade. Unfortu-

nately, the HCI mechanisms have failed to maintain the same pace of innovation. The

powerful computers of today are unable to truly augment our thought processes. The

computer is hampered by the fact that it must wait patiently while the user moves

the mouse, types on the keyboard, and clicks away wildly, attempting to transmit the

free-flowing ideas in his or her mind into something that the computer can respond

to. The HCI is arguably the single largest factor hindering the free flow of ideas from

the mind to the computer.

1.2 History of Computer Interfaces

The history of the computer has seen many changes in the HCI. The earliest com-

puting devices used punch cards and plug boards [28] .

The world’s first digital computer was the Electronic Numerical Integrator And

Computer (ENIAC)[18]. The ENIAC, shown in Figure 1.1, was developed at the

University of Pennsylvania in the mid 1940s and dedicated in 1946 [18]. The ENIAC

used punch cards for programming, as did many of its successors [5].

Cards were replaced with paper tape, and eventually magnetic tape. Keyboards

were used for interaction starting in the early 1950s [5]. The UNIVersal Automatic

6

Figure 1.1: ENIAC Computer at the University of Pennsylvania[13]

Computer I (UNIVAC I), shown in Figure 1.2, was the first commercial computer.

The UNIVAC I was used by the Census Bureau in 1951.

Figure 1.2: The UNIVAC 1 - First Commercial Computer[3]

Amazingly, the first mouse, shown in Figure 1.3a, was actually invented back in

the late 1960s. A paper published in 1967 described the use of a joystick, a Grafacon,

and a mouse [16]. The devices were developed at Stanford Research Institute (SRI) by

Douglas Engelbart. The mouse did not become a part of everyday life until almost 20

years later, however. While Engelbart did develop something of a graphical interface,

shown in Figure 1.3b, the modern graphical user interface (GUI) did not come about

until many years later.

7

(a) First Mouse[12] (b) First Mouse and Screen[4]

Figure 1.3: The First Computer Mouse and Screen

There were no significant advances in computer interfaces until the 1980s when

Apple™ computer released the Macintosh™. The predecessor to the modern GUI was

developed at Xerox Palo Alto Research Center (PARC). These developments were

communicated to Apple™ and Microsoft™, both of which began work on the first

widely used GUI platforms [26]. Apple™ released its first Macintosh™, shown in

Figure 1.4, in 1984, which is credited as being the first GUI computer available to

the public. The keyboard and mouse combination, together with graphical elements

on the screen that were controlled by the mouse, revolutionized the computer. These

enhancements made the computer accessible to a wider audience.

Figure 1.4: The Apple™ Macintosh™[2]

In the ensuing decades, the primary computer interface did not change fun-

8

damentally. The keyboard and mouse were still by far the dominant method of

interacting with the computer. Other methods were tried, and some worked for

specific applications or user tastes. Trackballs, such as the one shown in Figure 1.5,

turned the mouse upside down. Instead of moving the mouse, which rolled the ball

on the table, you moved the ball. The goals were the same, but some users found the

ergonomics more comfortable.

Figure 1.5: Early Trackball Device[6]

Some industrial or process control applications used special monitors to provide

a touch screen interface. This reduced or eliminated the need for the keyboard and

mouse, especially in industrial environments with dust and other contaminants. The

early touch screens could detect a single touch at one point on the screen. The single

touch screens were limited, and worked much more like a mouse. They have little in

common with the multi-touch screens found on modern devices.

Specific application areas often drive a need for a custom interface mechanism.

Engineers or graphics designers that work with 3D models manipulate the computer

representation of their work in complex ways. A standard mouse and keyboard

can be used for this purpose, but they are not very efficient. As an example, the

SolidWorks™ mechanical engineering package uses a complex set of keyboard, mouse

click, and button combinations to select between pan, zoom, and 3D rotate modes.

9

Figure 1.6: Space Navigator three-dimensional Mouse[7]

Such programs benefit from a special type of mouse that provides three degrees of

freedom that make manipulation of 3D objects easier. One such device is the Space

Navigator™ 3D mouse, shown in Figure 1.6.

Palm™ computer developed personal data assistant (PDA) devices with unique

interfaces. These devices used a stylus for interaction. The devices were simple, as

there was no need for a keyboard, but the interface was generally quite slow. Users

could learn a stroke language and increase their efficiency, but the learning curve was

steep. These devices were successful for a number of years, but as more advanced

devices arrived, the stylus interface began to find fewer adherents.

In 2007, Apple™ released the iPhone™. This device uses a multi-touch screen for

interaction with the phone. The multi-touch screen allows for much more expressive

input from the user. Now it is not only possible to point at an item, it is possible to

manipulate that item in very easy and intuitive ways. Squeeze two fingers together

and the image shrinks, spread them apart and zoom in. Using gestures that feel

natural make them easily accessible and allow anyone to learn them quickly. The

multi-touch interface is in many ways the first major shift in the computer user

interface since the mouse and GUI. In a few short years, the interface has moved

from a novelty to the de facto standard for all such portable devices.

While the multi-touch screens are well suited for portable devices, they are not

10

ideal for all applications or situations. The multi-touch screens provide the ability

to track multiple finger touches and movements. Five finger gestures are possible in

advanced devices. The limit, however, is that all of the gestures are constrained to a

2D plane. Gestures can swipe across, squeeze together, and rotate. The multi-touch

screen, while still a great improvement over traditional HCI methods, still locks the

user into a 2D world when we actually live in a 3D world.

While gesturing in 2D is helpful, gesturing in 3D would be significantly more

expressive. In 2D, one might raise a finger and tap on the surface to indicate a

“click.” In 3D, the height of the finger, and other aspects of the finger movement

may have significance. The velocity of the movement, the maximum height, even a

finger waving gesture could infer a specific operation. The desire to capture the 3D

movements of the hand and fingers is not new, however recent advances in sensor and

electronic technology are bringing 3D gesture capture closer to a practical reality.

1.3 Motion Capture

Every mechanism that we use to interact with the computer is in effect some form

of motion capture. A keyboard captures the motion of the fingertips on a 2D plane

surface with specific functions assigned to each position on the plane — the J key for

example. We use touch cues — the raised bumps on the F and J keys — to orient

ourselves to the environment. With training, we learn to pinpoint specific locations

on the keyboard without looking. The fastest touch-typists can type well in excess of

100 words per minute, while many people resort to a hunt-and-peck method. There

is a great deal of variability in keyboarding skills among computer users. For most,

however, the keyboard is a painfully slow means of computer interaction.

The mouse is in essence just another means of motion capture. We grip the mouse,

and move our hands. The mouse tracks the position of our hand by sensing the surface

upon which it rests. The sensing method and accuracy have improved over the years,

11

but the basic technique has remained the same. Buttons and wheels on the mouse

allow for other types of motion capture — the wheel captures an up-down or in-out

(depending on how the motion is interpreted) motion of our finger. Buttons capture

a clicking motion.

The mouse and keyboard are both very archaic means of motion capture. The

keyboard requires extensive training to master. The mouse is limited to a 2D plane,

and may add some buttons or wheels. Moving the mouse requires our entire hand, and

often results in substantial user fatigue or even injury. Neither of these methods come

close to capturing the full expressiveness of the human body. Our fingers, hands, and

arms exhibit many degrees of freedom. The more degrees of freedom a system can

capture, the more able it is to provide a truly expressive interface to the computer.

1.3.1 Video Motion Capture Techniques

Video processing is a well-established motion capture technique. With this technique,

multiple cameras are required in order to achieve some amount of depth perception.

Some motion capture systems require the subject to wear a suit with target dots

that mark key spots on the person being tracked. The dots allow the camera tracking

software to have a clear and unambiguous target. Multiple camera angles are generally

required to determine position in a 3D frame of reference[19].

Camera video tracking systems generally require an extensive setup. Cameras

must be placed precisely, and special suits are often required. Improvements in

processing power and some novel techniques have driven recent improvements in video

tracking. The Microsoft™ Kinect™ system was introduced on November 4th, 2010.

The Kinect™ paints the environment with an infrared (IR) laser. The laser dots are

then tracked by a pair of cameras mounted on a boom. The laser dot pattern deforms

in predictable ways as the objects in the field move. The current Kinect™ systems

track major body parts such as the hands, legs, and head. It is likely that future

12

enhancements will be able to track more detail, such as the motion of the fingers and

hands.

Video motion capture is not suitable for all environments. Mobile applications

would be poor candidates for a video tracking system with fixed cameras. Outdoor

applications would make use of an IR laser virtually impossible. Not every application

would be practical with a camera system facing the user. More flexible and portable

systems are needed.

1.3.2 Inertial Measurement Motion Capture

Inertial Measurement techniques for motion capture are gaining in popularity and

capability. Inertial Measurement has been around for decades, but the size of such

units has limited their use in tracking small items. Recent advances in technology

have reduced the size of such devices to the point that they are small enough to

be mounted on a circuit board the size of a fingernail. Smaller devices, however,

generally lead to sacrifices in accuracy, limiting their effectiveness for motion capture

systems. Body motion capture devices are larger and designed to be as accurate as

possible.

The motion capture industry has been driven by athletics and Hollywood, due

in large part to the funds available in these industries. Motion capture benefits a

great deal from unconstrained systems. Systems that require precision camera setups

constrain the actors or athletes. Video capture systems might be impractical for

capturing a skier on a giant slalom run, but inertial suits have been used to capture

motion during such events in great detail.

Several companies manufacture commercial motion systems. One such system

is the Biomech™ suit from Xsens™, shown in Figure 1.7. The Biomech™ utilizes 17

inertial motion trackers located at key points on the body. This suit captures the

movement of major body parts and records them for further processing and analysis.

13

Figure 1.7: Xsense™ Biomech™ Suit[9]

Figure 1.8: Xsense™ MTx™ Sensor[8]

14

The motion trackers used on the Biomech™ suite are the Xsens™ MTx™, shown in

Figure 1.8. The MTx™ units measure 38 x 52 x 21 mm and are highly accurate.

The Biomech™ suit works great for tracking the entire body. The tracking units,

however, are much too large to track smaller body parts, such as a finger.

1.3.3 Hand and Finger Motion Capture

The most expressive parts of our bodies are the hands and the face. Some work

has been done on using facial features as a computer interface [30]. Such a facial

recognition system would be usable by an individual with upper limbs amputated.

Such systems are not likely solutions for day-to-day work. The hands are a far more

natural way to interact, since we already use them every day to interact with the

world around us.

The hands are able to point, gesture, manipulate, and grasp. The fingers have

great range of motion in some directions with limited motion in others. The thumb

works in opposition to the fingers for gripping of objects. Tracking the hand and

fingers in 3D would allow the capture of a large number of expressions and gestures.

Gestures could be used for a variety of tasks that we currently perform on our

computers:

* Virtual Keyboard Interface.

* Finger movements to scroll windows.

* Gestures to switch applications or windows.

* Manipulation of 3D objects for computer aided design (CAD) or Graphic Design

work.

Currently available applications could make use of a gesture-based input. How-

ever, real improvements in HCI will require a new breed of application, written

specifically with gesture interaction in mind.

15

1.4 Glove History

A literature and internet review shows that there is a significant amount of activity

in the IMU-based motion capture industry. Motion capture specifically for hands

and fingers is less well represented. However, there have been some university and

commercial developments. Because there is no definitive source on the history of such

gloves, it is not possible to know for sure that all previous developments have been

identified.

1.4.1 Early Gloves

One of the first gloves designed to capture hand gestures was built for the Nintendo™

game system. The Power Glove™ was designed as a game controller and released in

1989 [25]. This glove uses sensors to determine the finger bend angles.

A current commercial glove that uses bend sensors is the CyberGlove II™, man-

ufactured by CyberGlove™ Systems [14]. The CyberGlove™ tracks finger position

by monitoring bend angles of the finger joints with the bend sensors. The position

data is transmitted wirelessly to a host computer where it can be used for a range of

applications.

In 2001, Sony Computer Science Laboratories, Inc. designed a tracking wrist that

uses capacitive sensors for capturing gestures and touch [27]. The GestureWrist™

uses a device that capacitively measures the changes in wrist shape and movements

of the forearm [27].

1.4.2 Accelerometer Based Gloves

There have been several gloves developed that use accelerometers for motion tracking.

The first such glove was developed by a group of undergraduate engineers at the

University of California, Berkeley in 1999. The glove was called the acceleration

16

Figure 1.9: Acceleration Sensing Glove[24]

sensing glove (ASG) [24]. The ASG was well ahead of its time. The glove, shown in

Figure 1.9, used 2-axis accelerometers on each finger and the thumb.

The ASG used an Atmel processor and analog accelerometers. The analog ac-

celerometers, common during that period, must be digitized using an analog-to-digital

converter (ADC). One challenge faced by the engineers at that time would have been

noise. Today, 3-axis devices are common. At that time, the 2-axis device was probably

state-of-the-art. The team at Berkeley oriented the x-axis perpendicular to the plane

of the fingernails, and the y-axis parallel to the axis of the fingers. The orientation

allowed the glove to sense the curling motion of the fingers, but not left or right

motion. Given the limitations of the technology existing at that time, the ASG was

a very impressive accomplishment.

A paper presented in 2002 to the Special Interest Group on Computer Graphics

and Interactive Techniques (SIGGRAPH) showed another acceleration glove designed

to recognize American sign language (ASL) [22]. This glove, shown in Figure 1.10a,

also used 2-axis accelerometers, again placing one on each finger, the thumb, and the

hand. The glove described in the 2002 paper is quite rudimentary, however there is

currently a commercial company that bears the name of AcceleGlove™, and it is quite

17

(a) Early AcceleGlove[22] (b) Commercial AcceleGlove[1]

Figure 1.10: Early and Commercial AcceleGlove

possible that the developers writing the 2002 paper went on to found the commercial

AcceleGlove™ entity.

While the 2002 AcceleGlove™ used 2-axis accelerometers, the more modern com-

mercial AcceleGlove™, seen in Figure 1.10b, uses 3-axis accelerometers[1]. The com-

mercial glove does not appear to use gyroscopes in the current production design.

Figure 1.11: Vietnamese Sign Language Glove[11]

The team of Duy Bui and Long Thang Nguyen designed a glove in 2007, shown in

Figure 1.11. Their glove was used to perform gesture recognition of Vietnamese Sign

Language[11]. Like the ASG, this glove used six 2-axis accelerometers located on the

fingers, thumb, and the back of the hand.

18

The sign language glove used digital accelerometers that generated a continuous

sequence of pulses. The duty cycle of the pulse train varied based on the acceleration

detected by the device, allowing the host processor to calculate the acceleration by

measuring pulse width. The glove used a Parallax™ BASIC Stamp micro controller

for the onboard processor. One unique aspect of this project was the use of fuzzy

logic for performing the gesture recognition.

Figure 1.12: KHU-1 Korean Accelerometer Glove[23]

A paper published in 2009 at Kyung Hee University, South Korea, demonstrated

3-D motion tracking of the hand and fingers using accelerometers [23]. The students

built a working glove. The glove was called the KHU-1 and is shown in Figure 1.12.

The KHU-1 was the first glove1 known to have used 3-axis accelerometers. The

authors of this paper noted that the use of 3-axis accelerometers would expand the

possible uses of such a glove to three dimensions, whereas the previous versions were

only suitable for 2D gesture captures.

The KHU-1 glove used analog sensors. These sensors required an ADC to capture

and digitize the accelerometer outputs. The KHU-1 performed ADC measurements

at a 20 Hertz (Hz) rate. The ADC captured the accelerometer values with 10 bits of

1The author understands that some gloves may have been developed privately with no published
papers to document their existence.

19

precision. The sample rate and ADC precision of this glove would be much too slow

and inaccurate for most purposes. Motion capture for biomechanics would generally

require a sample rate in the 150 Hz to 200 Hz range. 10 bits of ADC precision would

be very limiting, and the algorithms used to compute motion would be difficult to

implement. Nevertheless, the KHU-1 was able to successfully recognize some basic

gestures.

The final glove found during the literature search has not been built yet. The

glove is proposed in Asare[10] and shown in Figure 1.13. The proposed glove consists

of 11 3-axis accelerometers and 14 pressure sensors [10]. The purpose of the pressure

sensors is to detect hand positions and movements that the accelerometers cannot

detect.

Figure 1.13: Glove Proposed by P. Asare[10]

The glove proposed in [10] would use the accelerometer to detect motion and the

orientation of the glove. The gravity vector, which causes a fixed acceleration2 of 1

G, is used to determine the orientation of the glove.

No other gloves were found during the literature review. It is quite possible that

private or commercial firms have developed gloves but refrained from documenting

their development in order to maintain competitive advantage. It is also possible that

new gloves are under development but have yet to be announced.

2G is the mathematical symbol that represents the acceleration due to gravity, which is 9.8m
s2 .

20

Gyroscopes are the one thing missing from all of the gloves identified during this

review. Accelerometers can be used to determine the orientation of a body part by

tracking the gravity vector. Gravity vector tracking is difficult or impossible when

acceleration due to motion is also present. Gyroscopes add the ability to track changes

in the orientation even when rapid motion is present. Tracking rapid motion would

be required in order to capture gestures and signals from a hand moving at natural

speeds.

1.5 Inertial Based Glove Motion Capture

According to Farrell [17], an inertial measurement unit is a device that measures both

the acceleration and the rotation of a vehicle in 6 degrees of freedom. Measuring just

acceleration is not adequate to accurately reconstruct the position of the vehicle3 dur-

ing typical hand movements. Consider an attempt to use just a 3-axis accelerometer

for this purpose. Consider further that this accelerometer is located on the back of

the right hand with the z-axis perpendicular to the hand, the y-axis directed to the

right, and the x-axis directed toward the fingers. Figure 1.14 shows the coordinate

frame described on the hand.

With the palm facing downward, the x- and y-axes will read zero. The z-axis

will read -1G, which indicates that the force of gravity is directed along the negative

z-axis. Consider what happens as the hand is rotated slowly clockwise through 90◦.

The -z-axis reading will decrease from -1G to 0 and the +x-axis reading will increase

from 0 to +1G. The angle θ, can be determined from the formula θ = cos−1(Z
1G

). Any

motion of the hand will cause an acceleration in the axis of motion. This motion may

be along more than one axis, so the actual motion vector must be calculated based

on the acceleration in all three axes. Once the hand begins to move it becomes more

difficult, if not impossible, to accurately determine where the gravity vector is. The

3Vehicle in this context represents the entity that is being tracked, such as a fingertip, hand, etc.

21

x
y

z

Figure 1.14: Body Reference Frame for Finger

motion of the hand will add acceleration to the measurement, making separation of

the gravity vector and the motion vectors challenging.

The purpose of tracking the gravity vector is to maintain knowledge of the orien-

tation of the hand. In the previous example, if the hand initially moved upward, then

the accelerometers would register acceleration in the -z-axis. If the hand then rotated

90◦ clockwise and moved right, the acceleration would still be in the -z-axis, since

this axis has been turned to point to the right. If the processor can maintain a value

that accurately represents the current orientation, then the acceleration values will

be applied in the proper direction at all times. Also, the gravity vector will be known

relative to the orientation, and this acceleration can be removed from the motion

acceleration. Maintaining an accurate orientation of the vehicle is probably the most

critical factor determining the accuracy of an IMU.

Adding gyroscopes to the vehicle allows the system to monitor the rotation rate

of the vehicle. Any change in orientation will involve rotation in one or more axes.

Integrating the rotation rate will yield the number of degrees of rotation. Tracking

the rotation versus time will provide a current orientation of the hand. When the

22

vehicle motion is slow or constant, then the gravity vector can again be used, this

time to ensure that the orientation determined by the gyroscopes has not drifted

too far from the actual orientation. A key system parameter is how accurately the

processor’s calculated orientation matches the actual value.

Devices used to build real world IMUs have real world noise and real world

offsets. Offsets, or bias, are fixed deviations of the measured value from the real

value. An accelerometer that is oriented perpendicular to the gravity vector should

read zero, but the probability that a real device reads exactly zero is very low.

The device will read a value near zero, but all practical devices will have some

offset. Fortunately, offset values are static and fixed. They will usually change

with temperature variations, but within a practical time frame they should not vary

significantly. Static offset values can therefore be calculated and compensated for.

Practical devices have noise and the values change from time to time. Some

of this noise can be filtered out using low-pass filters, but it is not possible to

eliminate all noise without eliminating useful information. Newer and better gyros

and accelerometers reduce the amount of noise, but will never be able to eliminate it.

Very expensive gyro systems using lasers and light rings can reduce the noise values

to extremely low values, but the small MEMS devices used in portable systems have

much higher noise levels.

All IMUs will deviate in their calculated position versus their actual position over

time. A vehicle using an IMU will set an initial position, and use the IMU to track

the motion relative to this initial position. In every case, the calculated position will

drift away from the actual position over time. The quality of the sensors determines

how long the calculated position will stay within an acceptable range. IMUs built

with MEMS devices can maintain an accurate position for only a short period of

time, after which their position will deviate from the actual position by a significant

amount. Some method is required to re-set or compensate for this positional drift.

23

For this project, the hand position relative to the physical environment is not

critical. The important information is the relative motion and position of the fingers

and hand. For example, it is not critical to know if the hand is 10 cm above the table

or 20 cm, only that the fingers are forming a particular gesture at this point in time.

The theory is that the inaccuracies inherent in a practical IMU will not adversely

affect the goals of this project.

1.5.1 The GyroGlove

The remainder of this document describes the design and development of a glove

capable of IMU-based capture of hand and finger motion data. The GyroGlove

was completed as part of this thesis project. The GyroGlove includes 6 complete

IMUs mounted on the hand, fingers, and thumb. The completed glove includes the

GyroGlove hardware, firmware, and software.

24

CHAPTER 2

INERTIAL MEASUREMENT SYSTEMS

Inertial measurement uses no sensors outside of the vehicle. There is no direct

measurement of either position or velocity. The only measurements available are

the acceleration and angular rate of the vehicle, both of which are measured with

vehicle-mounted sensors. This chapter will take a brief look at the history of inertial

navigation, including a look at some modern devices. Next, some key concepts of

IMUs will be examined. The chapter will conclude with a presentation of the math

required in an IMU.

2.1 A Brief History of Inertial Measurement

Nearly all of the information in this first section was gleaned from a paper written

by Charles Stark Draper, titled “Origins of Inertial Navigation” [15]. Dr. Draper

was born in 1901. He received a Ph.D. in physics from the Massachusetts Institute

of Technology (MIT) in 1938. Dr. Draper is considered by many to be the “father

of inertial navigation.” He had a leading roll in the development of many of the

technologies we use today. The Charles Stark Draper Laboratory at MIT bears his

name.

Work on the first inertial navigation systems started soon after WWII [15]. During

the war, gyroscopes were used to stabilize guns on ships. The work on these stabilizers

eventually led to work on inertial navigation systems that would provide aircraft on

25

bombing runs the ability to navigate to and from a target without making radio

transmissions, allowing the aircraft to remain undetected.

Work on these inertial systems progressed through the 1950s with various levels

of success [15]. None of the early units met the requirements for accuracy set

by the Air Force. Encouraged by the results from the development of airborne

inertial systems, the Navy commissioned the development of submarine-based inertial

navigation systems. These early units were large and expensive, and required precise

machining during manufacture. The complexity and size made them impractical for

smaller vehicles. However, the unique operational needs of submarines were well

served by these units. Submarines are unable to navigate using traditional methods

while submerged. Traditional methods at the time required some type of radio

communication or celestial navigation. A submarine is intended to operate covertly

and going to periscope depth in order to get a navigation fix could potentially reveal

the submarine’s position. Therefore, inertial navigation techniques are the only viable

solutions for submarine navigation.

The early submarine navigation system was called the ship’s inertial naviga-

tion system (SINS). A simplified drawing of this system is shown in Figure 2.1.

This system was extremely accurate. SINS used a set of gyroscopes mounted on a

movable platform. The gyroscopes maintained the platform level as the submarine

maneuvered. This type of IMU is called a platform IMU. These IMUs required

large spinning gyroscopes to accurately measure acceleration and rotation of the

submarine. The first SINS was deployed onboard U.S. submarines during the 1950s

[21]. The SINS was improved in the early 1980s by reducing the friction on the

spinning gyros, thus allowing them to spin at very high speeds — 216,000 RPM [21].

These improved electrostatic gyro navigator (ESGN) units were initially deployed in

1983. New techniques for gyro measurement are currently under development. Gyros

using interferometric fiber optic gyro (IFOG) technology currently cannot match the

26

Figure 2.1: A simplified drawing of the ship’s inertial navigation
system[15].

accuracy of the spinning gyros, but IFOG has many other advantages. Gyros spinning

at 216,000 RPM are difficult to manufacture, require high tolerances, and are very

expensive [21]. IFOG technology has no moving parts. This makes the units smaller

and easier to maintain.

The large, expensive measurement units and spinning gyros of the early INSs

prohibited their use in many applications. Small, inexpensive, and reasonably ac-

curate devices to measure acceleration and angular rate would be required before

IMUs could be used in a wide range of applications. The development of such devices

started around 1968 at Honeywell with the development of the first selectively etched

silicon sensors [20]. By the 1990s, these MEMS devices were being developed and

deployed in many areas, including inertial navigation.

The Wii controller is perhaps the most widely known use of IMU technology in a

small consumer device. Today, IMUs are found in handheld phones, game controllers,

27

and more. Commercial uses include all types of aircraft, vehicle control, and airbag

deployment. Accelerometers are even used to detect if a laptop is in free-fall and

prepare the hard disk in order to avoid damage to the disk surface on impact.

This thesis would not be practical without the development of MEMS devices.

These devices provide accurate and fast acceleration and gyro measurements in a

circuit package that is millimeters square. These newer devices include onboard

processing and much higher levels of integration. The most cutting edge developments

of 2011 include 3-axis accelerometers, 3-axis gyros, and onboard calculation of IMU

characteristics, all in a single device. The potential market for such devices is huge,

and it is certain that many new applications will be found for these highly integrated

units.

The MEMS devices pack a lot into a small package, but the tradeoff is the

noise level and accuracy of these devices. The gyro and accelerometer errors require

calibration and removal of constant fixed-bias values. System level noise is high in

the MEMS devices, limiting the accuracy of an IMU using them.

2.2 Inertial Measurement Key Concepts

Understanding inertial measurement techniques requires some background knowledge

in a few key concepts. It is important to understand the two different types of IMUs

available, platform IMUs and strapdown IMUs, and how they differ. Reference frames

describe the various coordinate systems used in a typical INS. The measurement

devices used in an IMU exhibit noise and bias effects that detract from the accuracy

of the unit. Exact compensation is often not possible, so practical systems must often

trade size and cost for overall accuracy.

28

2.2.1 Comparison of Global Positioning System and Inertial Measure-

ment Units

Aircraft and vehicles can use the global positioning system (GPS) to track their

position in real-time. Why would such a vehicle require an IMU? The answer to

this question relates to how rapidly each system updates. The faster GPS devices

update about 10 times per second. This seems fast until you consider the update rate

required during high performance maneuvers, which can be hundreds or thousands

of times per second. The required update rate of course depends upon the type of

application. A typical IMU can update 8,000 times per second. In most cases, such

high update rates are not required, but faster updates allow for filtering of the data

to reduce noise, and actual updates to the vehicle control system may occur several

hundred times per second.

2.2.2 Inertial Measurement Unit Types

There are two basic types of IMU: the platform IMU and the strapdown IMU.

The IMU used on submarines is a platform IMU. Platform IMUs use a set of

gimbals, one for each axis, to keep the IMU platform fixed relative to the inertial

frame of reference. What this means is that as the vehicle turns, dives, or rolls,

the platform of the IMU stays flat. The advantage of the platform IMU is that the

acceleration measured by the IMU is always in reference to the navigation frame.

In a strapdown IMU, the gyroscopes and accelerometers are fixed to the frame of

the vehicle. A strapdown IMU is the most common type of system in use today. The

reason is that they are easy to build, inexpensive, and small. All of the expensive and

complex gimbals associated with a platform IMU are eliminated. The ramifications of

this decision are that the orientation of the vehicle, relative to the navigation frame,

must be tracked.

29

This project uses strapdown IMUs. The sensor readings in the body frame must

therefore be translated to the local frame in order to track the position and orientation

of vehicle. These frame conversions are typical of INSs and will be discussed in more

detail in Section 2.3.1.

2.2.3 Coordinate Systems

Motion must be measured relative to some other point. An object sitting on the

ground may not be moving relative to the earth’s surface, but it is hurtling through

space quite rapidly, and rotating at approximately one revolution per 24 hours.

Relative to a particular point, an object may have motion that changes its position,

also referred to as translation. An object may also have motion that changes its

orientation, such that it rotates about one or more axes.

Practical navigation systems need to track position and orientation in 3D space.

While it would be possible to use any available coordinate system, INS systems most

commonly use cartesian coordinates. Position is given as a tuple of values, which

represent the X, Y, and Z offsets from the reference origin. This frame of reference

is described with a reference origin point and a cartesian coordinate system centered

at that point.

The position and orientation of an object or vehicle is described with a body

reference frame. This frame is also defined with a cartesian coordinate system. The

origin of the coordinate system is located at the object center of mass. The axes are

defined and fixed relative to the object axes.

2.2.3.1 Translation and Orientation

Two reference frames can be translated in position relative to each other. Given two

reference frames A and B, the origin of frame B would be described as a tuple of

position values in frame A. Similarly, the origin of frame A would be described as a

30

tuple of position values in frame B. Figure 2.2 illustrates translation of a frame. A

simple translation of frame B relative to frame A would maintain each of the three

coordinate axes parallel. If frame B is also rotated relative to frame A, then a tuple

of rotation angles is required.

x
y

z

Reference Frame

x′
y′

z′

Translation Vector

Translated Frame

Figure 2.2: An illustration of a frame translated relative to the reference
frame.

The orientation of frame B relative to frame A can be described as a sequence of

rotations about the coordinate axes. The rotations are referred to as roll, pitch, and

yaw. Roll is defined as rotation about the x-axis, pitch is defined as rotation about

the y-axis, and yaw is rotation about the z-axis. Figure 2.3 illustrates angles used to

describe a change in orientation.

For a body frame of reference, the x-, y-, and z-axes are defined to align with

the vehicle axes in such a way that the roll, pitch, and yaw of the body frame

make intuitive sense for the vehicle. Consider the right hand as the vehicle under

consideration. The origin is defined as the center of the hand. The x-axis extends

along the middle finger, the z-axis points downward away from the palm, and the

y-axis completes the right-hand rule, pointing to the right. The body frame axes,

superimposed on the right hand, are shown in Figure 2.4.

31

x
y

z

Reference Frame

x′
y′

z′

Translated and Rotated Frame

Figure 2.3: An illustration of frame translated and rotated relative to the
reference frame.

x
y

z

Figure 2.4: An illustration of the body frame axes for the right hand.

