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ABSTRACT

The transport phenomena dominates geophysical fluid motions on all scales

making the numerical solution of the transport problem fundamentally important for

the overall accuracy of any fluid solver. In this thesis, we describe a new high-order,

computationally efficient method for numerically solving the transport equation on

the sphere. This method combines radial basis functions (RBFs) and a partition of

unity method (PUM). The method is mesh-free, allowing near optimal discretization

of the surface of the sphere, and is free of any coordinate singularities. The basic idea

of the method is to start with a set of nodes that are quasi-uniformly distributed on

the sphere. Next, the surface of the sphere is partitioned into overlapping spherical

caps so that each cap contains roughly the same number of nodes. All spatial

derivatives of the PDE are approximated locally within the caps using RBFs. The

approximations from each cap are then aggregated into one global approximation

of the spatial derivatives using an appropriate weight function in the PUM. Finally,

we use a method-of-lines approach to advance the system in time. We analyze the

computational complexity of this method as compared to global methods based on

RBFs and present results for several well-known test cases that probe the suitability

of numerical methods for modeling transport in spherical geometries. We conclude

with possible future directions of the work.
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CHAPTER 1

INTRODUCTION

Mathematical modeling of climate and weather often requires the numerical solution

of partial differential equations (PDEs) on the surface of the sphere. Several challenges

arise in solving these problems. First while these PDEs can often naturally be

parameterized in spherical coordinates, this can’t be done if the problem is intended

to be solved over the entire sphere without severe unphysical distortions near the

poles. This is because any two dimensional coordinate system on the sphere will have

at least one singularitiy. Second, these coordinate singularities manifest themselves as

apparent singularities in the differential operators of the PDE, complicating numerical

discretizations near the singularities. Third, the geometry of the sphere makes it

difficult to produce a regular grid or mesh that covers the sphere, as is required for

most numerical methods for PDEs. Even popular mappings like the cubed sphere

(mapping the faces of an inscribed cube to the sphere) introduce irregularities or

distortions in the grid that can effect numerical solutions.

Numerical methods based on Radial Basis Functions (RBFs) provide a promising

path to avoiding these issues [11, 12]. These methods can easily be expressed in

Cartesian coordinates allowing the PDEs to be solved directly on the sphere without

any coordinate singularities or singularities in the differential operator. They also do

not require a grid, hence nodes can be placed “optimally” on the sphere. Finally,
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they provide high-orders of accuracy (exponential or spectral) for smooth solutions.

The downside of these methods is that the computational complexity can be high

scaling like O(N2) for the global RBF method, where N is the number of degrees of

freedom.

In this thesis, we develop a novel RBF method that reduces the computational

complexity to O(N), while still resulting in high orders of accuracy. We apply this

method to the numerical solution of the transport equation on the sphere. Transport

processes dominate geophysical fluid motions on all scales, so this is the first PDE

that new numerical methods for modeling climate and weather are tested on.

Below we briefly introduce RBF interpolation, as it is a major ingredient to our

new method. We then discuss the global RBF approach to solving the transport

equation from (1.6) since our new method follows a similar approach.

1.1 Radial Basis Function Interpolation

RBFs can be used for interpolating data {fi}Ni=1 ⊂ R sampled on a finite set of nodes

X = {xi}Ni=1 ⊂ Rd. The RBF interpolant s (x) : Rd → R is of the form

s (x) =
N∑
i=1

ciφ (‖x− xi‖) , (1.1)

where φ : R → R is some radial kernel and ‖ · ‖ represents the Euclidian or two-

norm. The coefficients {ci}Ni=1 are determined by requiring s (xi) = fi, which can be

expressed as the solution to the following system
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φ (‖x1 − x1‖) φ (‖x1 − x2‖) . . . φ (‖x1 − xN‖)

φ (‖x2 − x1‖) φ (‖x2 − x2‖) . . . φ (‖x2 − xN‖)
...

...
. . .

...

φ (‖xN − x1‖) φ (‖xN − x2‖) . . . φ (‖xN − xN‖)


︸ ︷︷ ︸

A



c1

c2

...

cN


︸ ︷︷ ︸
c

=



f1

f2

...

fN


︸ ︷︷ ︸
f

. (1.2)

We call A the interpolation matrix. For certain types of radial kernels (such as the first

three entries of Table 1.1), A is positive definite provided that the nodes are distinct

[3]. Thus, existence of a unique interpolant is guaranteed and the method is well-

posed. Considering that the interpolant is only dependent on the Euclidian distance

between the nodes the interpolant can easily be used for interpolating scattered data

in arbitrary dimensions, and on submanifolds of Rd such as the unit sphere S2 [19].

Table 1.1: Examples of commonly used radial kernels. Here ε > 0 is called the shape
parameter.

Name φ (r)

Gaussian (GA) e−(εr)2

Laguerre-Gaussian (LGA)
(

5
2
− (εr)2) e−(εr)2

Inverse Multiquadratics (IMQ)
(
1 + (εr)2)−1/2

Multiquadratics (MQ)
(
1 + (εr)2)1/2

It has been shown in practice that augmenting the basic RBF interpolant so that

it also includes some low order polynomial terms can improve accuracy, especially

near domain boundaries [13]. In the case of interpolating on subdomains of R3, such

as patches of the surface of the sphere as we considered in this thesis, this means

appending some low order trivariate polynomial terms. For example, the augmented

RBF interpolant with an included linear polynomial takes the form
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s (x) =
N∑
i=1

ciφ (‖x− xi‖) +
4∑
j=1

bjqj (x) , (1.3)

where, for example, q1 (x) = 1, q2 (x) = x, q3 (x) = y and q4 (x) = z. In addi-

tion to interpolation of the data, the following conditions are included for uniquely

determining the interpolation coefficients:

N∑
i=1

ciqj (xi) = 0, for j = 1, 2, 3, 4. (1.4)

Letting b = [b1, b2, b3, b4]T , and Q be a N × 4 matrix where Qij = qj (xi). In

matrix-vector form, these coefficients can be given as the solution to the linear system:

 A Q

QT 0

 =

c
b

 =

f
0

 . (1.5)

If the interpolation and nodes lie on the surface of the sphere, but not all on a

circle, then this linear system is guaranteed to be non-singular for all radial kernels

in Table 1.1 (as well as many others); see [7, 32].

1.2 The Shape Parameter

In this study, we focus on radial kernels that feature a shape parameter ε, such as

those in Table 1.1. Decreasing ε increases the flatness of these kernels; this can be

seen in Figure 1.1. The value of ε can have a dramatic effect on the accuracy of the

resulting interpolant. However, choosing an optimal value is still very much an open

question.

In an early study of inverse multiquadric (IMQ) RBF interpolation in R2, Hardy
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(a) GA kernel (b) LGA kernel

(c) IMQ kernel (d) MQ kernel

Figure 1.1: Plots of the radial kernels found in Table 1.1. For each plot, the kernel is
ploted for shape parameter values ε = 0.5, 1, 2.

used ε = 1
0.815d

, where d = 1
N

∑N
i=1 di such that di is distance between xi and its

nearest neighbor [22]. In another early study, Franke uses ε = 0.8
√
N

D
where D is

the diameter of the smallest circle containing the interpolation nodes [18] . These

methods try to balance the accuracy of the interpolant and the conditioning of the

interpolation matrix in Eq. 1.2 or 1.5.

Schaback [29] was able to prove that both the accuracy of the RBF interpolant

Eq. 1.1 and the condition number of the interpolating matrix A in Eq. 1.2 cannot
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both be kept low which initially researchers incorrectly thought implied that there

were limits on using small values of the shape parameter ε. The issue with using

small values of ε are that shifts of the radial kernels become less distinct so that the

columns of A look more alike, which leads to ill-conditioning. This is described as

the “uncertainty relation.” However, there is a misconception about this uncertainty

relation. It does not mean that very high accuracies are impossible to achieve with

RBFs, it only means that computing RBF interpolants by solving the linear system

Eq. 1.2 cannot be used to achieve very high accuracies.

