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ABSTRACT 

Disturbance events alter community composition and structure because of 

differences in the response of individual taxa, changes in habitat resulting in colonization 

by new taxa, and alteration of biotic interaction patterns. Recent changes in disturbance 

types, frequencies, and intensities caused by anthropogenic activities may further alter 

community composition and structure if these disturbances exceed the tolerances or 

adaptations of some taxa. In sagebrush steppe habitats of the western United States, 

wildfire is the current dominant disturbance type, burning millions of hectares annually.  

Further, up to 90% of sagebrush-steppe ecosystems are affected by anthropogenic 

influences such as invasive species.  Post-fire seeding treatments are widely used to 

reduce soil erosion, control the establishment of invasive plant species, and restore 

habitat for wildlife.  

I investigated insect community responses to wildfire and post-fire seeding in 

sagebrush-steppe habitats in southwestern Idaho by comparing insect communities 

among three condition classes (hereafter treatments): burned-and-seeded (BS), burned-

and-unseeded (BX), and unburned (UX), which served as a control.  We also quantified 

indirect effects of treatments on insects by assessing vegetation composition and structure 

(height) differences among these treatments. We found post-fire seeding changed the 

vegetation composition at BS plots compared to the  BX plots by increasing the amount 

of seeded bunchgrasses and forbs, but these seeding efforts did not achieve the vegetation 
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composition of UX plots because sagebrush was not successfully re-established.  We 

found evidence to suggest that differences in vegetation among treatments affected the 

composition of insect assemblages.  The strongest difference was between UX and 

burned (BS and BX) plots, but we found some evidence that insect communities were 

influenced by vegetation differences between BS and BX plots when UX plots were 

removed from the analysis. 

Correlations between insect families and vegetation variables provide useful 

information for evaluating potential effects of shrubland fires on insects and how best to 

support their post-fire recovery. This information could be used to assess the potential for 

recovery of insect assemblages to various disturbance types, which could in turn inform 

the development of ecological models to potentially predict the threshold of tolerance for 

functional groups of insects to disturbances.  
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INTRODUCTION 

The composition and structure of biotic communities is influenced by the regional 

species pool and develops as a consequence of interactions between abiotic and biotic 

elements of ecosystems.  Community composition and structure can be altered by 

changes in the environment associated with disturbance events and other processes.  The 

types and frequencies of disturbances may alter community composition and structure 

because of differences in responses among taxa and colonization by new taxa that 

colonize disturbed habitats or vacant niches.  Responses of different taxa to disturbance 

are complicated by ecological complexities of species-habitat associations and inter-

specific interactions, such as predation and competition.  Facilitation, release, and other 

inter-specific processes in the post-disturbance environment result in dynamic 

communities, which may form novel assemblages that are likely to change through time. 

Recent changes in disturbance types, intensities, and frequencies caused by 

anthropogenic activities may further alter community dynamics if altered disturbance 

regimes exceed the tolerances or adaptations of some taxa.  Documenting community 

composition in post-disturbance habitats and examining the biotic and abiotic factors that 

influence it is important for evaluating the successional state of communities and the 

likelihood that they will achieve their historical stable state compositions, especially 

following disturbances caused by human activities. This information may be useful for 
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biological conservation and restoration efforts that aim to maximize ecosystem or habitat 

functionality. 

At the beginning of the twentieth century, two opposing explanations of the 

mechanism of post-disturbance succession were developed and vigorously debated.  

Fredrick Clements (1916, 1936) described succession as an orderly movement through 

predictable communities that alter the environment and facilitate subsequent communities 

until a defined and stable community is achieved.  Henry Gleason (1926), however, 

described communities as haphazard assemblies of species whose colonization of 

disturbed areas is dependent on interactions with environment and proximity to the 

disturbed areas.  Though there were examples of communities that closely matched both 

hypotheses (the Intermountain West for Clements’s linear march toward stability and the 

Great Lakes region for Gleason’s haphazard assemblies), no conclusive argument could 

be made for a general application of either (Kohler 2008).  Ecologists have more recently 

considered models that combine aspects of both hypotheses (Roundy 2005).   

A goal of restoration activities is to re-establish historical climax communities.  

Expectations for the recovery of the same communities in the post-disturbance period 

makes two assumptions that may or may not hold true for anthropogenically altered 

communities: 1) communities are allowed to reach their historical equilibrium structure 

before another disturbance event occurs and 2) new species or new dominance 

arrangements among populations during successional stages prior to the equilibrium state 

do not alter the environment in a manner that changes the basic carrying capacity of that 

environment (Verhulst 1838, Pearl 1925).  If either assumption is violated, it is 

reasonable to assume that the historical climax community will not be achieved (as 
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described by Clements 1916, 1936), a novel climax community consisting of new species 

or dominance arrangements will likely emerge (Gleason 1926), and consequently, the 

historical trophic structure of the community will be altered. 

Quantitative measurements of the ecological thresholds beyond which 

communities can no longer recover from a disturbance or other environmental change 

have been described by state and transition models (STM’s) (Westoby et al. 1989, 

Scheffer et al. 2009).  State and transition models describe stable and transitory states of 

communities as they are altered from their native state by disturbance.  These models 

predict a threshold at which recovery to the native state becomes less likely and they are 

often used to identify which ecosystems are approaching this threshold (Scheffer et al. 

2009).   These models are used by federal agencies to define rangeland management 

goals and minimize transitions of landscapes from historical to novel conditions 

(http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=27123.wba).  

However, taxonomic groups are affected in various ways and to varying degrees by 

changing environmental conditions.  Identifying the level of impact of disturbances for 

any taxon is a vital first step before ecological responses of communities can be measured 

and mitigation efforts can be implemented.  

It is unrealistic to expect the responses to disturbance of all species (or all 

taxonomic groups) to be measured within a community.  As a surrogate for this, 

taxonomic assemblages must be chosen that are as representative of the entire community 

as is possible.  In this context, assemblages represent taxa within communities that can be 

classified as a defined group based on major life-history traits or their relatively close 

interactions or relationships.  Ideally, the assemblages chosen should be widespread, 
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common and quick to respond to habitat changes (Brown 1997).  Insects have been 

shown to be a good model for this purpose (McGeoch 1998, Kimberling et al. 2001, Karr 

and Kimberling 2003, McGeoch 2007).  They have short generation times, relatively 

rapid responses to disturbance (Erhardt and Thomas 1991, Brown 1997, Hodkinson and 

Jackson 2005, McGeoch 2007), and often consist of large population sizes, allowing 

robust sample sizes for statistical analysis. Moreover, insects are critically important 

members of communities around the world because they occupy the widest variety of 

niches and play more ecological roles than any other group of animals (Longcore 2003). 

Habitat destruction and fragmentation through anthropogenic activities and the 

introduction and establishment of invasive species have contributed greatly to the 

interruption of many natural disturbance regimes (Mack et al. 2000).  Of these, invasive 

annual grasses and livestock overgrazing practices have arguably caused the most 

ecological and economic damage in shrub and grass-dominated systems (D’Antonio and 

Vitousek 1992, Mack et al. 2000, Duncan et al. 2004, Pimentel et al. 2000).   Sagebrush-

dominated ecosystems cover 6.28 x 105 km2 in the western United States (West 1983, 

West 1983b).   Estimates suggest 80 to 90% of this ecosystem is negatively affected by 

anthropogenic influences such as agricultural development, urbanization, livestock 

grazing, and the introduction of invasive species (West 1999, Anderson and Inouye 2001, 

Knick 2013).  Most sagebrush-steppe habitats are vulnerable to invasion by Bromus 

tectorum (downy brome or cheatgrass; Monsen 1994, Knick 1999, Bradley 2009, Balch 

et al. 2013) through the “cheatgrass fire-cycle” (D’Antonio and Vitousek 1992), which 

has converted millions of hectares of native shrublands to areas dominated by invasive 

annual grasses (Knick 1999, Balch et al. 2013).  Although sagebrush habitats in the 
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Intermountain West historically experienced range fires, the introduction of B. tectorum 

has greatly increased the frequency, size, and intensity of fires in this system (Whisenant  

1990, Davies et al. 2011, Balch et al. 2013). Larger, more frequent stand replacement 

fires have been shown to affect sensitive sagebrush-obligate and sagebrush-dependent 

wildlife species (Knick 1999, Nelle et al. 2000, McGee 1982, Longland and Bateman 

2002).   

Despite the importance of insects within many ecosystems, studies on the effects 

of habitat loss and fragmentation on insect communities have mostly been conducted in 

agriculture-dominated landscapes (Mazerolle & Villard 1999, Jeanneret et al. 2003).  

Little information exists on the response of insects to wildfire and habitat restoration in 

rangelands (but see Wenninger and Inouye 2008; and for insect response to other 

disturbances in rangelands see Kimberling et al. 2001 and Karr and Kimberling 2003).   