In order to illustrate reference frame orientation concepts, hold your right hand in

front of you with the palm facing downward. According to the previous definitions,

roll is defined as rotation of the wrist. Positive roll moves the pinkie downward, while

negative roll moves the thumb down. Pitch is tilting of the hand upward (positive

32

pitch) or downward, and yaw is a left or right flexing of the wrist. Mathematically,

the roll, pitch, and yaw are defined by the three angles φ, θ, and ψ. When applying

a set of orientation angles to a reference frame, it is typical to consider the angles

applied in reverse order. Firstly, rotate frame B about the z-axis by the yaw angle

ψ. Next, rotate B about the y-axis by the pitch angle θ. Finally, rotate the B frame

about the x-axis by the roll angle φ. The angles φ, θ, and ψ are called Euler angles.

A complete specification of translation and orientation requires three values each,

for a total of six values. These six values define the number of degrees of freedom

(DOF) of frame B relative to frame A. The 6DOF thus defined are translation in

three axes, and rotation in three axes.

2.2.4 Navigation Reference Frames

Navigation systems require well-defined reference frames. Reference frames associate

the origin of a coordinate system with a well-defined location. The location may

be fixed, as in the center of the earth, or it may be movable. The orientation of

a reference frame must also be specified. The axes of a frame may be defined to

always point to a particular location, such as the earth’s prime meridian. A frame

axis may also be defined to match the physical dimensions of a vehicle, or lie along a

particular axis, such as the earth’s spin axis. Navigation systems use a set of frames

to measure and track the translation and orientation of frames relative to each other.

Some frames also provide the basis for common navigation values, such as longitude

and latitude.

An inertial reference frame is a frame that is not accelerating. The inertial frame

may, however, experience uniform linear motion [17]. The reference frame origin may

be placed at any location. The axes of the reference frame will follow the right-hand

rule of the standard 3-axis coordinate system. The earth centered inertial (ECI)

reference frame is defined with the origin at the center of the earth. The z-axis

33

extends along the center of rotation of the earth, the x-axis points to the vernal

equinox at a specified initial time, and the y-axis completes the right-hand rule[17].

This ECI reference frame does not rotate with the earth, hence a point on the earth’s

surface will exhibit a constant angular rotation and velocity relative to this frame.

Figure 2.5 illustrates the ECI frame.

y

z

x
Vernal Equinox

Figure 2.5: An illustration of the ECI coordinate system.

The astute reader may note that the center of the earth undergoes constant

motion, but this motion is NOT linear. The earth actually rotates around the sun

once every 365 1
4

days. The requirements of a particular system will determine how

much motion is relevant, and how much can be ignored. A spacecraft traveling to the

outer reaches of the solar system may need to take the rotation of the solar system

into account. In this paper, the ECI frame can be considered as a true inertial frame.

The earth centered earth fixed (ECEF) reference frame is also defined with the

origin at the center of the earth. This reference frame, however, will be defined

such that the z-axis extends along the rotation axis, but the x-axis crosses the prime

meridian. The y-axis is again defined to complete the right-hand rule. This reference

frame is illustrated in Figure 2.6. A point on the surface of the earth will not move

relative to the ECEF reference frame.

34

y

z

x
Prime Meridian

Figure 2.6: An illustration of the ECEF coordinate system.

The ECEF reference frame exhibits a constant angular rate relative to the ECI

reference frame. This angular rate is defined as ~ωi
ie. The subscript indicates that

this is the rotation of the ECEF frame relative to the ECI frame. The superscript

indicates that the value is represented in the ECI frame. The vector representation

for this vector would be ~ωi
ie = [0 0 ωei]T .

We generally think of navigation in terms of north, east, south, or west. The

ECEF frame is not very convenient for calculating these navigation values. A vehicle

traveling east in the ECEF frame would have a constant angular velocity around the

z-axis, and varying amounts of translation in the X and Y axes, depending on the

longitudinal position at a given time. Navigation frames are defined to better support

more typical north, east navigation parameters.

2.2.4.1 Geographic and Geocentric Frames

The geographic and geocentric frames are closely related. Both move with the

navigating vehicle. The geographic frame is aligned such that the origin sits on the

surface of the earth’s geoid directly below the navigating vehicle. The z-axis points

down and is normal to the earth’s surface. The geocentric frame also follows the

35

navigating vehicle, but the z-axis points to the center of the earth. For both frames,

the x-axis points toward true north, and the y-axis points east [17].

2.2.4.2 Local Navigation Frames

For local navigation, a local geodetic or tangent frame is defined. This frame differs

from the geographic frame in that its origin is fixed at some point on the earth’s

surface. The frame serves as a convenient reference point for the system. The exact

reference point may be selected according to the application. The point may be the

end of a runway, a particular city in North America, or it may be the center of the

desk you are working on. Since the tangent frame does not move, vehicle motion

and position may be measured relative to this fixed point. The axes of the tangent

frame are generally defined to be suitable for navigation. As such, the z-axis points

downward, the x-axis points to magnetic north, and the y-axis points east. This

frame is often referred to as the north east down (NED) reference frame. Common

navigational thinking would mean that we travel north in the positive direction, or

east in the positive direction. The choice of z-axis direction is used to make the

x-axis and y-axis consistent with common navigational thinking and to maintain the

right-hand rule.

2.2.4.3 Instrument and Body Frames

A strapdown IMU measures acceleration and angular rate relative to the physical

instrument. The axis of the measurement is the instrument axis, and is referred to as

the instrument frame. The vehicle reference frame is called the body frame. Ideally,

the instrument frame would be perfectly aligned with the vehicle axes, but generally

some variation in the alignment is present. The offset between the instrument frame

and the body frame is usually a fixed X,Y,Z coordinate offset, and a fixed set of φ,

θ, and ψ orientation angles. This offset is based on the placement of the instrument

36

frame relative to the vehicle’s center of mass. The vehicle’s center of mass is the

origin of the body frame.

2.3 The Mathematics of Inertial Navigation

A full presentation of inertial navigation systems requires a background in advanced

mathematics including calculus, linear algebra, numerical methods, stochastic pro-

cesses, and statistics. Most textbooks that cover inertial navigation systems provide

several chapters of review on these topics, as well as an appendix or two for reference.

A detailed review of these topics is beyond the scope of this thesis, therefore this

document will present only the subset of INS techniques used in this project.

2.3.1 Reference Frame Transformations

The reference frames used in this project are the body and local navigation frames.

The local navigation frame will be used as the reference frame and the body frame will

move relative to this frame. A transformation from body frame to the local reference

frame involves two fundamental operations. The first operation is a rotational trans-

formation of the body frame coordinates to the reference frame, then a translation to

the reference frame origin.

There are several methods that exist for transforming coordinates in one frame to a

new frame. Two of these are the direction cosine matrix (DCM) and quaternions. The

DCM transformation is much easier to visualize than the quaternion. Unfortunately,

the DCM suffers from a singularity when the x-axis is pointed vertically. Recall that

θ is the pitch angle. The DCM transformation is undefined when the x-axis is vertical

since cos(θ) = 0, and it appears in the denominator of a fraction. Quaternions resolve

this singularity problem, but at the expense of clarity. Numerous texts are available

on the subject of quaternions, however, the DCM was used during this project and

is the only technique that will be described.

37

x

y

z

φ

θ

x′

y′

z′

φ′

θ′

Figure 2.7: An illustration of rotation and translation of coordinate
system.

2.3.1.1 Vector Notation

Let a point in frame B be described by the tuple ~PB = [x y z]T , where the

subscript indicates that this point is relative to frame B. The superscript T denotes

a vector transpose, and ~PB describes a column vector

[x y z]T =

x

y

z

 . (2.1)

Let ~PA = [x′ y′ z′]T describe the identical point in frame A coordinates. We

seek a transform matrix such that ~PA = R~PB. The dimensions of matrix R must be

3x3. The matrix that we seek is the DCM. The DCM matrix to transform frame B

coordinates to frame A coordinates is defined as RA
B. The transform is then written

as ~PA = RA
B
~PB. The subscript and superscript indicate that R is a rotation matrix

that rotates vectors in B to vectors in A.

38

2.3.1.2 Direction Cosine Matrix Derivation

We derive the DCM by performing coordinate transforms on the frame axes one at

a time. Let us begin with frame A and frame B coincident and sharing the same

origin. Let frame B rotate about the common z-axis by a yaw angle ψ. We call this

new intermediate frame B1 and the vector ~PB1. The transformation matrix to move

a point from ~PB1 to ~PA is

RA
B1 =

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 . (2.2)

The transformation is illustrated in Figure 2.8, where the frame B1 axes are

represented by the single primes.

x
y

z

Frame A
x′

y′

z′

Frame B1
ψ

Figure 2.8: Coordinate system rotation about the z-axis with angle ψ.

Next, we rotate the frame B1 about the y′-axis through the pitch angle θ using

RB1
B2 =

cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 . (2.3)

The transformation matrix from frame B2 to frame B1 is illustrated in Figure 2.9.

Finally, we can rotate the frame B2 about the x′′-axis through the roll angle φ

using

39

x
y

z

Frame A
x′

y′

z′

Frame B1

ψ

x′′

y′′

z′′

Frame B2

θ

Figure 2.9: Coordinate system rotation about the z-axis with angle ψ and
the y′-axis with angle θ.

RB2
B =

1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 . (2.4)

This final rotation is illustrated in Figure 2.10.

x
y

z

Frame A
x′

y′

z′

Frame B1

ψ

x′′

y′′

z′′

Frame B2

θ

x′′′

y′′′

z′′′

Frame B

φ

Figure 2.10: Coordinate system rotation about the z-axis with angle ψ,
the y′-axis with angle θ and the x′′-axis with angle φ.

Fortunately, the matrix operations can be chained together, so the three matrices

can be applied in sequence to perform all three transformations in one series of

40

operations:

~PA =

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 ~PB.

(2.5)

Using elementary matrix operations, the three transformation matrices can be

combined into a single matrix:

RA
B =

c (ψ) c (θ) −s (ψ) c (φ) + c (ψ) s (θ) s (φ) s (ψ) s (φ) + c (ψ) s (θ) c (φ)

s (ψ) c (θ) c (ψ) c (φ) + s (ψ) s (θ) s (φ) −c (ψ) s (φ) + s (ψ) s (θ) c (φ)

−s (θ) c (θ) s (φ) c (θ) c (φ)

(2.6)

where cos and sin operators are represented by c and s respectively.

The DCM matrix is referred to as a rotation matrix, since it rotates coordinates

in one frame, along all three axes, to a new frame. The rotation matrix is valid for a

particular set of roll, pitch, and yaw angles. For moving systems, the rotation matrix

elements will be changing, possibly at a very high rate.

2.3.1.3 Direction Cosine Matrix Properties

The DCM matrix has several useful properties. These properties are defined according

to matrix and linear algebra. The properties are stated here without proof.

The DCM matrix is an orthogonal matrix. A square matrix is orthogonal if

the matrix transpose equals the matrix inverse. Hence, RA
B
−1

= RA
B
T

, where the

superscript T indicates matrix transpose.

41

The DCM matrix can be applied in sequence to transform between multiple

reference frames. In mathematical terms, RA
D = RA

BR
B
D. This is a most convenient

feature of the DCM, and can be used to translate between multiple frames of reference,

as long as the DCM for each pair of frames is known.

2.3.2 Direction Cosine Matrix Updates

The DCM must be continuously updated as the body frame moves relative to the

reference frame. In an inertial system, it is not possible or practical to measure the

roll, pitch, and yaw angles directly. The navigation system must perform an initial

calibration of the angles, and then the inertial system must continuously update

the angle values. The INS uses gyroscope and accelerometer inputs to update these

values.

The rotation of frame B relative to frame A as projected onto the frame A axis is

defined as the vector value ~ωA
AB. This term is a vector quantity that represents the

rate of change of the three Euler angles φ, θ, and ψ, respectively

~ωA
AB =

φ̇

θ̇

ψ̇

 . (2.7)

The rotation matrix given in Equation 2.7 can be represented as a skew-symmetric

square matrix

~ωA
AB× =

0 −ωA

ABz ωA
ABy

ωA
ABz 0 −ωA

ABx

−ωA
ABy ωA

ABx 0

 . (2.8)

The skew-symmetric matrix defined in Equation 2.8 is particularly well suited for

updating the DCM matrix. For small values of the ω matrix, the relationship

42

ṘA
B = RA

B~ω
A
AB× (2.9)

holds true.

The rate of change of the rotation matrix is easily calculated by multiplying the

current rotation matrix by the skew-symmetric form of the rotation rate vector. The

rotation rate vector is easily constructed from the INS gyroscope outputs.

Equation 2.9 is a continuous time equation, but the sensors for a typical INS

provide updated readings at a periodic rate. The update rate is generally a fixed

time period, usually much less than one second. For example, a system that updates

100 times per second will have an update period of 10 ms. The sampled nature of the

measured values requires that we use a discrete time approximation to the continuous

time equations.

Gyroscope sensors measure angular rate. In order to determine the change in the

angle, the rate must be integrated over the sensor time period. Since we only know

the angular rate values at distinct points in time, we must estimate the rate value

between the time periods.

There are a number of well-known techniques for estimating the intermediate

values of distinct measurements. The simplest is the average. Given two measured

values, ω1 and ω2 taken at times t1 and t2, respectively, then ωavg = (ω1−ω2)
2

. If the ωn

values represent the rate of change of angle θ, then ∆θ = ωavg ∗ ∆t. More complex

estimating algorithms may be used to improve the performance of a system, but that

topic is beyond the scope of this paper.

The quantity

~∆Ω =

[
∆φ ∆θ ∆ψ

]T
(2.10)

is a vector quantity that represents the change in the Euler angles along all three of

43

the body frame axes, φ, θ, and ψ. The DCM is updated using the skew-symmetric

form of the matrix with

RA
B

m
= RA

B

(m−1) ∗

1 0 0

0 1 0

0 0 1

+

0 −∆ψ ∆θ

∆ψ 0 −∆φ

−∆θ ∆φ 0

 . (2.11)

The superscript on RA
B
(m−1)

indicates the previous value of the DCM matrix, while

RA
B
m

represents the updated value. The DCM matrix is updated at each time period

of the IMU.

2.3.3 Accelerometer Updates

Basic Newtonian physics declares that velocity is the time rate of change of position,

and acceleration is the time rate of change of velocity. Equivalently, acceleration is

the second derivative of position. In mathematical terms, a = dv
dt

, v = dp
dt

and a = d2p
dt2

.

The navigation system seeks to track position along the local navigation frame.

The body acceleration values are first rotated to the local navigation frame using

the DCM rotation matrix. The rotated acceleration values are used to update the

position of the system in the local frame. The first integration of the acceleration

yields the updated velocity values. The second integration yields the position values.

A 3-axis accelerometer provides values in all three coordinate axes, making it possible

to update the navigation equations in 3D space.

2.3.4 Inertial Measurement Unit Initial Alignment

When power is first applied to the IMU the orientation of the system, the current

velocity, and the current position are all unknown. A navigation system may use any

44

number of external references to determine the precise values of these parameters.

This project uses a very simple approach.

For this thesis, only the relative sensor position is important. The system is

therefore free to initialize the position to ~P =

[
0 0 0

]T
. The design requires that

the sensors be held still during the initialization period, so the velocity vector can

also be initialized to ~V =

[
0 0 0

]T
.

On the surface of the earth, the acceleration due to gravity is equal to one

gravitational constant, or 1G. Gravity is also a directional vector. In the navigation

frames used for this system, the gravity vector points downward toward the center of

the earth. The local navigation frame is always defined with the z-axis parallel to the

gravity vector, hence for the local navigation frame we have ~AL =

[
0 0 1

]T
G.

Here, the subscript L indicates that this is the acceleration vector relative to the

local navigation frame. When the IMU is held still, the gravity vector can be used to

perform a course alignment to determine the starting orientation of the system. Note

that this does not require that the system be level, just that it be held still.

When the system is held still, the measured acceleration in the body frame will

be ~AB =

[
ax ay az

]T
. The magnitude of ~AB will be 1G. We seek to determine

the DCM matrix that will transform ~AB into ~AL.

2.3.4.1 DCM Course Alignment

The course alignment procedure used for this project was taken from the book

Strapdown Analytics, by Paul G. Savage. The following is a brief summary of the

technique documented in that book.

Let uBxL, uByL, and uBzL be unit vectors along the L frame x-, y-, and z-axes projected

on the B frame axes [29]. In matrix form, we have

45

RL
B =

(
uBxL
)T(

uByL
)T(

uBzL
)T

 . (2.12)

We know that the local frame is level, and the z-axis is parallel to the gravity

vector, but opposite in sign, therefore we know that ~ALz =

[
0 0 1

]T
. The third

row of RL
B must conform to the relationship

[
0 0 −1

]T
=
(
uBzL
)T (~AB

)
. Hence,(

uBzL
)

= −
(
~AB

)T
. In words, the third row of the DCM is always initialized to the

negative transpose of the measured body frame vector.

The DCM matrix must always have the properties that the rows and columns are

orthogonal to each other, and the matrix must always have unity magnitude. As long

as these criteria are maintained, the first and second row values are arbitrary [29]. As

long as the x-axis of the body frame is not vertical, the following procedure works.

Let the first column of the second row = 0, or C21 = 0. Since we know that rows two

and three are perpendicular, their dot product must equal zero, hence:

C21C31 + C22C32 + C23C33 = C22C32 + C23C33 = 0. (2.13)

Since C21 = 0, Equation 2.13 can be solved by setting C22 = KC33 and C23 =

−KC32. K is then chosen to normalize row two to unity, and we have K = 1√
C32

2+C33
2
.

Row two therefore becomes represented by

C21 = 0, C22 = C33√
C32

2+C33
2
, C23 = −C32√

C32
2+C33

2
. (2.14)

Row three can be initialized easily from the values in rows two and three. Since

row one must be orthogonal to both rows two and three, row one equals the cross

product of rows two and three, and we have

46

C11 = C22C33 − C23C32

C12 = C23C31 − C21C33

C13 = C21C32 − C22C31

, (2.15)

completing the course alignment of the DCM.

2.3.5 Error Sources for Inertial Measurement

The previous discussions have assumed perfect measurements. Unfortunately, the

data values collected from the accelerometers and gyros contain appreciable amounts

of noise. Furthermore, the devices also contain fixed offset values. Navigation systems

that require positional accuracy must pay close attention to the noise and offset values,

and use outside sources of information to compensate for drift values. A GPS system

is a common outside reference for such purposes. This project used very simplified

versions of the full set of navigation equations. The simplified equations overpower

the noise issues, allowing them to be ignored. Future iterations of this project would

require that these issues be addressed.

2.4 Summary

This chapter provided a short history of inertial navigation and some background

on the two primary types of INS: platform and strapdown. Coordinate systems

were defined, as well as the common navigation reference frames. This chapter

outlined only a small subset of the math behind inertial navigation systems. The

math presented covered the techniques used during this project only. Many references

exist with exhaustive details about the INS equations, their derivation and use. The

primary references used for this chapter were Aided Navigation: GPS with High Rate

Sensors [17] and Strapdown Analytics, Part 1 [29].

47

CHAPTER 3

HARDWARE AND SOFTWARE TOOLS

A design project such as the GyroGlove requires a large infrastructure. Schematic

capture and board layout software is required for printed circuit board (PCB) design.

Component libraries are required to describe schematic symbols, board layout foot-

prints and links to component vendors. Board assembly requires soldering tools and

skills. A variety of software tools are needed for testing, data capture, processing,

and visualization. This chapter documents the tools and technologies used during

this project. Implementation details of the project are mentioned only briefly. Details

about the implementation can be found in Chapter 4.

3.1 Board Design Tools

The PCBs for this project were designed using Altium Designer™ summer 2009,

student edition. Altium Designer™ is a very powerful board design package, but

with power comes complexity. This project required an appreciable amount of setup

for the Altium Designer™ tools.

Before the design can be entered into the schematic tool, each of the design

components must be added to the library. A component consists of a schematic

symbol, a layout footprint, and other important part data. Important part data

includes manufacturer information, part ordering information, and links to design

data sheets.

48

The schematic symbol identifies the logical connections to the device. The sym-

bol is typically drawn with standard engineering graphics. The connections in the

schematic symbol are logical, and do not necessarily represent the physical connection

to the part. The layout pattern provides the physical dimensions of the part as they

will appear on the printed circuit board. A particular type of device may be available

in multiple packages, and each package will have a different physical pattern. The

device component, which includes the schematic symbol and the physical footprint,

completes the association between logical schematic pins and the physical pins on the

printed circuit board.

Components are generally available in a range of packages. The choice of the

best package for a part is driven by price, availability, size, and ease of assembly.

Availability is a key factor — it is very difficult to build a board with parts that you

cannot buy. Small packages use less board space, but may make assembly difficult.

Larger parts are easier to assembly, but may increase the size of the circuit board

beyond the design limit.

Digikey was the primary supplier of components for the GyroGlove project. The

Digikey website was used to ascertain the availability and cost of parts and the ideal

package. The components were added to the library based on the chosen parts and

then ordered to ensure that they would not be out of stock when needed.

Some components, such as resistors and capacitors, have many different values but

the same schematic symbol and layout footprint. Resistors come in standard sizes,

so it is not necessary to make a unique footprint for each component. Since there

are hundreds of resistors available to choose from, a database library is the preferred

solution for passive components.

A local MySql™ database was used to store component information for the pas-

sive parts libraries. The part information was gathered from the Digikey™ website.

Website data for each part was captured into an Excel spreadsheet. The spreadsheet

49

data was then uploaded into the database using a Python™ script. The database

setup and linking to the Digikey™ site made the parts order easy and accurate. A

bill of materials (BOM) was generated from Altium Designer™ and used to order all

required parts.

The fully designed PCBs were manufactured at Advanced Circuits™. There were

two runs of boards, but the second run was combined with boards from other projects.

The IMU board cost was $50 for all six boards. The second run cost a total of $522,

with $150 of that cost for the GyroGlove project.

The accelerometers cost $10 each, while the gyroscopes cost $15 each. The boards

and components brought the total cost for the six IMU boards to $200, not counting

wire and small components such as resistors and capacitors. The component cost for

the controller board was about $40, bringing the total controller board cost to about

$190.

Additional items such as wire, connectors, and the gloves for the project added

additional cost. Wire for the project was purchased in spools, where only a small

amount of the wire purchased was needed. The total estimated cost of the project

was approximately $450.

3.2 Board Assembly Tools

The board assembly process required an entire day. A work area was prepared with

all of the parts inventoried and organized. A solder paste mask was used to apply

the solder paste to the boards. The part assembly listings provided a reference for

the part numbers required for each component, and the location on the board. A

microscope was used to help place small components on the boards, and to align the

pads of larger components. The rest of the process was a slow and tedious hand

placement of each component on the board.

50

A custom modified toaster oven was used to melt the solder paste during the

reflow process. Hand soldering was used to repair components that were not soldered

well, and to add the components to the back side of the boards.

The major equipment items used during the assembly process included:

• Pace™ MBT-350 soldering station with hot air pencil, solder extractor, hot

tweezers, and fine tip soldering pencil.

• Amscope™ stereo zoom microscope with 60 LED light ring.

• Black and Decker toaster oven, with modified controller driven by MATLAB™

software.

• Molex wire crimpers.

3.3 System Testing Equipment

The assembled IMU and controller boards were tested using bench top test equipment,

which included:

• Two Agilent™ U8002A power supplies

• Fluke™ 8645A precision voltmeter

• Tektronix™ TDS 3032B digital oscilloscope

• Zeroplus™ LAP-16128U USB logic analyzer

The power supplies were used to carefully apply power while limiting the maximum

current to the boards. This technique avoids damaging components when there are

power supply shorts on the board. The boards were carefully powered up in this

manner until all of the shorts were isolated and repaired. The fluke voltmeter was

also used to verify the power supply voltages, and check for shorts.

51

The oscilloscope was used to view analog signals. The boards were checked to

ensure that noise levels were within an acceptable range. The processor on the board

uses an internal oscillator circuit. The clock output was routed to a pin and checked

with the scope to ensure that the frequency was correct.

3.4 Firmware Development Tools

The processor used on the controller board is an Atmel™ ATXmega128A1. The

processor was programmed using the C++ language. The Atmel™ development

environment for these processors is AVR Studio™. The development environment

runs only on Windows™ PC’s, but the primary development environment for this

project was a Mac™ computer. The CrossPack AVR™ development environment was

used on the Mac™.

The logic analyzer was used extensively during firmware development. The firmware

design includes multiple parallel processes, which present special challenges for debug-

ging. External pins on the processor were set within the firmware to mark specific

occurrences within the logic. The internal logic checkpoints were compared with

external signal values to track down firmware bugs and resolve timing issues.

The logic analyzer automatically recognizes and decodes inter-integrated commu-

nications (I2C) and RS-232 transactions. The decoder greatly simplifies the task of

verifying the data to and from the controller from the computer. The I2C protocol

decoder is a huge help when debugging communication issues with the IMU boards.

3.4.1 Processor Configuration and Debug

AVR Studio™ version 4.0, was used for firmware development on this project, and

AVR Studio™ is freely available from Atmel™. The software requires a Windows™ PC

for operation and connects to the joint test action group (JTAG) in-circuit emulator

52

(ICE) MkII using a universal serial bus (USB) cable. AVR Studio™ is used to compile

updated source code and to download the code to the controller board.

The ATXMega128A1™ processor is configured using an Atmel™ JTAG ICE MkII

programmer and debugger. The MkII uses the JTAG protocol for configuring and for

debugging.

3.5 Software Development Tools

The GyroGlove uses software to transfer data to the PC, visualize the results on

2D graphs, perform the INS calculations, and visualize the motion of the glove in a

virtual 3D environment. Following are the software tools used:

• The Python™ programming language

• MATLAB™

• Panda3D™

The glove software system is written in three distinct pieces. The first piece

is the data capture server. The server is written in Python™ and located in the

file GloveServer.py. The server captures data from the hardware and makes the

data available to client code. The second piece is written in MATLAB™, and is

called GloveGui.m. The MATLAB™code provides a GUI with graphs for the raw

accelerometer, gyro, velocity, and position data from one IMU unit. The MATLAB™

code also includes all of the IMU calculations. The final piece is the 3D visualization

part, written in Panda3D™ and called Glove3D.py.

3.5.1 Python™ Language

The Python™ programming language is a popular scripting language among software

engineers. It is used for a wide variety of applications, such as rapid prototyping, GUI

53

development, system administration, and many others. The language includes a rich

set of data structures that make processing and manipulating captured data very easy.

Python™ has a large number of community supplied library modules that are freely

available for download. These modules provide capabilities for serial communication,

GUI design, numerical analysis, 2D and 3D charting, and much more.

Python™ is available on most computer platforms, including Mac™, PC, Linux,

and Unix. Scripts that perform hardware access, such as with the serial port, some-

times require platform specific code. Python™ is free to download and several out-

standing free development environments, such as the Eric IDE™, exist. Komodo™,

from Activestate™, was used for this project.

Python™ version 2.6 was used for this project. The latest version of the Python™

2.x series is 2.7. Python™ also has a 3.x series but the 3 series made some language

changes that are not backward compatible. The code for this project would require

some modification to run under the 3.x series.

3.5.1.1 Python™ Libraries

Much of the power in Python™ lies in the availability of free, open-source library

modules. The standard install of Python™ includes many pre-packaged modules, but

some additional libraries must be installed to support this project. The following

additional Python™ libraries are required:

• socket

• PyQt4

• numpy

• scipy

• pyserial

54

The socket library is required in order to communicate between the different pieces

of the glove system. GloveServer, GloveGui, and Glove3D all transfer data via the

sockets interface.

The pyserial library is required for the GloveServer. The software drivers for

the USB device on the glove controller create a virtual COM port on the host.

Python™ uses the pyserial library to connect to this port and transfer data. A Mac™

computer running OSX 10.6 Snow Leopard was used while developing this project.

The GloveServer should work on a Windows™ PC, but the python files would require

a few modifications to work with a Windows™ COM port.

The GUI library used for this project is PyQt 4.0. This library is based on Qt™,

which is a cross platform C++ library. PyQt is a Python™ wrapper around the Qt™

C++ libraries that enables full support of the Qt™ GUI development platform from

Python™.

The default installation of Python™ is able to perform numerical calculations. The

numpy and scipy libraries are enhanced numerical libraries that improve calculation

speed. They also provide matrix manipulation capabilities, much like MATLAB™.

Numpy is used during the python data captures to transform the captured data from

instrument frames into body frames. Scipy is used only to output MATLAB™ files

in .mat format. The code to output .mat files is optional, making the scipy library

optional also.

3.5.2 MATLAB™ Environment

MATLAB™ is a well-known matrix library environment and a standard tool at most

universities and many businesses. MATLAB™ is perhaps the easiest and most pow-

erful software tool available for performing mathematical manipulations, especially

where matrix operations are involved. It is the perfect tool for developing INS

algorithms. All of the INS algorithms were implemented in MATLAB™ class files.

55

The MATLAB™ GUI receives results from the Python™ GloveServer and displays

selected data on a set of 2D graphs. The calculated positions and orientations of the

hand and fingers are sent to the Panda3D™ Glove3D server for 3D visualization.

3.5.2.1 Mex Files

MATLAB™ mex functions are compiled functions written in C or C++. These

functions can be called from MATLAB™ just like a .m file function. Mex function

development requires a working C++ compiler on the MATLAB™ system. If the

MATLAB™ environment is properly configured, then it is a simple matter to build a

MATLAB™ mex function with the command:

mex <filename>

which will compile the source files into an executable MATLAB™ command.

3.5.3 Panda3D™ Library

Panda3D™ is a freely available 3D gaming engine. The engine was originally built

for a Disney™ movie project. Panda3D™ is currently maintained by Carnegie Mellon

University and provided as free, open-source software. The key motivators behind

using the Panda3D™ environment were the performance of the engine and the use of

Python™ as the software interface.

Panda3D™ was a great discovery. The author owes credit to his brother, David,

for making him aware of the Panda3D™ project. Panda3D™ provides the ability to

render a 3D virtual hand, and the ability to update the position of the hand and

fingers using X,Y,Z coordinates and 3-axis rotations. Panda3D™ also includes the

ability to specify rotations in quaternions. Panda3D™ was the perfect tool for this

project.

Not only is Panda3D™ a great graphics engine, but it is a cross platform tool as

well, with Mac™ and Windows™ versions available. The best part is that Panda3D™

56

provides a Python™ application programming interface (API). The Panda3D™ Python™

API eliminated the need to learn yet another language. Panda3D™ provided more

than enough capability to easily implement the visualization portion of this project.

57

CHAPTER 4

GYROGLOVE SYSTEM DEVELOPMENT

The glove developed for this project includes both accelerometers and gyroscopes

combined into a complete IMU. None of the gloves found during the literature search

included gyroscopes, hence the term GyroGlove seems appropriate. The GyroGlove

consists of a controller board, six IMU boards, and a set of software programs on the

host computer. The host computer software is comprised of three main components.

The first component is a Python™ script to connect to the hardware through the USB

interface, retrieve the IMU data, and act as a socket server for the other components.

The second component is written in MATLAB™. This component retrieves data from

the socket interface and performs the IMU calculations for each IMU in the glove.

The final component is the Panda3D™ server component that is used for visualization

of the calculated glove positions and orientations. This component uses a socket

interface as well.