The first algorithm to bypass the ill-conditioning problem associated with small

ε was the Contour-Padé method [17]. Since then several other methods have been

developed with the most promising being the RBF-QR techniques [8, 14, 16]. The

first RBF-QR method of Fornberg and Pirét [16] demonstrated that as ε → 0 (the

flat limit) RBF interpolants converge to standard spherical harmonic interpolants for

approximation on the sphere.

We do not use these stable algorithms in this study. The reason is that our

method consists of computing RBF interpolants on a small collection of spherical

caps on the sphere as explained in more detail in Section 2.1. At present, methods

such as Contour-Padé and RBF-QR break down for interpolation on these types of

domains. Research is underway to fix this deficiency, and once complete, will be able

to be used directly in our new method.

In this new study, we choose ε so that for the interpolation matrix A, cond (A) ≈

tcond, where tcond is a target condition number; this is similar to the first methods

by Hardy and Franke in that it balances accuracy and the condition number. This

technique means that ε increases as the density of the nodes increases (i.e., the spacing

between nodes decreases). However, this can lead to a problem known as “saturation
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error” [4, 25], which says that if the condition number is held fixed as the density

of the the node set increases (N →∞) , then there is a point at which the error of

the interpolant cannot get any lower regardless of increasing N . This is explained in

more detail by Maz’ya and Schmidt [25].

1.3 Using RBFs to Solve Partial Differential Equations on

the Sphere

The first attempt to solve Partial Differential Equations (PDEs) using RBFs was by

Kansa [24]. Using the multiquadric as the kernel, Kansa used RBFs in a collocation

approach to solve certain problems from fluid mechanics. Flyer and Wright [11,

12] were the first to apply RBFs to hyperbolic PDEs on the surface of the sphere,

including the transport equation and full nonlinear shallow water wave equations. We

describe their method for the transport equation since it is similar to the new method

we have developed.

The transport of a quantity h on the sphere with no external forcing or body

forces is governed by the hyperbolic PDE

∂

∂t
h (x, t) = −u(x, t) · (P∇h (x, t)),x ∈ S2, t > 0 (1.6)

where u(x, t) is some incompressible velocity field tangent to the sphere and P∇

represents the surface gradient operator on the sphere. This operator is written with

respect to Cartesian coordinates to avoid singularities that would occur in any two

dimensional parameterization of the sphere, such as spherical coordinates. Thus, ∇

is the standard 3D gradient with respect to Cartesian coordinates and P is a linear
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operator that projects vectors in R3 to vectors tangent to the sphere.

The specific construction of P is as follows: let x ∈ S2 and u ∈ R3. If n is the

surface normal of S2 at x then nnTu gives the projection of u onto x and u− nnTu

gives the projection of u onto the plane tangent to the sphere at x. The surface

normal to S2 at x is x. Thus, if x = (x, y, z) , then P can be defined as:

P = I− xxT =


(1− x2) −xy −xz

−xy (1− y2) −yz

−xz −yz (1− z2)

 =


pTx

pTy

pTz

 . (1.7)

The standard gradient ∇ can now be constrained to the surface of the sphere:

P∇ =


px · ∇

py · ∇

pz · ∇

 . (1.8)

To solve Eq. 1.6 with the global RBF method, the ∇ operator is first discretized

using the RBF interpolant form Eq. 1.1. Let X = {xi}Ni=1 ⊂ S2 be the nodes at which

the solution to the PDE will be computed. The partial derivative of Eq. 1.1 with

respect to x is

∂

∂x
s (x) =

N∑
i=1

ci
∂

∂x
φ (‖x− xi‖) (1.9)

where the coefficients {ci}Ni=1 are determined by the system Eq. 1.2 such that c =

A−1f . Since s (x) approximates a function f (x), the partial derivative at x = xj can

be approximated as

∂

∂x
f (x)

∣∣
x=xj

≈ ∂

∂x
s (x)

∣∣
x=xj

=
N∑
i=1

ci
∂

∂x
φ (‖x− xi‖)

∣∣
x=xj

. (1.10)
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By defining a matrix Bx such that Bx
ij = ∂

∂x
φ (‖xj − xi‖), then the partial derivative

of f at all nodes in X can be approximated as:

∂

∂x
f
∣∣
X
≈ ∂

∂x
s
∣∣
X

= Bxc = BxA−1︸ ︷︷ ︸
Dx

f (1.11)

where we have used the shorthand notation g
∣∣
X

= [g (x1) , g (x2) , . . . , g (xn)]T . Here

Dx is referred to as a differentiation matrix. Matrices that compute the partial

derivatives with respect to y and z of Eq. 1.1 at X (Dy and Dz) can be constructed

in a similar way.

Let xi = (xi, yi, zi) ∈ X and let x = [x1, x2, . . . , xN ]T , y = [y1, y2, . . . , yN ]T , and

z = [z1, z2, . . . , zN ]T . Now each component of P∇ can be approximated at X using

the differentiation matrices Dx, Dy, Dz as follows:

Gx := diag (1− x ◦ x)Dx + diag
(
−x ◦ y

)
Dy + diag (−x ◦ z)Dz

Gy := diag
(
−x ◦ y

)
Dx + diag

(
1− y ◦ y

)
Dy + diag

(
−y ◦ z

)
Dz

Gz := diag (−x ◦ z)Dx + diag
(
−y ◦ z

)
Dy + diag (1− z ◦ z)Dz

(1.12)

where ◦ is the Hadamard product, or element wise multiplication operator. Finally,

letting u, v, w represents the components of u sampled at X, a linear operator D

can be constructed to approximate the differential operator on the right hand side of

Eq. 1.6 as follows:

D = diag(u)Gx + diag(v)Gy + diag(w)Gz. (1.13)

This process would be similar if the interpolant from Eq. 1.4 was used, where the

coefficients are determined instead by the system Eq. 1.5.
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The differentiation matrix D is then used in a method-of-lines (MOL) approach

for approximating the solution to Eq. 1.6. In this method, the initial condition h (x, 0)

at X, h0 = h[(x1, 0) , h (x2, 0) , . . . , h (xn, 0)]T and the spatial derivatives in the RHS

of Eq. 1.6 are replaced by D, leading to the semi-discrete system:

d

dt
h = −Dh. (1.14)

This system can then be advanced in time using a standard ODE solver such as the

classical fourth-order Runge-Kutta method (RK4).

The global RBF method has several desirable features. First, since this method

uses RBF interpolation it does not depend on a mesh (or it’s mesh-free). Thus,

the nodes can be distributed in an optimal way to “uniformly” cover the sphere.

Additionally, the method uses Cartesian coordinates and is therefore free of coordinate

singularities. Lastly, this method compares favorably to other spectral methods in

terms of accuracy per degree-of-freedom and time step that can be used for stable

time integration [11,12].

There are, however, limitations with this method. First, the time complexity of

constructing the matrix D in Eq. 1.13 isO (N3), where N is the number of nodes. The

space complexity of D is O (N2) since D is dense. Finally, each matrix multiplication

with D required for time integration of Eq. 1.14 has a time complexity of O (N2).

Thus, this method is not practical for large N as is required in realistic simulations

of atmospheric flows.
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1.4 Overview of Thesis

In this thesis, we introduce the Radial Basis Function Partition of Unity Method

(RBF-PUM) to address the computational complexity issues with global RBF method

[11, 12]. The basic idea is to first distribute a set of nodes quasi-uniformly over the

surface of the sphere as done in the global method. Next, the surface of the sphere

is partitioned into overlapping spherical caps so that each cap contains roughly the

same number of n nodes. All spatial derivatives of the PDE are approximated locally

within the caps using the standard RBF method. The approximations from each cap

are then aggregated into one global approximation of the spatial derivatives using an

appropriate weight function in the PUM.