We assessed the response of insect assemblage composition to wildfire 

disturbance and post-fire rehabilitation activities among three condition classes (hereafter 

referred to as treatments), burned-and-seeded (BS), burned-and-unseeded (BX), and 

unburned (UX), in sagebrush-steppe habitats.  Additionally, we determined how insect 

assemblage composition in sagebrush-steppe habitats is influenced by vegetation 

composition (Fig. 1). The effects of range fires in sagebrush-steppe habitats varies with 

the number and intensity of these events and can change vegetation composition in these 

habitats by removing native shrubs, bunchgrasses, and forbs, and allowing non-native 

annual grasses and forbs to colonize and dominate the post-fire environment.  Reseeding 

efforts are conducted in an attempt to rehabilitate as many of the native components in 

these habitats as possible.  We hypothesized that 1) post-fire seeding treatments would 
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successfully restore bunchgrasses to sagebrush-steppe habitats, but the loss of sagebrush 

and forbs and the slow pace of natural regeneration would prevent the full recovery of the 

vegetation within the time since burn at these sites. Therefore, we predicted that the UX, 

BS, and BX treatments would represent different states of vegetation composition 

(species richness and relative abundance). 2) Presence or absence of specific vegetation 

functional groups, such as shrubs, bunchgrasses or annual grasses, would be important in 

determining the quality of these sites for insects with different specific habitat 

requirements and, therefore, would be associated with specific insect groups. 3) Post-fire 

seeding treatments would lack the structure and diversity of vegetation necessary to 

provide adequate habitat to maintain the diversity of insects outside of the burned area, 

although the insect diversity of BS sites would likely be higher than that of BX sites.   
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METHODS 

Study Sites 

I conducted this study across three study sites that were randomly selected from 

all known fire rehabilitation projects (Land Treatment Digital Library [LTDL]; Pilliod 

and Welty 2013) located within the boundaries of the Northern Basin and Range 

Ecoregion (U.S. EPA, Level III Ecoregions).  Using a geographic information system 

(GIS) (ESRI, ArcMap 9.3), I first tessellated the entire area using a hexagon grid and then 

I randomly selected seven clusters of three adjacent hexagons within the boundaries of 

the Ecoregion (Fig 2).  I screened the hexagons to ensure that each contained ≥50% 

federal land ownership (largely contiguous) and sufficient roads to allow access to 

sampling areas.  From the seven hexagon clusters in the Northern Basin and Range 

Ecoregion, I randomly selected one for sampling in this study (Fig. 2).   Each hexagon 

was 64,851 ha in size. Within each of these hexagons, we used a GIS (ESRI, ArcMap 

9.3) to randomly choose one burned area from all the known burned and seeded areas 

within each hexagon (Fig. 3, Land Treatment Digital Library [LTDL]; Pilliod and Welty 

2013).   

The study sites (hereafter referred to as sites) included burned areas of differing 

ages:  the Clover Fire (1995), the Big Crow Fire (2002), and the Murphy Fire (2007, Fig. 

3).  The Murphy Fire was a large complex that would have been impractical to sample as 

a whole, so I randomly selected a subset of the burned area for sampling by using the 
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average area of all other burns to draw a radius around a representative, randomly chosen 

point along the perimeter of the burn.  Because we randomly selected our sampling sites 

from within a cluster of hexagons, which were randomly selected from within the 

Northern Basin and Range Ecoregion, the area of inference for this study is the Northern 

Basin and Range Ecoregion.  I intentionally chose study sites with variation in times 

since fire to maximize the range of vegetation condition typically found in post-fire and 

post-seeding environments. However, our design did not allow for inferences about 

ecological responses related to time since fire because of small sample sizes and pseudo-

replication of this factor (i.e. time since fire). Following each of these three fires, the 

majority of burned areas were treated with aerial or rangeland drill seeding treatments 

(see Appendix A for details about treatments).  Potential differences in vegetation 

between drill and aerial seeding treatments were not examined in this study.     

The sites were all located on moderately deep silty- or sandy-loam soils with 

slopes ranging from one to eight percent (USDA Natural Resources Conservation 

Service).  The elevations of these sites ranged from 1372 to 1617 meters.  They were all 

within the upper supramediterranean isobioclimate (Comer et al. 2003, Cress et al. 2009). 

Sampling Design 

I further tessellated the study sites plus a 50 m buffer outside each fire perimeter 

into 1-ha plots using ArcMap 9.3 (ESRI, Redlands, CA, USA) and randomly selected 

fifteen 1-ha plots within each of three strata: burned-seeded (BS), burned-unseeded (BX), 

and unburned (UX).  During our first on-site visit, we selected for analysis four of the 15 

1-ha plots from within each treatment type at each site, rejecting plots that were 

inaccessible, included more than one ecological site (e.g., more than one soil type, slope), 
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or spanned the boundary of two treatment types. I obtained burn history from the U.S. 

Geological Survey historic fire perimeters data from 1980 to 2007 (Connelly et al. 2004) 

and the Monitoring Trends in Burn Severity (MTBS) database (Eidenshink et al. 2007). 

Post-fire seeding data were compiled from the LTDL (Pilliod and Welty 2013, 

https://ltdl.wr.usgs.gov/).  Treatments included various combinations of drill seeding or 

aerial seeding of both native-only and mixtures of native and non-native seed (Appendix 

1). In the end, I established 12 1-ha sampling plots at Big Crow and Murphy sites and 11 

plots at the Clover site (Table 1). The entire burned area of Big Crow had been seeded 

and thus we were unable to establish the BX treatment type at Big Crow.  

Weather 

Variability in weather among sites and between years was estimated using 

growing degree days (GDD).  Temperature data was collected using i-Button data loggers 

(Onset Computer Corporation, Bourne, MA) at the center of each sampling plot at all of 

the sites.  GDD was calculated using a base temperature of 10 degrees celcius.  

Measurements were started on March 1 of each year and continued until August 31, 

shortly after the last sampling period.  This analysis showed little difference in GDD 

among sites or between years, though the value for 2010 at the Murphy site was slightly 

higher than the others (Fig. 4). 

In addition to GDD, precipitation data was collected from the nearest RAWS 

weather station (http://raws.fam.nwcg.gov/) to each of the sites.  The Horse Butte 

station was used for the Clover fire and the Big Crow fire and the Murphy Desert station 

was used for the Murphy fire.  Cumulative precipitation data was collected from October 

1 of the year prior to sampling through August 31 of the sampling year.  The analysis 
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indicated striking differences in precipitation between 2010 and 2011 (Fig. 5).  Due to the 

difference in weather, especially precipitation, I analyzed the data from each year 

separately, 

Vegetation Sampling 

I sampled the vegetation at each plot in 2010 and 2011 using a grid-point intercept 

method as described by Pilliod and Arkle (2013).  In each 1-ha plot, I took six 2.5 m x 1 

m photos using a Canon Powershot A590 IS digital camera fixed to a 2-meter monopod 

and aimed downward for a nadir perspective.  This is the height recommended by Booth 

et al. (2006) for use of this technique in sagebrush-steppe habitats. I quantified percent 

cover of the tallest species or abiotic component (i.e., litter, bare soil, rock) by identifying 

what object was “hit” by 100 systematically selected points (pixels) per photo using 

Samplepoint Measurement Software 1.50 (USDA Agricultural Research Service, 

Cheyenne, WY/ Fort Collins, CO). Six photos per 1-ha plot were found to provide 

reasonable estimates of cover in similar shrub-steppe habitats, based on a comparison of 

methods used in other studies such as line-point intercept (Pilliod and Arkle 2013). In 

addition, I recorded maximum height of several functional groups of vegetation within a 

1 m x 1 m frame placed at the center of the sampling plot: shrubs, native forbs (non-

woody flowering plants), native bunch grasses, and non-native annual grasses.  For a 

complete list of variables measured, see Appendix B. 

To better understand the similarity of the vegetation in my study sites with that of 

the surrounding landscape, I analyzed course-scale vegetation cover within a three-

kilometer buffer of the study sites using a land cover GIS layer (LANDFIRE Existing 

Vegetation Type Layer. U.S. Department of Interior, Geological Survey.  Available: 
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http://landfire.cr.usgs.gov [2013, June 26]).  Vegetation surrounding the burned area may 

play a role in determining whether insects were able to survive the fire by escaping to 

undisturbed suitable habitat and/or whether insects were able to re-colonize the burned 

habitats quickly after the fire.  I identified the percent cover of vegetation functional 

groups (i.e. shrubs, annual grasses) surrounding the sites using the land cover GIS layer.   

I found differences in landscape vegetation cover surrounding our three study 

sites. The Clover site was surrounded by the most shrub cover (81.0%), followed by Big 

Crow (41.1%) and Murphy (22.6%). Annual grass cover, which was predominantly 

cheatgrass, followed the opposite trend with 11.9% annual grass cover at Clover, 47.2% 

at Big Crow, and 69.5% at Murphy (Fig. 6).   

In addition to measuring the vegetation surrounding the sites, I analyzed 

differences among the UX plots across sites to determine their similarity using multi-

dimensional permutation procedures (MRPP, McCune and Grace 2002).  I used this 

analysis to determine the similarity or dissimilarity among UX plots at our three sites.  I 

found the sites were significantly different from one another (T=-4.46 A= 0.17, p<0.001).  

I compared the vegetation composition of the UX plots using general linear models to 

compare vegetation functional groups (Table 2).  I found that the sites differed in the 

percent cover of litter (F2,10=6.12, p<0.01), native bunchgrasses (F2,10=4.28, p<0.05), 

crested wheatgrass (A. cristatum, F2,10=7.71, p<0.01), and shrubs (F2,10=19.24p>0.0001).  

The variability in the unburned plots across sites represents normal variability in 

sagebrush-steppe vegetation that can be caused by variation in soil type, weather, land 

use history and intensity, and previous fire-disturbance history (values compared to 

Knutson et al. 2014).  To increase inference from the level of each site to the level 
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described above, I analyzed samples from all sites within treatments together to address 

the main hypotheses of the study. I analyzed sites separately only when this was 

necessary to clarify results from the main analyses.  This approach allowed me to draw 

conclusions about our hypotheses within the context of pre-existing site-level variability. 