4.1 GyroGlove Design

The GyroGlove incorporates 6DOF IMUs, with one mounted on each finger, one on

the thumb, and another on the back of the hand. The IMUs are wired to a controller

unit mounted on the back of the hand. The controller unit is attached to the host

computer using a USB cable. The controller uses a microprocessor to collect data

58

Figure 4.1: Block Diagram of GyroGlove

from the six IMUs. The controller assembles the collected data into data packets and

sends the packets to the host.

Each of the six IMUs are wired to the main controller with four wires. Two

wires provide power and ground connections, with the remaining two implementing a

two-wire serial I2C protocol. A block diagram of the GyroGlove is shown in Figure 4.1.

The communication from the glove to the host computer uses a serial-to-USB interface

device. This device is capable of transmitting data in both directions. The USB serial

converter has sufficient bandwidth to transfer sensor data from all six IMUs at a rate

of 200 Hz.

4.1.1 Data Handling

The controller board assembles the captured IMU data into binary packets. The data

packets are automatically sent to the host PC at the sample rate. The system was

tested with sample rates as high as 200 Hz. The controller was most reliable with

sample rates of 150 Hz or less.

On the host computer a Python™ GloveServer program captures the data from the

glove. This program also applies the rotation matrices shown earlier. The GloveServer

program listens for connections on a network socket interface. A program written in

59

Python™, MATLAB™ , or any other language supporting network sockets can connect

to this interface and retrieve the glove data. For this thesis, a MATLAB™ program

captured the results, displayed some of the results on 2D graphs, and sent commands

to a 3D visualization tool for real-time display of the calculated hand and finger

orientations.

4.1.2 Glove Versions

The first glove version used thin 30 gauge solid core wire to connect the sensors to

the controller board. Also, to save time, the boards were glued directly to the glove.

After more consideration, gluing the boards to the glove seemed like a bad idea. The

solid core wires used on the first glove version are prone to breakage. The wires break

inside the insulation, causing intermittent failures that can be quite difficult to track

down. The Version 1.0 glove is shown in Figure 4.2a.

(a) GyroGlove Version 1.0 (b) GyroGlove Version 2.0

Figure 4.2: The GyroGlove

The Version 2.0 glove, shown in Figure 4.2b, uses 30 gauge 7-strand wire. This

wire has a thicker insulation, but is much more flexible. A new glove was selected

for Version 2.0. The new glove is somewhat bulkier, but also includes pads on the

60

fingertips that make assembly of the glove easier. The author’s wife sewed small black

pouches to house the IMUs on each finger. The pouches were then secured to the

glove using glue, and the IMUs were inserted into the pouches. The material for the

pouches has some stretch to it, and in most cases the IMUs fit snugly. Some of the

pouches required a few stitches to secure the unit inside.

4.2 Hardware Design

The GyroGlove hardware consists of two custom designed PCBs. The first board is

an IMU board used to capture the accelerometer and gyroscope motion of the fingers,

thumb, and hand. The second board is the controller board. The IMU boards were

designed to be roughly the size of a fingernail so that they could be attached to the

distal phalanges of each finger. The controller board was designed for mounting on

the back of the hand.

The controller board for this project needed to interface to five remote IMU boards,

and include an onboard IMU as well. These requirements eliminated off-the-shelf

solutions. The controller board required the following capabilities:

• Interface to five remote IMUs,

• Onboard IMU,

• USB interface,

• Power regulators,

• Processor capable of controlling the IMUs and USB interface.

4.2.1 Inertial Measurement Units

The IMUs for the GyroGlove are custom designed and built PCBs. Figure 4.3 shows

a 3D Altium Designer™ rendering of the IMU board physical layout.

61

Figure 4.3: 3D PCB Render of the IMU Board

The IMU board, shown in Figure 4.4a, measures 12.7 mm (0.5”) by 15.2 mm

(0.6”). The IMU boards were manufactured as 2-layer boards with a standard

thickness of 1.57 mm (0.062”). The board size was designed to be small yet practical

for hand assembly. Cost constraints also drove the size and thickness of the board —

custom thin boards are more expensive to manufacture. The board provides soldering

holes for the 4-wire interface. These holes are on a 2 mm pitch, suitable for 2 mm

connectors, if desired. The boards used on the GyroGlove do not use connectors, but

instead have the wires directly soldered to them.

(a) IMU PC Board (b) IMU PC Board Back

Figure 4.4: GyroGlove IMU

The IMU wiring, seen in Figure 4.4b, stretches across the back of the board and

is glued to the board using a cyan acrylic adhesive. This low-tech solution provides

a strain relief for the wires to avoid breaking the solder connections. Small pieces of

shrink wrap are used to bundle the wires together and secure them to the glove. The

shrink wrap guides are attached to the glove using cyan acrylic. The wires from the

62

controller to the IMU are 30 gauge multi-strand insulated wire. The multi-stranded

wire is flexible to allow free movement of the glove and fingers. The wires are color

coded, with the 3.3V power on the red wire, ground on the black, serial clock on blue

and serial data on white.

The glove hardware uses the I2C bus to connect the IMU boards to the controller

board. The I2C bus must always have a single master device, which is the controller

board for the GyroGlove. The I2C bus is a multi-drop bus, which means that multiple

slave devices can be placed onto the same bus. Each slave device on the bus must

have a different address however. It is common for two or more devices from the

same manufacturer to be used on the same bus. Devices, such as the gyroscope or

accelerometer included on the IMU board, will generally have an option to control

one or more bits of the I2C address with an external resistor. The IMU boards are

designed such that two boards can share a common I2C bus. Programming resistors

on each board provide the option to set one of two unique addresses for each device

on the board.

The gyroscopes and accelerometers on the IMU boards are housed in quad flat-

pack no lead (QFN) surface mount packages. The accelerometer dimensions are 3

mm x 3 mm, while the gyros are 4 mm x 4 mm. The IMU board interfaces to the

controller using four wires — two wires for power and ground, and two for the I2C

interface. Several capacitors on the board provide power supply bypassing with two

additional capacitors required for proper operation of the gyroscope. Resistors are

used to set the address zero bit for both the gyroscope and the accelerometer devices.

Two pull-up resistors are placed on the I2C bus.

The gyroscope device on the IMU board has a dual I2C interface. The primary

interface connects to the board input. The secondary I2C bus is connected to the

accelerometer. The gyroscope device has the ability to operate in pass-through mode

or auxiliary interface mode. In auxiliary interface mode, the gyroscope controls

63

the accelerometer device and the controller can read data for all six axes from the

gyroscope.

4.2.1.1 InvenSense IMU-3000 Gyroscope

The IMU-3000 is a digital, 3-axis gyro with onboard 16-bit ADCs. The digital gyro

has programmable full-scale ranges of ±250, ±500, ±1000, and ±2000 degrees per

second (DPS). The gyro rate noise specification is 0.01 dps√
Hz

. The gyro has a VDD

operating range of 2.1V to 3.6V, and an interface voltage range of 1.7V to 3.6V. The

IMU boards use 3.3V for the VDD and interface voltages.

The IMU-3000 requires a minimum number of external components. Bypass

capacitors are required on regout, pin 10, and vlogic, pin 8. Bypass capacitors are

also used on each of the VDD lines.

The data sheet for the IMU-3000 lists the internal registers for the device. There

are a total of 63 registers in the device, each with an 8-bit address. The registers are

initialized by firmware at system startup in order to configure the IMU-3000 for data

collection.

4.2.1.2 ST Microelectronics LIS331 DLH Accelerometer

The LIS331 is a 3-axis accelerometer packaged in a 3 mm square QFN package. The

LIS331 has a programmable full scale reading of ±2g, ±4g or ±8g. The accelerometer

outputs for the x-, y-, and z-axis have 16-bit resolution.

4.2.1.3 Instrument Frames

The instrument frame for the gyroscope does not match the body frame of the fingers

or thumb. The mismatch between instrument and body frames requires a fixed

rotation matrix between the instrument frame and body frame. A similar matrix

is required for the accelerometers. The instrument frame for the hand is rotated 180

64

degrees relative to the fingers, so a different matrix is required for the hand instrument

to body rotation matrix. The rotation matrices for the hand gyro and accelerometers

are

RB
i HG =

0 −1 0

−1 0 0

0 0 −1

 (4.1)

and

RB
i HA =

−1 0 0

0 1 0

0 0 −1

 . (4.2)

While the rotation matrices for the finger and thumb are

RB
i FG =

0 1 0

1 0 0

0 0 −1

 (4.3)

and

RB
i FA =

1 0 0

0 −1 0

0 0 −1

 . (4.4)

4.2.2 Controller Board

Figure 4.5 shows the controller board. The controller board was manufactured in a

4-layer PCB process. The board dimensions are 45.7 mm (1.8”) by 50.8 mm (2”).

The top and bottom layers are signal routing layers, while the inner layers are power

and ground. The controller board is designed such that the connections for the finger

mounted sensors are forward, while the USB and serial interfaces point back toward

the wrist.

The sectioning of the plane layers is shown in Figure 4.6. The internal power

65

Figure 4.5: Controller Board

plane was split with a 5.0V and a 3.3V section. The smaller 5.0V section is for the

incoming USB power, while the rest of the board uses 3.3V power. The split plane

makes connection to the different power supplies much easier, when compared to

individual routing of the power supplies on a two layer board.

Figure 4.6: Controller Board Plane Layers Detail

Data sheets from the manufacturer of each device were the primary reference for

component connection. The data sheets were consulted during the schematic design

phase to ensure correct device connections. The resistor and capacitor values were

selected according to the manufacturer’s specifications.

The glove controller board block diagram is shown in Figure 4.7. The controller

board includes the following components:

• Microprocessor,

66

Figure 4.7: Block Diagram of GyroGlove Controller and IMU Boards

• USB to Serial interface,

• Voltage regulators,

• Magnetometer,

• Connectors for six IMUs,

• Programming header,

• Serial expansion port.

Additional details about the key components are provided in the following sections.

4.2.2.1 Microprocessor

The controller board uses an Atmel™ ATXMega128A1™ microprocessor. This device

contains four hardware I2C channels. The processor is packaged in a 100-pin thin

quad flat pack (TQFP) package. This device was chosen for the internal resources,

even though there are many unused pins. The ATXMega128A1™ provides a hardware

engine for each of the four I2C channels and the serial interfaces. The hardware en-

67

gines allow the processor to control multiple I2C and serial interfaces simultaneously,

an important goal of the controller board.

4.2.2.2 USB Interface

The USB interface is provided by an FTDI™ FT232RL USB to serial device. FTDI™

provides software drivers that allow the USB interface to be treated as a virtual serial

port. On a Windows™ PC, this means that the devices will show up as a COM port.

The Windows™ device manager will display the COM ports in use once the USB is

connected. On a Mac™ computer, the virtual COM port shows up as a device in

the /dev device driver directory. The interface from the FTDI™ to the processor is a

standard serial interface. The FTDI™ devices are able to operate at serial speeds up

to three Mbps, however, the processor and FTDI™ devices must be closely aligned

in speed, which is difficult in practice. The highest speed achieved in the GyroGlove

was 400 kilobits per second (KBPS).

4.2.2.3 Voltage Regulators

Power for the board is provided from the USB interface. USB provides 5.0V at a

maximum of 500ma of current. The actual current draw of this board is around

10ma, so the power consumption is not an issue. The voltage regulator used on the

board is an LT1963 linear regulator with a fixed 3.3V output.

4.2.2.4 Magnetometer

The magnetometer is a Honeywell™ HMC5843 3-axis magnetic compass. This device

is useful to determine the direction that the glove is facing, relative to magnetic north.

Without the magnetometer, it is not possible to determine the direction of the glove

about the z-axis.

68

4.2.2.5 Communication Ports

The GyroGlove controller board has support for four separate I2C channels. There

are six IMU devices on the system, so two of the I2C channels must support dual

IMUs. The IMU boards that share the same I2C line must have the resistor address

configurations set to opposite values to avoid conflicts. There are two possible address

values for the gyros and two for the accelerometers. The gyro base address is binary

b110100x, or 0xD0. The x is controlled by the external resistor on the IMU board

and can be a 0 or a 1. The possible gyro addresses for the system are 0xD0 and 0xD2.

The accelerometer addresses are 0x30 and 0x32.

The controller has a secondary serial port. This port can provide 3.3V power to

the controller board as an alternative to the USB power. The port has a 3-wire serial

peripheral interface (SPI). The SPI could be used by a higher level controller. The

secondary interface was provided as an expansion option so that a wireless controller

board with a battery supply could be used with the existing hardware.

4.3 Firmware Design

The GyroGlove firmware is written in C and C++. Atmel™ products use GNU

compilers for development, so it is possible to develop on a Windows™, Mac™, or

Linux™ platform. On Windows™, the Atmel™ AVR Studio software is available. On

the Mac™, there is a free development kit available named CrossPack™. CrossPack™

was used for most of the development on this project. Command line GNU tools are

used on the Linux™ platform.

The GNU compiler supports a limited subset of C++ for the AVR processors.

The main advantage of using C++ is the ability to group the methods and data

associated with a particular part of the system. Methods that manipulate the I2C

69

interface are one example. An IMU Manager class is used to capture all of the logic

needed to work with the I2C system within the firmware architecture.

Figure 4.8: GyroGlove Firmware Architecture Block Diagram

A block diagram of the firmware architecture is shown in Figure 4.8. The C++

main function is located in GyroAcc.cpp. This function creates all of the C++

objects used in the firmware and then associates the objects together; refer to Code

Listing 4.1. There are four I2C ports in the processor, so four I2C Master classes are

created, with one connected to each port.

Code Listing 4.1: I2C Class Creation

1 I2C_Master hand(&TWIC);
2 I2C_Master single(&TWID);
3 I2C_Master pair1(&TWIE);
4 I2C_Master pair2(&TWIF);

The classes created are given the variable names hand, single, pair1, and pair2.

In Code Listing 4.2, four IMU classes are created and associated with their respective

70

I2C Master classes. Once this association is made, the IMU class is able to access the

assigned I2C port. The IMU class is written in such as way that it does not matter

which I2C port is used.

Code Listing 4.2: Initialization of the IMUManager Class and the IMU
Classes

1 IMU hand_imu(&hand);
2 IMU single_imu(&single);
3 IMU pair1_imu(&pair1);
4 IMU pair2_imu(&pair2);
5
6 IMUManager imumgr(&cmdSerial);
7 imumgr.LedOff();
8 imumgr.SetTimer(&tcA);
9 imumgr.AddIMU(&hand_imu);

10 imumgr.AddIMU(&single_imu);
11 imumgr.AddIMU(&pair1_imu);
12 imumgr.AddIMU(&pair2_imu);

The last part of Code Listing 4.2 shows the initialization of the IMUManager.

Here, the IMU classes are associated with the IMUManager using the AddIMU

method. This association completes the IMUManager hierarchy shown in Figure 4.8.

Code Listing 4.3: Initialization of the HardwareSerial and GyroCommand-
Processor Classes

1 HardwareSerial dbgserial(&USARTF1, &PORTF, PIN6_bm, PIN7_bm);
2 dbgserial.begin(115200);
3 pdbgserial = &dbgserial;
4 pdbgserial->enable(false);
5
6 HardwareSerial cmdSerial(&USARTD0, &PORTD, PIN2_bm, PIN3_bm);
7 cmdSerial.begin(115200);
8
9 GyroCmdProcessor cmdproc(&cmdSerial,&pMaster[0],&imumgr);

The HardwareSerial and the GyroCommandProcessor classes are associated in a

similar manner, as shown in Code Listing 4.3. Two HardwareSerial classes are created

in the code. One is used as a debug port to allow functions within the code to print

out messages. This is a useful debug technique, but also has problems. In hardware

time, the serial communication is very slow, so calling a function to print out a debug

71

message changes the timing of the firmware and can modify the very code that is

being debugged.

The second HardwareSerial object is connected to the GyroCmdProcessor. The

GyroCmdProcessor uses the CmdProcessor as a base class, but overrides the Loop

method. Loop is the method where incoming commands are checked against the

command table. The command table is actually just a long “If, else if” block that

checks each command in turn.

Code Listing 4.4: GyroAcc Main Loop

1 while(1) {
2 cmdproc.Loop();
3 imumgr.Loop();
4 }

The last part of the main block of code, shown in Code Listing 4.4, is an endless

while loop. This loop repeatedly calls the command processor loop() method and

the IMUManager loop() methods. The command processor loop() method checks for

any new commands. If a new command is available, the command loop processes the

command and returns a result. The result is always “Ok” or “Fail:message”. The

“Ok” response can optionally return some data values, such as “Ok:10,20,30”.

The IMUManager loop() method services the IMUManager state machine. The

IMU objects operate primarily using hardware interrupts, but when a new packet

is ready, the IMUManager loop() method is where the packet is assembled and

transmitted down the serial link to the host processor.

4.3.1 Gyro Command Processor

The GyroCmdProcessor has associations with the IMUManager and HardwareSerial

classes. The processor checks for new commands from the HardwareSerial and then

traverses an “if, else” block. If the command is found, the command parameters are

72

used to call the appropriate functions. The processing loop is quite long, but an

excerpt from the loop is shown in Code Listing 4.5.

Code Listing 4.5: GyroCmdProcessor Loop Example

1 } else if(strcmp(pCmd,"streamstart") == 0) {
2 uint16_t bUseGyro = 0;
3 if (paramCnt() > 0) {
4 getParam(0,bUseGyro);
5 }
6 int retc = _pMgr->StreamStart(bUseGyro == 1);
7 if (retc < 0) {
8 sprintf(buffer,"Fail:%d\n",retc);
9 _pHW->print(buffer);

10 } else {
11 _pHW->print("Ok\n");
12 }
13 } else if(strcmp(pCmd,"streamstop") == 0) {
14 _pMgr->Stop();
15 _pHW->print("Ok\n");

The “StreamStart” command takes one optional parameter. If the paramCnt

is greater than 0, the parameter is extracted into bUseGyro and used during the

command. The “StreamStop” command takes no parameters, but calls the Stop()

method of the IMUManager class.

4.3.2 I2C Transaction Primer

The ATXMega128A1™ processor includes a powerful hardware I2C engine. The en-

gine allows the hardware to perform all of the low-level (tedious) aspects of the I2C

transaction, thus freeing up the software to manage other tasks. A little background

information about I2C transactions is required before going into more detail about

the I2C Master class.

All I2C transactions begin with a START marker and conclude with a STOP

marker. These markers are shown in Figure 4.9.

A key item to note about I2C transactions is that the SDA line never transitions

while SCL is high, unless the master is generating a START or STOP. Therefore, a

73

Figure 4.9: I2C Start and Stop Transactions

START is always defined as a falling edge of SDA while SCL is high, and a STOP

is defined as a rising edge of SDA while SCL is high.

Figure 4.10: I2C Write Transaction

Data transactions for I2C are always 8-bit transactions, with an acknowledge cycle.

The acknowledge is the ninth bit of every transaction. All transactions are either write

transactions or read transactions. In a write transaction, the master controls the SDA

line during the first 8-bit section, while the slave controls the data line for a read.

At the end of a write transaction, the master releases the SDA line for the ninth bit.

The slave must hold the SDA line LOW in order to acknowledge receipt of the 8-bit

value. If the slave does not hold the SDA line low, then the master registers a Not

Acknowledged (NACK) condition.

Figure 4.11: I2C Read Transaction

74

For a read, the slave controls the SDA line for the first 8-bits, then releases the

line. The master must then hold the SDA line low to acknowledge (ACK). For reads,

the ACK generally signals to the slave that it is okay to send the next byte in the

sequence. Some slave devices use an auto-increment feature that allows the master

to request data from the slave starting at a particular address and continuing until

the master NACKs.

Figure 4.12: I2C Combined Transaction

The first 9-bit transaction after every START is always the ADDRESS transac-

tion. In this transaction, the first seven bits of the 8-bit data contain the ADDRESS

of the intended slave device. The last bit is a Read-Not-Write bit. A ’1’ indicates

this is a read request, while a ’0’ is used for a write.

There are three basic types of I2C sequences. A write sequence, a read sequence,

and a combined sequence. These sequences are illustrated in Figure 4.10, Figure 4.11,

and Figure 4.12, respectively. A write transaction sends a START, ADDRESS, one

or more data bytes, and a STOP. A read transaction sends a START, address,

then receives one or more read bytes, then issues a STOP. The combined trans-

action begins with a START, ADDRESS, and a WRITE. The first WRITE is

generally the slave device register address. Next, the master issues a REPEATED

START, which is defined as a second START without a STOP signal. After the

REPEATED START, the slave ADDRESS is sent again, this time with the read

bit set.

75

4.3.3 I2C Master

The I2C Master class manages the complexities of the I2C transactions. The class

uses the ATXMega128A1™ hardware interrupts to minimize the software load on the

processor. Because the master is completely interrupt driven, all I2C communications

must be treated as asynchronous operations.

The I2C Master class uses a state machine to manage the transactions and to

determine the next action upon receipt of an interrupt. Clients of the I2C Master

class call the Write and Read functions in order to initiate I2C transactions. The

I2C Master calls back to the client code when a significant event occurs, such as

when a transaction completes or a failure is detected. The notification mechanism

allows the client code to initiate a transaction and then wait for the transaction to

complete. In practice, the client logic also uses a state machine so that it can respond

properly to the I2C notifications.

This document will not delve further into the internals of the I2C Master class.

It should be sufficient to understand that transactions are initiated by the client, the

master manages the transaction until it either completes or an error occurs, then the

master notifies the client of the result. The client is then free to respond appropriately,

which may include reading the data results from the I2C Master.

4.3.4 IMU and IMUManager

The IMU and IMUManager classes are quite complex. A complete description of their

functions would take a significant amount of space. The complete source code, with

comments, is included in Appendix E should more details be required. This section

will provide just a high level overview of the operation of these classes.

The IMU class is responsible for performing the initialization of the connected

gyro and accelerometer devices. When the IMU class is created, it performs a query

of the associated I2C interface. The query checks all of the possible I2C addresses

76

Figure 4.13: Partial State Machine Diagram for the IMU Class

to determine what devices are connected. If two IMUs are connected, then the IMU

class will be configured in dual IMU mode.

The IMUManager will call the Start() method to begin data streaming. The

sequence of operations is partially shown in the state machine diagram of Figure 4.13.

The IMU class state is updated by one of two possible events. A hardware timer

is configured to call the Run() method periodically. The Run() method is the method

that initiates the state machine data sequence, but it also contains logic to check for

a read timeout. In the event of a timeout, the IMU is reset and started again. After

a Start(), the class variables are reset and the state is set to sWait. The first time

that Run() occurs while state = sWait, the IMU state is transitioned to one of the

read states. The state chosen is based on IMU class boolean flags and is shown in

Table 4.1.

77

Table 4.1: IMU Class Run Method Initial State Table

Gyros Enabled State
True sReadGyro1
False sReadAcc1

Each time a state is changed to one of the read states, StartTransaction() is called.

This method initiates an asynchronous read on one of the I2C devices, with the choice

based on the current state. The asynchronous transaction will call back to the IMU

class if the transaction fails, or completes successfully. The IMU class contains logic

to handle all of the possible outcomes of the read. If the read is successful, then

I2CReadDone() is called. This method resets the busy timeout and fail counters

(since it just passed), and then calls ProcessTransaction().

Code Listing 4.6: IMU Class ProcessTransaction Method

1 void IMU::ProcessTransaction()
2 {
3 switch(_State) {
4 case sReadGyro1:
5 StoreGyroData(1);
6 SetState(sReadAcc1);
7 break;
8 case sReadAcc1:
9 StoreAccData(1);

10 PushData(1);
11 if (_bDualChan) {
12 if (_bUseGyro) {
13 SetState(sReadGyro2);
14 } else {
15 SetState(sReadAcc2);
16 }
17 } else {
18 SetState(sWait);
19 if (_pNextIMU) {
20 _pNextIMU->BeginRead();
21 }
22 }
23 break;
24 case sReadGyro2:
25 StoreGyroData(2);
26 SetState(sReadAcc2);
27 break;
28 case sReadAcc2:
29 StoreAccData(2);

78

30 PushData(2);
31 SetState(sWait);
32 if (_pNextIMU) {
33 _pNextIMU->BeginRead();
34 }
35 break;
36 default:
37 break;
38 }
39
40 //! Start the next transaction.
41 StartTransaction();
42 }

ProcessTransaction(), shown in Code Listing 4.6, extracts data from the I2C object

and stores it in the class. It then changes the state based on the state transition

diagram shown in Figure 4.13 and ends with another call to StartTransaction(). This

completes the loop that continues as long as IMU data is streaming.

When a read completes in the IMU class, the new data is stored with the Stor-

eGyroData(n) or StoreAccData(n). The methods simply transfer the data from the

I2C class to the IMU class. The PushData(n) function is called next. PushData(n)

sets a boolean flag. This flag indicates that all of the data for a transaction has been

read. The IMU Master calls the DataReady() method to determine if the IMU has a

complete packet of data available.

The IMU Manager stores a list of IMU class pointers. Much of the work that

the Manager does is to iterate over the IMUs to perform some operation. The

most important function in the Manager is the Loop() function, which is shown

in Code Listing 4.7. The Loop() function is called repeatedly, as was shown in Code

Listing 4.4.

Code Listing 4.7: IMU Manager Loop Method

1 int IMUManager::Loop()
2 {
3 switch(_State) {
4 case sIdle:
5 break;
6 case sDataWait:

79

7 if (DataReady()) {
8 ResetDataReadyTO();
9 _State = sDataReady;

10 } else if (DataReadyTimeout()) {
11 ResetDataReadyTO();
12 _State = sDataTimeout;
13 }
14 break;
15 case sDataReady:
16 PacketLedIndicator();
17 if (_nStreamWDCounter == 0) {
18 DiscardData();
19 _State = sDataWait;
20 } else {
21 --_nStreamWDCounter;
22 SendPacket(false);
23 _State = sDataWait;
24 }
25 break;
26 case sDataTimeout:
27 PacketLedIndicator();
28 if (_nStreamWDCounter == 0) {
29 DiscardData();
30 _State = sDataWait;
31 } else {
32 --_nStreamWDCounter;
33 SendPacket(true);
34 _State = sDataWait;
35 }
36 break;
37 }
38
39 return 0;
40 }

The Loop() function waits in the sDataWait state until all of the IMU objects

return true, or a timeout occurs. If a timeout occurs, then a dummy packet is sent to

avoid data starvation of the client. In normal cases, the sDataReady state is set, and

the next call to Loop() will assemble the packet data and send a packet of measured

data to the client.

Code Listing 4.8: IMU Manger SendPacket Method

1 void IMUManager::SendPacket(bool bTimeout)
2 {
3 uint8_t* pPacket = &_dataPacket[0];
4 if (true || !bTimeout) {
5 for (int x = 0;x<4;x++) {

80

6 if (_pIMU[x]) {
7 // This puts the data at the pointer,
8 // then returns the end of the data.
9 // This might be 2*14 or 1*14

10 pPacket = _pIMU[x]->GetPacketData(pPacket);
11 }
12 }
13 }
14 // Packet format:
15 // SNP header
16 // byte: length of packet
17 // byte: packet type (0xB7)
18 // byte(s): length bytes
19 // bytes(2): 2 byte CRC
20 // string: END
21 // newline
22 uint8_t size = pPacket - &_dataPacket[0];
23 buffer[0] = 'S';
24 buffer[1] = 'N';
25 buffer[2] = 'P';
26 buffer[3] = 0xB7;
27 buffer[4] = _packetId++;
28 buffer[5] = size;
29 memcpy(&buffer[6],&_dataPacket[0],size);
30 // Compute CRC -- someday
31 uint16_t crc = 0xaf5a;
32 uint8_t crchi = (crc >> 8) & 0xff;
33 uint8_t crclo = crc & 0xff;
34 buffer[6+size] = _nStreamWDCounter;
35 buffer[6+size+1] = crchi;
36 buffer[6+size+2] = crclo;
37 sprintf((char*)&buffer[6+size+3],"END\n");
38 _pSerial->write(&buffer[0],6+size+3+4);
39 }

The last firmware method described here is the SendPacket() method, shown in

Code Listing 4.8. In line 10, the hry() method of each IMU class is called. The IMU

classes assemble the read data into a well-defined format. The total length of this

data is calculated in line 22. The packet is assembled starting in line 23 where the

packet header of “SNP” and the packet type of 0xB7 are added. Finally, the packet

size, packet data, and a dummy CRC code are added, and the packet is terminated

with the “END” string. The assembled packet is transmitted to the serial port using

the write command.

The final write to the serial port is a synchronous call. When viewed on the logic

81

analyzer, the serial write overlaps with the I2C reads, so the minimum system period

is not the total of the serial and I2C transactions, but the longest of the two. The

total time to read all IMUs is about 4 ms. This sets the maximum read rate of the

system to about 200 Hz, which is a 5 ms period.

4.3.5 Packet Data Rate Calculations

Each IMU reads seven, 16-bit values for a total of 14 bytes. Two additional bytes are

sent as packet headers. The size of a full packet of data is 12 bytes + 6 * 16 for a

total of 108 bytes. A serial byte includes a start and stop bit, for a total of 10 bits

per byte of data. This results in a total of 1080 bits per full packet. At a serial rate

of 115,200 Kbps, the total time to send a packet is 1080/115,200 or 9.3 ms. A baud

rate of 115,200 is barely fast enough to operate at 100 Hz. Fortunately, the serial

interface is able to go much faster, but higher rates do make the communication setup

more difficult. The baud rates between the host computer and the hardware must be

closely aligned in frequency. Baud rates as high as 400 Kbps were achieved during

this project, but the more reliable 115,200 was used for much of the project, along

with an IMU update rate of 100 Hz or lower.

4.4 Software Design

The host computer software is designed using the Python™ scripting language, MAT-

LAB™ , and Panda3D™. Python™ captures data from the hardware. MATLAB™

reads data from the Python™ server and performs all IMU, kinematic and position

calculations. Panda3D™ is used by MATLAB™ to display the calculated results in a

real-time 3D “view” of the hand and fingers.

82

4.4.1 Python™

The GloveServer application has a simple Qt™ GUI, shown in Figure 4.14. The GUI

displays the number of IMUs identified by the system, which should normally be

six. The Rate setting is used to configure the IMU capture rate. Packets Captured

updates as the data is streamed and shows that the streaming interface is working.

Figure 4.14: GloveServer GUI

The code for the GloveServer application is contained in several Python™ files.

The first file contains the GUI code and two python thread objects. The DataWorker

thread object calls the GloveAPI getIMUPacket() method. This method is a syn-

chronous call and does not return until a packet is read. Since the DataWorker is in

a separate thread, the GUI continues to respond while it is waiting. The source code

files for the GloveServer are included in Appendix A.

The SocketWorker thread creates a network socket on the localhost IP address

`127.0.0.1`, port 5120. The socket connection is accessible by any computer on the

local network. SocketWorker listens for connections on this port. After a connection

is established, the SocketWorker continuously calls the recv(1024) method to get

commands from the client. A command processor determines the command, any

options passed, and then executes the requested function. The command most used

is the “data” command, which requests a single packet of data from the server.