The time-complexity associated with constructing a differentiation matrix (1.13)

with this new method is reduced to O (N logN), while each multiplication of D by a

vector has a time complexity of O (N). Thus, the computational cost scales linearly

with N for each time-step of the time integration. The accuracy of this new method no

longer exhibits an exponential convergence rate, but it still provides very high (near

exponential) accuracy for smooth initial conditions. Additionally, the new method

remains mesh-free, and free of any coordinate singularities.

In Chapter 2, the RBF-PUM method is introduced. Section 2.1 gives details on the

construction of the RBF-PUM method. In Section 2.2, we show how the RBF-PUM

can be parameterized with respect to the number of nodes N , number of nodes

per spherical cap n, and the average number of spherical caps a node belongs to q.

Details about computing the RBF-PUM matrices are given in Section 2.3. Section 2.4

gives details about the time complexity of constructing the RBF-PUM differentiation

matrices, while in Section 2.5 we analyze the sparsity of these matrices. Finally, in



12

Section 2.6, we show how the RBF-PUM can be stabilized for time-integration.

In Chapter 3, we test the RBF-PUM method on a set of standard test problems

from the literature. We analyze results from the cosine bell test [33], deformational

flow test [28] with non-smooth cosine bell and Gaussian bell initial conditions and

finally stationary vortex roll-up test [27]. These numerical results demonstrate that

the new method exhibits near exponential convergence for smooth solutions. Lastly,

we provide analysis based on the numerical data.

We conclude in Chapter 4 with comments on future directions of the work.
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CHAPTER 2

RBF PARTITION OF UNITY METHOD (RBF-PUM)

In the RBF-PUM method, local interpolants are constructed on subsets (or patches)

of S2 and the combined using weight functions {wi} that form a partition of unity. The

method was first introduced by Cavoretto and DeRossi in [5] for interpolation prob-

lems on the sphere. Below we present the method first as an interpolation technique

then describe how it can be used to approximate spatial derivatives on the sphere.

We start the discussion with a description of how the sphere is partitioned and the

weight functions are constructed. We follow this by showing how the differentiation

matrix D from Section 1.3 can be constructed using the RBF-PUM method. Next,

we analyze the time complexity of constructing D and its sparsity. Finally, we show

how D can be stabilized via hyperviscosity.

2.1 Constructing the RBF Partition of Unity Interpolant

A partition of unity can be defined as follows [31]:

Definition 1. A partition of unity on a topological space S is a family {wi} of

continuous functions

wi : S → R+

such that:
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1. {suppwi} is a locally finite covering of S,

2. ∀x ∈ S :
∑
i

wi(x) = 1.

In our application, S is the unit sphere S2 and the details on constructing the

partition of unity are as follows:

Let X = {xi}Ni=1 be a set of scattered nodes on S2 and Ω1,Ω2, . . . ,ΩM be a set of

distinct spherical caps on S2 such that

1.
M⋃
i=0

Ωi = S2 i.e. the caps cover the surface of sphere; and

2. Each cap contains at least one node in X.

We refer to the spherical caps as patches. For each patch Ωk, define ξk ∈ S2 as

the center of patch Ωk and ρk as the radius of the patch, measured as the Euclidean

distance from ξk. For each patch, we define a continuous compactly supported weight

function ψk on Ωk as follows:

ψk(x) = ψ

(
‖x− ξk‖

ρk

)
, (2.1)

where ψ has compact support over the interval [0, 1). In this study, we use the cubic

B-spline

ψ(r) =



2
3

+ 4 (r − 1) r2 if 0 ≤ r < 1
2
,

−4
3
(r − 1)3 if 1

2
< r ≤ 1,

0 if r > 1.

(2.2)



15

which has two continuous derivatives on [0, 1]. Each ψk has compact support on Ωk.

We define wk as follows:

wk(x) =
ψk (x)
M∑
i=0

ψi (x)

. (2.3)

Since each wk has compact support on Ωk, and ∀x ∈ S2
M∑
k=0

wk (x) ≡ 1, {wk} forms a

partition of unity on S2.

These weight functions are used in the RBF-PUM interpolant as follows. For

each Ωk, define Xk as the set of x ∈ X such that x ∈ Ωk. Let sk be the global RBF

interpolant from Section 1.1, either Eq. 1.1 or 1.3, defined on the nodes Xk. The RBF

partition of unity interpolant is given

s (x) =
M∑
k=0

wk (x) sk (x) . (2.4)

Suppose {fi}Ni=1 ⊂ R is data sampled at X, and let xi ∈ X. We know from

Section 1.1 that if x ∈ Ωk, then sk (xi) = fi . By construction, if xi 6∈ Ωk, then

wk (xi) = 0 (since the weight functions have compact support over their associated

patches). Thus,
M∑
i=0

wk (xi) =
∑

Ωk3xi

wk (xi) ≡ 1, (2.5)

which implies

s (xi) =
M∑
i=0

wk (xi) sk (xi) =
∑

Ωk3xi

wk (xi) fi = fi
∑

Ωk3xi

wk (xi) = fi, (2.6)

or that s (x) interpolates {fi}Ni=1 over X.
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2.2 Choosing the Nodes and Patches

Since the interpolant of (2.4) does not require the nodes X to be on a grid or mesh,

we are free to choose them however we wish for our application. In this study, we

focus on node sets that are quasi-uniformly distributed on the sphere so as to get

near optimal resolution of the entire sphere. Since there exists no equidistant node

sets on the sphere where the number of nodes is greater than 20, there are several

techniques for generating quasi-uniform points on the sphere. We use the maximum

determinant (MD) method for generating these nodes [35]. The MD method choses

the nodes in such a way that the determinant of an interpolating matrix that depends

on spherical harmonics is maximized. These node sets have been generated for various

number of nodes and can be freely downloaded from [30]. For patch centers, we use

the minimum energy (ME) points. These node sets are computed by minimizing the

Reisz energy (with a power of 2) of the node set over the sphere [21]. For information

on how we generated the patch centers, see Appendix A.

Given a MD node set, we determine the patches based on two criteria:

1. the approximate number of nodes each patch will contain,

2. the average number of patches a node belongs to.

Suppose there are N nodes and we want approximately n nodes per patch. Because

the nodes are quasi-uniformly distributed, we can expect the area per node ratio over

the entire sphere to roughly equal the area per node ratio on the patch. If ρk is the

radius of patch Ωk, then this area relationship gives

4π

N
≈ πρ2

k

n
. (2.7)
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Thus, we can approximate ρk as

ρk ≈ 2

√
n

N
. (2.8)

Since the patch centers are also quasi-uniformly distributed, all patch radii can be

chosen the same way, i.e ρk = ρ, for all k.

For each node xk, let qk be the number of patches xk belongs to. This can be

used as a measure of overlap in that if the values of {qi}Ni=1 are high, there is more

overlap between the patches. Considering that all patches have radius ρ, the number

of patches that xk belongs to is the same as the number of patch centers in a spherical

cap centered at xk with radius ρ. We choose q to represent the average of {qi}Ni=1.

Suppose there are M patch centers. Since these are quasi-uniformly distributed we

can expect that the area per center ratio for the sphere is approximately equal to the

area per center ratio for the spherical cap centered at any node, i.e.

4π

M
≈ πρ2

q
. (2.9)

We can thus approximate M as

M ≈
⌈

4q

ρ2

⌉
≈
⌈
q
N

n

⌉
. (2.10)

We numerically verify in Appendix B that when we chose M and ρ with (2.8) and

(2.10), that the actual number of number nodes per patch and average number of

patches a node belongs to corresponds very closely with there respective parameters

n and q.
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2.3 Approximating the Surface Gradient Operators

We use the RBF-PUM in a similar way to the global RBF method [11, 12] discussed

in Section 1.3 to discretize the spatial derivative operators associated with the right

hand side of Eq. 1.6. The first thing that needs to be considered is how to construct

the discrete operators for the components of the surface gradient. Interpolation in the

RBF-PUM occurs at two levels: globally and locally. Locally we use the direct RBF

method for each of the patches where globally we use the RBF-PUM on the sphere

itself. The partial derivative of the RBF-PUM interpolant in Eq 2.4 with respect to

x is

∂

∂x
s (x) =

M∑
k=1

[
wk (x)

∂

∂x
sk (x) + sk (x)

∂

∂x
wk (x)

]
. (2.11)

The equation for the partial derivative of the weight with respect to x is

∂

∂x
wk (x) =

∂
∂x
ψk (x)

m∑
i=1

ψi (x)− ψk (x)
m∑
i=1

∂
∂x
ψi (x)[

m∑
i=1

ψi (x)

]2 . (2.12)

Since wk (x) has compact support on Ωk, both sk (x) and ∂
∂x
sk (x) only need to

be computed for x ∈ Xk. We compute ∂
∂x
sk
∣∣
Xk

similarly to the direct RBF method

described in Section 1.3 with a differentiation matrix Dx
k .