Insect Sampling 

I sampled insects in the summers of 2010 and 2011 using pitfall traps (250 mL 

mason jars) and Japanese beetle flight traps (Great Lakes IPM, Inc.) using a protocol 

developed by Lowe et al. (2010).  I placed five pitfall traps 5 m from the center of each 

plot at bearings of 36°, 108°, 180°, 252°, and 324° (Figure 7).  I filled each pitfall trap 

with approximately 75 ml of low toxicity antifreeze to kill the insects once trapped.  I 

placed one blue and one yellow flight trap in each plot, 10 m from the center of the plot.  

The placement of the first trap was determined by a randomly assigned bearing from the 

plot center and the second was placed 180º from the first.  Each flight trap contained an 

insecticide that killed insects once trapped. Traps were left open for five nights.  After the 

fifth trapping night, I collected the traps. In the laboratory, I transferred the insects to 

ethanol and identified and enumerated each insect to family using Triplehorn and 

Johnson (2005).   

All pitfall traps within a plot were pooled to create a single pitfall sample from 

each plot.  I analyzed each flight trap within a plot separately because color of the trap 

attracted different types of pollinators (Rohde, unpublished data). Thus, each 1-ha plot 

was represented by a single pitfall sample, a single blue flight trap sample, and a single 

yellow flight trap sample, with each analyzed separately. Thus, while I collected insects 

in 175 pitfall traps (35 plots x 5 traps per plot) and 70 flight traps (35 plots x 2 traps per 
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plot) annually, my analyses used annual sample sizes of 16 BS plots, 8 BX plots, and 11 

UX plots (Table 1).  

Samples from the Clover and Big Crow fires were collected within a two-week 

period each year of the study to minimize the effect of seasonal variation.  Samples from 

Murphy fire were collected over a longer period due to logistical constraints.   

Data Analysis 

To address hypothesis 1, I tested the effect of post-fire seeding on vegetation 

composition by comparing vegetation percent cover values at plots from each treatment 

type using MRPP and non-metric multidimensional scaling (NMS, McCune and Grace 

2002).  I used graphs of NMS ordinations to visualize the relationships among sampling 

plots and treatments.  

To address hypothesis 2, I measured the effect of vegetation composition on 

insect assemblage composition using NMS ordination.  I used separate NMS analyses to 

simplify multivariate vegetation and insect data into two or three synthetic variables.  I 

then used general linear models to determine if insect composition was related to 

vegetation composition.  I compared the synthetic NMS variables from the insect dataset 

to the plot-level percent cover of vegetation functional groups to determine the vegetation 

functional groups with which the insect assemblages were most strongly associated.  I 

used linear regression analysis to examine the relationship between the synthetic 

vegetation NMS variables and insect family abundance; this allowed me to determine 

which insect families were most strongly associated with general vegetation 

characteristics.  Relationships with a R2 value of 0.2 or higher were considered 

biologically relevant (McCune and Grace 2002).  Finally, I used general linear models to 
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examine the relationship between insect family abundance and percent cover of specific 

vegetation functional groups. 

To address hypothesis 3, I evaluated the effect of post-fire seeding on insect 

assemblage composition by comparing insect samples at plots from each treatment type 

using MRPP and NMS.  I used graphs of NMS ordinations to visualize the relationships 

among sampling plots.  Also, I compared measurements of Simpson’s diversity index 

(D’) and heterogeneity (BD) among treatments using general linear models. 

I conducted all of my analyses using PC-Ord 6 (MjM Software Design, Gleneden 

Beach, OR) and SAS 9.3 (SAS Institute Inc., Cary, NC).  All data that were more than 

two standard deviations from the mean were determined to be statistical outliers.  

However, I did not remove samples from the analyses unless there was a known 

biological reason to believe they were compromised.  If removing an extreme statistical 

outlier changed the results of an analysis, I reported both results.  Some of the NMS 

analyses produced three-dimensional solutions.  Two-dimensional figures are often easier to 

interpret, therefore in addition to three-dimensional figures, I also included figures 

representing two of the three dimensions.  The two axes we chose sufficiently described 

the majority of the variability in the analysis and described correlations with 

environmental variables. 
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RESULTS 

Differences in Vegetation Composition Among Post-Fire Seeding Treatments 

Of all the vegetation functional groups tested, I found only percent cover of 

sagebrush varied significantly among treatments in 2010 (Table 3).  Pairwise 

comparisons revealed that this relationship was driven by differences between UX plots 

and plots from both of the burned treatments (F1,10=7.68, P<0.01).  There was no 

significant difference between the percent cover of shrubs for BS and BX plots. 

In 2011, however, I found the cover of biological crust and moss, litter, native 

bunchgrasses and cheatgrass, as well as sagebrush, to be significantly different among 

treatments (Table 3).  Consistent with the data from 2010, pairwise comparisons 

indicated significant differences in sagebrush cover between UX plots and plots from 

both of the burned treatments (F1,10=28.61, P<0.0001). BX plots were not different from 

BS plots.  This pattern was also found for biological crust and moss (F1,10=4.59, P<0.05).   

BX plots contained significantly lower percent cover of litter than the other two 

treatments (F1,10=5.06, P<0.05).   Finally, cheatgrass cover was significantly higher at BX 

plots than at BS or UX plots, which were not significantly different from each other 

(F1,10=6.60, P>0.05).   

When I compared all three treatments using MRPP analysis, significant 

differences in vegetation composition for 2010 and 2011 were found (Table 4).  In 2010, 

I found UX plots to be significantly different from BS plots, but not from BX plots.  



16 

 

However, in 2011, I found all treatment types to be significantly different from one 

another, with the strongest difference between UX plots and the other two treatments.  

The analysis was run twice for 2011, once including an extreme outlier and once 

excluding it.  The removal of the outlier did not affect the significance of the overall 

treatment or the pattern of significance in the pairwise comparisons, though the effects 

were weakened with the outlying plots removed (data not shown).  

I was able to describe 86.2% of the variability in the vegetation model for 2010 

and 89.5% of the variability in the model for 2011 using NMS (final stress values of 

12.07 and 14.88 respectively, Fig. 8 and 9).  The position of the plots within ordination 

space indicated overlap in the composition of the vegetation of many plots of the three 

treatments.  This result is in agreement with relatively small T and A values from the 

MRPP analysis, indicating a small, yet significant, effect of treatment on vegetation 

composition.   

I found that diversity (D’) and heterogeneity (BD) differed among treatments in 

2011 (F2,34=4.17, 3.45 respectively, p>0.05), but not in 2010.  When I analyzed samples 

grouped by treatment from 2011 in pairwise analyses, I found that the significance of 

these relationships was driven by differences between the BX treatment and the other 

treatments (Table 5). 

Relationship Between Vegetation Composition and Insects 

In total, 41,302 individuals from 204 insect families were sorted, identified, and 

counted.  For a complete list of families, see Appendix C.  When I compared NMS values 

representing vegetation composition to NMS values representing insect assemblage 

composition, I found that, regardless of year or trapping type (i.e., pitfall or  flight traps), 
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insects were associated with the overall vegetation composition (Table 7).  All axes from 

the NMS of vegetation composition were separately compared to each axis of the insect 

NMS composition.  One axis from each insect sampling type was significantly associated 

with vegetation (Table 6). 

When I compared insect families with vegetation by measuring the eigenvalues of 

the associations of all 204 insect families collected with the NMS values for the 

vegetation composition, I found fifteen families from the orders Hymenoptera, 

Coleoptera, Diptera, and Hemiptera were meaningfully (R2>0.2, McCune and Grace 

2002) associated with vegetation composition (Table 7). 

The insect families that I identified as strongly associated with vegetation were 

captured in habitats containing functional groups of vegetation that may be associated 

with specific vegetation conditions (Table 8). I compared the variance in abundance of 

the families from Table 7 to the percent cover of vegetation composition of the functional 

groups of vegetation in Table 8, four families associated clearly with vegetation groups 

associated with habitat dominated by sagebrush, two associated clearly with habitat 

dominated by bunchgrasses and four with habitat dominated by annual grasses.  Only two 

families, Staphylinidae and Tapinidae, were associated directly with shrubs, though many 

more families were associated with well-developed biological crust and moss, which is 

generally found in undisturbed sagebrush-steppe habitats.  Five families were associated 

with vegetation functional groups that one might expect to find at multiple habitat types.  

For example, they may have been associated with well-developed biological crust (UX) 

and crested wheatgrass (BS). One family, Megachilidae, was found to be significantly 
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associated with overall vegetation composition (Table 7), but no specific vegetation 

functional groups (Table 8).  

Relationship Between Insects and Post-Fire Seeding 

I found a significant difference in insect assemblage composition among 

treatments for insects captured in flight traps (T=-3.08 A=0.009, p>0.01) and a nearly 

significant difference for insects captured in pitfall traps (T=-1.551 A=0.0068, p>0.1) 

using MRPP (Table 9).  Variation in insect samples among years that was not associated 

with vegetation was designated by the term “year” in this analysis.  Groups defined by 

year were also found to be significant for both trapping types (flight: T=-12.42 A=0.026 

p>0.001, pitfall: T=-14.78 A=0.045, p>0.001).  The strength of separation (T) and 

homogeneity (A) within groups varied dramatically between variables.  Of the original 

measured variables, groups defined by year were well separated and groups defined by 

treatment exhibited relatively weak relationships.  NMS analysis confirmed the weak 

definition of treatment groups (Fig. 10-12).   Groups defined by the interaction term had 

values of T and A that were intermediate between the grouping variables included in the 

interaction.   