83

Figure 4.15: UML Diagram of the Python™ GloveServer

GloveAPI is a reusable Python™ class. GloveAPI is used within the main GUI,

and also works as a standalone application for streaming IMU data to a file. The

class implements functions useful for working with the GyroGlove over the serial

port. GloveAPI was used repeatedly during development as a debug tool. GloveAPI

contains too many methods to document here. The key capabilities provided by

GloveAPI are as follows:

• Open and close the serial port, with options to set the baud rate.

84

• Start and stop the IMU data stream.

• Retrieve a new IMU Packet.

• Send debug commands to perform I2C reads, writes and initializations.

• Configure the IMUs.

The IMUPacket.py file contains two classes used to capture and manipulate the

IMU packet data. This class encapsulates the packet data formats and includes

methods to extract particular parts of the packet. The IMUPacket class also includes

the numpy code to perform the instrument frame to body frame rotations. All data

returned from the IMUPacket class is therefore in body frame coordinates.

4.4.2 Panda3D™

The Panda3D™ server is contained in a single Python™ file Glove3D.py. This file loads

physical models, which are 3D graphic objects. The graphic objects for this project

were drawn in Google Sketchup™. The sketchup files were saved into .dae COLLADO

format, which requires Google Sketchup Pro™. The .dae files were converted to panda

eggs using the dae2egg command in the Panda3D™ distribution. Details about this

process are available in the Panda3D™ documentation.

(a) Hand Base (b) Fingertip

Figure 4.16: Google Sketchup™ Drawings Used in the Panda3D™ 3D
Visualizer

85

Panda3D™ provides mechanisms to load models into the 3D world and position

them. The position of a model is set using 6DOF coordinates using the setPosHpr()

command. This command takes the X,Y, and Z coordinate, as well as a Roll, Pitch,

and Yaw angle. A very nice feature of Panda3D™ is that the position of an object can

be set relative to its parent. When the parent moves, all child objects move with it.

The position and orientation of the child object is always in relation to the parent.

The fingers in the model are configured to be child objects of the hand. This means

that the center of the coordinate system for the fingers is the hand, while the center of

the coordinate system for the hand is the world. The child objects can also be given

offset values, such that their zero position places them at a more natural location in

the model.

The relative positioning of the objects in Panda3D™ lends itself particularly well

to the IMU calculations. It is convenient to perform translations from the body frame

of the fingers to the body frame of the hand. The Panda3D™ models defined for this

project make it easy to represent these relationships visually.

The Glove3D.py file creates a network socket, similar to the GloveServer. The IP

address for the socket is again`127.0.0.1`, but the port is 5432. The data interface to

the Panda3D™ server is quite simple. Data packets consist of a set of seven comma

separated values. The first value is an integer that determines the target of the data.

An index value of 0 sets the hand coordinates, index values of 1-4 set the fingers, and

an index value of 5 sets the thumb. The remaining six values set the X, Y, and Z

position and the Roll, Pitch, and Yaw of the selected element.

4.4.3 MATLAB™

The MATLAB™ code for this project consists of a set of six classes. The diagram of

the classes, in unified modeling language (UML) format, is shown in Figure 4.17. The

base classes are at the top, while the derived classes are below. The GuiBase class

86

provides a number of helper functions for building a MATLAB™ GUI. The functions

available perform basic operations, such as creating a ComboBox and adding it to the

GUI at a specified location. All of the GUI elements created are stored in a uidata

structure.

StartLive
Live_cb
IMU_Update
StopLive

myTimer
period
imuObj
hKinematics

GloveGui

InitGui
InitPlotObjects
IMUPlot
*Menu_cb

positions
gData
plotObjs
posIndex

GloveGuiBase

AddTripleGraph
AddToggleButton
AddButton
AddButtonGroup
AddEditText
AddComboBox
AddTable
SetTableData
GetValue

ui
GuiBase

EulerAngles
PlatformInit
DCMUpdateAll
Update

U, V, euler*
markTime

PlatformIMU

EulerAngles
Positions
Velocities
DCmUpdateAll
DCMUpdateFromAcc
InitialieDCMs
PositionUpdate
ResetGlove
Restart
Update

DCM*
V, P, eAngles
State
Boolean Flags

GloveIMU

DCMUpdate
courseAlign
dcm2Euler
AlignUV
PositionUpdate
isGloveStable
ResetHistory
UpdateHistory

nIMUs
gyroHistory
accHistory
hKinematics

IMUCore

UpdatePanda
UpdateAngles
UpdatePos
UpdateGlove
FingerAngle
ThumbAngle

eANgles
Positions

HandKinematics

Figure 4.17: GloveGui UML Diagram

GloveGuiBase creates the GUI in the InitGui method. This method calls the

87

GuiBase methods to create all of the elements needed in the GloveGui. GloveGuiBase

also contains the callback functions for all of the GUI elements. When a button is

pressed or a combo box value is changed, the callback performs the requested action.

The GloveGui is shown in Figure 4.18.

Figure 4.18: MATLAB™ Glove GUI

GloveGui implements the streaming capabilities for the MATLAB™ code. The

class starts a timer that periodically retrieves new data, performs processing, and

updates the Panda3D™ visualization. None of the IMU processing is performed in

the GUI classes. The GloveGUI constructor function takes an optional argument

that is used to specify an IMU object. If no object is provided, the GloveIMU class

is used as a default.

The IMUCore class contains functions that implement the basic IMU equations

developed during this project. This class implements the algorithms described in

Chapter 2. The class provides functions to perform the DCM update, courseAlign,

convert a DCM to Euler angles, and determine if the glove has been stable for a

specified period of time.

The GloveIMU class uses the functions provided by IMUCore. This class tracks

the IMU data for all six of the IMUs in the system, so it usually calls the IMUCore

class in a loop. GloveIMU also contains a state machine. The state machine begins

88

in the Idle state, and transitions to the Run state after performing all of the required

initialization steps. The state machine ensures that the glove is stable for a period

of 1.5 seconds. Then, the machine uses the course align method to set the initial

orientation of all six IMUs. Finally, the class enters the Run state where the IMU

data is updated at the IMU update rate.

A PlatformIMU class overrides some of the GloveIMU functions to use a different

algorithm for updating the glove data. The Glove IMU algorithms track each of the

six IMUs relative to the local inertial frame of reference. In order to determine the

finger position relative to the hand, the finger body frame is rotated to the inertial

frame. Then, the hand frame is rotated to the inertial frame, and the two frames are

then compared. A different approach is to calculate and maintain the orientation of

the finger frame relative to the hand frame directly.

The HandKinematics class provides some (very rudimentary) functions for calcu-

lating kinematic relationships. The calculated values are used to update the Panda3D™

model and to maintain reasonable relationships in the model. For example, it does not

make sense for the fingers to be one meter away from the hand. The HandKinematics

class takes the calculated position data from the IMU classes, but limits the position

to reasonable values.

4.4.4 MATLAB™ Mex Functions

MATLAB™ support for socket programming requires the distributed computing tool-

box. This toolkit was not available on the development system, therefore the socket

programming was done in a pair of C++ mex files.

The disadvantage of the mex files is that they are not necessarily cross platform.

To use the GyroGlove on a Windows™ PC, the mex files will need to be ported to

that platform. Most of the code in the files is portable between platforms. Porting

89

the code to a different operating system should not be difficult, but the mex files will

need to be recompiled on the new platform.

Two C++ mex files were written for this project. The first one, named GyroGlove-

Capture.cpp creates a persistent socket object and connects to the GloverServer.

MATLAB™ calls into this mex file to retrieve new packets of data. The second mex

file is called GyroGloveClient.cpp. MATLAB™ calls this file to send data to the

Panda3D™ server, thus updating the Panda3D™ graphic view.

Static variables within a mex file retain their value after the function is called. In

this way, a mex function can maintain state between calls. The GyroGloveCapture

mex function uses static variables to hold the socket connection. This allows the mex

function to maintain a persistent socket connection, and improves performance. A

simple set of commands are needed to control the internal state of the socket. The

commands supported are connect, close, start, stop, quit, and recv.

The connect and close commands are used to connect to the GloveServer socket

and close the socket, respectively. The start and stop commands are used to control

the streaming of data from the GloveServer. The recv command takes one parameter

that specifies the number of packets to receive. The function will retrieve the specified

number of packets into a MATLAB™ array.

The GyroGloveClient mex function is used to send position and rotation values

to the Panda3D™ server. The first argument to the mex function is the index of the

model element to update, as described in Section 4.4.2. The second argument to the

command is an array of six values. The values are the x, y, z, ρ, θ, ψ values for the

specified element.

90

CHAPTER 5

RESULTS

The GyroGlove system developed for this thesis project is a successful hardware

and software platform that can be used for further development and exploration of

IMU systems, inertial measurement algorithms, gesture capture, and gesture pattern

recognition. The project resulted in development of the following hardware and

software artifacts:

• A set of IMU boards and a microprocessor-based controller.

• A USB interface from the controller to the host PC.

• Microprocessor firmware for IMU board initialization and data processing.

• A Python™ software component to connect to the controller and capture stream-

ing data.

• A MATLAB™ software system to collect data from the hardware, perform cal-

culations, and update a real-time 3D visualization of the hand.

• A flexible and extensible MATLAB™ software system for GUI development and

IMU calculations.

• A Panda3D™ software component to display a 3D real-time view of the hand

with updates from MATLAB™.

91

5.1 Hardware Results

The IMU boards developed for the project are small, simple and easy to assemble

(with the right tools). The boards provide 6-axis IMU sensing with a 4-wire I2C

interface to the host controller. The boards are small enough to mount on to the

fingertips and fast enough to be used for data capture of natural biokinematic move-

ments. The IMU boards use state-of-the art, low cost, digital output accelerometers

and gyroscopes.

The controller board uses a fast, efficient, low power processor. This processor

is programmable using free development tools in C/C++. The processor includes

sufficient horsepower to capture data from all six IMU boards simultaneously. The

controller can transfer the raw data to the host PC at full speed using a simple,

platform agnostic USB to serial protocol. The controller includes a complete, working

firmware solution that captures data from all IMU devices at 100 Hz.

5.2 Software Results

The software components developed for this project form a flexible and powerful

architecture. The overall system is constructed of three main components that work

independently. Independent components have the advantage that they each perform

a single, cohesive task, resulting in a simpler overall solution. The independent blocks

can also take advantage of modern multi-core computers more effectively.

The Python™ data capture component provides a simple yet powerful hardware

interface. Since the data capture server uses network sockets, the server is able to

provide data to an client program with socket capabilities. While the target for the

project was a MATLAB™ component, further development could easily substitute

other languages or platforms. The flexible nature of this interface will be a great

benefit to future work.

92

Applications written in MATLAB™ can be very complex. Standard function

based .m files are poorly suited for large software applications. While MATLAB™

has supported object-oriented programming for a number of years, a majority of

MATLAB™ applications are still written in the more traditional functional format. A

recent review of the applications submitted to the MATLAB™ file exchanged showed

that there were 818 functions, 380 scripts, and 57 classes. The initial learning curve

of MATLAB™ classes may be steep, but it always helps to have working code to build

upon.

The MATLAB™ framework developed herein provides an object-oriented suite of

classes for the GUI and the IMU calculations. Low level GUI tasks are provided, as

well as more specific objects and functions tailored for this application. The IMU

objects form a 3-level structure with each level building upon the lower level. The

tiered structure simplifies development of new algorithms, since they can be easily

added on top of the main IMU objects without affecting existing code.

Verifying software algorithms can be a difficult task. Often the easiest way to see

if a task works is to have a visual representation of the output results. The Panda3D™

server provides real-time visualization of the calculated MATLAB™ results. The

visual output provides immediate and clear feedback during algorithm improvements.

The Panda3D™ environment is also simple enough to expand and is available on a

range of platforms.

93

CHAPTER 6

CONCLUSION AND FUTURE WORK

The small size of MEMS devices makes them suitable for use in applications like

the GyroGlove. Unfortunately, their noise levels are high, and so they cannot be

used effectively for position tracking. Some possible solutions to this problem were

considered early in the project, but never explored.

The kinematic relationships between the hands and fingers imply limits to how

much a finger can move relative to the hand. This relationship could be used as

additional information to the INS equations. As an example, point your index finger

out in front of you. If the INS drift seems to indicate that the finger is moving forward,

but the hand (and other sensors) is not, then this information should be disregarded.

It is easy to state these relationships, but much more challenging to code them into

suitable algorithms. A potential future project would be to merge the kinematic and

INS equations.

Position tracking of an IMU was shown to be difficult or impossible. The Gy-

roGlove, however, includes six IMUs. The hand and fingers are also tightly coupled, as

mentioned previously, so there should be significant redundancy between the sensors.

If the hand moves, so do the fingers, so if one finger drifts off in a different direction

than the other, the algorithm should take this inconsistency into account. None

of the books reviewed during this project discuss the use of redundant sensors. A

second future project could attempt to capitalize on the redundant information to

94

compensate for the noise issues prevalent in small MEMS sensors.

A final future project idea would be to focus on relative, short-time duration

gestures. As previously stated, it is difficult to track the absolute position of the

IMUs. It may be possible, however, to ignore the absolute position and focus only

on the relative position. Hand gestures intended to control computer operations are

short-term events. The IMUs are good at tracking over short time periods. It may

be possible to focus only on short time periods and relative positions of the hand and

fingers to recognize gestures.

The results of this project form a solid foundation for future work. The hard-

ware and software platform developed here will support a wide variety of projects

covering algorithms, pattern recognition, firmware development, or even hardware

development. Hopefully, this thesis can serve as a great starting point for such work.

95

REFERENCES

[1] acceleglove. http://www.acceleglove.com/, Oct 2011.

[2] Businessweek.com images. http://images.businessweek.com/ss/06/

05/phaidon/source/10.htm, Oct 2011.

[3] Computer history museum. http://www.computerhistory.org/

timeline/?year=1951, Oct 2011.

[4] Doug engelbart institute. http://www.dougengelbart.org/firsts/

mouse.html, Oct 2011.

[5] Timeline of computer history. http://www.computerhistory.org/

timeline/?category=cmptr, Feb 2011.

[6] Wikipedia - kensington expertmouse. http://en.wikipedia.org/wiki/

File:Trackball-Kensington-ExpertMouse5.jpg, Oct 2011.

[7] Wikipedia - space navigator. http://en.wikipedia.org/wiki/File:

Space-Navigator.jpg, Oct 2011.

[8] Xsens mtx sensor. http://www.xsens.com/en/general/mtx, Oct 2011.

[9] Xsens mvn biomech. http://www.xsens.com/en/general/

mvn-biomch, Oct 2011.

[10] P Asare. A sign of the times: A composite input device for human-computer

interactions. Potentials, IEEE, 29(2):pages 9 – 14, MAR/APR 2010.

96

[11] TD Bui and L.T Nguyen. Recognizing postures in Vietnamese sign language

with MEMS accelerometers. Sensors Journal, IEEE, 7(5):pages 707–712, May

2007.

[12] Community. Wikipedia - douglas engelbart. http://en.wikipedia.org/

wiki/Douglas_Engelbart, Oct 2011.

[13] Community. Wikipedia - eniac. http://en.wikipedia.org/wiki/File:

ENIAC_Penn1.jpg, Oct 2011.

[14] CyberGlove. Cyberglove ii. http://www.cyberglovesystems.com/

products/cyberglove-ii/overview, Feb 2011.

[15] Charles Stark Draper. Origins of inertial navigation. Journal of Guidance and

Control, 4(5):449–463, Sep 1981.

[16] W English, D Engelbart, and M Berman. Display-selection techniques for text

manipulation. Human Factors in Electronics, IEEE Transactions on, HFE-

8(1):pages 5 – 15, Mar 1967.

[17] Jay A. Farrell. Aided Navigation: GPS with High Rate Sensors. McGraw-Hill,

2008.

[18] Herman Goldstine. A brief history of the computer. Proceedings of the American

Philosophical Society, 121(5):pages 339 – 345, Oct 1977.

[19] H Graf, Sang Min Yoon, and C Malerczyk. Real-time 3d reconstruction and pose

estimation for human motion analysis. In Image Processing (ICIP), 2010 17th

IEEE International Conference on, pages 3981 – 3984, Hong Kong, Sep 2010.

[20] J Hanse. Honeywell mems inertial technology & product status. Position

Location and Navigation Symposium, 2004. PLANS 2004, pages 43 – 48, 2004.

97

[21] K Hays, R Schmidt, W Wilson, J Campbell, D Heckman, and M Gokhale. A

submarine navigator for the 21st century. In Position Location and Navigation

Symposium, 2002 IEEE, pages 179 – 188, Palms Springs, CA, Apr 2002.

[22] Jose L. Hernandez-Rebollar, Nicholas Kyriakopoulos, and Robert W. Lindeman.

The acceleglove: a whole-hand input device for virtual reality. 2002.

[23] Ji-Hwan Kim, Nguyen Duc Thang, and Tae-Seong Kim. 3-d hand motion

tracking and gesture recognition using a data glove. pages 1013 – 1018, 2009.

[24] J Perng, B Fisher, S Hollar, and K Pister. Acceleration sensing glove (asg). In

Wearable Computers, 1999. The Third International Symposium on, pages 178

– 180, San Francisco, CA, Oct 1999.

[25] PowerGlove. Nintento power glove. http://www.ageinc.com/tech/

index.html, Feb 2011.

[26] J Raskin. Holes in history: a personal perspective on how and why the early

history of today’s major interface paradigm has been so often misreported.

interactions, 1(3):pages 11 – 16, Jul 1994.

[27] J Rekimoto. Gesturewrist and gesturepad: unobtrusive wearable interaction de-

vices. In Wearable Computers, 2001. Proceedings. Fifth International Symposium

on, pages 21 – 27, Zurich , Switzerland, 2001.

[28] M Sadiku and C Obiozor. Evolution of computer systems. In Frontiers in

Education Conference, 1996. FIE ’96. 26th Annual Conference., Proceedings of,

volume 3, pages 1472 – 1474, Salt Lake City, Utah, Nov 1996.

[29] Paul G. Savage. Strapdown Analytics, Part 1. Strapdown Associates, Inc., 2007.

[30] Guoqing Xu, Yangsheng Wang, and Xiufeng Zhang. Human computer interaction

for the disabled with upper limbs amputation. In Advanced Computer Control

98

(ICACC), 2010 2nd International Conference on, volume 3, pages 120–123,

Shenyang, China, Mar 2010.

99

APPENDIX A

Python™ GLOVESERVER SOURCE CODE

100

Python™ GLOVESERVER SOURCE CODE

Code Listing A.1: Top Level

1 #!/usr/bin/env python
2
3 import sys
4 import serial
5 import platform
6 import glob
7 import time
8 import re
9 import os.path

10 from PyQt4.QtCore import *
11 from PyQt4.QtGui import *
12 from IMUPacket import *
13 from IMUManager import *
14 from GloveAPI import GloveAPI
15 from Ui_GloveServer import *
16 from threading import Thread,Lock
17 from socket import *
18 from struct import *
19
20 #HOST = '192.168.1.147'
21 HOST = '127.0.0.1'
22 PORT = 5120
23
24 class DataWorker(Thread):
25 '''
26 Worker thread for retrieving results from the IMU.
27 This thread runs a loop that captures data from the IMU and
28 processes it into packets. it then takes the important IMU
29 results and passes it to a function on the data object. This
30 function uses a lock object to protect access from multiple
31 threads, and serves as the data transfer point between this

thread
32 and the display thread.
33
34 An enhancement would be to have this tread JUST capture the data
35 and then have another thread or more handle the processing of the
36 data, even the basic conversion and extraction of the data.

Normally
37 this might not be a good idea, but since I have an 8 Core machine
38 at home, this makes a ton of sense...
39 '''
40
41 def __init__(self,api,dataObj,rate):
42 super(DataWorker,self).__init__()
43
44 self.api = api
45 self.dataObj = dataObj
46 self.stopme = False

101

47 self.rate = rate
48
49 def run(self):
50 '''
51 Do the hard work..
52 '''
53 print("worker started..")
54 api = GloveAPI()
55
56 while not api.openPort():
57 print("Open port failed.. retry")
58
59 print("Clear Packet Engine")
60 api.clearIMUPacketEngine()
61 print("Set Rate")
62 api.rate(self.rate)
63 print("Start Stream")
64 api.streamstart(True)
65 print("Set WD")
66 api.StreamWD()
67
68 while self.stopme == False:
69
70 packet = api.getIMUPacket()
71 if packet:
72 data = packet.MeasuredData()
73 self.dataObj.newPacket(packet.numIMUs,packet.pkID,

data)
74 api.StreamWD()
75 else:
76 '''
77 A Timeout occured, see if I can recover
78 '''
79 print("Empty data returned")
80 api.streamstart(True)
81 api.StreamWD()
82
83 print("Worker asked to quit")
84
85 class SocketWorker(Thread):
86 '''
87 Worker thread for accepting socket connections.
88 Will listen, then accept connections. While a connection
89 is established, it will read data and then send it back.
90 '''
91
92 def __init__(self,parent):
93 super(SocketWorker,self).__init__()
94
95 self.parent = parent
96
97 def run(self):
98 '''
99 Do the hard work..

102

100 '''
101
102
103 print ("Setting up the socket")
104 s = socket(AF_INET, SOCK_STREAM)
105 s.bind((HOST,PORT))
106
107 while True:
108 print ("Waiting for a connection")
109 s.listen(1)
110 conn,addr = s.accept()
111 print "Connected by ",addr
112
113 packetCount = 0
114
115 while 1:
116 data = conn.recv(1024)
117 if data:
118 if re.match("start",data):
119 self.parent.sStart()
120 elif re.match("stop",data):
121 self.parent.sStop()
122 elif re.match("data",data):
123 [id,d] = self.parent.sData()
124 if d:
125 packetCount = packetCount + 1
126 if packetCount % 100 == 0:
127 print("Total of %d packets sent." %

packetCount)
128 num = conn.send(pack("BHH",0xb7,len(d),id

)+d)
129 #print("Len d:%d number sent:%d" % (len(d

), num))
130 else:
131 # Send a null packet, nothing left to

send.
132 conn.send(pack("BHB", 0xb7,0,0))
133 #print("Sent null packet")
134 elif re.match("quit",data):
135 print("Exiting the socket connection")
136 conn.close()
137 return
138 else:
139 conn.send("Unknown command")
140 else:
141 break
142
143 conn.close()
144
145 class GloveServer(QMainWindow,
146 Ui_GloveServer):
147 def __init__(self,parent=None):
148 super(GloveServer, self).__init__(parent)
149

103

150 self._running = False
151 self.ser = None
152
153 self.step = 0.01
154 self.data = []
155 self.pData = None
156 self.numPackets = 0
157 self.numIMUs = 0
158 self.setupUi(self)
159 #self.api = GloveAPI()
160 #self.api.initHardware()
161 self.editPackets.setText("0")
162 self.editRate.setText("40")
163 self.editNumIMUs.setText("0")
164
165 self.btnStartStop.setText("Start")
166
167 self.connect(self.btnStartStop, SIGNAL("clicked()"),
168 self.StartStop)
169
170 self.connect(self.btnQuit, SIGNAL("clicked()"),
171 self.OnExit)
172
173 self.lock = Lock()
174
175 self.timer = QTimer(self)
176 self.connect(self.timer,
177 SIGNAL("timeout()"),
178 self.onTimer)
179 self.timer.start(1)
180
181 self.sockworker = SocketWorker(self)
182 self.sockworker.start()
183 self.worker = None
184
185 def OnExit(self):
186 if self.worker:
187 self.worker.stopme = True
188 print("Stopped the worker")
189 else:
190 print("No worker to stop")
191 s = socket(AF_INET, SOCK_STREAM)
192 s.connect((HOST, PORT))
193 s.send('quit')
194
195 def newPacket(self,numIMUs,id,data):
196 self.lock.acquire()
197 self.numPackets = self.numPackets + 1
198 self.numIMUs = numIMUs
199 if len(self.data) == 10:
200 """Shift the elements down, append new element to end """
201 self.data = self.data[1:]
202 self.data.append([id,data])
203 self.lock.release()

104

204
205 def sStart(self):
206 self._Start()
207
208 def sStop(self):
209 self._Stop()
210
211 def sData(self):
212 self.lock.acquire()
213 if self.data:
214 [id,d] = self.data.pop(0)
215 else:
216 [id,d] = [0,None]
217 self.lock.release()
218 return [id,d]
219
220 def _Start(self):
221 self.lock.acquire()
222 self.numPackets = 0
223 self.data = []
224 self.lock.release()
225
226 if self._running == False:
227 self._running = True
228
229 self.btnStartStop.setText("Stop")
230 '''
231 The speed here is not critical, since we can process

multiple
232 values for each timer even. The timer locks the data,

grabs all
233 of the values present, then unlocks it.. running this

loop faster
234 would probably only serve to increase the overhead. It

might make
235 the viewer smoother, but I doubt it, since a 25ms update

rate is
236 faster than we can really discern anyway, assume we can

discern a
237 30Hz update rate...
238 '''
239 srate = self.editRate.text()
240 try:
241 rate = int(srate)
242 except:
243 rate = 100
244 self.editRate.setText("%d" % rate)
245
246 self.worker = DataWorker(None,self,rate)
247 self.worker.start()
248
249 def _Stop(self):
250 if self._running:
251 self.btnStartStop.setText("Start")

105

252 self._running = False
253 ''' Signal the worker thread to stop, then wait for it

'''
254
255 print("Telling worker to stop..")
256 self.worker.stopme = True
257 self.worker.join()
258 print("Worker done")
259 self.worker = None
260
261 def StartStop(self):
262 if self._running:
263 self._Stop()
264 else:
265 self._Start()
266
267 def onTimer(self):
268 self.editPackets.setText("%d" % self.numPackets)
269 self.editNumIMUs.setText("%d" % self.numIMUs)
270
271
272 if __name__ == "__main__":
273 import sys
274
275 app = QApplication(sys.argv)
276 mw = GloveServer()
277 mw.show()
278 mw.raise_()
279 app.exec_()

Code Listing A.2: IMU Manager

1 #!/usr/bin/env python
2
3 import serial
4 import platform
5 import glob
6 import time
7 import re
8 import numpy
9 from GloveAPI import GloveAPI

10
11 class IMUManager(object):
12 def __init__(self,api):
13 super(IMUManager,self).__init__()
14
15 self.api = api
16
17 def Configure(self):
18 pass
19
20 def StreamOn(self,bOn = True):
21 self.api.stream(bOn)

106

22
23 def StreamCont(self,bOn = True):
24 if bOn:
25 print("Started streaming..")
26 self.api.sendPacket(b'streamcont 1\n')
27 else:
28 print("Ended streaming..")
29 self.api.sendPacket(b'streamcont 0\n')
30
31 def ReadIMUData(self):
32 '''
33 Need to read the current state of the streams..
34 Need to turn on streaming first of course.
35
36 '''
37 data = self.api.getIMUPacket()
38 return data
39
40 if __name__ == "__main__":
41 api = GloveAPI()
42 api.initHardware()
43
44 print ("Done")

Code Listing A.3: Application Programming Interface

1 #!/usr/bin/env python
2
3 import sys
4 import serial
5 import platform
6 import glob
7 import time
8 import re
9 import os.path

10 from IMUPacket import *
11 from optparse import OptionParser
12 import numpy as np
13 #import scipy as sp
14 #import scipy.io
15
16 class GloveAPI(object):
17
18 def __init__(self):
19 super(GloveAPI,self).__init__()
20 self.ser = None
21
22 self.pktrd = IMUPacketRead()
23
24 def openPort(self,baud=115200,port=None,retries=20):
25 if not port:
26 port = self.getPorts()
27

107

28 nTries = 0
29 while nTries < retries:
30 try:
31 self.ser = serial.Serial(port,baud, timeout=1)
32 if self.ser.isOpen():
33 print("Opened port %s at %d baud" % (port,baud))
34 else:
35 print("Serial Port did not open..!")
36 raise("Bad thing happend.")
37 #self.ctrl = ControllerAPI.ControllerComm(port,9600,

timeout=1)
38 except:
39 raise "Could not open serial port!"
40 self.ser = None
41 return False
42
43 retc = self.initHardware()
44 if not retc:
45 print("Init Failed. Reset Serial port")
46 self.ser = None
47 nTries = nTries + 1
48 else:
49 return True
50
51 def initHardware(self):
52 '''
53 The first time we write to the hardware it appears that the

FTDI chip resets
54 it.. this has been problematic. It requires about 3 seconds

for the hardware
55 to come up, so I do a write, then a read with a long timeout,

and see what happens.
56 This should insure we are ready to run....
57 '''
58 self.ser.timeout = 3
59 print("Timeout set to 3 seconds. Getting Time")
60 retc = self.sendPacket(b'gettime\n')
61 if not retc:
62 retc = self.sendPacket(b'gettime\n')
63 print("Timeout done. Restore to 1 second")
64 self.ser.timeout = 1
65
66 return retc
67
68 def getPorts(self):
69 if platform.system() == 'Darwin':
70 """scan for available ports. return a list of device

names."""
71 ports = glob.glob('/dev/tty.usbserial-A400*')
72 return ports[0]
73 elif platform.system() == 'Windows':
74 return "COM11" # No super good way to determine this..
75
76 def sendPacket(self,packet):

108

77 self.ser.write(packet)
78
79 while (1):
80 t = time.time()
81 retval = self.ser.readline()
82 try:
83 tdiff = time.time() - t
84 if tdiff > self.ser.timeout:
85 print("Timeout probably occured:%f" % tdiff)
86 return None
87
88 retval = retval.decode()
89 m = re.search("Ok|Fail",retval,re.IGNORECASE)
90 if m:
91 print("{0} Result:{1}".format(packet.decode(),

retval))
92 break
93 else:
94 print("{0}".format(retval))
95 pass
96 except:
97 # Invalid format, cannot decode it..
98 print("Exception")
99 return None

100
101 return retval
102
103 def i2crd(self,port,ID, addr, nbytes = 1):
104 packet = "i2crd {0} {1} {2} {3}\n".format(port, ID, addr,

nbytes)
105 retval = self.sendPacket(packet.encode('utf-8'))
106
107 m = re.search("Ok:(.*)\r\n",retval)
108 if m:
109 dvals = m.group(1)
110 dvals = dvals.strip()
111 dlist = []
112 dlist = dvals.split()
113 vallist = []
114 for d in dlist:
115 try:
116 vallist.append(int(d,16))
117 except:
118 pass
119 return vallist
120
121 return None
122
123 def i2cwr(self,port,ID,addr,data):
124 if isinstance(data,(list,tuple)):
125 data = " ".join(data)
126
127 packet = "i2cwr {0} {1} {2} {3}\n".format(port, ID, addr,

data)