Given that for all k, ∂
∂x
sk
∣∣
Xk

= Dx
kf
∣∣
Xk

,sk
∣∣
Xk

= f
∣∣
Xk

, and wk (x) is independent

of f , it is possible to construct a differentiation matrix Dx such that

∂

∂x
f
∣∣
X
≈ ∂

∂x
s
∣∣
X

= Dxf. (2.13)
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Differentiation matrices Dy, Dz can similarly be constructed for the spatial derivatives

y and z, respectively. The components of the projected gradient Gx, Gy, and Gz

from (1.12) can then be approximated in a similar fashion, but by using the RBF-

PUM differentiation matrices instead. The differentiation matrix D for the advection

operator from Eq. 1.13 can then be computed by replacing the components of the

projected gradient from the global RBF method with that of the RBF-PUM. This

new D can be used to solve the PDE (1.6) via the method of lines using the classical

Runge-Kutta-Method (with some minor modification as discussed in Section 2.6).

2.4 Computational Complexity of Constructing RBF-PUM

Differentiation Matrices

One advantage that the RBF-PUM has over the direct RBF method is that the com-

putational complexity for construction is more manageable than the global method.

To analyze this complexity, we start with a set of quasi-uniformly distributed nodes

X = {xi}Ni=1, a set of quasi-uniformly distributed patch centers {ξk}Mk=1, and a radius

for all patches ρ. These are chosen with parameters N , n, and q as specified in

Section 2.2.

Suppose that n and q are fixed, and let nk be the number of nodes in patch Ωk and

qi be the number of patches xi belongs to. Even though n and q are fixed, it needs to

be shown how nk and qi behave asymptotically for large N . We can use Proposition

14.1 from [32], which states that there exists constants c1 and c2 such that

c1N
−1/3 ≤ hX,S2 ≤ c2N

−1/3 (2.14)
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where hX,S2 is the fill distance, or the largest radius r such that a ball of this radius

centered at xi (i.e., B(xi, r)) contains no other node. The proposition does this by

considering the volume of spheres centered at xi. If we take advantage of the topology

of S2, we can instead use spherical caps to reach this conclusion:

c1N
−1/2 ≤ hX,S2 ≤ c2N

−1/2. (2.15)

Corollary 14.2 from [32] argues using Proposition 14.1 that for a cube whose side

is equal to 2cN−1/3, the number of number of nodes in that cube is bounded by

the constant independent of N regardless of its location; it does this by considering

the cube enclosed by a sphere. If we instead use spherical caps, a similar proof can

be made to show that if the radius of a spherical cap is bounded by cN−1/2, then

the number of nodes in the spherical cap is bound by a constant independent of N

(regardless of its location on the sphere).

From Section 2.2, we have that ρ is chosen so that ρ = 2
√

n
N

. Thus, if n is

fixed, there must exist a constant C independent of N such that for all patches Ωk,

nk ≤ C. Considering that M linearly depends on N by construction (2.10), it can

be inferred that there exists a constant c such that ρ ≤ c
√

1
M

. Thus, if we consider

that if there were spherical caps centered at xi (where qi would be the number of

centers in the caps), a similar argument can be made that there exist a constant

K independent of M such that qi < K. Since M depends on N though, it must

be the case that K is independent of N as well. Our numerical evidence strongly

suggests that n ≈ 1
M

∑M
i=1 ni and q ≈ 1

N

∑N
i=1 qi so that we can argue nk = O (n) and

qk = O (q).

To construct the partition of unity, we first must determine for each patch Ωk the
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nodes that belong to it. This can be done efficiently by building a kd-tree using the

node points [32]. The time complexity of constructing the tree is O (N logN), while

the space complexity is O (N). The time to find the nodes that are ρ away from

the patch center ξk is O (logN), so that the time to determine this for all patches is

O (M logN). Considering that M = O (N) by construction (there will never be more

patches than nodes), we have that the computational cost of building the kd-tree and

determining the patches to be O (N logN).

The differentiation matrices Dx
k , Dy

k, and Dz
k must be computed for each patch

Ωk. The computational cost for constructing the differentiation matrices for Ωk is

O (n3), making the total time for all patches O (Mn3). From Eq. 2.10, it can be

inferred that M = O
(
qN
n

)
so that we have O (Nqn2). Computing these matrices is

embarrassingly parallel because computing the differentiation matrices for patch Ωk

requires no information from any other patch. Next, the partition of unity weight

functions and partial derivative values have to be computed. The time complexity

for calculating the partition of unity weights for xi is O (q), making the complexity

O (Nq) for all the nodes.

Finally, we have to assemble the RBF-PUM differentiation matrices Dx,Dy and

Dz. Let’s consider computing the ith column of Dx, which is the vector of values

fi would be multiplied with for the RBF-PUM partial derivative with respect to x

for all nodes. Looking at Eq. 2.11, the only Dx
k that would be used for this column

are the Dx
k such that xi ∈ Ωk; we would also have to use ∂

∂x
wk (x) for that patches

xi belongs to. Thus, the number of computations needed to compute this column

would be O (qn+ q) = O (qn). This makes the computational cost of assembling Dx

O (Nnq), since there are N columns of Dx. This is similarly true for Dy and Dz.

The computational cost of constructing the differentiation matrices for each patch,
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evaluating the partition of unity weight functions and partial derivative values, and

constructing the differentiation matrices for the RBF-PUM is O (Nqn2). The total

computational cost for construction is therefore O (Nqn2 +N logN). Since n � N

and q = O (1), this is a significant savings over the global method, which has a cost

of O (N3).

2.5 Sparsity of the RBF-PUM Differentation Matrices

It can be shown that the RBF-PUM differentiation matrices are significantly more

sparse than the differentiation matrices from the global RBF method in Section 1.3

(which are in fact dense). In this section, we make estimates on the sparsity of the

RBF-PUM differentiation matrices and compare these to the values seen in practice.

Let’s consider Dx
ij, which is the value we multiply fi by to compute (2.11) at xj.

From Section 2.2, it is clear that wk (xj) = ∂
∂x
wk (xj) = 0 if and only if xj 6∈ Ωk. Also

if fi is used to compute sk (xj) or ∂
∂x
sk (xj) , then xi is in Ωk. Thus, if there is no

patch Ωk such that xi and xj both belong to it, then Dij = 0. This means for the

ith column of Dx, the number of non zeros is bounded by the number of nodes that

are also in a patch with xi, or
∣∣⋃

Xk3xi
Xk

∣∣. This is similarly true for Dy and Dz. Let

nnz be the number of non-zero entries in a given RBF-PUM differentiation matrix.

Then,

nnz ≤
N∑
i=0

∣∣∣∣∣ ⋃
Xk3xi

Xk

∣∣∣∣∣ ≤
N∑
i=0

∑
Xk3xi

nk = O (Nnq) . (2.16)

Since n� N and q = O(1), the matrices have nice sparsity properties.