Analysis of the pairwise comparisons of treatments indicated that insects captured 

in flight traps were significantly different at BX plots from insect captured at UX and BS 

plots, but insects from UX and BS plots were not significantly different from each other 

(Table 10).  However, for insects captured in the pitfall traps, the only significant 

difference was between the UX and BS plots. 
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Influence of Landscape-Scale Interactions 

MRPP analysis of the three sites separately (Table 11), analysis of the 

surrounding landscape (Fig. 6), and analysis of diversity at each site separately (with and 

without UX plots included, Table 12, Fig 13) indicated that unburned habitat surrounding 

the sites caused landscape effects that influenced the composition of insects captured in 

flight and pitfall traps.  MRPP analysis of insects from flight traps at the Clover site 

indicated no significant difference among treatments.  However, when samples collected 

at the UX plots were removed, significant differences between samples from BS and BX 

plots were detected (T=-1.63 A=0.02 p<0.1).  At the Murphy site, removal of UX plots 

from the analysis of insects from flight traps did not reveal any subtle relationships 

between insect samples collected at BS and BX plots (T=-0.30 A<0.01 p>0.1). Analysis 

of pitfall traps with and without UX plots did not affect the significance of the analysis; 

no treatments were found to be significantly different from one another.   

For the flight traps, diversity analyses of insect composition indicated that 

estimates of site level (gamma) diversity and heterogeneity (beta) were reduced at the 

Clover and Big Crow sites when unburned plots were removed from the analysis. These 

values actually increased slightly at the Murphy site when richness was estimated using 

the Chao 1 richness indicator (Table 12, Chao and Jost 2012, Colwell 2013).  For the 

pitfall traps, gamma and beta were reduced at all sites when UX plots were removed from 

the analysis 

The separation among groups defined by treatment appeared weak for both flight 

and pitfall traps when visualized by NMS ordination.  Only a few samples from each 

group were situated away from the main cloud of samples (Fig. 10).  Of these, samples 
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from the BS treatment and the BX treatment tended to be different from each other while 

samples from the UX treatments tended to contain the most diversity, including insects 

associated with both of the other treatment types.  There was only one vegetation 

association in this analysis; some of the plots from all treatments were associated with 

Snake River Wheatgrass (Elymus wawawaiensus), a native bunch grass species.  NMS 

analysis described 78% of the variability in the flying insect samples with a final stress of 

14.07. 

In the pitfall trap analysis, there was a weak pattern when samples were grouped 

by treatment in which the distribution of the samples from BS and BX plots were more 

positively correlated with percent cover of cheatgrass and bunchgrass than the samples 

from UX plots (Fig. 11 and 12).  There was one exception of an outlier sample from the 

unburned plots.   We described 77.5% of the variability in the pitfall trap samples with a 

final stress of 14.11 in this analysis. 

Analysis of the diversity (D’) and heterogeneity (BD) of the insect assemblage 

compositions showed significant differences only in samples from yellow flight traps in 

2010 (Table 13).  Pairwise comparisons of samples from the three treatment types 

showed that this difference is driven by the UX plots (Table 14).  
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DISCUSSION 

Differences in Vegetation Composition Among Treatments 

The results of my analyses of vegetation composition support my hypothesis that 

the three treatments represent different vegetation assemblages, though plots that were 

seeded are more similar to unburned plots than those which were not seeded.  As was 

predicted, differences in the percent cover of sagebrush among UX and burned sites, 

regardless of treatment, was striking (Table 3).  

However, NMS ordination and weak MRPP T and A values indicated that the 

overall effect of treatments was small due to overlap in the vegetation composition 

among the three treatments (Table 4, Fig. 8 and 9).  Despite their apparent small effect, 

seeding treatments did appear to reduce the amount of cheatgrass at these sites (Table 3).  

Also, significant differences in D’ and BD values in 2011 indicated that diversity and 

heterogeneity of vegetation cover was only different (lower) at BX plots, although I did 

find some differences between UX and BS plots for biological crust and moss and native 

forbs in 2011.   

Despite an increase in some vegetation groups and despite the inclusion of 

sagebrush seed in seeding treatments at all of the sites, recovery of sagebrush was not 

achieved by post-fire seeding treatments.  In addition, the slow natural growth rate of 

sagebrush and environmental alteration of the sites following fire probably contribute to 

the poor recovery of this species after wildfires (Whisenant 1990, Knick 1999, Balch et 
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al. 2013).  Sagebrush forms a complex relationship with micorrhizal fungi that has been 

shown to aid in establishment and survival (Reeves et al. 1979, Busby et al. 2013).  These 

fungi were not sampled in our study so it is impossible for us to determine whether they 

were present in the soil after these fires. Finally, even if sagebrush plants did establish at 

these sites, it is likely that the increased fire frequency associated with the “cheatgrass-

fire-cycle” would kill them before they could reach reproductive maturity (Whisenant 

1990, Baker 2006, Balch et al. 2013). 

My results in combination with previous literature (Whisenant 1990, Balch et al. 

2013, Arkle et al. 2014) indicate that it is unlikely that vegetation assemblages at the 

three study sites will reach the composition and structure associated with historical 

sagebrush-steppe equilibrium conditions.  The BS plots appear to represent a different 

ecological state from BX plots because they are dominated by native and/or non-native 

bunchgrasses and forbs seeded into these areas. They also contain much less cheatgrass 

than BX plots.  However, the maintenance of the ecological state associated with BS 

plots will probably require continued intervention following each wildfire. The purpose 

of such reseeding efforts is not to re-establish all the components of sagebrush-steppe 

communities, but to keep the vegetation in these areas from transitioning to the 

conditions associated with BX plots (http://www.doi.gov/pmb/ouf/es_bar.cfm).   

The Relationship Between Vegetation Composition and Insects 

Consistent with my hypothesis, insect assemblage composition was found to be 

significantly associated with vegetation composition.  Comparisons of NMS values from 

vegetation analyses at each site compared to individual axes from NMS analyses of insect 

samples at the same site showed that insects associated with only one axis from each 
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insect sample analysis was driving this relationship.  This result indicated that samples 

that loaded strongly on axes not associated with vegetation composition were composed 

of insects that were most strongly affected by variables other than vegetation 

composition, while samples that loaded strongly on the axis that was significantly 

correlated with vegetation composition were composed of insect families that depend 

strongly on vegetation.   

Fifteen insect families were strongly associated with vegetation, which supports 

my hypothesis that the presence or absence of specific vegetation groups determines the 

quality of habitat for specific insect groups (under certain conditions).  In the case of 

insects that are strongly affected by vegetation, most were found to have specific habitat 

needs, but it is possible that some generalists (for example Megachilidae) are also 

dependent on overall vegetation structure for success (Tallany 2004). 

Many of the insect families captured (189) were not found to have a strong 

association with vegetation.  However, of these families, 67 had fewer than five 

individuals captured in both years.  It is possible that relationships could not be 

determined with so few individuals.  The remaining 122 families may be strongly 

influenced by environmental factors other than vegetation.  Wenninger and Inouye (2008) 

found evidence that moisture plays a role; aspects of weather such as day-to-day 

fluctuations in temperature and wind may also be important.  Although relationships 

between some insect families and environmental influences that were not measured in 

this study may mask relationships between those families and vegetation, this is not 

necessarily evidence that they do not have an association.  This simply indicates that the 

insects respond more strongly to other variables. Variability in environmental conditions 
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may represent a situation that requires behavioral alterations by most insects; if these 

conditions did not occur, associations between insects and vegetation might be better 

resolved. 

When insect families were compared to functional groups of vegetation 

separately, only two families were found to be significantly associated with shrubs.  

However, the Nadir photopoint analysis has been shown to underestimate the percent 

cover of relatively rare plant species or functional groups because they are unlikely to be 

included in photos (Pilliod and Arkle 2013).  A different vegetation measurement 

technique, such as point-quarter measurements (Pilliod and Arkle 2013), may have 

provided a more inclusive description of all aspects of the vegetation and revealed 

stronger relationships between sagebrush and insects associated with undisturbed habitat.  

Despite this potential sampling bias, many families were associated with well-developed 

biological crust and moss, which is a component associated with undisturbed sagebrush-

steppe communities (Peterson 2013).  It is likely that families associated with biological 

crust and moss are also associated with undisturbed sagebrush-steppe habitats, of which 

sagebrush is a component. 

The Relationship Between Insects and Post-Fire Seeding 

My third hypothesis, that seeding treatments would lack the structural diversity to 

maintain the insect assemblage associated with UX habitats, was only partially supported.  

I found only weak evidence that post-fire seeding treatments were different or internally 

consistent enough to affect the distribution of insects.  Differences that were seen among 

treatments in the MRPP analysis were driven mostly by differences between UX plots 

and all burned plots (BS and BX).  Unburned plots were found to be most strongly 
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differentiated from burned plots by their percent cover of sagebrush and litter (produced 

by sagebrush, Table 3).   If shrub-cover was the only important factor driving the 

differences in insect assemblage composition, I would not expect to see differences 

between BS and BX plots.  However, I observed significant differences between the 

insect compositions at BX and BS plots for flying insects at our study sites in MRPP 

analysis (Table 11).  This indicates a more complex relationship between vegetation and 

flying insects than can be described by sagebrush cover alone. 

When insect families that were strongly correlated with vegetation composition 

were analyzed with an array of vegetation functional groups, I found them to be 

associated with the vegetation found in specific treatments.  For example, members of the 

family Halictidae were significantly associated with Sandberg’s bluegrass (Poa secunda), 

native forbs, non-native forbs, crested wheatgrass and (only in 2011) cheatgrass (Table 

8).  The associations with these functional groups indicate that bees in the family 

Halictidae were associated with the habitat condition of BS plots.  Areas that were seeded 

(BS plots) contained higher percent cover of native forbs than areas that were not seeded 

(BX plots) or that never burned (UX plots).  These bees are nectivorous and may be 

attracted by the many flowering forbs available to them at such sites (Triplehorn and 

Johnson 2005).   