109

128 retval = self.sendPacket(packet.encode('utf-8'))
129
130 if retval:
131 m = re.search("Ok:(.*)\r\n",retval)
132 if m:
133 return True
134
135 return False
136
137 def streamstart(self,bUseGyro = False):
138 if bUseGyro:
139 retval = self.sendPacket(b'streamstart 1\n')
140 else:
141 retval = self.sendPacket(b'streamstart 0\n')
142
143 if retval:
144 m = re.search("Ok",retval)
145 if m:
146 return True
147 return False
148
149 def StreamWD(self):
150 self.ser.write(b'wd\n')
151 #print("Reset watchdog")
152 return True
153
154 def streamstop(self):
155 retval = self.sendPacket(b'streamstop\n')
156
157 if retval:
158 m = re.search("Ok",retval)
159 if m:
160 return True
161 return False
162
163 def rate(self,nHz):
164 print("Setting rate to %d" % nHz)
165 retval = self.sendPacket(b'rate %d\n' % nHz)
166
167 if retval:
168 m = re.search("Ok",retval)
169 print("Retval from rate setting:%s" % retval)
170 if m:
171 return True
172
173 def fiforeset(self):
174 retval = self.sendPacket(b'fiforeset\n')
175
176 if retval:
177 m = re.search("Ok",retval)
178 if m:
179 return True
180 return False
181

110

182 def fifoenable(self):
183 retval = self.sendPacket(b'fifoenable\n')
184
185 if retval:
186 m = re.search("Ok",retval)
187 if m:
188 return True
189 return False
190
191 def debug(self,bOn):
192 if bOn:
193 retval = self.sendPacket(b'debug 1\n')
194 else:
195 retval = self.sendPacket(b'debug 0\n')
196
197 if retval:
198 m = re.search("Ok",retval)
199 if m:
200 return True
201 return False
202
203 def reset(self):
204 while (1):
205 print ("Attempting Reset..")
206 retval = self.sendPacket(b'reset\n')
207 self.ser.write(b'checkids\n')
208
209 bFail = False
210 for x in range(0,12):
211 retval = self.ser.readline()
212 print ("Checkid returned:%s for %d" % (retval,x))
213 try:
214 m = re.search("NAck",retval,re.IGNORECASE)
215 if m:
216 # One of these fails..
217 bFail = True
218 except:
219 # Invalid format, cannot decode it..
220 bFail = True
221
222 if not bFail:
223 self.configimu()
224 return True
225
226 def startTimeToClockTime(self,startTime):
227 minutes = startTime * 5
228 hr = int(minutes / 60)
229 min = minutes % 60
230 if hr > 11:
231 ampm = 'pm'
232 hr = hr = 12
233 else:
234 ampm = 'am'
235

111

236 clkTime = "{0:02d}:{1:02d}{2}".format(hr,min,ampm)
237 return clkTime
238
239 def getTime(self):
240
241 retval = self.sendPacket(b'gettime\n')
242 m = re.search("Ok:(\d+)",retval)
243 if m:
244 dt = m.group(1)
245 try:
246 unixTime = int(dt)
247 except:
248 print("Failed to convert datatime value:%s to integer

" % dt)
249 return None
250
251 tm = time.localtime(unixTime)
252 timeString = time.strftime("%b %d,%Y %H:%M",tm)
253
254 return timeString
255 else:
256 return None
257
258 def getBaud(self):
259
260 retval = self.sendPacket(b'baudquery\n')
261 if retval:
262 m = re.search("Ok:(.*)",retval)
263 if m:
264 dt = m.group(1)
265 print("Baud Values:%s" % dt)
266
267 return None
268
269 def setTime(self):
270 timeval = time.time() - time.timezone
271 packet = "settime %d\n" % int(timeval)
272 retval = self.sendPacket(packet.encode('utf-8'))
273 if retval:
274 if re.search("Fail",retval):
275 return None
276 return "Ok"
277 else:
278 return False
279
280 def configimu(self):
281 retval = self.sendPacket(b'configimu\n')
282
283 if retval:
284 m = re.search("Ok",retval)
285 if m:
286 return True
287 return False
288

112

289
290 def clearIMUPacketEngine(self):
291 self.pktrd.Clear()
292
293 def getIMUPacket(self):
294 self.pktrd.Clear()
295 t = time.time()
296 while (self.pktrd.isValidPacket == False):
297 self.pktrd.getChars(self.ser)
298 tdiff = time.time() - t
299 if tdiff > self.ser.timeout:
300 print("Timeout occurred:%f" % tdiff)
301 return None
302
303 return self.pktrd.packet
304
305 def GetApi():
306 return GloveAPI()
307
308 def showPacket(p,keys):
309 #print("Packet: ID:%d Type:0x%x CRC:0x%x DataLen:%d" % (p.pkID, p

.pkType, p.pkCRC, len(p.pkData)))
310 imudata = p.Results()
311 wd = int(p.WatchDog)
312 strings = []
313 for i in imudata:
314 strings.append("\t".join(["%x" % i[k] for k in keys]))
315 print("Wd:%d" % wd + " " + "\t".join(strings))
316
317 def printPacket(f,fkeys,p):
318 imudata = p.Results()
319 strings = []
320 for i in imudata:
321 strings.append("\t".join(["%d" % i[k] for k in fkeys]))
322 f.write("\t".join(strings) + "\n")
323
324 def testIMU(api):
325 #api.fiforeset()
326 #api.rate(10)
327 #api.configimu()
328 #api.streamWD()
329 #api.fifoenable()
330 nToRead = 2
331 num2Read = 2
332 fiforeadcounter = 20
333 for z in range (100):
334 vals = api.i2crd(0,210,58,2)
335 if vals:
336 s = " ".join(["%8d" % x for x in vals])
337 fifoSize = vals[0] << 8 or vals[1]
338 print ("Fifo Size %d: " % (fifoSize) + s)
339
340 if fifoSize > 4:
341 fifoSize = fifoSize - 2

113

342 nToRead = fifoSize - fifoSize % 2
343 if nToRead > 20:
344 nToRead = 16
345
346 if nToRead > 0:
347 print ("Reading %d from fifo\n" % nToRead)
348 fvals = api.i2crd(0,210,60,nToRead)
349 if fvals:
350 s = ",".join(["%8d" % x for x in fvals])
351 print("Fifo:" + s + "\n")
352 fiforeadcounter = fiforeadcounter - 1
353 if fiforeadcounter == 0:
354 print ("Done")
355 break
356
357 if vals[0] == 2:
358 pass
359 #break
360 api.fiforeset()
361
362 def AutoIncrementFile(infile):
363 if os.path.isfile(infile):
364 ''' We have some work to do.. to autoincrement the file '''
365 dir = os.path.dirname(options.outfile)
366 fullname = os.path.basename(options.outfile)
367 (fname,ext) = os.path.splitext(fullname)
368
369 '''
370 List the directory, then search only for those that include

the base part of the
371 filename, so File File1 File2 File3, etc would all be

returned
372 '''
373
374 maxIndex = 0
375 for f in os.listdir(dir):
376 m = re.search(fname,f)
377 if m:
378 (fbase,e) = os.path.splitext(f)
379 m = re.search("(\d+)$",fbase) # Find trailing number
380 if m:
381 idx = int(m.group(1))
382 if idx > maxIndex:
383 maxIndex = idx
384
385 index =maxIndex + 1
386
387 outfile = os.path.join(dir,fname + "%d" % index + ext)
388
389 print("%s incremented to %s" %(infile,outfile))
390
391 return outfile
392 else:
393 return infile

114

394
395
396 if __name__ == "__main__":
397
398 usage = "usage: %prog -n -m -s]"
399 parser = OptionParser(usage)
400 parser.add_option("-r", dest="rate",
401 action="store",
402 type="int",
403 default=100,
404 help="Sample Rate")
405 parser.add_option("-c", dest="count",
406 action="store",
407 type="int",
408 default=200,
409 help="Number to read.")
410 parser.add_option("-p",dest="path",
411 action="store",
412 type="string",
413 default="DataCollection",
414 help="Directory to output debug data to")
415 parser.add_option("-f",dest="outfile",
416 action="store",
417 type="string",
418 default="",
419 help="File to output debug data to")
420 parser.add_option("-n",dest="dataname",
421 action="store",
422 type="string",
423 default="arr",
424 help="Name to use for the matlab data"
425)
426 parser.add_option("-v",action="store_false",dest="verbose")
427 parser.add_option("-s",action="store_true",dest="stop")
428
429 (options, args) = parser.parse_args()
430
431 if options.outfile == "":
432 options.outfile = os.path.join(options.path,options.dataname

+ ".mat")
433
434 #outfile = AutoIncrementFile(options.outfile)
435 outfile = options.outfile
436
437 print("Get API")
438 api = GloveAPI()
439 print("Init HW")
440 api.initHardware()
441 print("Get Baud")
442 api.getBaud()
443
444 print ("Got this far, established communication")
445
446 if options.stop:

115

447 api.streamstop()
448 sys.exit(0)
449
450 numToRead = options.count
451
452 if options.outfile:
453 writeFile = True
454 else:
455 writeFile = False
456
457 api.clearIMUPacketEngine()
458 keys = ['sentinal','temp','gx','gy','gz','ax','ay','az','footer']
459 #keys = ['gx','gy','gz','ax','ay','az']
460 #packets = []
461 t = time.time()
462
463 fkeys = ['temp','gx','gy','gz','ax','ay','az']
464
465 api.rate(options.rate)
466 api.streamstart(True)
467 api.StreamWD()
468
469 data = np.zeros((numToRead,1+6*7))
470
471 nLeft2Stream = numToRead
472 api.StreamWD()
473 for x in range(0,numToRead):
474
475 api.StreamWD()
476 p = api.getIMUPacket()
477 nLeft2Stream = nLeft2Stream - 1
478
479 '''
480 Reset the watchdog each time. No reason not to since the

serial link to the
481 unit is not used for anything except this.
482 '''
483 api.StreamWD()
484
485 if p:
486 #if writeFile:
487 #printPacket(f,fkeys,p)
488 #packets.append(p)
489 showPacket(p,keys)
490
491 '''
492 Append the data to my potential Matlab array
493 '''
494 imudata = p.Results()
495 imuidx = 0
496 data[x][0] = p.pkID
497
498 for i in imudata:
499 #print("Adding IMU %d of %d\n" % (imuidx,x))

116

500 colidx = 0
501 for k in fkeys:
502 data[x][7*imuidx+colidx+1] = i[k]
503 colidx = colidx + 1
504 imuidx = imuidx + 1
505 else:
506 print "Bad Packet"
507
508 tdiff = time.time() - t
509
510 if writeFile:
511
512 if os.path.isfile(outfile):
513 os.unlink(outfile)
514
515 sp.io.savemat(outfile, mdict={
516 'Data': data,
517 'Name':options.dataname,
518 'T':1.0/float(options.rate)})
519 #f.close()
520
521 api.streamstop()
522
523 print("Total time:%6.6f Time per Packet:%6.6f" % (tdiff,tdiff/x))
524
525 print ("Done")

Code Listing A.4: Packet Handling

1 #!/usr/bin/env python
2
3 import serial
4 import platform
5 from struct import *
6 import numpy as np
7 import sys
8
9 class IMUPacket:

10 def __init__(self):
11 self.pkID = 0
12 self.pkType = None
13 self.pkBytes = 0
14 self.pkData = []
15 self.WatchDog = 0
16 self.pkCRC = 0
17 self.lenPerIMU = 9
18 self.numIMUs = 6 # Default value.
19
20 ''' Numpy transform matrices '''
21 self.handgyro = np.array([[0,-1,0],[-1,0,0],[0,0,-1]])
22 self.handacc = np.array([[-1, 0,0],[0,1,0],[0,0,-1]])
23
24 self.finggyro = np.array([[0,1,0],[1,0,0],[0,0,-1]])

117

25 self.fingacc = np.array([[1,0,0],[0,-1,0],[0,0,-1]])
26
27 def RawData(self):
28 if self.pkType == 0xB7:
29 numIMUs = len(self.pkData)/(self.lenPerIMU*2)
30 numVals = (len(self.pkData))/2
31 return self.pkData
32
33 def IMUIndexes(self,nIMUs,lenPerIMU):
34 i = []
35 for x in range(0,nIMUs):
36 offset=x*lenPerIMU
37 [i.append(y) for y in range(offset+2,offset+8)]
38 return i
39
40 def IMUData(self):
41 """
42 This data is for the Python capture and store routine.
43 I return the data back as a python array of 6 values
44 per IMU. This routine is the same as "MeasuredData", except
45 that measured data returns back a packed array.
46 """
47 values = self.PacketToArray();
48 if values:
49 '''
50 I want to re-pack the data. Currently we have
51 a sentinal, temp, 3* gyro, 3* acc, bogus
52 Lets get rid of the two sentinals and temp to just get
53 3*gyro and 3* acc
54
55 I need to reorganize the data to get the axis in their

propper
56 order.
57 '''
58
59
60 indexes = self.IMUIndexes(self.numIMUs,self.lenPerIMU)
61 newVals = [values[i] for i in indexes]
62
63 imuarray = np.array(newVals).reshape(self.numIMUs,6)
64
65 hand = imuarray[0]
66 t = hand.reshape(2,3)
67 t[0] = self.handgyro.dot(t[0])
68 t[1] = self.handacc.dot(t[1])
69 imuarray[0] = t.ravel()
70
71 for x in range(1,self.numIMUs):
72 imu = imuarray[x]
73 t = imu.reshape(2,3)
74 t[0] = self.finggyro.dot(t[0])
75 t[1] = self.fingacc.dot(t[1])
76 imuarray[x] = t.ravel()
77

118

78 return imuarray
79 else:
80 return None
81
82 def MeasuredData(self):
83 imuarray = self.IMUData()
84 if not imuarray == None:
85 sPack = ">" + ''.join(["6h" for x in range(0,imuarray.

size/6)])
86 imuarray = imuarray.astype('int16')
87 data = pack(sPack,*imuarray.ravel())
88 return data
89 else:
90 return None
91
92 def PacketToArray(self):
93 if self.pkType == 0xB7:
94 '''
95 The packet data consists of a single byte "Mask", and

then N 2-byte unsigned
96 values.
97 The Unpack will unpack as many values as there are, since

the values are all 2 bytes
98 and the length of the data packet is 2*#values + 1
99 '''

100 Values = []
101 #print ("Length of packet:%d" % len(self.pkData))
102 self.numIMUs = len(self.pkData)/(self.lenPerIMU*2)
103 #print ("Number of IMU's:%d" % numIMUs)
104 numVals = (len(self.pkData))/2
105 sUnpack = ">" + ''.join(["H8h" for x in range(0,self.

numIMUs)])
106 (Values) = unpack(sUnpack,self.pkData)
107 return Values
108 else:
109 print("Invalid packet type:%d" % self.pkType)
110 return None
111
112 def Results(self):
113 values = self.PacketToArray()
114 if values:
115
116 '''
117 At this point, the Mask will tell us which values are

valid
118 '''
119
120 imuData = []
121
122 keys = ['sentinal','temp','gx','gy','gz','ax','ay','az','

footer']
123 numIMUs = len(Values)/self.lenPerIMU
124 for x in range(0,numIMUs):
125 imu = {}

119

126 y = 0
127 for k in keys:
128 imu[k] = Values[x*self.lenPerIMU+y]
129 y = y +1
130 imuData.append(imu)
131
132 return imuData
133
134 '''
135 Only handling one type for now..
136 '''
137 return None
138
139 class IMUPacketRead:
140
141 sStart, sFndS, sFndN, sFndP, sPkType, sPkID, sPkSize, sPkData,

sPkCRC, sPkDone = range(0,10)
142
143 def __init__(self):
144 self.pkLoc = 0
145 self.pkState = IMUPacketRead.sStart
146 self.packet = IMUPacket()
147 self.isValidPacket = False
148 self.verbose = False
149
150 def isValid(self):
151 return self.isValidPacket
152
153 def getChars(self,ser):
154
155 while not self.isValidPacket and ser.inWaiting() > 0:
156 #while not self.isValidPacket:
157 if self.pkState == IMUPacketRead.sStart:
158 byte = ser.read(1)
159 if byte == 'S':
160 self.pkState = IMUPacketRead.sFndN
161 if self.verbose:
162 print ("Found S")
163 elif self.pkState == IMUPacketRead.sFndN:
164 byte = ser.read(1)
165 if byte == 'N':
166 self.pkState = IMUPacketRead.sFndP
167 if self.verbose:
168 print ("Found N")
169 else:
170 self.pkState = IMUPacketRead.sStart
171 if self.verbose:
172 print ("Returning to Start")
173 elif self.pkState == IMUPacketRead.sFndP:
174 byte = ser.read(1)
175 if byte == 'P':
176 self.pkState = IMUPacketRead.sPkType
177 if self.verbose:
178 print ("Found P")

120

179 else:
180 self.pkState = IMUPacketRead.sStart
181 if self.verbose:
182 print ("Returning to Start")
183 elif self.pkState == IMUPacketRead.sPkType:
184 pkType = ser.read(1)
185 self.packet.pkType = unpack('>B',pkType)[0]
186 self.pkState = IMUPacketRead.sPkID
187 if self.verbose:
188 print ("Found PkType:0x%x" % self.packet.pkType)
189 elif self.pkState == IMUPacketRead.sPkID:
190 ID = ser.read(1)
191 self.packet.pkID = unpack('>B',ID)[0]
192 self.pkState = IMUPacketRead.sPkSize
193 if self.verbose:
194 print ("Found pkID:0x%x" % self.packet.pkID)
195 elif self.pkState == IMUPacketRead.sPkSize:
196 pkBytes = ser.read(1)
197 self.packet.pkBytes = unpack('>B',pkBytes)[0]
198 if self.verbose:
199 print("PkBytes:0x%x" % self.packet.pkBytes)
200 if self.packet.pkBytes > 0:
201 '''
202 Doing a direct read here, rather than defering

the read and
203 reading a seperate bytes... should be mucho

faster.
204 '''
205 if self.verbose:
206 print ("Reading %d Bytes" % self.packet.

pkBytes)
207 try:
208 #self.packet.pkData = []
209 #for x in range(0,self.packet.pkBytes):
210 # b = ser.read(1)
211 # self.packet.pkData.append(unpack('>B',b)

[0])
212 d = ser.read(self.packet.pkBytes)
213 self.packet.pkData = d
214 self.pkState = IMUPacketRead.sPkCRC
215 #self.pkState = IMUPacketRead.sPkDone
216 if self.verbose:
217 print ("Going to PkDone")
218 except:
219 '''
220 What happens if I time out... want to handle

this someday
221 '''
222 self.pkState = IMUPacketRead.sStart
223 print("Exception while reading packet data")
224 else:
225 self.pkState = IMUPacketRead.sPkDone
226 if self.verbose:
227 print ("Packet Size == 0, Returning to Start"

121

)
228 elif self.pkState == IMUPacketRead.sPkCRC:
229 pkWD = ser.read(1)
230 self.packet.WatchDog = unpack('>B',pkWD)[0]
231 pkCRC = ser.read(2)
232 self.packet.pkCRC = unpack('>H',pkCRC)[0]
233 if self.verbose:
234 print("CRC Code:0x%x" % self.packet.pkCRC)
235 self.pkState = IMUPacketRead.sPkDone
236 if self.verbose:
237 print ("Going to PkDone")
238
239 if self.pkState == IMUPacketRead.sPkDone:
240 self.isValidPacket = True
241
242 return self.isValidPacket
243
244 def Clear(self):
245 self.isValidPacket = False
246 self.packet = IMUPacket()
247 self.pkState = IMUPacketRead.sStart

Code Listing A.5: User Interface

1 # -*- coding: utf-8 -*-
2
3 # Form implementation generated from reading ui file 'GloveServer.ui'
4 #
5 # Created: Tue May 17 17:08:16 2011
6 # by: PyQt4 UI code generator 4.7.7
7 #
8 # WARNING! All changes made in this file will be lost!
9

10 from PyQt4 import QtCore, QtGui
11
12 try:
13 _fromUtf8 = QtCore.QString.fromUtf8
14 except AttributeError:
15 _fromUtf8 = lambda s: s
16
17 class Ui_GloveServer(object):
18 def setupUi(self, GloveServer):
19 GloveServer.setObjectName(_fromUtf8("GloveServer"))
20 GloveServer.resize(368, 230)
21 self.centralwidget = QtGui.QWidget(GloveServer)
22 self.centralwidget.setObjectName(_fromUtf8("centralwidget"))
23 self.label = QtGui.QLabel(self.centralwidget)
24 self.label.setGeometry(QtCore.QRect(50, 30, 62, 16))
25 self.label.setObjectName(_fromUtf8("label"))
26 self.editRate = QtGui.QLineEdit(self.centralwidget)
27 self.editRate.setGeometry(QtCore.QRect(200, 30, 113, 22))
28 self.editRate.setObjectName(_fromUtf8("editRate"))
29 self.label_2 = QtGui.QLabel(self.centralwidget)

122

30 self.label_2.setGeometry(QtCore.QRect(50, 80, 111, 16))
31 self.label_2.setObjectName(_fromUtf8("label_2"))
32 self.editPackets = QtGui.QLineEdit(self.centralwidget)
33 self.editPackets.setGeometry(QtCore.QRect(200, 70, 113, 22))
34 self.editPackets.setObjectName(_fromUtf8("editPackets"))
35 self.btnStartStop = QtGui.QPushButton(self.centralwidget)
36 self.btnStartStop.setGeometry(QtCore.QRect(60, 160, 114, 32))
37 self.btnStartStop.setObjectName(_fromUtf8("btnStartStop"))
38 self.btnQuit = QtGui.QPushButton(self.centralwidget)
39 self.btnQuit.setGeometry(QtCore.QRect(200, 160, 114, 32))
40 self.btnQuit.setObjectName(_fromUtf8("btnQuit"))
41 self.label_3 = QtGui.QLabel(self.centralwidget)
42 self.label_3.setGeometry(QtCore.QRect(50, 120, 111, 21))
43 self.label_3.setObjectName(_fromUtf8("label_3"))
44 self.editNumIMUs = QtGui.QLineEdit(self.centralwidget)
45 self.editNumIMUs.setGeometry(QtCore.QRect(200, 120, 113, 22))
46 self.editNumIMUs.setObjectName(_fromUtf8("editNumIMUs"))
47 GloveServer.setCentralWidget(self.centralwidget)
48 self.menubar = QtGui.QMenuBar(GloveServer)
49 self.menubar.setGeometry(QtCore.QRect(0, 0, 368, 22))
50 self.menubar.setObjectName(_fromUtf8("menubar"))
51 GloveServer.setMenuBar(self.menubar)
52 self.statusbar = QtGui.QStatusBar(GloveServer)
53 self.statusbar.setObjectName(_fromUtf8("statusbar"))
54 GloveServer.setStatusBar(self.statusbar)
55
56 self.retranslateUi(GloveServer)
57 QtCore.QObject.connect(self.btnQuit, QtCore.SIGNAL(_fromUtf8(

"clicked()")), GloveServer.close)
58 QtCore.QMetaObject.connectSlotsByName(GloveServer)
59
60 def retranslateUi(self, GloveServer):
61 GloveServer.setWindowTitle(QtGui.QApplication.translate("

GloveServer", "MainWindow", None, QtGui.QApplication.
UnicodeUTF8))

62 self.label.setText(QtGui.QApplication.translate("GloveServer"
, "Rate", None, QtGui.QApplication.UnicodeUTF8))

63 self.label_2.setText(QtGui.QApplication.translate("
GloveServer", "Packets Captured", None, QtGui.QApplication
.UnicodeUTF8))

64 self.btnStartStop.setText(QtGui.QApplication.translate("
GloveServer", "Start", None, QtGui.QApplication.
UnicodeUTF8))

65 self.btnQuit.setText(QtGui.QApplication.translate("
GloveServer", "Quit", None, QtGui.QApplication.UnicodeUTF8
))

66 self.label_3.setText(QtGui.QApplication.translate("
GloveServer", "Num IMUS", None, QtGui.QApplication.
UnicodeUTF8))

123

APPENDIX B

Panda3D™ Python™ SOURCE CODE

124

Panda3D™ Python™ SOURCE CODE

Code Listing B.1: 3D Server

1 #!/usr/bin/env python
2
3
4 #Importing math constants and functions
5 #from direct.stdpy import threading
6 #from direct.stdpy import socket
7 import socket
8
9 # Thread class that executes processing

10 class SocketListener(threading.Thread):
11 """Worker Thread Class."""
12 def __init__(self, destClass):
13 """Init Worker Thread Class."""
14 print("Initing the thread")
15 threading.Thread.__init__(self)
16 self.destClass = destClass
17 print("Done..")
18 # This starts the thread running on creation, but you could
19 # also make the GUI thread responsible for calling this
20 self.start()
21
22 def run(self):
23 """Run Worker Thread."""
24 # This is the code executing in the new thread. Simulation of
25 # a long process (well, 10s here) as a simple loop - you will
26 # need to structure your processing so that you periodically
27 # peek at the abort variable
28 print("Opening the socket")
29 server_socket = socket.socket(socket.AF_INET, socket.

SOCK_STREAM)
30 server_socket.bind(("", 5010))
31 server_socket.listen(5)
32
33 print ("Client Socket Setup")
34
35 while 1:
36 client_socket, address = server_socket.accept()
37 print "I got a connection from ", address
38 data = client_socket.recv(512)
39 while data:
40 cmdFound = False
41 m = re.search("pos (\d+)",data,re.IGNORECASE)
42 if m:
43 pos = int(m.group(1))
44 #wx.PostEvent(self._notify_window,PositionEvent(

pos))
45 #print ("Updated Position to %d" % pos)
46 destClass.notifyPos(pos)
47 cmdFound = True

125

48 m = re.search("load \"(.*)\"", data, re.IGNORECASE)
49 if m:
50 # Re-load a new file
51 #wx.PostEvent(self._notify_window,LoadEvent(m.

group(1)))
52 cmdFound = True
53
54 if re.search("play",data,re.IGNORECASE):
55 #wx.PostEvent(self._notify_window,ControlEvent(2)

)
56 print("Play Video")
57 cmdFound = True
58 elif re.search("pause",data,re.IGNORECASE):
59 #wx.PostEvent(self._notify_window,ControlEvent(1)

)
60 print("Pause Video")
61 cmdFound = True
62 elif re.search("stop",data,re.IGNORECASE):
63 #wx.PostEvent(self._notify_window,ControlEvent(0)

)
64 print("Stop Video")
65 cmdFound = True
66
67 if not cmdFound:
68 print("Unknown Command:%s" % data)
69
70 data = client_socket.recv(512)

126

APPENDIX C

MATLAB™ CODE

127

MATLAB™ CODE

Code Listing C.1: GloveGui Top

1 classdef GloveGui < GloveGuiBase
2 % GloveGui Extend teh basic GloveGui to include live capture

controls.
3 % The GloveGuiBase provides the GUI setup code. This class adds

more of
4 % the logic to the class. A higher level class allowed me to

isolate
5 % the code better, and keep the files I work on smaller.
6
7 % This class also allowed me to isolate the kinematics portions

of the
8 % logic, here I can override the IMU object with more specific
9 % versions, or experimental versions.

10
11 properties
12
13 myTimer
14 period
15
16 imuObj
17
18 hKinematics
19
20 end
21
22 methods
23 function obj = GloveGui(imuObj)
24 % Constructor. Takes as an argument the
25 % video processing object which contains the images and

such.
26 obj = obj@GloveGuiBase();
27
28 obj.hKinematics = HandKinematics();
29
30 % Allow an alternate - or customized - imuObj to be

passed in
31 if nargin == 1
32 obj.imuObj = imuObj;
33 else
34 obj.imuObj = GloveIMU();
35 end
36 obj.imuObj.SetHK(obj.hKinematics);
37 end
38
39 function delete(obj)
40 % Clean up anything that needs to be fixed up. Close

timers,
41 % close the data capture, etc.
42

128

43 display('Deleting GloveGui.');
44
45 try
46 clear(obj.imuObj);
47 clear(obj.gData);
48 catch e
49 end
50 end
51
52 function StartLive(obj,periodms)
53 % Play through the sequence with a timer. This one is

cool. I
54 % setup a callback timer, see the Play_cb function, that

is
55 % called once each period.. This gives a "frame rate". A

normal
56 % period is probably 1/30, or technically, 1/29.7 or so.
57
58 period = periodms / 1000;
59 obj.period = period;
60 obj.gData.StartCapture(500);
61
62 % Create some IMU Objects to manage the IMU calculations.

This
63 % is a seperate class that makes it easier to keep the

logic
64 % all organized, and will make it much easier to document
65 % later. It won't be the fastest performing, but that

isnt the
66 % primary concern at this point.
67
68 obj.imuObj.ResetGlove();
69
70 obj.myTimer = timer(...
71 'TimerFcn',@(src,event)Live_cb(obj,src,event),...
72 'Period',period,...
73 'ExecutionMode','fixedRate');
74
75 start(obj.myTimer);
76 end
77
78 function Live_cb(obj,src,event)
79 % Callback for timer.. called after each period,.
80
81 try
82 [cnt,acc,gyro] = obj.gData.GetData();
83 catch e
84 display(sprintf('Exception in GetData:%s',e.

identifier));
85 end
86
87 if cnt
88 for x = 1:cnt
89 obj.IMU_Update(acc(x,:),gyro(x,:),obj.period);

129

90 end
91 end
92 end
93
94 function IMU_Update(obj,acc,gyro,T)
95 % This function will perform the incremental IMU

calulcations,
96 % update kalman gain matrices, etc. It will then update

the
97 % glove position values and then update the glove visual
98 % position
99

100 %obj.imuObj.UpdateAccData(imudata(1,4:6),T);
101 try
102 obj.imuObj.Update(gyro,acc,T);
103 catch e
104 display(sprintf('Exception in imuObj.Update:%s',e.

identifier));
105 return;
106 end
107
108 try
109 obj.IMUPlot(acc,gyro);
110 catch e
111 display(sprintf('Exception in obj.IMUPlot:%s',e.

identifier));
112 return;
113 end
114
115 try
116 obj.hKinematics.UpdatePanda();
117 catch e
118 display(sprintf('Exception in obj.UpdatePanda:%s',e.

identifier));
119 return;
120 end
121
122 % Update display of IMU Data, as a data check
123 chk = abs(sum(reshape(acc,3,6)',2)') > 0.2;
124 set(obj.ui.text('Data Check').edit,'String',sprintf('%d

',chk));
125 dcm = obj.imuObj.DCMBody2Inertial(obj.posIndex);
126 myFormat = @(x) sprintf('%5.3f',x);
127 tdcm = arrayfun(myFormat,dcm,'UniformOutput',0);
128 obj.SetTableData('DCM',reshape(tdcm,3,3));
129 end
130
131 function StopLive(obj)
132 % Sto the timer, and delete it. Stop the capture process.
133 try
134 stop(obj.myTimer);
135 delete(obj.myTimer);
136 catch e
137 % No timer to delete I guess..