In part (a) of Tables 2.1-2.3, we display the ratio of the actual nnz of the

RBF-PUM differentiation matrices to our estimate Nnq for different n and N with

varying q. As we can see from these values, our estimate is a bit pessimistic, with the
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constant in front of Nnq being less than one. Additionally, this estimate decreases

with increasing q. In part (b) of Tables 2.1-2.3, we display the percent full of the

computed RBF-PUM differentiation matrices confirming the nice sparsity properties

of those matrices. In Figure 2.1, we illustrate how the patches and sparsity of the

differentiation matrices change with increasing q for the case of N = 4096 nodes and

n = 100.

Table 2.1: Ratio of number of non zeros in a differentiation matrix compared to our
estimate and percent full the differentiation matrices are with q=3.

(a) Ratio

n�N 4096 6400 9216 12544 16384 20736 25600
100 0.71 0.71 0.72 0.72 0.72 0.72 0.72
144 0.71 0.71 0.72 0.72 0.72 0.72 0.72
196 0.71 0.71 0.71 0.72 0.72 0.72 0.72
256 0.71 0.71 0.71 0.71 0.71 0.72 0.72

(b) Percent Full

n�N 4096 6400 9216 12544 16384 20736 25600
100 5.22% 3.35% 2.33% 1.72% 1.32% 1.04% 0.84%
144 7.54% 4.82% 3.36% 2.47% 1.89% 1.49% 1.21%
196 10.21% 6.54% 4.56% 3.36% 2.57% 2.03% 1.64%
256 13.23% 8.53% 5.93% 4.37% 3.35% 2.65% 2.15%
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Table 2.2: Ratio of number of non zeros in a differentiation matrix compared to our
estimate and percent full the differentiation matrices are with q=3.5.

(a) Ratio

n�N 4096 6400 9216 12544 16384 20736 25600
100 0.65 0.65 0.65 0.65 0.66 0.65 0.66
144 0.65 0.65 0.65 0.65 0.65 0.65 0.66
196 0.65 0.65 0.65 0.65 0.65 0.65 0.65
256 0.64 0.65 0.65 0.65 0.65 0.65 0.65

(b) Percent Full

n�N 4096 6400 9216 12544 16384 20736 25600
100 5.56% 3.57% 2.48% 1.82% 1.40% 1.11% 0.90%
144 7.99% 5.14% 3.58% 2.62% 2.01% 1.59% 1.29%
196 10.85% 6.99% 4.86% 3.57% 2.74% 2.16% 1.75%
256 14.03% 9.09% 6.32% 4.66% 3.57% 2.82% 2.29%

Table 2.3: Ratio of number of non zeros in a differentiation matrix compared to our
estimate and percent full the differentiation matrices are with q=4.

(a) Ratio

n�N 4096 6400 9216 12544 16384 20736 25600
100 0.60 0.60 0.60 0.60 0.60 0.60 0.60
144 0.60 0.60 0.60 0.60 0.60 0.60 0.60
196 0.59 0.60 0.60 0.60 0.60 0.60 0.60
256 0.59 0.60 0.60 0.60 0.60 0.60 0.60

(b) Percent Full

n�N 4096 6400 9216 12544 16384 20736 25600
100 5.84% 3.75% 2.61% 1.91% 1.47% 1.16% 0.94%
144 8.37% 5.38% 3.75% 2.76% 2.11% 1.67% 1.36%
196 11.36% 7.32% 5.10% 3.75% 2.87% 2.27% 1.84%
256 14.72% 9.53% 6.64% 4.89% 3.75% 2.96% 2.40%
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Figure 2.1: Illustration of the nodes and patches used in the RBF-PUM for increasing
q with parameters N = 4096 and n = 100. Here the black solid circles reperesent the
nodes, blue spherical caps represent the patches, and the red solid circles represent
the centers of the patches. The sparsity of the corresponding differentiation matrices
is also shown for each q.

(a) q = 3

(b) q = 3.5

(c) q = 4
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2.6 Stabilization via Hyperviscosity

Our semi-discrete or method-of-lines formulation of the transport equation (1.6) takes

the form

d

dt
h = −Dh, (2.17)

where D represents the RBF-PUM discretization of the the advection operator u ·

(P∇) (see Eq. (1.13)). A necessary condition for stability of this formulation is that

the eigenvalues of −D must be in the stability domain of the ODE solver used for

advancing the system in time. At the very least, this means that all the eigenvalues

of −D must be in the left half plane. Since the advection operator contains no

natural dissipation term, this is an extraordinary condition to put on the numerical

discretization scheme. The RBF-PUM method does not satisfy this requirement and,

like many methods for solving hyperbolic PDEs on non-rectangular grids, a numerical

“stabilization” term needs to be included to shift the eigenvalues to the left half plane.

A common approach for stabilizing high-order finite-difference and collocation

methods is to include a hyperviscosity dissipation term in Eq. 2.17:

d

dt
h = −(D − µH)h, (2.18)

where H is the numerical discretization of the hyperviscosity term ∆p, p ∈ N, and µ is

a weighting constant. The goal of this approach is to pick p and µ to stabilize the time

integration of the numerical scheme without causing a deterioration in the accuracy

of the spatial discretization. Typically, the higher-order the method, the larger the

value of p is used so that the dissipation term only damps the highest frequency

modes in the solution. This stabilization approach has been applied successfully to
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other RBF methods [2, 10, 15].

We adopt a similar approach to stabilizing the RBF-PUM method, however,

instead of using a hyperviscosity term of the form ∆p, we follow the approach proposed

in [15] for stabilizing the global RBF method for the transport equation discussed in

Section 1.3. In this approach, one uses the inverse of the RBF interpolation matrix

A from Eq. 1.2 as H in Eq. 2.18. As argued in [15], the matrix A−1 acts like an

approximation to a high power of the Laplace-Beltrami operator on the sphere. The

issue with using this method directly is that it would require computing A−1 based

on the whole set of nodes in X, which would require a computational cost of O(N3).

We instead construct H by first computing inverses of the interpolation matrices on

each of the M patches, A−1
k , k = 1, . . . ,M . We then combine these inverses using the

partition of unity weight functions to get a sparse approximation to the global version

of the hyperviscosity matrix A−1. The computational complexity of constructing H

is similar to that of constructing the RBF-PUM differentiation matrices Dx, Dy, and

Dz, and the sparsity properties of H are identical to these matrices.

To illustrate the effects of the hyperviscosity term, we consider the advection

operator corresponding to the velocity field u =

[
0 z −y

]T
, which corresponds to

solid body rotation of the sphere (this is also the first test case we consider in Chapter

3). In the left column of Figure 2.2, we display the eigenvalues of the RBF-PUM

differentiation matrix −D for this advection operator using N = 4096 nodes and

two values of n. The stability domain of the standard fourth order Runge-Kutta

(RK4) method is also plotted in this figure and the eigenvalues have been scaled by

∆t = 2π/1600. We can see that the eigenvalues for both values of n are scattered

into the left half-plane and outside the stability domain of RK4, so that stable time

integration would be impossible. In the right column of this figure, we display the
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(b) n = 256

Figure 2.2: Eigenvalues of the RBF-PUM differentiation matrix for the advection
operator corresponding to solid body rotation for the case of N = 4096 nodes, a
target condition number of tcone = 1012, and q = 4. The left column shows the
(scaled) eigenvalues of −D, corresponding to no hyperviscosity (see Eq. 2.17). The
right column shows the (scaled) eigenvalues of −(D − µH), corresponding to the
stabilized differentiation matrix with hyperviscosity (see Eq. 2.18). For both value
of n, µ = 10−8. The black curve in all plots corresponds to the stability domain of
RK4 and the eigenvalues have been scaled by ∆t = 2π/1600.
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eigenvalues of the stabilized differentiation matrix −(D− µH). We see that for both

values of n, all eigenvalues have been shifted to the left-half plane and are contained in

the stability domain of RK4. Thus, this version is suitable for stable time integration.