Similarly, insects from the family Pompilidae, which are parasitoid wasps, were 

found to be associated with vegetation characteristics found in BX plots.  This may occur 

because these parasitoids are more easily able to find and capture prey in habitats with 

less vegetation structure (Triplehorn and Johnson 2005).  Eumeninae (a subfamily of 

Vespidae that was formerly recognized as a separate family, Eumenidae), mason and 
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potter wasps, are associated with vegetation that is typical of UX plots.  These wasps 

often require sticks and twigs to construct their nests and primarily parasitize caterpillars, 

which are most likely to be found living in vegetation that is structurally complex (UX 

plots, Triplehorn and Johnson 2005).  Comparisons between the percent cover of 

vegetation characteristics found in each treatment and insect family associations with 

vegetation functional groups reveal similar patterns for most of the families identified in 

our study (Table 8).   

One family, Megachilidae, did not show any strong associations with any single 

vegetation functional group, despite being strongly associated with vegetation (Table 8).    

This result indicates that no functional group of vegetation alone was sufficient habitat 

for these bees, but they may require combinations of vegetation components throughout 

their life cycle.  Megachilids are generalists who are strongly dependent on a variety of 

vegetation types (Sihag 1983, Seivy and Dorn 2014).    

The relationship between post-fire seeding (BS plots) and insect assemblages may 

be weak because the plots we sampled are smaller than the dispersal distances of the 

populations or even individuals captured in the study (Gathmann and Tscharntke 2002).    

If this is the case, the insect diversity in the sampling areas may be driven by insects that 

are found in the vegetation surrounding the sites.  If the dispersal capability of individuals 

was larger than the study sites, it is possible that insects were captured as they were 

foraging or resting at intact islands of habitat.  In this case, the insects sampled may not 

have been resident to the sampling site at all (or at least not exclusively).  

The data describing insect diversity and composition at plots within sites indicate 

that the vegetation on the landscape surrounding the sites may impact our estimate of the 
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diversity and composition of flying insects at the sites (Figure 13).  The shrub cover 

around the Clover site was the most extensive, the Big Crow site had an intermediate 

amount and the Murphy site was surrounded mostly by burned area that no longer 

contained a shrub component.  When insect samples from the flight traps were 

manipulated to represent habitat including and excluding UX plots, the Murphy site was 

found to contain few, if any, insects that were associated with unburned habitat (Table 

12).  The Big Crow site contained no BX habitat and it consistently had the lowest 

diversity of all the sites, though the diversity at this site was reduced even more when the 

UX plots were removed from the analysis.  These results indicate that each treatment 

supports different insect taxa.  Changes in habitat composition are most likely to reduce 

the survival of species typical of the original habitat (Tcharntke et al. 2002) and most 

strongly affect specialists (Tcharntke and Brandl 2004).   

  Flying insects are more likely to re-colonize from adjacent intact habitat than 

crawling insects.  Flying insects that are captured in flight traps are more vagile and, 

therefore, disperse farther and more efficiently than crawling insects, which were 

primarily captured in pitfall traps. Evidence that flying insects associated with unburned 

habitat are more common at sites with more sagebrush cover surrounding them combined 

with their relatively long dispersal ability indicate that the flying insects that are 

associated with sagebrush in this study may inhabit a range larger than that of the 

sampling sites and, therefore, re-colonize relatively quickly.  The relatively high vagility 

of flying insects, which are primarily what we captured in our flight traps, make it 

possible for such organisms to move among patches of suitable habitat within a region 

(Tcharntke and Brandl 2004).  The extensive shrub cover around the Clover and Big 
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Crow sites may provide source populations for flying insects to utilize the UX plots 

within the study site as a portion of their range.  The Murphy site, however, is surrounded 

by non-native grasslands that do not provide sufficient habitat for insects associated with 

sagebrush or dispersal corridors to allow individuals to move among patches of suitable 

habitat.  Despite their relatively long dispersal abilities, flying insects associated with 

sagebrush were under- or unrepresented at this site.  One explanation for this is that the 

distribution of flying insects across the landscape was limited by the large geographical 

extent of unsuitable habitat between suitable undisturbed patches. 

The beta and gamma diversity of insects captured in the pitfall traps at the 

Murphy site were reduced when the UX plots were removed from the analysis (Table 

12), which is in contrast with the results from the flight traps.  These results could 

indicate that fragmented populations of less vagile crawling insects were trapped on 

patches of sagebrush-steppe habitat, as they were less likely to cross unsuitable 

vegetation than flying insects.  Although the crawling insect specialists were apparently 

unable to escape the remnant patches of suitable habitat, relatively dense populations of 

such organisms have been found to persist in fragmented habitat (Murphy et al. 1990), no 

doubt aided by life history characteristics that do not require long distance travel for 

foraging.   These populations are at greater risk of extinction due to stochastic 

environmental events and due to their inability to escape a future wildfire that is likely to 

remove suitable sagebrush habitats that remain (Murphy et al. 1990). 
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Implications of the Study 

I found evidence to support my hypotheses that fire disturbance and post-fire 

seeding alter vegetation composition and that vegetation composition plays a role in 

determining insect assemblage composition.  I found little evidence, however, to suggest 

that there is a relationship between post-fire seeding treatments and insect assemblage 

composition.  MRPP values for this relationship were significant and as strong as those 

for our other analyses, but they were mostly driven by differences in shrub-cover between 

unburned (UX) and burned plots (BS and BX).  Furthermore, results from this study 

indicate that reseeding treatments following range fires alter the vegetation from the state 

associated with unburned sagebrush-steppe vegetation to a state characterized by the 

presence of native bunchgrasses and crested wheatgrass.  If no reseeding occurs, such 

disturbed sites are likely to be infested by invasive annuals such as cheatgrass.  Our 

results also indicate that, although reseeding alters the vegetation, these efforts do not 

effectively rehabilitate insect assemblages to the composition of assemblages found in 

nearby unburned plots.   

Correlations between insect families and vegetation variables may inform future 

studies to determine the degree to which insect assemblages are influenced by changes in 

vegetation due to fire or other factors occurring in shrublands and grasslands.  This 

information could be used to assess the response of insect assemblages to various 

disturbance types, which could in turn inform the development of state and transition 

models that predict the response of other biotic components within sagebrush-steppe 

communities to disturbances.  In addition, correlations of specific functional groups or 

families to environmental variables could be used to predict the distribution of these 
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organisms across geographic space or through time as habitats are altered by various 

drivers of global change, especially climate change (McGill et al. 2006, Sala et al. 2000).  

Alteration of vegetation and insect assemblages due to increased fire frequency 

and intensity, and the prominence of invasive plant species represents an irreversible 

alteration of sagebrush-steppe habitats.  The relationships between environmental 

parameters such as the disturbance regime, vegetation, and the composition of insect 

assemblages are among the most basic trophic-level interactions for entire communities 

and ecosystems.  Without successfully restoring and maintaining all components of the 

vegetation and insect assemblages, animals from higher trophic levels are not likely to 

fully utilize disturbed habitats.  These conditions may signal the creation of novel habitats 

(sensu Hobbs et al. 2013) in the Intermountain West region of the United States. 
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TABLES 

Table 1. The number of 1-ha plots sampled by treatment across study sites. We 
sampled 24 burned plots (BS + BX), 16 that were seeded (BS) and 8 that were not 
seeded (BX); 11 nearby unburned plots (UX) served as controls or pre-fire reference 
conditions. No unburned, but seeded (i.e., US) treatments existed. 

 BS BX UX 
Big Crow 8 - 4 

Clover 4 4 3 
Murphy 4 4 4 

Total 16 8 11 
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Table 2. GLM analysis comparing differences in percent cover of vegetation 
functional groups among sites (Clover, Big Crow and Murphy) and years (2010 and 
2011) at UX plots.   Asterisks next to F values indicate level of significance:  * = 
P>0.1, **=P>0.05, ***=P>0.01, ****=P>0.001. 

Variable Vegetation Group F 

Site 

Bare Ground 2.25* 
Biological Crust and Moss 0.77 

Litter 6.12*** 
Poa Secunda 0.11 

Native Bunchgrasses 4.28** 
Native Forbs 1.82 
Cheatgrass 0.47 

Crested Whestgrass 7.71*** 
Non-native Forbs 0.96 

Sagebrush 3.44* 
Shrubs 19.24**** 

Year 

Bare Ground 2.49 
Biological Crust and Moss 1.00 

Litter 0.13 
Poa Secunda 3.14* 

Native Bunchgrasses 0.02 
Native Forbs 10.76*** 
Cheatgrass 0.65 

Crested Whestgrass 0.25 
Non-native Forbs 0.52 

Sagebrush 0.07 
Shrubs 0.33 
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Table 3. Mean percent cover of vegetation functional groups in each treatment 
type and GLM analysis comparing the groups among treatments.  Asterisks next to 
F values indicate level of significance: * = P>0.1, **=P>0.05, ***=P>0.01, 
****=P>0.001. 