130

138 delete(timerfind);
139 end
140
141 obj.gData.StopCapture();
142 end
143
144 function Restart(obj)
145 display('Restarting IMU');
146 obj.imuObj.Restart();
147 end
148
149 function Zero(ob)
150 end
151
152 end
153
154 end

Code Listing C.2: GloveGui Base

1 classdef GloveGuiBase < GuiBase
2 % GloveGuiBase Extend the GuiBase class with Glove specicif code.
3 % This class exends the GuiBase and builds a glove GUI.
4
5 properties
6
7 positions
8
9 % GloveData object - contains the capture and manipulation

code
10 gData
11
12 plotObjs
13 posIndex
14
15 end
16
17 methods
18 function obj = GloveGuiBase()
19 % Constructor. Takes as an argument the
20 % video processing object which contains the images and

such.
21
22 obj.InitGui();
23 obj.plotObjs = {};
24 obj.InitPlotObjects();
25
26 obj.gData = GloveData();
27 obj.posIndex = 1;
28 end
29
30 function delete(obj)

131

31 % Clean up anything that needs to be fixed up. Close
timers,

32 % close the data capture, etc.
33
34 display('Deleting GloveGuiBase.');
35
36 try
37 for x = 1:size(obj.plotObjs,2)
38 delete(obj.plotObjs{x})
39 end
40 catch e
41 end
42
43 try
44 clear(obj.imuObj);
45 clear(obj.gData);
46 %obj.gData.StopCapture();
47 catch e
48 end
49 end
50
51 function InitGui(obj)
52 % Build the GUI. Note that the callbacks are for this

object.
53 % The size is fixed.. should query the screen size or
54 % something..
55 % I store all of the UI handles into a .ui parameter of

this
56 % object.
57
58 figWidth = 1200;
59 figHeight = 580;
60
61 panelWidth = 0.2;
62 panelLeft = 1 - panelWidth;
63 obj.ui.Figure = figure(...
64 'Visible','Off',...
65 'Colormap',gray(256),...
66 'Position',[100 100 figWidth figHeight]);
67
68 set(obj.ui.Figure,...
69 'KeyPressFcn',@(src,event)keypress_cb(obj,src,event))

;
70
71 obj.ui.hPanelCtrl = uipanel('Title','Controls','FontSize'

,12,...
72 'Parent',obj.ui.Figure,...
73 'Units','normalized',...
74 'Position',[panelLeft 0 panelWidth 1]);
75
76 % Add one axes for the image display,
77 % then add a tile of 6 axes for the Gyro and Acc data

display,
78 % these are 2 columns by 3 rows... finally, we have the

132

panel
79
80 obj.ui.plotWidth = panelLeft;
81 obj.ui.plotLeft = 0;
82 obj.ui.plotMargin = 0.02;
83 obj.ui.plotVertMargin = 0.08;
84 obj.ui.dataWidth = obj.ui.plotWidth/2;
85
86 panelIdx = 0;
87 obj.ui.hPanelGyro = obj.AddTripleGraph('GyroAxes',[0 0

panelWidth 1],'Gyro','Gyro Axes');
88 obj.ui.hPanelAcc = obj.AddTripleGraph('AccAxes',[

panelWidth 0 panelWidth 1],'Accelerometer','
Accelerometer Axes');

89 obb.ui.hPanelV = obj.AddTripleGraph('VAxes',[2*
panelWidth 0 panelWidth 1],'Velocity','Velocity Axes')
;

90 obu.ui.hPanelPos = obj.AddTripleGraph('PAxes',[3*
panelWidth 0 panelWidth 1],'Position','Position Axes')
;

91
92 editPos = 0;
93
94 obj.ui.btnClose= obj.AddButton(...
95 'Close',...
96 0,...
97 @(src,event)btnClose_cb(obj,src,event)...
98);
99 obj.ui.startLive= obj.AddToggleButton(...

100 'Start Live',...
101 1,...
102 @(src,event)startLive_cb(obj,src,event)...
103);
104 obj.AddEditText('Data Check','1',2);
105 obj.AddTable('DCM',eye(3),3,3);
106
107 % Build a menu of the data sets and populate it with
108 % a list of all of the data set names.
109
110 mnu2 = uimenu('Label','Positions');
111 obj.positions = {'Hand','Middle','Ring','Thumb','Pinkie',

'Index'};
112 acc = {'1','2','3','4','5','6'};
113 for k = 1:length(obj.positions)
114 uimenu(mnu2,'Label',obj.positions{k},...
115 'Callback',@(src,event)positionMenu_cb(obj,k),...
116 'Accelerator',acc{k});
117 end
118
119 obj.AddComboBox('Position',obj.positions,6,2);
120 h = obj.ui.list('Position').list;
121 set(h,'Callback',@(src,event)positionsCombo_cb(obj,src,

event));
122

133

123 set(obj.ui.Figure,'Name','Gyro Glove Data Visualizer');
124
125 % Make the GUI visible.
126 set(obj.ui.Figure,'Visible','on');
127 set(obj.ui.hPanelCtrl,'Visible','on');
128 end
129
130 function InitPlotObjects(obj)
131 obj.plotObjs{1} = PlotData(obj.ui.GyroAxes, 500, 18,...
132 [-500*2*pi/360 500*2*pi/360]);
133 obj.plotObjs{2} = PlotData(obj.ui.AccAxes, 500, 18,[-2

2]);
134 obj.plotObjs{3} = PlotData(obj.ui.VAxes, 500, 18,[-5 5]);
135 obj.plotObjs{4} = PlotData(obj.ui.PAxes, 500, 18,[-180

180]);
136 end
137
138 function IMUPlot(obj,acc,gyro)
139 obj.plotObjs{1}.UpdateData(gyro);
140 obj.plotObjs{2}.UpdateData(acc);
141 obj.plotObjs{3}.UpdateData(obj.imuObj.Velocities());
142 %obj.plotObjs{4}.UpdateData(obj.imuObj.Positions());
143 obj.plotObjs{4}.UpdateData(obj.imuObj.EulerAngles());
144 end
145
146 function StartLive(obj,periodms)
147 end
148
149 function StopLive(obj)
150 end
151
152 function positionMenu_cb(obj,posIndex)
153 % Called by the menu item to update the index that

selects
154 % which IMU dataset to display on the graphs.
155 obj.posIndex = posIndex;
156 for x = 1:size(obj.plotObjs,2)
157 obj.plotObjs{x}.UpdateIndex(posIndex)
158 end
159 display(sprintf('Updated position to %d',posIndex));
160 h = obj.ui.list('Position').list;
161 set(h,'Value',obj.posIndex);
162 end
163
164 function positionsCombo_cb(obj,src,event)
165 % Called by the menu item to update the index that

selects
166 % which IMU dataset to display on the graphs.
167
168 posIndex = get(src,'Value');
169 obj.posIndex = posIndex;
170 for x = 1:size(obj.plotObjs,2)
171 obj.plotObjs{x}.UpdateIndex(posIndex)
172 end

134

173 display(sprintf('Updated position to %d',posIndex));
174 end
175
176 function startLive_cb(obj,src,event)
177 if get(src,'Value') == get(src,'Max')
178 obj.StartLive(40);
179 else
180 obj.StopLive();
181 end
182 end
183
184 function btnClose_cb(obj,src,event)
185 close(gcbf);
186 obj.delete;
187 end
188
189 function keypress_cb(obj,src,event)
190 if event.Character == 'r'
191 % restart
192 obj.Restart();
193 elseif event.Character == 'z'
194 obj.Zero();
195 end
196 end
197
198 % Functions to override.
199 function Restart(obj)
200 end
201 function Zero(obj)
202 end
203 end
204
205 end

Code Listing C.3: GUI Base

1 classdef GuiBase < handle
2 %GuiBase Core GUI Class with helpers for creating the gui.
3 % The GuiBase class provides the core features needed for a Gui.
4 % is also provides a number of helper functions to make building

a gui
5 % easier, such as functions for adding buttons, text boxes,

graphs,
6 % etc. Any functions that apply to a generic GUI are put into

this
7 % class so that they are available to any GUI's I build in Matlab

.
8
9 properties

10 ui
11 end
12
13 methods

135

14 function obj = GuiBase()
15 obj.ui = struct();
16 obj.ui.text = containers.Map();
17 obj.ui.tables = containers.Map();
18 end
19
20 function hPanel = AddTripleGraph(obj,uiName, pos, dName,

title)
21 % This function is pretty specific, but it is still

genertic i
22 % some respects. It adds a triple graph that I used to

display
23 % x,y,z or rho,theta,psi coordinates, etc.
24
25
26 hPanel = uipanel('Title','Controls','FontSize',12,...
27 'Parent',obj.ui.Figure,...
28 'Units','normalized',...
29 'Position',pos);
30
31 % Define the Gyro Axes
32 xyz = {'Gyro X', 'Gyro Y', 'Gyro Z'};
33 obj.ui.(uiName) = [];
34 for r = 1:3
35 % Left is always just right of the Video Axes.
36 % Bottom is 2/3, 1/3 and 0/3
37 % Width and height are fixed.
38 aop = [0 (r-1)/3 1 1/3];
39 ap = aop;
40 obj.ui.(uiName)(r) = axes(...
41 'DataAspectRatio', [1 1 1],...
42 'DrawMode','fast',...
43 'Visible','on',...
44 'Units','normalized',...
45 'Position',ap,...
46 'Parent', hPanel);
47 %title(obj.ui.(uiName)(r),title);
48 end
49 end
50
51 function h = AddToggleButton(obj,string,row,cb)
52 h = uicontrol(obj.ui.hPanelCtrl,...
53 'Style','togglebutton',...
54 'String',string,...
55 'Units','normalized',...
56 'Position',[0.05 row*(0.1) 0.8 0.1],...
57 'Visible','on',...
58 'Callback',cb...
59);
60 end
61
62 function h = AddButton(obj,string,row,cb)
63 h = uicontrol(obj.ui.hPanelCtrl,...
64 'Style','pushbutton',...

136

65 'String',string,...
66 'Units','normalized',...
67 'Position',[0.05 row*(0.1) 0.8 0.1],...
68 'Visible','on',...
69 'Callback',cb...
70);
71 end
72
73 function [h,u] = AddButtonGroup(obj,type,group,names,row)
74 % A routine to make adding a set of butons easier.
75 h = uibuttongroup('visible','on',...
76 'Units','normalized',...
77 'Position',[0.05 row*(0.1) 0.8 0.1],...
78 'Parent',obj.ui.hPanelCtrl);
79
80 nitems = length(names);
81 for x = 1:nitems
82 n = names{x};
83
84 u(x) = uicontrol('Style',type,...
85 'String',n,...
86 'Units','normalized',...
87 'pos',[(x-1)*(1/nitems) 0 1/nitems 1],...
88 'Parent',h,...
89 'HandleVisibility','off');
90 end
91 set(h,'SelectedObject',[]);
92 set(h,'Visible','on');
93 end
94
95 function AddEditText(obj,label,value,row)
96 % Add a text box and label.
97 s.text = uicontrol('Style','text',...
98 'Parent',obj.ui.hPanelCtrl,...
99 'String',label,...

100 'Units','normalized',...
101 'Position',[0.05 row*(0.1) 0.185 0.08]);
102
103 s.edit = uicontrol('Style','edit',...
104 'Parent',obj.ui.hPanelCtrl,...
105 'String',value,...
106 'Units','normalized',...
107 'Position',[0.21 row*(0.1) 0.76 0.08]);
108
109 obj.ui.text(label) = s;
110 end
111
112 function AddComboBox(obj,label,values,row,height)
113 % Add a text box and label.
114 s.text = uicontrol('Style','text',...
115 'Parent',obj.ui.hPanelCtrl,...
116 'String',label,...
117 'Units','normalized',...
118 'Position',[0 row*(0.1) 0.3 0.08]);

137

119
120 s.list = uicontrol('Style','listbox',...
121 'Parent',obj.ui.hPanelCtrl,...
122 'String',values,...
123 'Value',1,...
124 'Max',1,'Min',1,...
125 'Fontsize',16,...
126 'Units','normalized',...
127 'Position',[0.3 row*(0.1) 0.7 height*0.1]);
128
129 obj.ui.list(label) = s;
130 end
131
132 function h = AddTable(obj,label,data,row,height)
133 h = uitable(obj.ui.hPanelCtrl,...
134 'Data',data,...
135 'Units','normalized',...
136 'Position',[0 row*(0.1) 1 height*(0.1)]);
137 obj.ui.tables(label) = h;
138 end
139
140 function SetTableData(obj,label,data)
141 set(obj.ui.tables(label),'Data',data);
142 end
143
144 function s = GetValue(obj,label)
145 s = get(obj.ui.text(label).edit,'String');
146 end
147 end
148
149 end

Code Listing C.4: Platform IMU

1 classdef PlatformIMU < GloveIMU
2 % PlatformIMU Add even more specifics, such as the Kinematics.
3 %
4
5 properties
6 % Values for initialization
7 U
8 V
9

10 % Euler agles for first and second alignment
11 euler1
12 euler2
13
14 markTime
15 end
16
17 methods
18 function obj = PlatformIMU()
19 display('Constructing PlatformIMU');

138

20 obj = obj@GloveIMU();
21 end
22
23 function delete(obj)
24 display('Deleting PlatformIMU');
25 end
26
27 function Restart(obj)
28 obj.currTime = 0;
29 obj.State = GloveState.InitialWait;
30 end
31
32 function eAngles = EulerAngles(obj,idx)
33 % Caclculate and return a matrix of Euler angles, one row

per
34 % IMU and the columns are roll, pitch, yaw
35
36 % I pass in the previous calculated values so that if we

are
37 % pitched up or down at about 90 degrees, we can use the
38 % previous roll and yaw values.
39
40 rad2deg = @(x) 360*(x/(2*pi));
41
42 if nargin == 1
43 eAngles = zeros(6,3);
44 % Update the hand first
45 DCM_I_H = obj.DCMBody2Inertial(1);
46 obj.eAngles{1} = obj.dcm2Euler(DCM_I_H,obj.eAngles

{1});
47 eAngles(1,:) = rad2deg(obj.eAngles{1});
48
49 % Then update the fingers.
50 for x = 2:6
51 % Convert DCM H to Inertial to DCM
52 DCM_H_D = obj.DCMDig2Hand(x,DCM_I_H);
53 obj.eAngles{x} = obj.dcm2Euler(DCM_H_D,obj.

eAngles{x});
54 eAngles(x,:) = rad2deg(obj.eAngles{x});
55 end
56 else
57 if idx == 1
58 DCM_I_H = obj.DCMBody2Inertial(1);
59 obj.eAngles{1} = obj.dcm2Euler(DCM_I_H,obj.

eAngles{1});
60 eAngles = rad2deg(obj.eAngles{1});
61 else
62 DCM_H_D = obj.DCMDig2Hand(x);
63 obj.eAngles{idx} = obj.dcm2Euler(DCM_H_D,obj.

eAngles{idx});
64 eAngles = rad2deg(obj.eAngles{idx});
65 end
66 end
67 end

139

68
69 function PlatformInit(obj)
70 % The glove has been placed flat on the table with the

fingers
71 % and hand down on the table as much as practical. The
72 % body-inertial DCM's shold be considered vertical, so

any
73 % offsets are in the platform to body. Take these

measurements,
74 % and then initialize the Body-Inertial to Z up,
75
76 % Fingers
77 acc = reshape(mean(obj.accHistory(1:40,:)),3,6)';
78 for x = 1:6
79 tacc = acc(x,:);
80 dcm_i_p = obj.courseAlign(tacc);
81 dcm_i_b = obj.courseAlign([0 0 -1]);
82 obj.DCM_I_P{x} = dcm_i_p;
83 obj.DCM_B_P{x} = dcm_i_p;
84 end
85 end
86
87 function DCMUpdateAll(obj,gyro,acc,T)
88 % Take in new gyro data and accelerometer data and update

the
89 % DCM's with it. Doing this just for the fingers and the

thumb.
90 % To make this better, I need to incorporate the

Kinematics of
91 % the hand so that I can insure that the fingers do not

get out
92 % of whack... and the DCM is constrained by the

kinematics of
93 % the hand.
94
95 % function object to calculate the skew symetric matrix
96 g = reshape(gyro,3,6)';
97 a = reshape(acc,3,6)';
98 for x = 1:6
99 %obj.DCM_I_P{x} = obj.DCMUpdate(obj.DCM_I_P{x},g(x,:)

,T);
100 obj.DCM_I_P{x} = obj.courseAlign(a(x,:));
101 end
102 obj.hKinematics.UpdateAngles(obj.EulerAngles());
103 end
104
105 function Update(obj,gyro,acc,T)
106 % Update the set of IMU's with new gyro and accelerometer

data.
107 % The new data will be used to update the set of DCMs, as

well
108 % as the velocity and position values for each of the

IMUs in
109 % the system.

140

110
111 % Note: The input format for the gyro and acc is one row

per
112 % IMU, and the 3 columns are the x,y, and z values.
113
114 % Scale the accelerometer and gyro data. Subtract out any

bias
115 % values we have determined. For now the ACC Bias will be

zero
116 % for all settings.
117 acc = acc-obj.accBias;
118
119 gyro = gyro-obj.gyroBias;
120
121 % I want to update the history in all state except the

Idle
122 % state. It makes it easier to make a seperate switch for

this
123 % operation rather than adding the UpdateHistory to all

other
124 % states of the main switch
125 if ˜(obj.State == GloveState.Idle)
126 obj.UpdateHistory(gyro,acc);
127 end
128
129 switch obj.State
130 case GloveState.Idle
131 obj.ResetGlove();
132 display('Place glove flat on the table.');
133 obj.State = GloveState.InitialWait;
134
135 case GloveState.InitialWait
136
137 if obj.currTime > 3.0
138 if obj.isGloveStable(40)
139 display(sprintf('Glove Stable for init at

%f',obj.currTime));
140 obj.PlatformInit();
141 obj.State = GloveState.IMURun;
142 end
143 end
144 case GloveState.InitialZero
145 case GloveState.SecondZeroWait
146 case GloveState.SecondZero
147 case GloveState.IMURun
148
149 % Update the DCM from the gyro data. In some

cases,
150 % this is all we need or all that we want to use.
151 obj.DCMUpdateAll(gyro,acc,T);
152
153 %obj.PositionUpdate(acc,T);
154 otherwise
155 end

141

156 obj.currTime = obj.currTime + T;
157 %display(sprintf('Current time %f',obj.currTime));
158 end
159 end
160
161 end

Code Listing C.5: Glove IMU

1 classdef GloveIMU < IMUCore
2 %GloveIMU IMU Functions more specific to the GyroGlove.
3 % These functions override or extend the lower level functions to
4 % provide more Glove specific capabilities.
5
6 properties
7
8 % Save values of bias that are calculated during the init
9 gyroBias

10 accBias
11
12 DCM_I_P = {}
13 DCM_B_P = {}
14 Velocity = {}
15 Position = {}
16 eAngles = {}
17
18 currTime
19
20 State = GloveState.Idle;
21
22 bGyroOnly = false
23 bDCM_AccUpdate = true
24
25 end
26
27 methods
28
29 function obj = GloveIMU()
30 % Constructor for GloveIMU
31 % The construture initialize all of the required data
32 % structures
33
34 % Initialize the IMUCore class.
35 display('Constructing GloveIMU');
36 obj = obj@IMUCore(6);
37
38 obj.ResetGlove();
39
40 end
41
42 function delete(obj)
43 display('Deleting GloveIMU');
44 end

142

45
46 function dcm = DCMBody2Inertial(obj,i)
47 dcm = obj.DCM_I_P{i}*(obj.DCM_B_P{i})';
48 end
49
50 function dcm = DCMDig2Hand(obj,i,dcm_i_h)
51 % DCM From a digit to the hand
52 if nargin == 2
53 dcm_i_h = obj.DCMBody2Inertial(1);
54 end
55 dcm_i_b = obj.DCMBody2Inertial(i);
56 dcm = dcm_i_h' * dcm_i_b;
57 end
58
59 function eAngles = EulerAngles(obj,idx)
60 % Caclculate and return a matrix of Euler angles, one row

per
61 % IMU and the columns are roll, pitch, yaw
62
63 % I pass in the previous calculated values so that if we

are
64 % pitched up or down at about 90 degrees, we can use the
65 % previous roll and yaw values.
66
67 rad2deg = @(x) 360*(x/(2*pi));
68
69 if nargin == 1
70 eAngles = zeros(6,3);
71 % Update the hand first
72 DCM = obj.DCM_B_I{1};
73 obj.eAngles{1} = obj.dcm2Euler(DCM,obj.eAngles{1});
74 eAngles(1,:) = rad2deg(obj.eAngles{1});
75
76 % Then update the fingers.
77 for x = 2:6
78 % Convert DCM H to Inertial to DCM
79 DCM = (obj.DCM_B_I{1})'*obj.DCM_B_I{x};
80 %obj.eAngles{x} = obj.dcm2Euler(obj.DCM_B_I{x},

obj.eAngles{x});
81 obj.eAngles{x} = obj.dcm2Euler(DCM,obj.eAngles{x

});
82 eAngles(x,:) = rad2deg(obj.eAngles{x});
83 end
84 else
85 obj.eAngles{idx} = obj.dcm2Euler(obj.DCM_B_I{idx},obj

.eAngles{idx});
86 eAngles = rad2deg(obj.eAngles{idx});
87 end
88 end
89
90 function Pos = Positions(obj)
91 % Convert the cell array into a matrix and then reshape

it into
92 % one row per IMU with columns x,y,z

143

93
94 Pos = reshape(cell2mat(obj.Position),3,6)';
95 end
96
97 function V = Velocities(obj)
98 % Convert the cell array into a matrix and then reshape

it into
99 % one row per IMU with columns x,y,z

100
101 V = reshape(cell2mat(obj.Velocity),3,6)';
102 end
103
104 function DCMZeroP_B(obj)
105
106 end
107
108 function DCMUpdateAll(obj,gyro,T)
109 % Take in new gyro data and accelerometer data and update

the
110 % DCM's with it.
111
112 % function object to calculate the skew symetric matrix
113 g = reshape(gyro,3,6)';
114 for x = 1:6
115 obj.DCM_I_P{x} = obj.DCMUpdate(obj.DCM_I_P{x},g(x,:),

T);
116 end
117 obj.hKinematics.UpdateAngles(obj.EulerAngles());
118 end
119
120 function DCMUpdateFromAcc(obj,acc,idx)
121 % Use the accelerometer to perform a course align of the

DCM.
122 % This technique works well if the IMU is stationarry and

the
123 % gravity vector is the only real acceleration in the

system.
124
125 acc = reshape(acc,3,6)';
126 if nargin < 3
127 for x = 1:6
128 obj.DCM_I_P{x} = obj.courseAlign(acc(x,:));
129 end
130 else
131 obj.DCM_I_P{idx} = obj.courseAlign(acc(idx,:));
132 end
133 obj.hKinematics.UpdateAngles(obj.EulerAngles());
134 end
135
136 function InitializeDCMs(obj)
137 % Use the current accelerometer and gyro history values

in
138 % order to initialize the DCM's using the course align
139 % procedure. Use the current mean gyro value as the gyro

144

bias
140 % value. This neglects all other effects, such as Earth

rate.
141
142 % Zero out the gyro bias
143 gyromean = mean(obj.gyroHistory,1);
144 obj.gyroBias = gyromean;
145
146 % Goal: take the accmean data and update each of the DCM'

s
147 % based on the gravity vector.
148 accmean = mean(obj.accHistory,1);
149 at = reshape(accmean,3,6)';
150 for x = 1:6
151 C = obj.courseAlign(at(x,:));
152 end
153 end
154
155 function PositionUpdate(obj,acc,T)
156 % This is a very rudimentary implementation of the

velocity and
157 % position update based on current velocity/position and

new
158 % accelerometer values. The accelerometer values are

oriented
159 % to inertial frame and then used to update the

components of V
160 % and P in the I frame.
161 a = reshape(acc,3,6)';
162 for x = 1:6
163 dcm = obj.DCM_B_I{x};
164 aI = dcm*a(x,:)'; %rotate to I coordinates
165 aI = aI+[0 0 1]'; % remove gravity vector.
166 v = obj.Velocity{x}+aI*T; % add acceleration * T to

velocity
167 p = obj.Position{x} + v*Tˆ2; % update position
168
169 % Update current values.
170 obj.Velocity{x} = v;
171 obj.Position{x} = p;
172 end
173 obj.hKinematics.UpdatePos(obj.Positions);
174 end
175
176 function ResetGlove(obj,histSize)
177 % Reset all of the internal parameters used for tracking

the
178 % glove position.
179
180 % The default history size is 40, generally 1 second in

my
181 % examples, but this is programmable.
182 if nargin == 1
183 histSize = 40;

145

184 end
185
186 obj.ResetHistory(histSize);
187
188 obj.State = GloveState.InitialWait;
189 obj.accBias = zeros(1,18);
190 obj.gyroBias = zeros(1,18);
191 obj.currTime = 0;
192 for x=1:6
193 obj.DCM_I_P{x} = eye(3);
194 obj.DCM_B_P{x} = eye(3);
195 obj.Velocity{x} = [0 0 0]';
196 obj.Position{x} = [0 0 0]';
197 obj.eAngles{x} = [0 0 0]';
198 end
199 end
200
201 function Restart(obj)
202 obj.currTime = 0;
203 obj.State = GloveState.InitialWait;
204 end
205
206 function Update(obj,gyro,acc,T)
207 % Update the set of IMU's with new gyro and accelerometer

data.
208 % The new data will be used to update the set of DCMs, as

well
209 % as the velocity and position values for each of the

IMUs in
210 % the system.
211
212 % Note: The input format for the gyro and acc is one row

per
213 % IMU, and the 3 columns are the x,y, and z values.
214
215 % Scale the accelerometer and gyro data. Subtract out any

bias
216 % values we have determined. For now the ACC Bias will be

zero
217 % for all settings.
218 acc = acc-obj.accBias;
219
220 gyro = gyro-obj.gyroBias;
221
222 % I want to update the history in all state except the

Idle
223 % state. It makes it easier to make a seperate switch for

this
224 % operation rather than adding the UpdateHistory to all

other
225 % states of the main switch
226 if ˜(obj.State == GloveState.Idle)
227 obj.UpdateHistory(gyro,acc);
228 end

146

229
230 switch obj.State
231 case GloveState.Idle
232 obj.ResetGlove();
233 obj.State = GloveState.InitialWait;
234
235 case GloveState.InitialWait
236
237 if obj.currTime > 1.5
238 if obj.isGloveStable(40)
239 display(sprintf('Glove Stable for init at

%f',obj.currTime));
240 obj.InitializeDCMs();
241 obj.State = GloveState.InitialZero;
242 end
243 end
244 case GloveState.InitialZero
245 % I am waiting for the glove to NOT be stable.

This
246 % keeps everything in reset state until the glove

moves
247 % the fist time. While the glove remains stable,

I will
248 % continue to Init the DCM's so that they are in

a
249 % current state when the glove starts to move.
250 if ˜obj.isGloveStable(40)
251 obj.State = GloveState.IMURun;
252 display(sprintf('Going to Run state at %f',

obj.currTime));
253 else
254 obj.InitializeDCMs();
255 end
256 case GloveState.SecondZeroWait
257 case GloveState.SecondZero
258 case GloveState.IMURun
259
260 % Update the DCM from the gyro data. In some

cases,
261 % this is all we need or all that we want to use.
262 %obj.DCMUpdateAll(gyro,T);
263
264
265 if obj.bDCM_AccUpdate
266 obj.DCMUpdateFromAcc(acc);
267 end
268
269 %obj.DCMUpdateFromAcc(acc);
270 %obj.PositionUpdate(acc,T);
271 otherwise
272 end
273 obj.currTime = obj.currTime + T;
274 %display(sprintf('Current time %f',obj.currTime));
275 end

147

276
277 end
278
279 end

Code Listing C.6: IMU Core

1 classdef IMUCore < handle
2 % IMUCore Core functions for performing the IMU calcuations.
3 % These are the most generic functions. Classes that derive

from this
4 % one can override these or add more.
5
6 properties
7
8 nIMUs
9

10 % History for averaging purposes
11 histSize
12 gyroHistory
13 accHistory
14
15 rad2deg
16
17 hKinematics
18 end
19
20 methods
21 function obj = IMUCore(nIMUs)
22 display('Constructing IMUCore');
23 obj.nIMUs = nIMUs;
24 obj.rad2deg = @(x) (x/(2*pi))*360;
25 obj.hKinematics = [];
26 end
27
28 function delete(obj)
29 display('Deleting IMUCore');
30 end
31
32 function dcm = DCMUpdate(obj,dcmin,gyro,T)
33 ssomega = @(omega) [0 -omega(3) omega(2);omega(3) 0 -

omega(1);-omega(2) omega(1) 0];
34 gomega = ssomega(gyro);
35 dDCM = dcmin*gomega; % This is rate of change of DCM
36 dcm = dcmin + dDCM*T;
37 end
38
39 function dcm = DCMUpdateAB(obj,dcmin,gyroA,gyroB,T)
40 ssomega = @(omega) [0 -omega(3) omega(2);omega(3) 0 -

omega(1);-omega(2) omega(1) 0];
41 gA = ssomega(gyroA);
42 gB = ssomega(gyroB);
43 dDCM = dcmin*gomega; % This is rate of change of DCM

148

44 dcm = dcmin + dDCM*T;
45 end
46
47 function C = courseAlign(obj,accData)
48 % This alrogithm taken directly from strapdown analytics

by
49 % Paul G. Savage. Many thanks to Mr. Savage for his kind
50 % assistance.
51
52 % ****** THIS MUST BE NORMALIZED ******
53 % I was not normalizing this, so I added the /norm(

accData),
54 % which should take care of it.
55 % Reference: Strapdown Analytics page 6-3, eq. 6.1.1-2
56 c3 = -accData/norm(accData);
57 c2 = zeros(1,3);
58
59 % If the X axis is near vertical, we need to use a

slightly
60 % different initialization technique, otherwise we will

have a
61 % null in the denominator of the equations.
62 if abs(c3(1)) < 0.85
63 c2(2) = c3(3)/sqrt(c3(2)ˆ2+c3(3)ˆ2);
64 c2(3) = -c3(2)/sqrt(c3(2)ˆ2+c3(3)ˆ2);
65 else
66 c2(1) = c3(2)/sqrt(c3(1)ˆ2+c3(2)ˆ2);
67 c2(2) = -c3(1)/sqrt(c3(1)ˆ2+c3(2)ˆ2);
68 end
69
70 c1 = cross(c2,c3);
71 %c1 = zeros(1,3);
72 %c1(1) = c2(2)*c3(3)-c2(3)*c3(2);
73 %c1(2) = c2(3)*c3(1)-c2(1)*c3(3);
74 %c1(3) = c2(1)*c3(2)-c2(2)*c3(1);
75
76 C = [c1;c2;c3];
77 end
78
79 function euler = dcm2Euler(obj,dcm,oldAngles)
80 % Implementation of the dcm2Euler algorithm in the

Strapdown
81 % analytics book
82
83 % This uses the values from the AeroBlockset. I'll

disable that
84 % for now.... I think I've got the other figured out.
85 %[y,p,r] = dcm2angle(dcm);
86 %euler = [r,-p,y];
87 %return
88
89 pitch = atan(-dcm(3,1)/sqrt(dcm(3,2)ˆ2+dcm(3,3)ˆ2));
90 %pitch = -asin(dcm(3,1));
91 %pitch = atan2(-dcm(3,1),sqrt(dcm(3,2)ˆ2+dcm(3,3)ˆ2));

149

92
93 if abs(dcm(3,1)) < 0.98
94 roll = atan2(dcm(3,2),dcm(3,3));
95 yaw = atan2(dcm(2,1),dcm(1,1));
96 else
97 roll = oldAngles(1);
98 yaw = oldAngles(3);
99 end