In the next chapter, we see that this hyperviscosity stabilization does not have a

noticeable effect on the accuracy of the RBF-PUM method.
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CHAPTER 3

NUMERICAL RESULTS

In this chapter, we apply the RBF-PUM method to several standard benchmark

problems in the literature to analyze its performance. All tests are for the transport

equation:

∂

∂t
h (x, t) + u (x, t) · P∇h (x, t) = 0, (3.1)

where P∇ is the surface gradient and u is tangent to the sphere. In some of these

tests, u can be defined by a stream function ψ (x, t)

u = x×∇ψ (3.2)

where possible, we will state these tests in terms of ψ.

For all of the tests, we present results for two kernels: the Gaussian (GA) and

inverse multiquadric (IMQ) listed in Table 1.1. We compute solutions for increasing

values of N and n and analyze the convergence of the method. We test with values

N = 4096, 6400, 9216, 12544, 16384, 20736, and 25600; n = 100, 144, 196, 256; and

q = 4. The errors between the approximate and true solutions are computed using

the l2 and l∞ norms. The convergence is measured as a function of
√
N since the

spacing between the nodes decreases asymptotically like 1/
√
N , which follows from

the fact that the nodes are quasi-uniformly distributed on the sphere. We compare
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the results for two target condition numbers tcond to examine the effect of saturation

errors. For each test, the hyperviscosity parameter µ is fixed for all N and n. The

standard fourth-order Runge-Kutta method (RK4) is used for the time integration

with the time step ∆t fixed (and not optimized) for each test. Finally, all tests were

performed using MATLAB 2012b.

3.1 Cosine Bell Test

As a first test problem we will consider the standard Test Case 1 from Williamson

et al. [33]. For this problem, the initial height field is the following cosine bell:

h(x) =


1
2

(1 + cos (3πr (x))) r (x) < 1
3

0 r (x) ≥ 1
3

(3.3)

where r(x) = arccos(x), and x = (x, y, z). This initial condition has a jump in the

second derivative at the support of the bell, which makes the test susceptible to both

diffusive and dispersive errors. The stream function is time-independent and is given

by

ψ (x) = x sin (α)− z cos (α) (3.4)

This stream function results in solid body rotation at an angle of α with respect to

the equator. In our test, we use the standard value of α = π
2
, which corresponds to

the flow over the poles. The test is run up to time t = 2π, which corresponds to one

full rotation at which point the solution is equal to Eq. 3.3. The error between the

numerical and true solution is then computed.

Figures 3.1a and 3.1b show the initial condition and solution after one revolution;
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these solutions are the same as dictated by the stream function (3.4). Figure 3.1c

shows the magnitude of the error after one revolution and we can see that errors are

concentrated near the discontinuities of the cosine bell. It can be seen in Figure 3.1d

that the errors are still concentrated around the edges of the bell even after 10

revolutions. Thus, the scheme is performing quite well with respect to diffusive and

dispersive errors.

In Figures 3.2 and 3.3, we plot the relative errors of the method for target condition

numbers of tcond = 1014 and tcond = 1012. The figures show that the method producing

approximately second order convergence for all n and both target condition numbers.

This is the maximum convergence possible since the initial condition has a jump in

its second derivative. As expected, increasing n decreases the error. Finally, we see

that decreasing the target condition number does not have a significant effect on the

errors and that both the IMQ and GA kernels are giving similar results.
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(a) Initial condition, t = 0, with streamlines (b) Solution after on revolution, t = 2π

(c) Magnitude of the error after one revolution (d) Magnitude of the error after ten revolutions

Figure 3.1: Plots of the the solution and error using the GA kernel for N = 12544,
n = 144, ∆t = 2π/1600, µ = 8× 10−9.
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Figure 3.2: Convergence plots of the cosine bell test using the GA and IMQ kernels
as a function of N and n, ∆t = 2π/1600, and tcond = 1014; for the GA kernel test
µ = 5× 10−11 while for the IMQ kernel µ = 6× 10−11.
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Figure 3.3: Convergence plots of the cosine bell test using the GA and IMQ kernels
as a function of N and n, ∆t = 2π/1600, and tcond = 1012;µ = 5 × 10−9 for both
kernels.
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3.2 Deformational Flow Tests

The next test is from Nair and Lauritzen [28]. The stream function for the flow is

ψ (x (t)) = 2 [y (t)]2 cos

(
πt

5
− 2π

5
z (t)

)
,

x (t) =

(
cos

(
λ− 2πt

5

)
cos θ, sin

(
λ− 2πt

5

)
, sin θ

)
.

(3.5)

This results in a velocity field that is a combination of solid-body rotation with a

deformational component. There are two initial conditions considered. First is the

non-smooth cosine bells, similar to the previous test:

h (x) = 0.1 + 0.9 (h1 (x) + h2 (x)) , where

hi(x) =


1
2

(1 + cos (2πri (x))) , ri (x) < 1
2
,

0, ri (x) ≥ 1
2
,

ri (x) = arccos
(
xTxi

)
,

x1 =

(√
3

2
,
1

2
, 0

)
,

x2 =

(√
3

2
,−1

2
, 0

)
.

(3.6)

The second initial condition is the smooth Gaussian bells:

h(x) = 0.95(exp(−(4‖x− x1‖)2) + exp(−4(‖x− x2‖)). (3.7)

This test advects the initial condition around the sphere while at the same time

deforming them. At time t = 2.5, the flow field reverses and the initial condition

returns to its initial positions at t = 5, where the errors are then measured.
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Figures 3.4a, 3.4b, and 3.4c show the solution at the start, half a revolution,

and one revolution respectively for the test using the non-smooth cosine bells. In

Figure 3.4d, we see that the errors are most significant near the location of the

discontinuity of the cosine bells. Figures 3.5 and 3.6 show that the convergence for

both kernels appears to be second order. This is again related to the smoothness of

the initial conditions. As with the cosine bell test in Section 3.1, there appears to

be no significant change in errors when the target condition number is decreased and

when the GA or IMQ kernels are used.

Figures 3.7a, 3.7b, and 3.7c show the solution at the start, half a revolution, and

one revolution respectively but for the smooth Gaussian bells. The magnitude of the

error Figure 3.7d is much lower than that of Figure 3.4d, but is still largely clustered

around the location of the bells. The errors are plotted in Figures 3.5 and 3.6 on a

log-linear scale instead of a log-log scale. The straight line behavior indicates that the

errors appear to decrease at an exponential rate until a point where they level off. The

point where they level off decreases with increasing condition number in line with the

theory presented by Maz’ya and Schmidt [25]. The results show that saturation errors

set in at roughly the same point for both the GA and IMQ kernels. However, even

with saturation error, the method is still providing very accurate results compared to

other methods that use a similar number of degrees of freedom [28].
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(a) Initial condition, t = 0, with streamlines (b) Solution at half a revolution, t = 2.5

(c) Solution at time t=5 (full-revolution) (d) Magnitude of the error at time t=5

Figure 3.4: Plots of the solution and error using non-smooth cosine bells with the
GA kernel for N = 20736, n = 100, ∆t = 5/2400, µ = 10−10, tcond = 1014.
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Figure 3.5: Convergence plots of the deformational flow test with cosine bell initial
condition using the GA and IMQ kernels as a function of N and n using non-smooth
cosine bells for ∆t = 5/2400, and tcond = 1014; µ = 10−10 for both kernels.
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Figure 3.6: Convergence plots of the deformational flow test with cosine bell initial
condition using the GA and IMQ kernels as a function of N and n using non-smooth
cosine bells for ∆t = 5/2400 and tcond = 1012;µ = 10−8 for both kernels.
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(a) Initial condition, t = 0, with streamlines (b) Solution at half a revolution, t = 2.5

(c) Solution at time t=5 (full-revolution) (d) Magnitude of the error at time t=5

Figure 3.7: Plots of the solution and error using smooth Gaussian bells with the GA
kernel for N = 20736, n = 100, ∆t = 5/2400, µ = 2.5× 10−10, tcond = 1014.
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Figure 3.8: Convergence plots of the deformational flow test with Gaussian bell initial
condition using the GA and IMQ kernels as a function of N and n using smooth
Gaussian bells for ∆t = 5/2400 and tcond = 1014;µ = 2.5× 10−10 for both kernels.
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Figure 3.9: Convergence plots of the deformational flow test with Gaussian bell initial
condition using the GA and IMQ kernels as a function of N and n using smooth
Gaussian bells for ∆t = 5/2400 and tcond = 1012; µ = 10−8 for both kernels.
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3.3 Stationary Vortex Roll-Up

In this test, two vortices are generated at the north and south poles of the sphere,

providing an idealized model for cyclogenisis. This test was first introduced in [26].