Vegetation Variable Year UX BS BX F 

Bare Ground 
2010 38.13 ± 3.74 37.29 ± 2.07 39.77 ± 3.65 0.19 

2011 27.51 ± 4.00 31.82 ± 2.54 35.79 ± 6.24 0.88 

Biological Crust and 
Moss 

2010 3.81 ± 1.90 1.55 ± 0.55 1.52 ± 0.71 1.51 

2011 9.49 ± 3.38 3.42 ± 1.43 2.10 ± 1.30 3.01* 

Cheatgrass 
2010 1.94 ± 1.27 3.61 ± 1.40 4.48 ± 2.05 0.59 

2011 3.88 ± 2.00 7.85 ± 2.82 21.98 ± 9.30 2.78* 

Crested Wheatgrass 
2010 3.85 ± 2.54 3.44 ± 1.20 1.04 ± 1.04 2.19 

2011 5.28 ± 2.95 4.31 ± 1.63 1.68 ± 1.26 0.82 

Litter 
2010 23.31 ± 3.09 24.88 ± 1.76 27.15 ± 1.23 2.11 

2011 23.34 ± 1.91 24.06 ± 1.16 18.71 ± 2.19 5.36*** 

Native Bunchgrasses 
2010 3.42 ± 1.38 8.45 ± 2.01 4.02 ± 1.01 1.17 

2011 2.89 ± 0.96 11.03 ± 2.13 4.14 ± 0.92 1.72* 

Native Forbs 
2010 0.10 ± 0.05 0.29 ± 0.10 0.73 ± 0.59 0.46 

2011 0.93 ± 0.21 2.55 ± 0.77 1.15 ± 0.27 3.32 

Non-native Forbs 
2010 0.17 ± 0.14 0.87 ± 0.28 0.85 ± 0.53 0.72 

2011 0.15 ± 0.06 1.31 ± 0.52 1.04 ± 0.32 0.62 

Poa Secunda 
2010 5.65 ± 0.85 10.48 ± 1.43 8.35 ± 2.18 1.13 

2011 10.34 ± 2.36 8.91 ± 1.04 7.06 ± 1.69 1.48 

Sagebrush 
2010 10.73 ± 3.34 2.18 ± 1.60 3.06 ± 1.66 4.21** 

2011 11.33 ± 2.52 0.83 ± 0.71 2.31 ± 1.10 16.11**** 

Shrubs 
2010 2.69 ± 1.10 2.43 ± 1.11 2.69 ± 1.74 0.01 

2011 1.94 ± 0.72 1.52 ± 0.68 2.09 ± 0.81 0.16 
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Table 4. MRPP analysis of the effect of treatment type on vegetation 
composition within years including comparisons of all treatment groups together 
and pairwise comparisons. Asterisks next to F values indicate level of significance: * 
= P>0.1, **=P>0.05, ***=P>0.01, ****=P>0.001. 

Year Comparison T A 
2010 UX vs. BS vs. BX -1.50 0.02* 
2011 UX vs. BS vs. BX -3.49 0.05*** 

2010 
UX vs. BS -1.78 0.02* 
BS vs. BX -0.37 <0.01 
UX vs. BX -0.90 0.02 

2011 
UX vs. BS -2.90 0.04*** 
BS vs. BX -1.78 0.03* 
UX vs. BX -2.82 0.06*** 
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Table 5. Pairwise comparisons of the significant comparisons found for 
Simpson’s D’ and BD for vegetation composition among treatments. Asterisks next 
to F values indicate level of significance: * = P>0.1, **=P>0.05, ***=P>0.01, 
****=P>0.001. 

Comparison Metric F 
UX vs. BS D' 0.01 

UX vs. BX D' 5.82** 
UX vs. BX and 

BS 
D' 2.13 

BS vs. BX D' 6.92** 

UX vs. BS BD >0.01 

UX vs. BX BD 4.76** 
UX vs. BX and 

BS 
BD 1.72 

BS vs. BX BD 5.77** 
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Table 6. General linear models were used to compare each axis of the NMS 
representing insect sample composition to the overall vegetation composition 
represented by all NMS values from the vegetation analysis.  One axis from each 
insect NMS correlated significantly with the vegetation at the sites when alpha = 0.1 
or lower.  Asterisks next to F values indicate level of significance: * = P>0.1, 
**=P>0.05, ***=P>0.01, ****=P>0.001. 

Year Trapping type Insect Axis F R2 

2010 

Blue Flight Traps 
Axis 1 0.64 0.20 
Axis 2 2.77** 0.52 

Yellow Flight Traps 
Axis 1 3.73*** 0.52 
Axis 2 0.41 0.11 

Pitfall Traps 
Axis 1 0.38 0.04 
Axis 2 3.41** 0.25 
Axis 3 1.11 0.10 

2011 

Blue Flight Traps 
Axis 1 2.35* 0.19 
Axis 2 1.26 0.11 

Yellow Flight Traps 
Axis 1 3.22** 0.24 
Axis 2 0.05 0.01 

Pitfall Traps 
Axis 1 18.4*** 0.54 
Axis 2 0.09 0.01 
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Table 7. Correlation analyses were conducted between each family of insects 
and the vegetation NMS values to determine the families that had the strongest 
relationships with vegetation.  Only families with R2 values above 0.2 were treated 
as biologically meaningful and are shown here. 

Year Trapping Type 
Vegetation 

Axis 
 

Order Family R 2 

2010 

Blue Flight Traps Axis 3 Coleoptera Staphlinidae 0.22 

Yellow Flight Traps 

Axis 1 Hemiptera Lygaeidae 0.21 

Axis 2 
Hymenoptera Halictidae 0.35 
Hymenoptera Pompilidae 0.23 

Axis 3 
Hymenoptera Eumenidae 0.25 

Diptera Chamaemyidae 0.26 
Pitfall Traps Axis 3 Hymenoptera Megachilidae 0.21 

2011 

Blue Flight Traps Axis 1 

Hymenoptera Halictidae 0.29 
Hymenoptera Mutilidae 0.48 

Diptera Chamaemyidae 0.34 
Diptera Lauxanidae 0.48 

Yellow Flight Traps 
Axis 1 Diptera Chamaemyidae 0.36 

Axis 2 
Diptera Tachinidae 0.38 
Diptera Ceratopogonidae 0.25 

Pitfall Traps 
Axis 1 

Hymenoptera Scelionidae 0.36 
Diptera Sepsidae 0.21 

Axis 2 
Diptera Tapinidae 0.34 

Coleoptera Elateridae 0.33 
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Table 8. GLM analyses of the insect families found to be meaningful in Table 7 
with the percent cover of vegetation functional groups.  Non-significant 
relationships were not included.  Numbers next to insect families represent 
vegetation conditions that may be associated with the vegetation groups preferred 
by the families: 1= sagebrush dominant, 2=bunchgrass dominant, 3= annual grass 
dominant.  Asterisks next to F values indicate level of significance: * = P>0.1, 
**=P>0.05, ***=P>0.01, ****=P>0.001. 

Year Insect Family Vegetation Group F 
Direction of 

Relationship 

2010 

Halictidae2 

Poa Secunda 3.62* + 

Native Forbs 24.45**** - 

Crested Whestgrass 3.53* + 

Non-native Forbs 10.14*** + 

Pompilidae3 

Litter 2.46** - 

Poa Secunda 3.08** + 

Bunchgrasses 2.8** + 

Cheatgrass 3.63*** + 

Non-native Forbs 2.1* + 

Eumeninae1* 

Bare Ground 1.99* - 

Biological Crust and Moss 7.57**** + 

Litter 3.92*** + 

Chamaemyidae1, 3 

Biological Crust and Moss 6.5**** + 

Litter 2.76** + 

Cheatgrass 1.96* + 

Lygaeidae3 

Biological Crust and Moss 2.23* - 

Litter 2.82** - 

Poa Secunda 2.92** + 

Cheatgrass 4.42*** + 

Non-native Forbs 19.04**** + 

Staphylinidae1 Litter 5.2** - 

Sagebrush 5.05** + 

Megachilidae None     

2011 

Halictidae2 Cheatgrass 2.97* + 

Chamaemyidae1, 3 

Bare Ground 4.67**** - 

Biological Crust and Moss 4.19*** + 

Litter 6.25*** - 

Cheatgrass 15.42**** + 

Non-native Forbs 8.94**** + 

Tachinidae2, 3 

Bare Ground 4.55*** - 

Biological Crust and Moss 2.16* + 

Cheatgrass 2.51** + 

Crested Wheatgrass 3.38** + 

Non-native Forbs 6.77**** + 

Lauxanidae3 Litter 6.66** - 
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Cheatgrass 8.76*** + 

Ceratopogonidae1 Biological Crust and Moss 3.38* + 

Scelionidae3 

Bare Ground 7.04*** - 

Litter 17.66**** - 

Cheatgrass 41.51**** + 

Tapinidae3 Shrubs 6.05*** + 

Sepsidae1 2 Biological Crust and Moss 10.22**** + 

Crested Wheatgrass 12.74**** + 

Elateridae1, 2 Biological Crust and Moss 16.5**** + 

Crested Wheatgrass 4.68** + 

*Eumeninae is a sub-family in the family Vespidae.  It was formerly recognized as a 
separate family, Eumenidae, and was analyzed separately in this study. 
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Table 9. MRPP values for the analysis of insects from flight and pitfall traps 
from all sites in 2010 and 2011.  T describes the degree of separation between 
groups; groups with more negative scores are more distinctly separated.  A 
represents the homogeneity of the samples within groups; high scores of A indicate 
high similarity among samples within groups. Asterisks next to A values indicate 
level of significance: * = P>0.1, **=P>0.05, ***=P>0.01, ****=P>0.001. 

Sample 
Type 

Grouping 
Variable 

Number of 
Groups T A 

Flight 
Samples 

Treatment 3 -3.08 0.009*** 

Year 2 -12.42 0.026**** 

Year*Treatment 6 -8.06 0.039**** 

Pitfall 
Samples 

Treatment 3 -1.551 0.0068* 
Year 2 -14.78 0.045**** 

Year*Treatment 6 - Not Significant 
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Table 10. MRPP values for the pairwise comparisons of insects from flight and 
pitfall traps from all sites in 2010 and 2011. T describes the degree of separation 
between groups; groups with more negative scores are more distinctly separated.  A 
represents the homogeneity of the samples within groups; high scores of A indicate 
high similarity among samples within groups. Asterisks next to A values indicate 
level of significance: * = P>0.1, **=P>0.05, ***=P>0.01, ****=P>0.001. 