100 euler = [roll,pitch,yaw];
101 end
102
103 function dcm = AlignUV(obj,U,V)
104 % implement the algorighm to calculate the DCM that maps

thumb
105 % and finger coordinates to hand coordinates. There will

be 5
106 % such matrices, all referenced to the hand matrix.
107 % Input parameters are U a V, where U(1,:) and V(1,:) are

two
108 % vectors taken from both frames of reference, and U(2,:)

and
109 % V(2,:) are two distinct vectors.
110
111 % Initialize W to have two columns
112 W = zeros(3,2);
113
114 % Generate W with the cross product
115 for y = 1:2
116 W(:,y) = cross(U(:,y),V(:,y));
117 end
118
119 % build the DA1 and DA2 matrices
120 DA = zeros(3,3,2);
121 for d = 1:2
122 DA(:,:,d) = [U(:,d) V(:,d) W(:,d)];
123 end
124
125 % And, the computed DCM is the DA1 * DA2ˆ-1
126 dcm = DA(:,:,1)*DA(:,:,2)ˆ-1;
127 end
128
129 function [v,p] = PositionUpdate(obj,vin,pin,dcmin,acc,T)
130 % position update based on current velocity/position and

new
131 % accelerometer values. The accelerometer values are

oriented
132 % to inertial frame and then used to update the

components of V
133 % and P in the I frame.
134 [r,c] = size(a);
135 if r == 1
136 a = a';
137 end
138 aI = dcmin*a; %rotate to I coordinates

150

139 aI = aI+[0 0 1]'; % remove gravity vector.
140 v = vin+aI*T; % add acceleration * T to velocity
141 p = pin + v*Tˆ2; % update position
142 end
143
144 function bool = isGloveStable(obj,n)
145 % Calculate if the glove has been stable over the last N
146 % samples
147
148 % Get the maximum gyro deviation of any gyro over the

history.
149 gmax = max(max(obj.gyroHistory(1:n,:)));
150
151 % Don't bother with all of the calclations, just see if

the
152 % acceleration has been steady. If the glove is moving

with
153 % constant motion, we would consider that to be okay. One

thing
154 % this does not account for is noise, so the stability

level
155 % must be higher than the noise level.
156 maxDev = max(max(obj.accHistory(1:n,:))-min(obj.

accHistory(1:n,:)));
157
158 if maxDev > 0.05 || gmax > 0.1
159 bool = false;
160 else
161 bool = true;
162 end
163 %display(sprintf('T:%f Gmax:%f maxDev:%f', obj.currTime,

gmax, maxDev));
164 return
165 end
166
167 function ResetHistory(obj,nHistSize)
168 obj.histSize = nHistSize;
169 obj.gyroHistory = zeros(nHistSize,3*obj.nIMUs);
170 obj.accHistory = zeros(nHistSize,3*obj.nIMUs);
171 end
172
173 function UpdateHistory(obj,gyro,acc)
174 % Update the history values used for averaging, stability
175 % detection and initialization.
176 % These history values have bias removed, which makes

them
177 % different from the history values in the GloveData

class. I
178 % was thinking of using the GloveData class, but this

makes
179 % that more difficult, and makes it more appropriate to

keep
180 % the history data in this class.
181

151

182 obj.gyroHistory = circshift(obj.gyroHistory,[1 0]);
183 obj.accHistory = circshift(obj.accHistory,[1 0]);
184
185 obj.gyroHistory(1,:) = gyro;
186 obj.accHistory(1,:) = acc;
187 end
188
189 function SetHK(obj,hk)
190 obj.hKinematics = hk;
191 end
192
193 end
194
195 end

Code Listing C.7: Hand Kinematics

1 classdef HandKinematics < handle
2 %HandKinematics Manage kinematics of hand, fingers and thumb
3 % This class managers the position kinimatics of the hand,

including
4 % the fingers and the thumb. The IMU object can call this with
5 % updated values to determine if those values are valid. How

exactly
6 % this gets incorporated into the IMU is unclear at the timer

of this
7 % writing, but some type of Kalman or particle filter, etc.

would
8 % probably be the ideal solution.
9

10 properties
11 eAngles
12 Positions
13 end
14
15 methods
16 function obj = HandKinematics()
17 end
18
19 function UpdatePanda(obj)
20 obj.UpdateGlove();
21 end
22
23 function UpdateAngles(obj,eAngles)
24 obj.eAngles = eAngles;
25 end
26
27 function UpdatePos(obj,newPos)
28 obj.Positions = newPos;
29 end
30
31 function UpdateGlove(obj)

152

32 % Update the Panda3D visualization with current hand,
finger

33 % and thumb positions and orientations.
34
35 %eAngles = obj.imuObj.EulerAngles();
36 %Pos = obj.imuObj.Positions();
37 if size(obj.eAngles,1) > 0
38 eAngles = obj.eAngles;
39 Pos = obj.Positions;
40 Pos = [0 0 1;zeros(5,3)];
41 Row2Glove = [0 3 2 5 1 4];
42
43 % Upate the hand using all 3 gyro values.
44 rpq = eAngles(1,:);
45 GyroGloveClient(0,[0 0 0 rpq],0);
46
47 Finger2Idx = fliplr([5 3 2 6]);
48 for x = 1:4
49 idx = Finger2Idx(x);
50 rpq = eAngles(idx,:);
51 pos = [2.5 0 0];
52 FingerAngle(x,pos',rpq(2));
53 %GyroGloveClient(Row2Glove(x),[pos 0 rpq(2) 0],0)

;
54 end
55
56 % Do the Thumb
57 rpq = eAngles(4,:);
58 pos = [3 1 -0.5];
59 obj.ThumbAngle(pos',rpq(2));
60 end
61
62 % Ignore the thumb for now..
63
64 end
65
66 function singular = FingerAngle(obj,fidx,pos, angle)
67 %FingerAngle Translate position in X and Z axis based on

angle.
68 % Calculate the rotation of the finger and translation of

the position
69 % value. I am limiting the range of angle from +20 to -90.

Fingers can
70 % move much more than that, but I am making this simple

approximation for
71 % now.
72
73 if angle > 20 || angle < -90
74 singular = true;
75 return;
76 end
77 singular = false;
78
79 rangle = (angle/360)*2*pi;

153

80 C = [cos(rangle) 0 sin(rangle)
81 0 1 0
82 sin(rangle) 0 cos(rangle)];
83
84 try
85 newpos = C*pos;
86
87 GyroGloveClient(fidx,[newpos' 0 angle 0],0);
88 catch e
89 display('Error when doing translation.');
90 end
91 end
92
93 function singular = ThumbAngle(obj,pos,angle)
94 %FingerAngle Translate position in X and Z axis based on

angle.
95 % Calculate the rotation of the finger and translation of

the position
96 % value. I am limiting the range of angle from +20 to -90.

Fingers can
97 % move much more than that, but I am making this simple

approximation for
98 % now.
99

100 if angle > 30 || angle < -90
101 singular = true;
102 return;
103 end
104 singular = false;
105
106 rangle = (angle/360)*2*pi;
107 C = [cos(rangle) 0 sin(rangle)
108 0 1 0
109 sin(rangle) 0 cos(rangle)];
110
111 try
112 newpos = C*pos;
113
114 GyroGloveClient(5,[newpos' 0 angle 0],0);
115 catch e
116 display('Error when doing translation.');
117 end
118 end
119
120 end
121
122 end

154

APPENDIX D

MATLAB™ MEX CODE

155

MATLAB™ MEX CODE

Code Listing D.1: GyroGlove Main

1 #include <fcntl.h>
2 #include <sys/ioctl.h>
3 #include <paths.h>
4 #include <sysexits.h>
5 #include <sys/select.h>
6 #include <sys/time.h>
7 #include <time.h>
8
9 #include <CoreFoundation/CoreFoundation.h>

10
11 #include <IOKit/IOKitLib.h>
12 #include <IOKit/serial/IOSerialKeys.h>
13 #include <IOKit/IOBSD.h>
14
15 #include <mex.h>
16 #include <math.h>
17
18
19 void mexFunction(
20 int nlhs, mxArray *plhs[],
21 int nrhs, const mxArray *prhs[])
22 {
23
24 int SSEnable = 0;
25
26 if (nrhs < 1) {
27 mexErrMsgTxt("One input required.");
28 } else if (nlhs != 1) {
29 mexErrMsgTxt("One output argument required.");
30 }
31
32 // I am expecting an nxm array, where n is the # of clusters
33 // and m is the number of features.
34 mwSize nrows = mxGetM(prhs[0]);
35 mwSize ncols = mxGetN(prhs[0]);
36 mwSize elements = mxGetNumberOfElements(prhs[0]);
37 mwSize number_of_dims=mxGetNumberOfDimensions(prhs[0]);
38
39 if (!mxIsDouble(prhs[0])) {
40 mexErrMsgTxt("Input must be a double array.");
41 }
42
43 if (nrhs > 1) {
44 SSEnable = 1;
45 }
46
47 plhs[0] = mxCreateDoubleMatrix(1,3,mxREAL);
48
49 double *pOut = mxGetPr(plhs[0]);

156

50
51 pOut[0] = 12.2;
52 pOut[1] = 1.12;
53 pOut[2] = 12;
54
55 double *pFa = mxGetPr(prhs[0]);
56
57 double *pCol[10];
58 for (int z=0;z<ncols;z++) {
59 pCol[z] = pFa+z*nrows;
60 }
61
62 double dMin = 1e12;
63
64 // Data is in column major order... so,
65 // x and y can point to each column, then
66 // iterate on features by adding x/y + mcols
67 double fsum;
68 for (int x=0;x<nrows;x++) {
69 for (int y=0;y<nrows;y++) {
70 if (y != x) {
71 fsum = 0;
72 for (int z=0;z<ncols;z++) {
73 // Simple squared function.
74 double t = (pCol[z][x]-pCol[z][y]);
75 fsum += t*t;
76 //fsum += (pFa[x+z*nrows]-pFa[y+z*nrows])*(pFa[x+

z*nrows]-pFa[y+z*nrows]);
77 }
78 //fsum = sqrt(fsum); // Don't bother with the sqrt..

we just want t relative value..
79 if (fsum < dMin) {
80 dMin = fsum;
81 pOut[0] = double(x+1);
82 pOut[1] = double(y+1);
83 pOut[2] = dMin;
84
85 // This is an optimization. If a lot of pixels

are close to zero in distance,
86 // then it is not that important to find the "

closest" of those.
87 if (dMin < 0.02) {
88 return;
89 }
90 }
91 }
92 }
93 }
94 }

Code Listing D.2: GyroGlove Client

1 #include <fcntl.h>

157

2 #include <sys/ioctl.h>
3 #include <paths.h>
4 #include <sysexits.h>
5 #include <sys/select.h>
6 #include <sys/time.h>
7 #include <time.h>
8
9 #include <CoreFoundation/CoreFoundation.h>

10
11 #include <IOKit/IOKitLib.h>
12 #include <IOKit/serial/IOSerialKeys.h>
13 #include <IOKit/IOBSD.h>
14
15 #include <sys/types.h>
16 #include <sys/socket.h>
17 #include <netdb.h>
18 #include <arpa/inet.h>
19 #include <unistd.h>
20
21 #include <mex.h>
22 #include <math.h>
23
24 static int sock_client = 0;
25 static sockaddr_in sa;
26 static char buffer[100];
27
28 void mexFunction(
29 int nlhs, mxArray *plhs[],
30 int nrhs, const mxArray *prhs[])
31 {
32
33 int SSEnable = 0;
34
35 if (nrhs == 0) {
36 if (sock_client) {
37 close(sock_client);
38 sock_client = 0;
39 mexPrintf("Closed Socket connection.\n");
40 }
41
42 return;
43 }
44
45 if (nrhs < 2) {
46 mexErrMsgTxt("Two arguments required. The index,"
47 " and an array of position and rotation.");
48 }
49
50 double idx = mxGetScalar(prhs[0]);
51
52 // I am expecting an nxm array, where n is the # of clusters
53 // and m is the number of features.
54 mwSize nrows = mxGetM(prhs[1]);
55 mwSize ncols = mxGetN(prhs[1]);

158

56 mwSize elements = mxGetNumberOfElements(prhs[1]);
57 mwSize number_of_dims=mxGetNumberOfDimensions(prhs[1]);
58
59 if (ncols != 6) {
60 mexErrMsgTxt("Input array in 2nd argument must have 6 columns

");
61 }
62
63 unsigned long sleeptime = 10000;
64 if (nrhs > 2) {
65 sleeptime = int(mxGetScalar(prhs[2]));
66 }
67
68 double* pin = mxGetPr(prhs[1]);
69
70 // Initialize the socket if this is the first time.
71 if (sock_client == 0) {
72 sock_client = socket(AF_INET, SOCK_DGRAM,0);
73 if (sock_client == 0) {
74 mexErrMsgTxt("Failed to open socket!");
75 }
76 mexPrintf("Opened Socket connection.\n");
77
78 sa.sin_family = AF_INET;
79 sa.sin_port = htons(5432);
80
81 inet_pton(AF_INET, "127.0.0.1",(void*)&sa.sin_addr.s_addr);
82 }
83
84 double* pStart = pin;
85
86 for (int r = 0;r< nrows;r++) {
87 sprintf(buffer,"%d,%f,%f,%f,%f,%f,%f",
88 int(idx),
89 pStart[r],
90 pStart[r+1*nrows],
91 pStart[r+2*nrows],
92 pStart[r+3*nrows],
93 pStart[r+4*nrows],
94 pStart[r+5*nrows]
95);
96
97 sendto(sock_client, &buffer[0], strlen(buffer), 0,
98 (const sockaddr*)&sa, sizeof(struct sockaddr_in)
99);

100
101 usleep(sleeptime);
102 }
103 }

159

APPENDIX E

FIRMWARE CODE DOXYGEN OUTPUT

GyroAccGlove
1.0

Generated by Doxygen 1.7.3

Sat Sep 10 2011 17:54:13

Contents
1 Main Page 2

2 Class Index 3
2.1 Class Hierarchy . 3

3 Class Index 3
3.1 Class List . 3

4 File Index 4
4.1 File List . 4

5 Class Documentation 5
5.1 CmdProcessor Class Reference . 5

5.1.1 Detailed Description . 7
5.1.2 Constructor & Destructor Documentation 7
5.1.3 Member Function Documentation 8
5.1.4 Member Data Documentation 13

5.2 Fifo Class Reference . 15
5.2.1 Detailed Description . 15
5.2.2 Member Typedef Documentation 16
5.2.3 Constructor & Destructor Documentation 16
5.2.4 Member Function Documentation 16
5.2.5 Member Data Documentation 19

5.3 HardwareSerial Class Reference . 19
5.3.1 Detailed Description . 20
5.3.2 Constructor & Destructor Documentation 21
5.3.3 Member Function Documentation 21
5.3.4 Member Data Documentation 25

5.4 I2C_Master Class Reference . 27
5.4.1 Detailed Description . 29
5.4.2 Member Typedef Documentation 29
5.4.3 Member Enumeration Documentation 29
5.4.4 Constructor & Destructor Documentation 31
5.4.5 Member Function Documentation 31
5.4.6 Member Data Documentation 35

5.5 I2CNotify Class Reference . 37
5.5.1 Detailed Description . 38
5.5.2 Member Function Documentation 38

5.6 IMU Class Reference . 39
5.6.1 Detailed Description . 42
5.6.2 Member Typedef Documentation 42
5.6.3 Member Enumeration Documentation 42
5.6.4 Constructor & Destructor Documentation 44
5.6.5 Member Function Documentation 46
5.6.6 Member Data Documentation 67

5.7 IMUBase Class Reference . 71
5.7.1 Detailed Description . 72
5.7.2 Member Function Documentation 72

CONTENTS ii

5.8 Port Class Reference . 74
5.8.1 Detailed Description . 75
5.8.2 Constructor & Destructor Documentation 75
5.8.3 Member Function Documentation 76
5.8.4 Member Data Documentation 79

5.9 PortNotify Class Reference . 80
5.9.1 Detailed Description . 80
5.9.2 Member Function Documentation 80

5.10 Print Class Reference . 81
5.10.1 Detailed Description . 81
5.10.2 Member Function Documentation 82

5.11 IMU::regWrite Struct Reference . 88
5.11.1 Detailed Description . 88
5.11.2 Member Data Documentation 88

5.12 ring_buffer Struct Reference . 89
5.12.1 Detailed Description . 89
5.12.2 Member Data Documentation 89

5.13 TimerCntr Class Reference . 90
5.13.1 Detailed Description . 90
5.13.2 Constructor & Destructor Documentation 91
5.13.3 Member Function Documentation 92
5.13.4 Member Data Documentation 96

5.14 TimerNotify Class Reference . 97
5.14.1 Detailed Description . 97
5.14.2 Member Function Documentation 98

6 File Documentation 98
6.1 clksystem.cpp File Reference . 98

6.1.1 Define Documentation . 99
6.1.2 Function Documentation . 99

6.2 clksystem.cpp . 101
6.3 clksystem.h File Reference . 103

6.3.1 Function Documentation . 103
6.4 clksystem.h . 104
6.5 CmdProcessor.cpp File Reference 104
6.6 CmdProcessor.cpp . 104
6.7 CmdProcessor.h File Reference . 107
6.8 CmdProcessor.h . 107
6.9 cpp_hacks.cpp File Reference . 108

6.9.1 Function Documentation . 108
6.10 cpp_hacks.cpp . 109
6.11 cpp_hacks.h File Reference . 109

6.11.1 Function Documentation . 109
6.12 cpp_hacks.h . 110
6.13 Documentation.html File Reference 110
6.14 Documentation.html . 110
6.15 fifo.cpp File Reference . 110

6.15.1 Function Documentation . 111
6.16 fifo.cpp . 111
6.17 fifo.h File Reference . 113

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

CONTENTS 1

6.17.1 Function Documentation . 113
6.18 fifo.h . 114
6.19 GyroAcc.cpp File Reference . 115

6.19.1 Function Documentation . 116
6.19.2 Variable Documentation . 118

6.20 GyroAcc.cpp . 119
6.21 HardwareSerial.cpp File Reference 121

6.21.1 Define Documentation . 122
6.21.2 Function Documentation . 122

6.22 HardwareSerial.cpp . 124
6.23 HardwareSerial.h File Reference . 128
6.24 HardwareSerial.h . 129
6.25 I2C_Master.h File Reference . 129
6.26 I2C_Master.h . 130
6.27 IMU.cpp File Reference . 132

6.27.1 Variable Documentation . 133
6.28 IMU.cpp . 133
6.29 IMU.h File Reference . 145
6.30 IMU.h . 146
6.31 IMUManager.cpp File Reference . 149

6.31.1 Define Documentation . 150
6.31.2 Variable Documentation . 151

6.32 IMUManager.cpp . 151
6.33 NewDel.cpp File Reference . 159

6.33.1 Function Documentation . 159
6.34 NewDel.cpp . 160
6.35 NewDel.h File Reference . 160

6.35.1 Function Documentation . 160
6.36 NewDel.h . 161
6.37 Port.cpp File Reference . 161

6.37.1 Define Documentation . 162
6.37.2 Function Documentation . 162
6.37.3 Variable Documentation . 163

6.38 Port.cpp . 163
6.39 Port.h File Reference . 166
6.40 Port.h . 166
6.41 Print.cpp File Reference . 167
6.42 Print.cpp . 167
6.43 Print.h File Reference . 170

6.43.1 Define Documentation . 171
6.44 Print.h . 172
6.45 TimerCntr.cpp File Reference . 173

6.45.1 Define Documentation . 173
6.45.2 Function Documentation . 174

6.46 TimerCntr.cpp . 175
6.47 TimerCntr.h File Reference . 180
6.48 TimerCntr.h . 180

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

1 Main Page 2

1 Main Page

Browning Research Field Emitter Control and Measurement System.

Introduction This code is written in C++. The AVR tools support a limited set of C++
capabilities so there are no fancy constructs such as templates. C++ allows the high
level features to be encapsulated into a class and used where needed. In most cases
these classes are built around hardware resources. There is a class to work with IO
Ports, one for HardwareSerial, etc.

Compiling The compiler and debug environment for the AVR tools is freely available.
Several options exist, the simplest on is the AVR Studio. This tool can be downloaded
from Atmel’s web site. The tool runs on a Windows PC only.

For Unix or Macs there are freely available GNU toolchains. These do not include a
GUI, but command line builds work just find.

Controller Board Hardwarew The hardware consists of the following comonents:

• Controller Board.

• Emitter Control Board

• Current Monitor Board

Controller Board Board for controlling all other components and interfacing to host
computer.

Emitter Control Board Contains N-Channel FETS to control the current into the emitter
elements.

Microprocessor The procssor on the board ia an Atmel ATxmega 128A1.

Some important links for this device are:

• Product Datasheet

• Product Manual

• Product Website

The product manual is very similar to the datasheet, however the manual contains reg-
ister definitions. These are very important when configuring the hardware resources
available within the ATxmega.

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

2 Class Index 3

2 Class Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

CmdProcessor 5

Fifo 15

I2C_Master 27

I2CNotify 37

IMU 39

IMUBase 71

IMU 39

Port 74

PortNotify 80

Print 81

HardwareSerial 19

IMU::regWrite 88

ring_buffer 89

TimerCntr 90

TimerNotify 97

IMU 39

3 Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CmdProcessor 5

Fifo (Fifo Class for unsigned 8 bit values) 15

HardwareSerial (HardwareSerial implementation) 19

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

4 File Index 4

I2C_Master 27

I2CNotify 37

IMU 39

IMUBase 71

Port 74

PortNotify 80

Print 81

IMU::regWrite 88

ring_buffer 89

TimerCntr 90

TimerNotify 97

4 File Index

4.1 File List

Here is a list of all files with brief descriptions:

clksystem.cpp 98

clksystem.h 103

CmdProcessor.cpp 104

CmdProcessor.h 107

cpp_hacks.cpp 108

cpp_hacks.h 109

Documentation.html 110

fifo.cpp 110

fifo.h 113

GyroAcc.cpp 115

HardwareSerial.cpp 121

HardwareSerial.h 128

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5 Class Documentation 5

I2C_Master.h 129

IMU.cpp 132

IMU.h 145

IMUManager.cpp 149

NewDel.cpp 159

NewDel.h 160

Port.cpp 161

Port.h 166

Print.cpp 167

Print.h 170

TimerCntr.cpp 173

TimerCntr.h 180

5 Class Documentation

5.1 CmdProcessor Class Reference

#include <CmdProcessor.h>

Public Member Functions

• CmdProcessor (HardwareSerial ∗pHW)
Number of valid parameters.

• ∼CmdProcessor ()
Destructor. Release memory allocated in constructor.

• bool checkCommands ()
• char ∗ cmdTerm ()

Return pointer to termination string.

• void cmdTerm (char ∗)
• void resetCmd ()

Clear the command status values so a new command can be started.

• const char ∗ cmdDelim ()
Return current delimiter string.

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.1 CmdProcessor Class Reference 6

• void cmdDelim (const char ∗)
• const char ∗ getCmd ()

Return the command string.

• uint8_t paramCnt ()
Return the number of parameters parsed from the current command.

Parameter Extraction Functions
getParam is overloaded on the variable type, this means that each possible type
has a unique function. The type of the parameter you are seeking will determine the
exact function that is called, which will then do the right thing to convert the string
paramter value to an unsigned int, double etc.

• void getParam (uint8_t idx, uint8_t &p)
Parse the index parameter into a unsigned 8 bit integer.

• void getParam (uint8_t idx, uint16_t &p)
Parse the index parameter into a unsigned 16 bit integer.

• void getParam (uint8_t idx, long &l)
Parse the index parameter into a unsigned 8 bit integer.

• void getParam (uint8_t idx, int &p)
Parse the index parameter into a unsigned 8 bit integer.

• void getParam (uint8_t idx, double &f)
Parse the index parameter into a double.

• void getParam (uint8_t idx, char ∗&p, uint8_t maxlen=128)
Parse the index parameter into a string with the length specified.

Protected Member Functions

• void processCmd ()

Protected Attributes

• HardwareSerial ∗ _pHW
• char ∗ _pTokens [10]

Store the serial object.

• char ∗ _pCmd
List of command tokens.

• char ∗ _pCmdString

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.1 CmdProcessor Class Reference 7

Command buffer.

• uint8_t _cmdPos
Current command.

• bool _validCmd
Current position during serial read.

• char ∗ _pCmdTerm
Indicates a current valid command.

• char ∗ _pCmdDelim
Store command terminator.

• uint8_t _paramCnt
Current command parameter delimiter.

5.1.1 Detailed Description

Definition at line 7 of file CmdProcessor.h.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 CmdProcessor::CmdProcessor (HardwareSerial ∗ pHW)

Number of valid parameters.

Construct a new CmdProcessor. Pass in reference to the HardwareSerial class to use
for command processing. Store the serial pointer and then initialize the internal data
strings used during command input processing and output processing.

Definition at line 11 of file CmdProcessor.cpp.

References _pCmd, _pCmdDelim, _pCmdString, _pCmdTerm, _pHW, and resetCmd().

{
_pHW = pHW;

_pCmdString = (char*)malloc(128);
_pCmd = 0;
_pCmdTerm = (char*)malloc(3);
strcpy(_pCmdTerm,"\n\r");
_pCmdDelim = (char*)malloc(3);
strcpy(_pCmdDelim," \t");
resetCmd();

}

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.1 CmdProcessor Class Reference 8

5.1.2.2 CmdProcessor::∼CmdProcessor ()

Destructor. Release memory allocated in constructor.

Definition at line 25 of file CmdProcessor.cpp.

References _pCmdDelim, _pCmdString, _pCmdTerm, _pHW, and HardwareSerial::end().

{
if (_pHW) {

_pHW->end();
}
free(_pCmdString);
free(_pCmdDelim);
free(_pCmdTerm);

}

5.1.3 Member Function Documentation

5.1.3.1 bool CmdProcessor::checkCommands ()

Read new characters from the serial port
Read any new characters into the command buffer. Look for the command terminator.
If the terminator is found, store the command, process the command buffer and return
1 to indicate that a new command is availble. If a full command is not yet present, then
return zero.

Definition at line 68 of file CmdProcessor.cpp.

References _cmdPos, _pCmdString, _pCmdTerm, _pHW, HardwareSerial::available(),
Print::print(), processCmd(), and HardwareSerial::read().

{
while (_pHW->available() > 0) {

unsigned char c = _pHW->read();
if (strchr(_pCmdTerm,c) != 0) {

if (_cmdPos > 0) {
// Done with this command.
_pCmdString[_cmdPos] = 0; // Null terminate command
processCmd();
return 1;

} else {
_pHW->print("Ok\n");

}
} else {

_pCmdString[_cmdPos++] = c;
}

}
return 0;

}

5.1.3.2 const char ∗ CmdProcessor::cmdDelim ()

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.1 CmdProcessor Class Reference 9

Return current delimiter string.

Definition at line 48 of file CmdProcessor.cpp.

References _pCmdDelim.

{
return _pCmdDelim;

}

5.1.3.3 void CmdProcessor::cmdDelim (const char ∗ d)

Set new delimiter string. Free memory, allocate new memory and copy new value.

Definition at line 55 of file CmdProcessor.cpp.

References _pCmdDelim.

{
free(_pCmdDelim);
_pCmdDelim = (char*)malloc(strlen(d) + 1);
strcpy(_pCmdDelim,d);

}

5.1.3.4 char ∗ CmdProcessor::cmdTerm ()

Return pointer to termination string.

Definition at line 36 of file CmdProcessor.cpp.

References _pCmdTerm.

{ return _pCmdTerm; }

5.1.3.5 void CmdProcessor::cmdTerm (char ∗ t)

Set a new command terminator. Free memory for previous value, allocate new
memory and save the new value.

Definition at line 40 of file CmdProcessor.cpp.

References _pCmdTerm.

{
free(_pCmdTerm);
_pCmdTerm = (char*)malloc(strlen(t) + 1);
strcpy(_pCmdTerm,t);

}

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.1 CmdProcessor Class Reference 10

5.1.3.6 const char ∗ CmdProcessor::getCmd ()

Return the command string.

Definition at line 123 of file CmdProcessor.cpp.

References _pCmd.

{
return _pCmd;

}

5.1.3.7 void CmdProcessor::getParam (uint8_t idx, double & f)

Parse the index parameter into a double.

Definition at line 176 of file CmdProcessor.cpp.

References _paramCnt, and _pTokens.

{
if (idx < _paramCnt) {

uint8_t nScans;
nScans = sscanf(_pTokens[idx],"%lf", &p);
//p = atof(_pTokens[idx]);

}
}

5.1.3.8 void CmdProcessor::getParam (uint8_t idx, uint8_t & p)

Parse the index parameter into a unsigned 8 bit integer.

Definition at line 154 of file CmdProcessor.cpp.

References _paramCnt, and _pTokens.

{
if (idx < _paramCnt) {

p = atoi(_pTokens[idx]);
}

}

5.1.3.9 void CmdProcessor::getParam (uint8_t idx, uint16_t & p)

Parse the index parameter into a unsigned 16 bit integer.

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.1 CmdProcessor Class Reference 11

Definition at line 146 of file CmdProcessor.cpp.

References _paramCnt, and _pTokens.

{
if (idx < _paramCnt) {

p = atoi(_pTokens[idx]);
}

}

5.1.3.10 void CmdProcessor::getParam (uint8_t idx, int & p)

Parse the index parameter into a unsigned 8 bit integer.

Definition at line 161 of file CmdProcessor.cpp.

References _paramCnt, and _pTokens.

{
if (idx < _paramCnt) {

p = atoi(_pTokens[idx]);
}

}

5.1.3.11 void CmdProcessor::getParam (uint8_t idx, char ∗& p, uint8_t
maxlen = 128)

Parse the index parameter into a string with the length specified.

Definition at line 186 of file CmdProcessor.cpp.

References _paramCnt, and _pTokens.

{
if (idx < _paramCnt) {

strncpy(p,_pTokens[idx],maxlen);
}

}

5.1.3.12 void CmdProcessor::getParam (uint8_t idx, long & l)

Parse the index parameter into a unsigned 8 bit integer.

Definition at line 168 of file CmdProcessor.cpp.

References _paramCnt, and _pTokens.

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.1 CmdProcessor Class Reference 12

{
if (idx < _paramCnt) {

l = atol(_pTokens[idx]);
}

}

5.1.3.13 uint8_t CmdProcessor::paramCnt ()

Return the number of parameters parsed from the current command.

Definition at line 129 of file CmdProcessor.cpp.

References _paramCnt.

{
return _paramCnt;

}

5.1.3.14 void CmdProcessor::processCmd () [protected]

Process the commands in the command buffer Split the command into parameters
based on the command delimiter. The maximum number of command tokens is 10.

Definition at line 92 of file CmdProcessor.cpp.

References _paramCnt, _pCmd, _pCmdDelim, _pCmdString, _pTokens, and _validCmd.

Referenced by checkCommands().