The velocity field is given by

u = ω (θ) cos θ,

v = 0

(3.8)

with

ω(θ) =


3
√

3
2

sech2 (ρ (θ)) tanh (ρ (θ)) ρ (θ) 6= 0

0 ρ (θ) = 0

(3.9)

where ρ (θ) = ρ0 cos (θ) and ρ0 is a parameter controlling the radial extent of the

vortex; in this test ρ0 = 3. The analytical solution to this PDE is given by:

h (λ, θ, t) = 1− tanh

(
ρ (θ)

5
sin (λ− ω (θ) t)

)
. (3.10)

The initial condition is given by Eq. 3.10 at t = 0. The test calls for computing the

errors in the numerical solution at time t = 3 using the analytical solution (3.10).

Numerical solutions for this test problem are plotted at times t = 3, t = 6 and

t = 9 in Figures 3.10a, 3.10b, and 3.10c, respectively. The magnitude of the errors

at these times are plotted in Figures 3.10d, 3.10e, and 3.10f. We see that as time

increases, the errors become more and more concentrated at the centers of the vortices

(where the gradients are the highest).

Figure 3.11 and 3.12 show the relative errors in the solution for the two target con-

dition numbers. In these figures, the errors are plotted on a log-log scale and initially
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the results indicate the method is giving between 7th and 8th order convergence. As

in the previous tests with the Gaussian bell, we do see that saturation errors again

show up for increasing N . Increasing the condition number does allow convergence

to proceed further with increasing N , but eventually saturation does appear. The

results also show that the IMQ kernel is less susceptible to saturation errors than the

GA kernel for this test, as the IMQ kernel is able to achieve a relative error at least

one order of magnitude lower than the GA kernel. Again even with saturation error,

the method is still providing very accurate results compared to other methods that

use a similar number of degrees of freedom [27].

(a) Solution at t = 3 (b) Solution at t = 6 (c) Solution at t = 9

(d) Magnitude of the error at
time t = 3

(e) Magnitude of the error at
time t = 6

(f) Magnitude of the error at
time t = 9

Figure 3.10: Plots of the solution and error of the stationary vortex roll-up test with
the GA kernel for N = 16384, n = 100, ∆t = 1/25, µ = 9.8× 10−12,tcond = 1014.
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Figure 3.11: Convergence plots of stationary vortex roll-up test using the GA and
IMQ kernels as a function of N and n for ∆t = 1/25 and tcond = 1014;for the GA
kernel test µ = 9.8× 10−12, while for the IMQ kernel µ = 10−11.

64 80 96 112 128 144 160
10

−7

10
−6

10
−5

10
−4

√

N

 

 

n=100
n=144
n=196
n=256

7th order

8th order

(a) GA Relative l2 error vs.
√
N(logscale)

64 80 96 112 128 144 160
10

−7

10
−6

10
−5

10
−4

√

N

 

 

n=100
n=144
n=196
n=256

7th order

8th order

(b) IMQ Relative l2 error vs.
√
N(logscale)

Figure 3.12: Convergence plots of stationary vortex roll-up test using the GA and
IMQ kernels as a function of N and n for ∆t = 1/25 and tcond = 1012;for the GA
kernel test µ = 5× 10−10, while for the IMQ kernel µ = 6× 10−10.
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3.4 Computational Performance

Here we analyze the computational performance of the RBF-PUM using the wall-

clock time in seconds and relative l2 errors for simulations from the cosine bell test

from Section 3.1 and the deformational flow test with the smooth Gaussian bells

initial condition from Section 3.2. The machine we used had Intel Xeon processors

at 3.10 GHz.

In part (a) of Figures 3.13-3.14, the wall-clock time is plotted against the number

of nodes N using a log-log scale. In both figures, we see that the wall-clock time

grows linearly with N . From Section 2.5, we have that the the number of non zeros

of the RBF-PUM differentiation matrix nnz = O (nqN), where n is the number

of nodes per patch and q is the average number of patches a point belongs to. The

dominate computational term for the time integration in our tests is the matrix-vector

multiplication with the differential matrix. Thus, we would expect the wall-clock time

to grow asymptotically similarly to nnz with respect to N , which in these test it is.

In part (b) of Figures 3.13-3.14, the wall-clock time is plotted against the relative

l2 error using a log-log scale. With these plots, we can determine for a level of error

err, which N and n will be the most efficient to evaluate the test so that relative

error is at most err. For both tests pairs of N and n with n = 100 are the most time

efficient for any level err before a saturation is reached. This suggests that if a high

level of accuracy is desired, it would be more time efficient to keep n low and raise

N .
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Figure 3.13: Plots for the cosine bell test for wall-clock time (sec) vs. N and wall-clock
time vs. relative l2 error using the GA kernel with ∆t = 2π/1600, and tcond = 1014

and µ = 5× 10−11.
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(b) Wall-clock time vs. relative l2 error
(logscale)

Figure 3.14: Plots for the deformational flow test with Gaussian bell initial condition
for wall-clock time (sec) vs. N and wall-clock time vs. relative l2 error using the GA
kernel with∆t = 5/2400 and tcond = 1014 and µ = 2.5× 10−10.
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CHAPTER 4

FUTURE WORK

In this thesis, we have introduced the radial basis function partition of unity method

(RBF-PUM) for solving the transport equation on the surface of the sphere and

applied it to several benchmark problems from the literature. The method scales

linearly with the number of degrees of freedom and provides high orders of accuracy

for sufficiently smooth initial conditions. While our results are promising, more work

is needed to realize the full potential of RBF-PUM. In this chapter, we lay down

suggestions for future research.

First, methods for choosing the hyperviscosity parameter µ need to be explored.

Right now it is chosen through trial and error. Fornberg and Lehto [15] give the

following suggestions on how µ should be chosen for the RBF-FD method, which

share similarities to RBF-PUM:

• Numerical experiments can be run on low N . For the RBF-FD method, they

found scaling µ ∼ N−2 worked well.

• Calculate an approximation for the eigenvalue of the differentiation matrix

D with the largest real part using an iterative eigenvalue routine for sparse

matrices. While these algorithms are efficient, they can occasionally fail to

converge (such as Matlab’s eigs).
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These suggestions can be explored in the context of the RBF-PUM. One benefit of

RBF-PUM over the RBF-FD method is that the choice of µ is less sensitive than the

RBF-FD method in respect to changing the nodes per patch n and the total nodes

N .

In order for the RBF-PUM to be practical, adaptive and static node refinements

needs to be developed. Note that with mesh-free methods only the location of the

nodes needs to be considered. Starting with the ideas of node refinements for the

global RBF method [9], we could explore building this capability into the RBF-PUM.

In order for there to be node refinement in the RBF-PUM, a technique would need to

be developed to choose that patches such that each patch is relatively the same size.

We have already started preliminary work using recursive subdivision of spherical

triangles.

As discussed in Section 1.2, when using the global RBF method, smaller ε will lead

to more accurate solutions at the cost of a more ill-condition interpolation matrix.

Methods such as RBF-QR tackle this issue on the sphere. We do not utilize the

flat-limit RBF’s in the patches (like the RBF-QR method) as discussed in Section 1.2.

Continued research into these methods is necessary to eliminate saturation errors from

the RBF-PUM.

A parallel implementation is necessary for either pushing the computational per-

formance further or working with very large N . A popular choice is to utilize

GPUs. The RBF-PUM has attractive features for a GPU approach since the method

decomposes the problem of approximating spatial derivatives into M global-RBF

differentiation matrices of size O (n2), where these matrices are small enough to be

managed by the cores of the GPU. Building on the GPU implementation of the

RBF-FD method in [1], a RBF-PUM GPU implementation can be developed.