Flight 
Samples  

Comparison  T  A  

All Groups -3.08 0.009** 

UX vs. BX  -3.11 0.011**  

UX vs. BS  -0.81 0.002 

BS vs. BX  -4 0.013**  

 Pitfall 
Samples  

All Groups -1.55 0.007* 

UX vs. BX  -0.93 0.005 

UX vs. BS  -2.81 0.015**  

BS vs. BX  0.06 -0.0002 
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Table 11. MRPP analysis of insect assemblages by treatment for all sites 
separately.  The analysis was run including and excluding the UX treatment at the 
Clover and Murphy sites. 

 Site Treatments T A p 

Flight 
Traps 

Clover 
UX, BS, 

BX 
-0.66  0.01 0.21 

BS, BX -1.63 0.02 0.07 

Murphy 
UX, BS, 

BX 
-0.38  >0.01  0.30  

BS, BX -0.3 >0.01 0.3 
Big 

Crow 
UX, BS -4.93 0.043 <0.01 

Pitfall 
Traps 

Clover 
UX, BS, 

BX 
0.87 -0.02 0.81 

BS, BX 0.44 -0.01 0.58 

Murphy 
UX, BS, 

BX 
1.13 -0.02 0.91 

BS, BX 0.73 <-0.01 0.75 
Big 

Crow 
UX, BS -1.02 0.01 0.15 
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Table 12. Summary data for annual sampling using flight and pitfall traps in 
2010 and 2011. A) Samples at all three sites including UX plots. B) Samples at all 
three sites excluding UX plots.  The data were analyzed using the concept of alpha, 
beta and gamma diversity (Whittaker 1972).  Alpha values represent the average 
number of families present in each sampling unit at the site.  Gamma values 
represent the estimated number of families present at the site using the appropriate 
richness estimator (Chao and Jost 2012, Colwell 2013).  Values in parentheses 
represent the estimated number of families present in each site after adjustment for 
sampling bias with rarefaction but without correction by a richness estimator.  Beta 
values were calculated by dividing gamma by alpha to give a relative representation 
of heterogeneity at each site.  As with gamma, values in parentheses represent 
values that were not corrected using a richness estimator. 

A 

  Family Diversity 

Flight 
Samples 

Site N alpha beta gamma 
Big Crow 46 11.07 ± 5.63 8.91 (7.35) 98.6 ± 6.9 (86.0 ± 3.3) 

Clover 37 11.73 ±4.89 13.86 (7.33)    162.6 ± 38.5 (86.0 ± 6.3) 

Murphy 48 11.5 ± 7.35 9.79 (8.00) 112.6 ± 11.0 (92.0 ± 4.1) 
All Sites 131 11.36 ± 6.10 13.52 (11.69) 157.3 ± 11.3 (136.0 ± 4.5) 

Pitfall 
Samples 

Big Crow 23 9.174 ± 3.055 7.245 (5.123) 66.47 ± 6.97 (47.00 ± 2.90) 

Clover 20 17.35 ± 5.603 5.879 (4.323) 102.0 ± 20.35(75.00 ± 4.85) 

Murphy 24 16.58 ± 4.736 7.368 (5.549) 122.16 ± 27.16 (92.00 ± 5.73) 

All Sites 67 14.13 ± 5.939 12.15 (9.837 ) 171.66 ± 14.42 (139.00 ± 5.30) 
 

B 

  Family Diversity 

Flight 
Samples 

Site N alpha beta gamma 
Big Crow 26 12.5 ± 5.62 6.36 (5.60) 79.53 ±8.98 (70 ±3.53) 

Clover 26 11.88 ± 5.15 8.92 (6.98) 106.06 ± 11.41 (83 ± 4.18) 
Murphy 36 10.5 ± 6.03 11.92 (8.19) 125.20 ± 20.31 (86 ± 5.14) 

Pitfall 
Samples 

Big Crow 17 8.92 ± 3.09 5.87 (4.04) 52.33 ± 12.23 (36 ± 3.39) 

Clover 13 17.59 ±5.41 4.52 (3.92) 79.56 ± 12.78 (69 ± 3.99) 

Murphy 16 15.94 ± 5.25 5.80 (4.64) 92.38 ± 22.92 (74 ± 5.13) 
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Table 13. Simpson’s Diversity (D’) and BD, a measure of heterogeneity, were 
calculated for each insect trapping type and compared to vegetation grouped by 
treatment using GLM.  Asterisks next to F values indicate level of significance: * = 
P>0.1, **=P>0.05, ***=P>0.01, ****=P>0.001. 

Year Metric Trapping type F 

2010 

BD 
Blue Flight Traps 0.39 

Yellow Flight Traps 3.21** 
Pitfall Traps 0.17 

D' 
Blue Flight Traps 0.31 

Yellow Flight Traps 4.92*** 
Pitfall Traps 0.33 

2011 

BD 
Blue Flight Traps 1.03 

Yellow Flight Traps 0.24 
Pitfall Traps 0.42 

D' 
Blue Flight Traps 0.67 

Yellow Flight Traps 0.05 
Pitfall Traps 0.42 
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Table 14. Pairwise comparisons of the significant GLM analyses of D’ and BD 
found in insect samples from yellow flight traps in 2010 (Table 13).  Asterisks next 
to F values indicate level of significance: * = P>0.1, **=P>0.05, ***=P>0.01, 
****=P>0.001. 

Comparison Metric F 

UX vs. BS BD 6.27** 
D' 9.81*** 

UX vs. BX BD 2.29 
D' 4.41** 

UX vs. BS and BX BD 4.79** 
D' 8.09*** 

BS vs. BX BD 2.18 
D' 2.5 
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FIGURES 

 

Figure 1. A flow chart describing the known relationships within the study 
system.  Solid arrows represent relationships that were measured and dashed 
arrows represent relationships that were not measured but are believed to exist.   

 



53 

 

 

Figure 2. The Northern Basin and Range Ecoregion (shown in green) 
containing seven randomly selected hexagon clusters.  The cluster in red was used to 
select sampling sites for this study. 
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Figure 3. Polygons representing all of the fires within the boundaries of the 
sampling hexagons (orange). Three burned areas, one within each hexagon, were 
randomly selected for sampling:  the Clover fire, which burned in 1995, the Big 
Crow fire, which burned in 2002, and the Murphy fire, which burned in 2007.    
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Figure 4. The cumulative growing degree days (GDD) at the Clover, Big Crow 
and Murphy sampling sites in 2010 and 2011. 
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Figure 5. The cumulative precipitation at the Clover, Big Crow and Murphy 
sites in 2010 and 2011. 
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Figure 6. The percent land cover of shrub and annual grasses in a 3-kilometer 
radius surrounding each sampling site. 
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Figure 7. The arrangement of pitfall traps and flight traps within each one-
hectare plot at all sites.  Grey circles represent pitfall traps.  Blue and yellow 
squares represent the blue and yellow flight traps.  
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Figure 8. The three-dimensional NMS ordination produced by vegetation 
samples from 2010.  Cubes represent samples. 
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Figure 9. The two-dimensional NMS ordination produced by vegetation 
samples from 2011.  Triangles represent samples. 
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Figure 10. The two-dimensional NMS ordination produced by the insect samples 
from flight traps in 2010 and 2011.  Triangles represent samples.  Vertices represent 
measured vegetation components that were associated with insect assemblage 
composition. 



62 

 

 

Figure 11. The three-dimensional solution of the NMS analysis of pitfall traps 
from all sites in 2010 and 2011.  Squares represent insect samples. 
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Figure 12. Axes one and two of the three-dimensional NMS ordination produced 
by insect samples from pitfall traps in 2010 and 2011. Triangles represent samples.  
Vertices represent measured vegetation components that were associated with insect 
assemblage composition. 
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Figure 13. Linear regression of the number of insect families associated with 
unburned plots at each sampling site and the percent of shrubland cover within a 3-
kilometer radius of the site.  Insects from flight traps and pitfall traps are shown 
separately. 
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APPENDIX A 

Seed Mixes for the Clover, Murphy and Big Crow Fires as They Were Recorded by 

the Jarbidge Field Office, Bureau of Land Management and Catalogued by the 

Land Treatment Digital Library (Pilliod and Welty 2 013) 
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Table A1. Seed mixes for the Clover Complex (1995).   