{
// See if the command delimiter exists in the
// command. if it does not, then the command
// is the entire string.
if (strpbrk(_pCmdString,_pCmdDelim)) {

_pCmd = strtok(_pCmdString,_pCmdDelim);
char* pTok = strtok(0,_pCmdDelim);
int i = 0;
while (i < 10 && pTok) {

_pTokens[i++] = pTok;
pTok = strtok(0,_pCmdDelim);

}
_paramCnt = i;
_validCmd = true;

} else {
_pCmd = _pCmdString;
_paramCnt = 0;
_validCmd = true;

}
}

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.1 CmdProcessor Class Reference 13

5.1.3.15 void CmdProcessor::resetCmd ()

Clear the command status values so a new command can be started.

Definition at line 115 of file CmdProcessor.cpp.

References _cmdPos, _paramCnt, and _validCmd.

Referenced by CmdProcessor().

{
_cmdPos = 0;
_validCmd = false;
_paramCnt = 0;

}

5.1.4 Member Data Documentation

5.1.4.1 uint8_t CmdProcessor::_cmdPos [protected]

Current command.

Definition at line 14 of file CmdProcessor.h.

Referenced by checkCommands(), and resetCmd().

5.1.4.2 uint8_t CmdProcessor::_paramCnt [protected]

Current command parameter delimiter.

Definition at line 18 of file CmdProcessor.h.

Referenced by getParam(), paramCnt(), processCmd(), and resetCmd().

5.1.4.3 char∗ CmdProcessor::_pCmd [protected]

List of command tokens.

Definition at line 12 of file CmdProcessor.h.

Referenced by CmdProcessor(), getCmd(), and processCmd().

5.1.4.4 char∗ CmdProcessor::_pCmdDelim [protected]

Store command terminator.

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.1 CmdProcessor Class Reference 14

Definition at line 17 of file CmdProcessor.h.

Referenced by cmdDelim(), CmdProcessor(), processCmd(), and ∼CmdProcessor().

5.1.4.5 char∗ CmdProcessor::_pCmdString [protected]

Command buffer.

Definition at line 13 of file CmdProcessor.h.

Referenced by checkCommands(), CmdProcessor(), processCmd(), and∼CmdProcessor().

5.1.4.6 char∗ CmdProcessor::_pCmdTerm [protected]

Indicates a current valid command.

Definition at line 16 of file CmdProcessor.h.

Referenced by checkCommands(), CmdProcessor(), cmdTerm(), and∼CmdProcessor().

5.1.4.7 HardwareSerial∗ CmdProcessor::_pHW [protected]

Definition at line 10 of file CmdProcessor.h.

Referenced by checkCommands(), CmdProcessor(), and ∼CmdProcessor().

5.1.4.8 char∗ CmdProcessor::_pTokens[10] [protected]

Store the serial object.

Definition at line 11 of file CmdProcessor.h.

Referenced by getParam(), and processCmd().

5.1.4.9 bool CmdProcessor::_validCmd [protected]

Current position during serial read.

Definition at line 15 of file CmdProcessor.h.

Referenced by processCmd(), and resetCmd().

The documentation for this class was generated from the following files:

• CmdProcessor.h

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.2 Fifo Class Reference 15

• CmdProcessor.cpp

5.2 Fifo Class Reference

Fifo Class for unsigned 8 bit values.

#include <fifo.h>

Public Types

• typedef uint8_t FifoType

Public Member Functions

• Fifo (uint8_t size)
• int8_t push (FifoType ∗)
• int8_t pop (FifoType ∗pData)
• uint8_t count ()
• bool full ()

Return true if the fifo is full.

• bool empty ()
Return true if the fifo is empty.

• void clear ()
Clear the fifo by resetting the start and end pointer.

Private Attributes

• FifoType ∗ _pdata
• FifoType ∗ _start
• FifoType ∗ _end
• uint8_t _size

5.2.1 Detailed Description

Fifo Class for unsigned 8 bit values. Construct a fifo and specify the number of ele-
ments to store. The fifo constructor will allocate memory for the specified number of
values. The Fifo class contains member functions for pusshing, popping and checking
the status of the fifo.

Definition at line 16 of file fifo.h.

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.2 Fifo Class Reference 16

5.2.2 Member Typedef Documentation

5.2.2.1 typedef uint8_t Fifo::FifoType

Definition at line 20 of file fifo.h.

5.2.3 Constructor & Destructor Documentation

5.2.3.1 Fifo::Fifo (uint8_t size)

Construct the fifo object. Allocate memory for the specified number of elements and
set the internal value to indicate the size of the fifo. Reset the start and end data points
to their clear state. The clear function is called to maintain consitency and insure that
clear() always does the right thing.

Definition at line 14 of file fifo.cpp.

References _pdata, _size, and clear().

{
_size = size;
_pdata = (FifoType*)malloc(_size * sizeof(FifoType));
clear();

}

5.2.4 Member Function Documentation

5.2.4.1 void Fifo::clear ()

Clear the fifo by resetting the start and end pointer.

Definition at line 22 of file fifo.cpp.

References _end, _pdata, and _start.

Referenced by Fifo(), and FifoTest().

{
_start = _end = _pdata;

}

5.2.4.2 uint8_t Fifo::count ()

Return the number of elements currently in the fifo
if the end and start pointers are the same then the fifo is empty and count == 0. If they
differ, then we need to check for wrap-around in order to properly determine the size.
In the following examples a = marks empty spots, while an x marks filled spots.

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.2 Fifo Class Reference 17

s e
=======xxxxxxxxxxxxxxxxxxxxxxxxx=======================

In this case end > start, so count is equal to the distance between them or end− start.

e s
xxxxxxxx=======================xxxxxxxxxxxxxxxxxxxxxxxx

In this case end < start, so data wraps around. The total count is equal to the size of
the buffer, minus the number of blank spots, or size− (start− end).

The total number of possible elements that can be stored is size -1, so

Definition at line 50 of file fifo.cpp.

References _end, _size, and _start.

Referenced by FifoTest().

{
if (_end == _start) return 0;
if (_end > _start) {

return _end - _start;
}
return _size - (_start - _end);

}

5.2.4.3 bool Fifo::empty ()

Return true if the fifo is empty.

Definition at line 66 of file fifo.cpp.

References _end, and _start.

Referenced by pop().

{
return (_start == _end);

}

5.2.4.4 bool Fifo::full ()

Return true if the fifo is full.

Definition at line 60 of file fifo.cpp.

References _end, _size, and _start.

Referenced by push().

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.2 Fifo Class Reference 18

{
return (_start - _end) == 1 || (_end - _start) == _size;

}

5.2.4.5 int8_t Fifo::pop (FifoType ∗ pD)

Remove the top value from the Fifo. We do
not have exceptions in this simple C++ implementation, so this function is not able to
do anything to indicate that the called tried to pop a value from an empty fifo. In that
case, a zero value is returned, which is not unique so the caller will have to insure that
pop is never called on an empty fifo.

Definition at line 92 of file fifo.cpp.

References _pdata, _size, _start, and empty().

Referenced by FifoTest().

{
if (empty()) {

return -1; // Nothing else to do
}

*pD = *(_start++);
if ((_start - _pdata) > _size) {

_start = _pdata;
}
return 0;

}

5.2.4.6 int8_t Fifo::push (FifoType ∗ d)

Push a new value onto the fifo. This function returns 0 if the operation succeeds, and
a negative value if the operation fails.

Definition at line 74 of file fifo.cpp.

References _end, _pdata, _size, and full().

Referenced by FifoTest().

{
if (full()) return -1;

*(_end++) = *d;

// Wrap the end back to the beginning.
if ((_end - _pdata) > _size) {

_end = _pdata;
}

return 0;
}

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.3 HardwareSerial Class Reference 19

5.2.5 Member Data Documentation

5.2.5.1 FifoType∗ Fifo::_end [private]

Definition at line 25 of file fifo.h.

Referenced by clear(), count(), empty(), full(), and push().

5.2.5.2 FifoType∗ Fifo::_pdata [private]

Definition at line 23 of file fifo.h.

Referenced by clear(), Fifo(), pop(), and push().

5.2.5.3 uint8_t Fifo::_size [private]

Definition at line 26 of file fifo.h.

Referenced by count(), Fifo(), full(), pop(), and push().

5.2.5.4 FifoType∗ Fifo::_start [private]

Definition at line 24 of file fifo.h.

Referenced by clear(), count(), empty(), full(), and pop().

The documentation for this class was generated from the following files:

• fifo.h
• fifo.cpp

5.3 HardwareSerial Class Reference

HardwareSerial implementation.

#include <HardwareSerial.h>

Inheritance diagram for HardwareSerial:

HardwareSerial

Print

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.3 HardwareSerial Class Reference 20

Public Member Functions

• HardwareSerial (USART_t ∗usart, PORT_t ∗port, uint8_t in_bm, uint8_t out_-
bm)

• ∼HardwareSerial ()
• void begin (long baudrate, int8_t bscale=0)
• void begin2x (long baudrate, int8_t bscale=0)
• void end ()
• uint8_t available (void)
• int read (void)
• void flush (void)
• virtual void write (uint8_t)
• void enable (bool bEn)

Interrupt Handlers
There are three possible interrupts for the USART. Receive done, Transmit done
and Data Register Ready.

• void rxc ()
• void dre ()
• void txc ()

Protected Attributes

• ring_buffer ∗ _rx_buffer
• USART_t ∗ _usart
• PORT_t ∗ _port
• uint8_t _in_bm
• uint8_t _out_bm
• uint8_t _bsel
• int8_t _bscale
• long _baudrate
• bool _bEn

5.3.1 Detailed Description

HardwareSerial implementation. This class was originally copied form the Arduino
source directory but has been modified somewhat to customize it for the CFA project.

Ths class wraps the hardware serial resource in the ATXmega The class handles an
interupt driven receive with a fixed size receive buffer of 128 bytes. The current imple-
mentation uses a synchronous send, but a buffered send would be a great enhancement
for performance purposes.

Definition at line 23 of file HardwareSerial.h.

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.3 HardwareSerial Class Reference 21

5.3.2 Constructor & Destructor Documentation

5.3.2.1 HardwareSerial::HardwareSerial (USART_t ∗ usart, PORT_t ∗ port,
uint8_t in_bm, uint8_t out_bm)

Definition at line 112 of file HardwareSerial.cpp.

References _baudrate, _bEn, _bscale, _bsel, _in_bm, _out_bm, _port, _rx_buffer, _-
usart, RX_BUFFER_SIZE, and SetPointer().

{
_rx_buffer = (ring_buffer*)malloc(RX_BUFFER_SIZE+2*sizeof(int));
_usart = usart;
_port = port;
_in_bm = in_bm;
_out_bm = out_bm;
_bsel = 0;
_bscale = 0;
_baudrate = 9600;
_bEn = true;
SetPointer(_usart,this);

}

5.3.2.2 HardwareSerial::∼HardwareSerial ()

Definition at line 130 of file HardwareSerial.cpp.

References _rx_buffer, _usart, end(), and SetPointer().

{
end();
free(_rx_buffer);
_rx_buffer = 0;
SetPointer(_usart,0);

}

5.3.3 Member Function Documentation

5.3.3.1 uint8_t HardwareSerial::available (void)

Definition at line 213 of file HardwareSerial.cpp.

References _rx_buffer, ring_buffer::head, RX_BUFFER_SIZE, and ring_buffer::tail.

Referenced by CmdProcessor::checkCommands().

{
return (RX_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) %
RX_BUFFER_SIZE;

}

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.3 HardwareSerial Class Reference 22

5.3.3.2 void HardwareSerial::begin (long baudrate, int8_t bscale = 0)

Definition at line 140 of file HardwareSerial.cpp.

References _baudrate, _bscale, _in_bm, _out_bm, _port, and _usart.

Referenced by main().

{
uint16_t BSEL;
_bscale = bscale;
_baudrate = baud;

float fPER = F_CPU;
float fBaud = baud;

_port->DIRCLR = _in_bm; // input
_port->DIRSET = _out_bm; // output

// set the baud rate
if (bscale >= 0) {

BSEL = fPER/((1 << bscale) * 16 * baud) - 1;
//BSEL = F_CPU / 16 / baud - 1;

} else {
bscale = -1 * bscale;
BSEL = (1 << bscale) * (fPER/(16.0 * fBaud) - 1);

}

_usart->BAUDCTRLA = (uint8_t)BSEL;
_usart->BAUDCTRLB = ((bscale & 0xf) << 4) | ((BSEL & 0xf00) >> 8);

// enable Rx and Tx
_usart->CTRLB |= USART_RXEN_bm | USART_TXEN_bm;
// enable interrupt
_usart->CTRLA = USART_RXCINTLVL_HI_gc;

// Char size, parity and stop bits: 8N1
_usart->CTRLC = USART_CHSIZE_8BIT_gc | USART_PMODE_DISABLED_gc;

}

5.3.3.3 void HardwareSerial::begin2x (long baudrate, int8_t bscale = 0)

Definition at line 173 of file HardwareSerial.cpp.

References _baudrate, _bscale, _in_bm, _out_bm, _port, _usart, and SetPointer().

{
uint16_t baud_setting;
_bscale = bscale;
_baudrate = baud;

// TODO: Serial. Fix serial double clock.
long fPER = F_CPU * 4;

_port->DIRCLR = _in_bm; // input

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.3 HardwareSerial Class Reference 23

_port->DIRSET = _out_bm; // output

// set the baud rate using the 2X calculations
_usart->CTRLB |= 1 << 1; // the last 1 was the _u2x value
baud_setting = fPER / 8 / baud - 1;

_usart->BAUDCTRLA = (uint8_t)baud_setting;
_usart->BAUDCTRLB = baud_setting >> 8;

// enable Rx and Tx
_usart->CTRLB |= USART_RXEN_bm | USART_TXEN_bm;
// enable interrupt
_usart->CTRLA = (_usart->CTRLA & ~USART_RXCINTLVL_gm) | USART_RXCINTLVL_LO_gc
;

// Char size, parity and stop bits: 8N1
_usart->CTRLC = USART_CHSIZE_8BIT_gc | USART_PMODE_DISABLED_gc;
SetPointer(_usart,this);

}

5.3.3.4 void HardwareSerial::dre ()

Definition at line 100 of file HardwareSerial.cpp.

{
}

5.3.3.5 void HardwareSerial::enable (bool bEn)

Definition at line 248 of file HardwareSerial.cpp.

References _bEn.

Referenced by main().

{
_bEn = bEn;

}

5.3.3.6 void HardwareSerial::end ()

Definition at line 203 of file HardwareSerial.cpp.

References _usart, and SetPointer().

Referenced by CmdProcessor::∼CmdProcessor(), and ∼HardwareSerial().

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.3 HardwareSerial Class Reference 24

{
SetPointer(_usart,(HardwareSerial*)0);

// disable Rx and Tx
_usart->CTRLB &= ~(USART_RXEN_bm | USART_TXEN_bm);
// disable interrupt
_usart->CTRLA = (_usart->CTRLA & ~USART_RXCINTLVL_gm) | USART_RXCINTLVL_LO_gc
;

}

5.3.3.7 void HardwareSerial::flush (void)

Definition at line 230 of file HardwareSerial.cpp.

References _rx_buffer, ring_buffer::head, and ring_buffer::tail.

{
// don’t reverse this or there may be problems if the RX interrupt
// occurs after reading the value of rx_buffer_head but before writing
// the value to rx_buffer_tail; the previous value of rx_buffer_head
// may be written to rx_buffer_tail, making it appear as if the buffer
// were full, not empty.
_rx_buffer->head = _rx_buffer->tail;

}

5.3.3.8 int HardwareSerial::read (void)

Definition at line 218 of file HardwareSerial.cpp.

References _rx_buffer, ring_buffer::buffer, ring_buffer::head, RX_BUFFER_SIZE, and
ring_buffer::tail.

Referenced by CmdProcessor::checkCommands().

{
// if the head isn’t ahead of the tail, we don’t have any characters
if (_rx_buffer->head == _rx_buffer->tail) {

return -1;
} else {

unsigned char c = _rx_buffer->buffer[_rx_buffer->tail];
_rx_buffer->tail = (_rx_buffer->tail + 1) % RX_BUFFER_SIZE;
return c;

}
}

5.3.3.9 void HardwareSerial::rxc ()

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.3 HardwareSerial Class Reference 25

Definition at line 94 of file HardwareSerial.cpp.

References _rx_buffer, _usart, and store_char().

{
unsigned char c = _usart->DATA;
store_char(c,_rx_buffer);

}

5.3.3.10 void HardwareSerial::txc ()

Definition at line 104 of file HardwareSerial.cpp.

{
}

5.3.3.11 void HardwareSerial::write (uint8_t c) [virtual]

Implements Print.

Definition at line 240 of file HardwareSerial.cpp.

References _bEn, and _usart.

{
if (_bEn) {

while (!(_usart->STATUS & USART_DREIF_bm));
_usart->DATA = c;

}
}

5.3.4 Member Data Documentation

5.3.4.1 long HardwareSerial::_baudrate [protected]

Definition at line 33 of file HardwareSerial.h.

Referenced by begin(), begin2x(), and HardwareSerial().

5.3.4.2 bool HardwareSerial::_bEn [protected]

Definition at line 34 of file HardwareSerial.h.

Referenced by enable(), HardwareSerial(), and write().

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.3 HardwareSerial Class Reference 26

5.3.4.3 int8_t HardwareSerial::_bscale [protected]

Definition at line 32 of file HardwareSerial.h.

Referenced by begin(), begin2x(), and HardwareSerial().

5.3.4.4 uint8_t HardwareSerial::_bsel [protected]

Definition at line 31 of file HardwareSerial.h.

Referenced by HardwareSerial().

5.3.4.5 uint8_t HardwareSerial::_in_bm [protected]

Definition at line 29 of file HardwareSerial.h.

Referenced by begin(), begin2x(), and HardwareSerial().

5.3.4.6 uint8_t HardwareSerial::_out_bm [protected]

Definition at line 30 of file HardwareSerial.h.

Referenced by begin(), begin2x(), and HardwareSerial().

5.3.4.7 PORT_t∗ HardwareSerial::_port [protected]

Definition at line 28 of file HardwareSerial.h.

Referenced by begin(), begin2x(), and HardwareSerial().

5.3.4.8 ring_buffer∗ HardwareSerial::_rx_buffer [protected]

Definition at line 26 of file HardwareSerial.h.

Referenced by available(), flush(), HardwareSerial(), read(), rxc(), and∼HardwareSerial().

5.3.4.9 USART_t∗ HardwareSerial::_usart [protected]

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.4 I2C_Master Class Reference 27

Definition at line 27 of file HardwareSerial.h.

Referenced by begin(), begin2x(), end(), HardwareSerial(), rxc(), write(), and∼HardwareSerial().

The documentation for this class was generated from the following files:

• HardwareSerial.h
• HardwareSerial.cpp

5.4 I2C Master Class Reference

#include <I2C_Master.h>

Public Types

• enum DriverState {

sIdle, sBusy, sError, sArb,

sIDScan, sIDCheck }
• enum DriverResult {

rOk, rFail, rArbLost, rBussErr,

rNack, rBufferOverrun, rUnknown, rTimeout }
• enum ErrorType {

eNone = 0, eDisabled = -1, eBusy = -2, eNack = -3,

eArbLost = -4, eBusErr = -5, eTimeout = -6, eSDAStuck = -7,

eSCLStuck = -8, eUnknown = -9 }
• typedef enum I2C_Master::ErrorType ErrorType

Public Member Functions

• I2C_Master (TWI_t ∗twi)
• ∼I2C_Master ()
• void begin (uint32_t freq)
• void end ()
• ErrorType Write (uint8_t ID, uint8_t ∗Data, uint8_t nBytes)
• ErrorType WriteSync (uint8_t ID, uint8_t ∗Data, uint8_t nBytes)
• ErrorType Read (uint8_t ID, uint8_t nBytes)
• ErrorType ReadSync (uint8_t ID, uint8_t nBytes)
• ErrorType WriteRead (uint8_t ID, uint8_t ∗wrData, uint8_t nWriteBytes, uint8_t

nReadBytes)
• ErrorType WriteReadSync (uint8_t ID, uint8_t ∗wrData, uint8_t nWriteBytes,

uint8_t nReadBytes)
• void master_int ()
• void slave_int ()
• void WriteHandler ()
• void ReadHandler ()

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.4 I2C_Master Class Reference 28

• void ArbHandler ()
• void ErrorHandler ()
• void MasterFinished ()
• int testack (uint8_t ID)
• void dumpregs ()
• I2C_Master::DriverResult Result ()
• I2C_Master::DriverState State ()
• uint8_t ReadData (uint8_t ∗pData, uint8_t maxcnt)
• uint8_t ReadData (uint8_t index)
• uint8_t nReadBytes ()
• ErrorType CheckID (uint8_t ID)
• void Stop ()
• ErrorType ForceStartStop ()
• ErrorType WigglePin (uint8_t cnt, uint8_t pinSel, uint8_t otherState)
• void CleanRegs ()
• void loop ()
• bool busy ()
• void ∗ isReserved ()
• bool Reserve (void ∗)
• void NotifyMe (I2CNotify ∗pMe)
• bool IsIdle ()

Protected Member Functions

• uint8_t busState ()
• void showstate ()

Private Attributes

• TWI_t ∗ _twi
• PORT_t ∗ _twiPort
• bool _bEnabled
• DriverState _State
• DriverResult _Result
• void ∗ _pReserved
• I2CNotify ∗ _pNotifyClient
• uint8_t _DeviceID
• uint8_t _nBytesWritten
• uint8_t _nWriteBytes
• uint8_t _nReadBytes
• uint8_t _nBytesRead
• uint8_t ∗ _WriteData
• uint8_t _wrBufferLen
• uint8_t ∗ _ReadData
• uint8_t _rdBufferLen
• uint8_t _idScanCurrent
• uint8_t _IDList [128]
• bool _ScanComplete

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.4 I2C_Master Class Reference 29

5.4.1 Detailed Description

Definition at line 25 of file I2C_Master.h.

5.4.2 Member Typedef Documentation

5.4.2.1 typedef enum I2C_Master::ErrorType I2C_Master::ErrorType

5.4.3 Member Enumeration Documentation

5.4.3.1 enum I2C_Master::DriverResult

Enumerator:

rOk
rFail
rArbLost
rBussErr
rNack
rBufferOverrun
rUnknown
rTimeout

Definition at line 37 of file I2C_Master.h.

{
rOk,
rFail,
rArbLost,
rBussErr,
rNack,
rBufferOverrun,
rUnknown,
rTimeout

} DriverResult;

5.4.3.2 enum I2C_Master::DriverState

Enumerator:

sIdle

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.4 I2C_Master Class Reference 30

sBusy
sError
sArb
sIDScan
sIDCheck

Definition at line 28 of file I2C_Master.h.

{
sIdle,
sBusy,
sError,
sArb,
sIDScan,
sIDCheck

} DriverState;

5.4.3.3 enum I2C_Master::ErrorType

Enumerator:

eNone
eDisabled
eBusy
eNack
eArbLost
eBusErr
eTimeout
eSDAStuck
eSCLStuck
eUnknown

Definition at line 78 of file I2C_Master.h.

{
eNone = 0,
eDisabled = -1,
eBusy = -2,
eNack = -3,
eArbLost = -4,
eBusErr = -5,
eTimeout = -6,
eSDAStuck = -7,
eSCLStuck = -8,
eUnknown = -9

} ErrorType;

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.4 I2C_Master Class Reference 31

5.4.4 Constructor & Destructor Documentation

5.4.4.1 I2C_Master::I2C_Master (TWI_t ∗ twi)

5.4.4.2 I2C_Master::∼I2C_Master ()

5.4.5 Member Function Documentation

5.4.5.1 void I2C_Master::ArbHandler ()

5.4.5.2 void I2C_Master::begin (uint32_t freq)

Referenced by main(), and IMU::Reset().

5.4.5.3 uint8_t I2C_Master::busState () [protected]

5.4.5.4 bool I2C_Master::busy ()

Referenced by IMU::Run().

5.4.5.5 ErrorType I2C_Master::CheckID (uint8_t ID)

Referenced by IMU::CheckIDs(), and IMU::QueryChannels().

5.4.5.6 void I2C_Master::CleanRegs ()

5.4.5.7 void I2C_Master::dumpregs ()

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.4 I2C_Master Class Reference 32

5.4.5.8 void I2C_Master::end ()

Referenced by IMU::Reset().

5.4.5.9 void I2C_Master::ErrorHandler ()

5.4.5.10 ErrorType I2C_Master::ForceStartStop ()

Referenced by IMU::ForceStartStop().

5.4.5.11 bool I2C_Master::IsIdle () [inline]

Definition at line 153 of file I2C_Master.h.

References _twi.

{
return (_twi->MASTER.STATUS & TWI_MASTER_BUSSTATE_gm)

== TWI_MASTER_BUSSTATE_IDLE_gc;
}

5.4.5.12 void∗ I2C_Master::isReserved ()

5.4.5.13 void I2C_Master::loop ()

5.4.5.14 void I2C_Master::master_int ()

5.4.5.15 void I2C_Master::MasterFinished ()

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.4 I2C_Master Class Reference 33

5.4.5.16 void I2C_Master::NotifyMe (I2CNotify ∗ pMe)

Referenced by IMU::IMU(), and IMU::Reset().

5.4.5.17 uint8_t I2C_Master::nReadBytes ()

5.4.5.18 ErrorType I2C_Master::Read (uint8_t ID, uint8_t nBytes)

5.4.5.19 uint8_t I2C_Master::ReadData (uint8_t ∗ pData, uint8_t maxcnt)

Referenced by IMU::Rd(), IMU::ReadWord(), IMU::StoreAccData(), and IMU::StoreGyroData().

5.4.5.20 uint8_t I2C_Master::ReadData (uint8_t index)

5.4.5.21 void I2C_Master::ReadHandler ()

5.4.5.22 ErrorType I2C_Master::ReadSync (uint8_t ID, uint8_t nBytes)

5.4.5.23 bool I2C_Master::Reserve (void ∗)

5.4.5.24 I2C_Master::DriverResult I2C_Master::Result ()

5.4.5.25 void I2C_Master::showstate () [protected]

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.4 I2C_Master Class Reference 34

5.4.5.26 void I2C_Master::slave_int ()

5.4.5.27 I2C_Master::DriverState I2C_Master::State ()

5.4.5.28 void I2C_Master::Stop ()

Referenced by IMU::ResetDevices().

5.4.5.29 int I2C_Master::testack (uint8_t ID)

5.4.5.30 ErrorType I2C_Master::WigglePin (uint8_t cnt, uint8_t pinSel,
uint8_t otherState)

Referenced by IMU::FailRecovery().

5.4.5.31 ErrorType I2C_Master::Write (uint8_t ID, uint8_t ∗ Data, uint8_t
nBytes)

5.4.5.32 void I2C_Master::WriteHandler ()

5.4.5.33 ErrorType I2C_Master::WriteRead (uint8_t ID, uint8_t ∗ wrData,
uint8_t nWriteBytes, uint8_t nReadBytes)

Referenced by IMU::RdAsync(), and IMU::WrAsync().

5.4.5.34 ErrorType I2C_Master::WriteReadSync (uint8_t ID, uint8_t ∗
wrData, uint8_t nWriteBytes, uint8_t nReadBytes)

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.4 I2C_Master Class Reference 35

Referenced by IMU::Rd().

5.4.5.35 ErrorType I2C_Master::WriteSync (uint8_t ID, uint8_t ∗ Data,
uint8_t nBytes)

Referenced by IMU::Wr().

5.4.6 Member Data Documentation

5.4.6.1 bool I2C_Master::_bEnabled [private]

Definition at line 51 of file I2C_Master.h.

5.4.6.2 uint8_t I2C_Master::_DeviceID [private]

Definition at line 58 of file I2C_Master.h.

5.4.6.3 uint8_t I2C_Master::_IDList[128] [private]

Definition at line 73 of file I2C_Master.h.

5.4.6.4 uint8_t I2C_Master::_idScanCurrent [private]

Definition at line 72 of file I2C_Master.h.

5.4.6.5 uint8_t I2C_Master::_nBytesRead [private]

Definition at line 62 of file I2C_Master.h.

5.4.6.6 uint8_t I2C_Master::_nBytesWritten [private]

Definition at line 59 of file I2C_Master.h.

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.4 I2C_Master Class Reference 36

5.4.6.7 uint8_t I2C_Master::_nReadBytes [private]

Definition at line 61 of file I2C_Master.h.

5.4.6.8 uint8_t I2C_Master::_nWriteBytes [private]

Definition at line 60 of file I2C_Master.h.

5.4.6.9 I2CNotify∗ I2C_Master::_pNotifyClient [private]

Definition at line 55 of file I2C_Master.h.

5.4.6.10 void∗ I2C_Master::_pReserved [private]

Definition at line 54 of file I2C_Master.h.

5.4.6.11 uint8_t I2C_Master::_rdBufferLen [private]

Definition at line 67 of file I2C_Master.h.

5.4.6.12 uint8_t∗ I2C_Master::_ReadData [private]

Definition at line 66 of file I2C_Master.h.

5.4.6.13 DriverResult I2C_Master::_Result [private]

Definition at line 53 of file I2C_Master.h.

5.4.6.14 bool I2C_Master::_ScanComplete [private]

Definition at line 74 of file I2C_Master.h.

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.5 I2CNotify Class Reference 37

5.4.6.15 DriverState I2C_Master::_State [private]

Definition at line 52 of file I2C_Master.h.

5.4.6.16 TWI_t∗ I2C_Master::_twi [private]

Definition at line 49 of file I2C_Master.h.

Referenced by IsIdle().

5.4.6.17 PORT_t∗ I2C_Master::_twiPort [private]

Definition at line 50 of file I2C_Master.h.

5.4.6.18 uint8_t I2C_Master::_wrBufferLen [private]

Definition at line 65 of file I2C_Master.h.

5.4.6.19 uint8_t∗ I2C_Master::_WriteData [private]

Definition at line 64 of file I2C_Master.h.

The documentation for this class was generated from the following file:

• I2C_Master.h

5.5 I2CNotify Class Reference

#include <I2C_Master.h>

Inheritance diagram for I2CNotify:

I2CNotify

IMU

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

5.5 I2CNotify Class Reference 38

Public Member Functions

• virtual void I2CWriteDone ()=0
• virtual void I2CReadDone ()=0
• virtual void I2CBusError ()=0
• virtual void I2CArbLost ()=0
• virtual void I2CNack ()=0

5.5.1 Detailed Description

Definition at line 14 of file I2C_Master.h.

5.5.2 Member Function Documentation

5.5.2.1 virtual void I2CNotify::I2CArbLost () [pure virtual]

Implemented in IMU.

5.5.2.2 virtual void I2CNotify::I2CBusError () [pure virtual]

Implemented in IMU.

5.5.2.3 virtual void I2CNotify::I2CNack () [pure virtual]

Implemented in IMU.

5.5.2.4 virtual void I2CNotify::I2CReadDone () [pure virtual]

Implemented in IMU.

5.5.2.5 virtual void I2CNotify::I2CWriteDone () [pure virtual]

Implemented in IMU.

The documentation for this class was generated from the following file:

• I2C_Master.h

Generated on Sat Sep 10 2011 17:54:13 for GyroAccGlove by Doxygen