51

In order for a methodology to be widely accepted in climate and weather modeling

communities the method needs pass a test suite of dynamical core benchmarks, which

include [20, 23, 33]. The RBF-PUM needs to be extended to the full shallow water

wave equations to tackle these benchmarks. Once this is done, it needs to be compared

to state-of-the-art numerical methods used by global general circulation models.
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APPENDIX A

CHOOSING NODE SETS

A.1 MD Points

We downloaded our MD node sets from [35]. As described in Section 2.2, the MD

method generates the nodes by choosing the point set the maximizes the determent

of an interpolating matrix. The method described below is from [34]. Let {xi}ni=1 be

the node set. The matrix depends on this kernel:

Gn(x,y) =
n∑
l=0

N(r,l)∑
k=1

Y
(r)
l,k (x)Y

(r)
l,k (y) (A.1)

where Y
(r)
l,k is a spherical harmonic. Let G be the interpolating matrix. Then

Gij = Gn (xi,xj) . (A.2)

The MD points are found by finding the set {xi}ni=1 that maximizes log (det (G)).

In [34], MD points were found to be consistently effective as interpolation points.

A.2 ME Points

We generated our own ME node sets from size 11 to 1400. We used the algorithm

dictated by [6]. Notice that the ME node set {xi}Ni=1 on S2 is called the Nth order
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Fekete points of S2. The algorithm finds the set of nodes that minimizes

∑
1≤i≤j≤N

‖xi − xj‖−2. (A.3)

What is interesting is that the authors of [6] treat the problem mechanically by

solving an ODE of particles repelling each other. The problem is considered solved

when a steady state is achieved.
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APPENDIX B

TABLES FOR N AND Q VALUES

In Section 2.2, we gave formulas (Eq. 2.8 and Eq. 2.10) for choosing the size of the

patches and the number of patches with parameters n (number of nodes per patch)

and q (average number of patches a point belongs too). The tables below numerically

verify that when these formulas are used, n and q correspond to there real associated

values.

B.1 Number of Nodes per Patch

Tables B.1, B.2 and B.3 show the average and standard deviation for the number

of nodes per patch. Mean values correspond very closely to n, and the standard

deviation is quite low. This holds for all q that was tested as well. This highly

indicates that the number of nodes per patch corresponds to n and hence validates

how the radius is chosen (2.8).
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Table B.1: Mean and standard deviation of the number of nodes per patch with q=3

(a) Mean

n�N 4096 6400 9216 12544 16384 20736 25600
100 99.99 100.01 100.03 100.04 100.14 100.05 99.94
144 144.15 143.89 144.20 144.07 144.01 143.85 144.09
196 196.25 195.94 195.80 196.21 196.04 195.86 195.90
256 255.81 256.21 255.86 255.91 255.95 256.04 255.93

(b) Standard Deviation

n�N 4096 6400 9216 12544 16384 20736 25600
100 1.45 1.67 1.75 1.68 1.60 1.60 1.69
144 1.73 1.67 1.59 1.53 1.68 1.77 1.82
196 2.06 1.83 2.03 2.21 1.84 1.88 2.01
256 2.03 2.28 1.97 1.97 1.91 1.98 2.06

Table B.2: Mean and standard deviation of the number of nodes per patch with q=3.5

(a) Mean

n�N 4096 6400 9216 12544 16384 20736 25600
100 99.90 99.93 99.93 99.86 100.03 100.00 100.00
144 143.95 144.06 144.22 143.95 143.90 143.98 144.05
196 195.86 196.15 196.08 195.96 196.17 195.97 196.00
256 255.59 256.13 256.02 256.13 256.00 255.93 256.15

(b) Standard Deviation

n�N 4096 6400 9216 12544 16384 20736 25600
100 1.58 1.67 1.53 1.60 1.69 1.63 1.69
144 1.67 1.71 1.66 1.61 1.74 1.61 1.65
196 1.73 2.07 1.92 1.99 1.98 1.87 2.08
256 1.98 1.97 1.86 1.98 1.92 2.03 1.94
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Table B.3: Mean and standard deviation of the number of nodes per patch with q=4

(a) Mean

n�N 4096 6400 9216 12544 16384 20736 25600
100 99.99 99.99 99.96 99.89 99.84 100.00 100.03
144 143.94 143.96 144.19 143.90 144.01 144.11 144.03
196 195.99 196.08 195.91 196.20 195.96 195.96 196.00
256 255.70 256.37 256.28 255.72 256.05 255.89 256.04

(b) Standard Deviation

n�N 4096 6400 9216 12544 16384 20736 25600
100 1.68 1.66 1.67 1.65 1.66 1.55 1.66
144 1.55 1.79 1.68 1.61 1.70 1.72 1.73
196 1.98 1.86 1.92 2.09 2.02 1.97 2.05
256 1.86 1.97 2.06 2.09 2.17 2.09 1.97

B.2 Number of Patches a Node Belongs to

Tables B.4, B.5 and B.6 show the mean and standard deviation of the number of

patches a point belongs to. Our claim in Section 2.2 was that q corresponds with this

average. Considering that the mean values correspond very closely to the parameter

q and the standard deviation is small, there is strong evidence that q is this average.

Thus, the way the number of patches is chosen (2.10) is validated.
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Table B.4: Mean and standard deviation of the number of patches a node belongs to
with q=3

(a) Mean

n�N 4096 6400 9216 12544 16384 20736 25600
100 3.00 3.00 3.01 3.01 3.01 3.01 3.00
144 3.03 3.01 3.00 3.01 3.01 3.00 3.01
196 3.02 3.00 3.02 3.00 3.00 3.00 3.00
256 3.00 3.00 3.00 3.00 3.00 3.00 3.00

(b) Standard Deviation

n�N 4096 6400 9216 12544 16384 20736 25600
100 0.57 0.58 0.57 0.57 0.57 0.56 0.57
144 0.57 0.57 0.58 0.57 0.57 0.57 0.57
196 0.57 0.56 0.57 0.58 0.57 0.57 0.57
256 0.56 0.57 0.57 0.57 0.58 0.57 0.58

Table B.5: Mean and standard deviation of the number of patches a node belongs to
with q=3.5

(a) Mean

n�N 4096 6400 9216 12544 16384 20736 25600
100 3.51 3.50 3.50 3.50 3.50 3.50 3.50
144 3.51 3.51 3.51 3.50 3.50 3.50 3.51
196 3.54 3.52 3.51 3.50 3.51 3.51 3.51
256 3.49 3.52 3.50 3.51 3.50 3.51 3.50

(b) Standard Deviation

n�N 4096 6400 9216 12544 16384 20736 25600
100 0.54 0.53 0.54 0.54 0.53 0.53 0.53
144 0.53 0.54 0.53 0.54 0.53 0.54 0.54
196 0.55 0.53 0.54 0.53 0.54 0.54 0.53
256 0.54 0.54 0.54 0.54 0.53 0.54 0.54



Table B.6: Mean and standard deviation of the number of patches a node belongs to
with q=3.5

(a) Mean

n�N 4096 6400 9216 12544 16384 20736 25600
100 4.00 4.00 4.00 4.00 4.00 4.00 4.00
144 4.01 4.00 4.01 4.00 4.01 4.00 4.01
196 4.02 4.01 4.02 4.00 4.01 4.01 4.00
256 4.00 4.01 4.00 4.02 4.00 4.00 4.00

(b) Standard Deviation

n�N 4096 6400 9216 12544 16384 20736 25600
100 0.65 0.63 0.64 0.64 0.63 0.64 0.63
144 0.63 0.64 0.64 0.64 0.64 0.63 0.63
196 0.64 0.64 0.64 0.63 0.64 0.64 0.64
256 0.64 0.64 0.64 0.64 0.63 0.64 0.63
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