 Species 

Pounds 

per Acre Application 

Mix 1 

Hycrest Crested Wheatgrass 

(Agropyron cristatum) 
5.4 Drill 

Fourwing Saltbush        

(Atriplex canescen) 
0.2 Drill 

Mix 2 
Secar Bluebunch Wheatgrass 

(Pseudoroegneria spicata) 
6 Drill 

Mix 3 
Goldar Bluebunch Wheatgrass 

(Pseudoroegneria spicata) 
6 Drill 

Mix 4 

Western Wheatgrass       

(Pascopyrum smithii) 
3.3 Drill 

Bottlebrush Squirreltail    

(Elymus elymoides) 
3.3 Drill 

Arrowleaf Balsamroot 

(Balsamorhiza sagittata) 
0.7 Drill 

Mix 5 

Hycrest Crested Wheatgrass 

(Agropyron cristatum) 
6.5 Drill 

Fourwing Saltbush         

(Atriplex canescen) 
3 Drill 

Mix 6 

Hycrest Crested Wheatgrass 

(Agropyron cristatum) 
6 Drill 

Fourwing Saltbush         

(Atriplex canescen) 
3 Drill 

Mix 7 

Hycrest Crested Wheatgrass 

(Agropyron cristatum) 
6 Drill 

Fourwing Saltbush         

(Atriplex canescen) 
3 Drill 

Mix 8 
Secar Bluebunch Wheatgrass 

(Pseudoroegneria spicata) 
6 Drill 

Mix 9 
Hycrest Crested Wheatgrass 

(Agropyron cristatum) 
6 Drill 

Mix 10 

Wyoming Big Sagebrush 

(Artemisia tridentata- 

wyomingensis) 

1 Aerial 

Yellow Sweetclover      

(Melilotus officinalis) 
1 Aerial 

Ladka Alfalfa             

(Medicago sativa- Ladka) 
1.4 Aerial 

Western Yarrow           

(Achillea millefolium) 
0.1 Aerial 

Lewis Flax (Linum Lewisii) 0.5 Aerial 

 

 



67 

 

Mix 11 

Wyoming Big Sagebrush 

(Artemisia tridentata- 

wyomingensis) 

1 Aerial 

Yellow Sweetclover      

(Melilotus officinalis) 
1 Aerial 

Ladka Alfalfa             

(Medicago sativa- Ladka) 
1.5 Aerial 

Mix 12 

Wyoming Big Sagebrush 

(Artemisia tridentata- 

wyomingensis) 

1 Aerial 

Yellow Sweetclover      

(Melilotus officinalis) 
1 Aerial 

Ladka Alfalfa             

(Medicago sativa- Ladka) 
1.5 Aerial 
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Table A2. Seed mix for the Big Crow Fire (2002).  

  Species 
Pounds 

per Acre 

Acres 

Covered 
Application 

Mix 1 

  

  

Western Yarrow           

(Achilliea millefolium) 
0.05 2529 Aerial 

Ladka Alfalfa             

(Medicago sativa- Ladka) 
0.5 2530 Aerial 

Wyoming Big Sagebrush 

(Artemisia tridentata- 

wyomingensis)  

1 2531 Aerial 
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Table A3. Seed mixes for the Murphy Complex (2007). 

  Species 
Pounds 

per Acre 

Acres 

Covered 
Application 

Mix 1 

Secar Bluebunch Wheatgrass 

(Pseudoroegneria spicata) 
4.17 3,361 Drill 

Sandberg's Bluegrass           

(Poa secunda) 
0.39 3,361 Drill 

Sherman Bluegrass            

(Poa Secunda) 
0.49 3,361 Drill 

Bottlebrush Squirreltail    

(Elymus elymoides) 
0.67 3,361 Drill 

Ladka Alfalfa             

(Medicago sativa- Ladka) 
0.52 3,361 Drill 

Western Yarrow           

(Achilliea millefolium) 
0.01 3,361 Drill 

Fourwing Saltbush         

(Atriplex canescen) 
1.04 3,361 Drill 

Mix 2 

Bluebunch Wheatgrass 

(Pseudoroegneria spicata ) 
3.63 8,745 Drill 

Sandberg's Bluegrass           

(Poa secunda) 
0.46 8,745 Drill 

Sherman Bluegrass            

(Poa Secunda) 
0.68 8,745 Drill 

Bottlebrush Squirreltail    

(Elymus elymoides) 
0.56 8,745 Drill 

Ladka Alfalfa             

(Medicago sativa- Ladka) 
0.46 8,745 Drill 

Western Yarrow           

(Achilliea millefolium) 
0.02 8,745 Drill 

Fourwing Saltbush         

(Atriplex canescen) 
0.45 8,745 Drill 
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APPENDIX B 

Variables That Were Identified Using Samplepoint Measurement Software 1.50 

(USDA Agricultural Research Service, Cheyenne, WY/ Fort Collins, CO) and 

Height Measurements.  % Indicates Percent Cover Measurements.  These Variables 

Were Grouped into Vegetation Functional Groups for Some Analyses as Shown in 

Table 3.    
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Max Exotic Grass Height 
Max Native Grass Height 
Max Native Forb Height 
Max Shrub Height 
Biological Soil Crust  
Morphology 
Biological Soil Crust Color 
% Soil 
% Rock 
% Biological Soil Crust and Moss 
% Sandburg's Bluegrass 
% Litter 
% Animal Pellets 
% Bottlebrush Squirreltail 
% Big Squirreltail 
% Bluebunch wheatgrass 
% Great Basin Wild Rye 
% Indian Ricegrass 
% Unknown Bunchgrass 
% Total Bunchgrass 
% Phlox 
% Lupine 
% Lepidium 

% Aster 
% Unknown Forb 
% Snake river wheatgrass 
% Wild Onion 
% Astragalus 
% Total Forbs 
% Cheatgrass 
% Medusahead 
% Crested wheatgrass 
% Mustard 
% Thistle 
% Total non-native Forbs 
% Intermediate wheatgrass 
% Sagebrush 
% Rhizometous grass 
% Green rabbitbrush 
%Grey rabbitbrush 
% Unknown shrub 
% Dead shrub 
% Unknown shrub 
% Total shrubs 

 
  



72 

 

APPENDIX C 

Insect Families That Were Collected Using Japanese Beetle Flight Traps and Pitfall 

Traps at Three Sites in the Jarbidge Field office, ID 
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Coleoptera 
Alleculidae 
Anobiidae 
Anthribidae 
Bostrichidae  
(Melalgus) 
Bruchidae 
Cantharidae 
Carabidae 
Cerambycidae 
Chrysomelidae 
Cicindelidae 
Ciidae 
Cleridae 
Coccinellidae 
Cryptophagidae 
Curculionidae 
Dascillidae 
Elateridae 
Glaresidae  
(Glaresis) 
Histeridae 
Leiodidae 
Meloidae 
Melyridae 
Mordellidae 
Mycetophagidae 
Nitidulidae 
Oedemeridae 
Ostomatidae 
Phalacridae 
Pselaphidae 
Ptinidae 
Scaphididae 
Scarabidae 
Staphlinidae 
Tenebrionidae 
Trogidae (Trox) 
 
Collembola 
Entombryidae 
Isotomidae 
Poduridae 
Smithuridae 
Buprestidae 
 
 

Diptera 
Agromyzidae 
Anisopodidae 
Anthomyiidae 
Asilidae 
Calliphoridae 
Cecidomyiidae 
Ceratopogonidae 
Chamaemyiidae 
Chironomidae 
Chloropidae 
Conopidae 
Culicidae 
Curtonidae 
Dixidae 
Dolichopodidae 
Drosophilidae 
Empididae 
Ephydridae 
Eulophidae 
Heleomyzidae 
Lauxaniidae 
Leptogastridae 
Lonchaeidae 
Micropezidae 
Millichidae 
Muscidae 
Mycetophilidae 
Mythicomyiidae 
Oestridae 
Otitidae 
Phoridae 
Piophilidae 
Pipunculidae 
Platypezidae 
Pompilidae 
Ptychopteridae 
Rhagionidae 
Sarcophagidae 
Scathophagidae 
Scatopsidae 
Scenopinidae 
Sciaridae 
Sciomyzidae 
Sepsidae 
Silphidae 

Sphaeroceridae 
Syrphidae 
Tachinidae 
Tephritidae 
Therevidae 
Tiphidae 
Tipulidae 
Trixoscelididae 
 
Hemiptera 
Alydidae 
Anthicidae 
Anthocoridae 
Aradidae 
Berytidae 
Coreidae 
Cynidae 
Eumasticidae 
Lygaeidae 
Miridae 
Nabidae 
Pentatomidae 
Phymatidae 
Piesmatidae 
Reduviidae 
Reduviidae 
Rhopalidae 
Saldidae 
Thyreocoridae 
Tingidae 
Aetalionidae 
Aphidae 
Cercopidae 
Cicadellidae 
Cicadidae 
Delphacidae 
Diaspididae 
Dictyopharidae 
Eriosomatidae 
Issidae 
Kinnaridae 
Mangarodidae 
Margarodidae 
Membracidae 
Psyliidae 
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Hymenoptera 
Andrenidae 
Anthophoridae 
Apidae 
Aulacidae 
Bethylidae 
Bombyliidae 
Braconidae 
Ceraphronidae 
Chalcididae 
Chrysididae 
Colletidae 
Diapriidae 
Dryinidae 
Encritidae 
Eumenidae 
Eupelmidae 
Eurytomidae 
Halactidae 
Ichneumonidae 
Masaridae 
Megachilidae 
Melittidae 
Mutillidae 
Mymaridae 
Myrmica 
Orussidae 
Perilyampidae 
Platygasteridae 
Proctotrupidae 
Pteromalidae 
Scelionidae 

Scoliidae 
Sphecidae 
Tapinoma 
Trigonalidae 
Vespidae 
 
Lepidoptera 
Arctiidae 
Blastobasidae 
Coleophoridae 
Cossidae 
Elachistidae 
Gelechiidae 
Geometridae 
Gracillariidae 
Hesperiidae 
Lasiocampidae 
Lycaenidae 
Lyonetiidae 
Noctuidae 
Notodontidae 
Nymphalidae 
Oecophoridae 
Pieridae 
Pyralidae 
Satyridae 
Tineidae 
Tortricidae 
 
 
 
 
 

Microcoryphia 
Meinertellidae 
 
Neuroptera 
Hemerobiidae 
 
Odonata 
Coenagrionidae 
 
Orthoptera 
Acrididae 
Gryllacrididae 
Gryllidae 
Mantidae 
Nemobiinae 
Stenopelmatidae 
 
Psocoptera 
Trogiidae 
 
Siphonaptera 
Ceratophyllidae 
 
Thysanoptera 
Phlaeothripidae 
Thripidae 
 
Trichoptera 
Brachycentridae 
Hydropsychidae 
Limnephilidae 

 


