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ABSTRACT 

Owing to the outstanding device characteristics of Phase-Change Random Access 

Memory (PCRAM), such as high scalability, high speed, good cycling endurance, and 

compatibility with conventional complementary metal-oxide-semiconductor (CMOS) 

processes, PCRAM has reached the point of volume production. However, due to the 

temperature-dependent nature of the phase-change memory device material and the high 

electrical and thermal stresses applied during the programming operation, the standard 

methods of high-temperature (Temperature > 125 °C) accelerated retention testing may 

not be able to accurately predict bit sensing failures or determine slight pulse condition 

changes needed if the device were to be programmed at an elevated temperature several 

times, in an environment where the ambient temperature is between 25 and 125 °C. In 

this work, a new reliability prediction method, different than standard PCRAM reliability 

methods, is presented. This new method will model and predict a single combination of 

temperature and pulse conditions for temperatures between 25 and 125 °C, giving the 

lowest Bit Error Rate (BER). The prediction model was created by monitoring the cell 

resistance distributions collected from sections of the PCRAM 1Gigabit (Gb) array after 

applying a given RESET or SET programming pulse shape at a given temperature, in the 

range of 25 to 125 °C. This model can be used to determine the optimal pulse conditions 

for a given ambient temperature and predict the BER and/or data retention loss over large 

arrays of devices on the Micron/Numonyx 45nm PCRAM part.    
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CHAPTER 1: INTRODUCTION 

1.1 Introduction and Motivation 

Non-Volatile Memory (NVM) data storage technologies play a fundamental role 

in the semiconductor memory market due to the wide spread use of portable devices such 

as smart phones, tablet PCs, digital cameras, MP3 players, and personal computers, 

which require ever increasing memory capacity to improve their performance. Flash 

memory is the dominant semiconductor NVM storage technology; however, with the 

aggressive scaling (aimed at reducing the cost per bit), the floating-gate storage method is 

on the verge of reaching its technological limit, for conventional two-dimensional (2D) 

Flash memories [1], [2]. In fact, data retention and reliability of 2D Flash memory has 

pushed the semiconductor industry to invest in three-dimensional (3D) Flash memory and 

in alternative emerging memories [3]–[5], such as Spin-Transfer Torque Random-Access 

Memory (STT-RAM) [6]–[8], Ferroelectric Random-Access Memory (FeRAM) [9]–[11], 

Resistive switching Random-Access Memory (RRAM) [12], and Phase Change Random-

Access Memory (PCRAM) [13], [14].   

1.2 Phase-Change Random Access Memory (PCRAM) 

Chalcogenide-based PCRAM is one of the most promising non-volatile memory 

candidates for the next generation of portable electronics, due its excellent scalability 

[15]–[17], extremely high switching speed [18], and low-power operation [19]. 

  

 



2 

1.2.1 Chalcogenide Glasses 

Chalcogenide glasses are a class of materials, which contain Sulfur (S), Selenium 

(Se), and/or Tellurium (Te), or combinations thereof (shown in Figure 1.1). These 

materials are attracting much attention due to their potential use in Non-Volatile Memory 

(NMV) technology and the high demand for portable media, which use this type of 

memory.  

 
Figure 1.1 Chalcogenide glass materials are alloys with an element from group 
VI of the periodic table. Chalcogenic Elements marked in square. 

The conduction characteristic of chalcogenide glasses, meaning the reversible 

change in electrical resistivity upon a change in the phase of the chalcogenide glass 

material, was first published in 1968 by Stanford Ovshinsky using a 500 nm thick film 

composed of Tellurium (Te), Arsenic (As), Silicon (Si), and Germanium (Ge) [20], 

laying the path for future development for applications such as Phase-Change Random 

Access Memory (PCRAM). PCRAM is a resistance-based NVM technology, where the 

state of the memory bit is defined by the resistance of the chalcogenide glass material; the 

resistance state depends on the microstructure of the material [18]. The most commonly 

 



3 

used chalcogenide material for PCRAM is Ge2Sb2Te5 (or GST) [21]. In this study, GST 

was used as the chalcogenide material. A typical cross-section of a GST phase-change 

device (or cell) is shown in Figure 1.2. Although there are a number of possible 

geometries for PCRAM cells [22], the geometry that was used is the “mushroom” 

structure shown (amorphous region marked by the * in Figure 1.2, left) [22].  

 
Figure 1.2 Representation of a cross-section for a GST phase change device. Left: 
After RESET (mushroom structure); Right: After SET. Amorphous GST region 
marked by * in RESET image (LEFT image). TEM images courtesy of Micron 
Technology.  

1.2.2 Operation 

In the mushroom structure geometry (shown in Figure 1.2), the phase-change 

material (GST) is sandwiched between two electrodes: 1) a bottom electrode, often called 

a "heater element" typically made of TiN, Tungsten (W), or a silicide, to lower the 

current needed to program the phase-change material and improve heating efficiency 

[23], and 2) a top electrode, which typically has a larger contact area than the bottom 

electrode [21]. Due to the contact area asymmetry, the current is confined near the bottom 
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electrode. The small size of the bottom electrode is needed to promote the region around 

the bottom electrode to reach the highest temperature during operation in order to change 

the phase of the material. This region is sometimes referred to as the "active" or "melt" 

region of the PCRAM cell. Information is stored by exploiting two different solid-state 

phases (namely, the amorphous and the crystalline phase) of a chalcogenide alloy, which 

have different electrical resistivity. The amorphous (high-resistance) phase of the 

chalcogenide glass has a disordered microstructure with little to no atomic order, and as a 

result the resistance range of the amorphous phase is between 1–10 MΩ, which is often 2 

orders of magnitude higher than the crystalline (low-resistance) phase of the 

chalcogenide glass, which has a resistance range between 10 -100 kΩ [22]. The change in 

the solid-state phase from the amorphous phase to the crystalline phase is based on the 

thermally-induced change in the active region of the chalcogenide GST layer [22], [24].  

The phase-change of the PCRAM device to a highly resistive amorphous 

chalcogenide material is accomplished when a voltage higher than the threshold voltage 

(Vth) is applied across the bit, driving a brief, intense current pulse through the device. 

The RESET and SET pulses mentioned are illustrated in Figure 1.3, as a function of 

electrical current (I) and Time, with dotted lines representing the RESET and SET 

regions [25]. When the RESET pulse is applied, this raises the temperature of the 

chalcogenide material above the melting temperature (i.e., Imelt which corresponds to T ~ 

600°C for the GST alloy, shown in Figure 1.3) through Joule heating [26]. Once the 

melting temperature is achieved, the rapidly falling edge of the current pulse quenches 

the temperature of the material. This places the chalcogenide film in an amorphous (high-

resistance) state, which is a "RESET" state for the device.  
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The RESET operation creates the amorphous dome-shaped region (marked by the 

* in Figure 1.2, left) with a resistivity several orders of magnitude higher than that of the 

poly-crystalline region of the device, placing the device in a RESET state. To "SET" the 

device or recover the crystalline phase, an extended (longer duration: 100 ns – 1 µs 

range), low intensity, current pulse is applied to the phase-change material heating the 

device above the glass transition temperature (Icry, shown in Figure 1.3). The device is 

then cooled more slowly, changing the phase of the material to a poly-crystalline (low-

resistance) state [27]. It should be noted that the crystalline phase or SET state can also 

be achieved by annealing the amorphous GST at elevated temperatures. This is 

accomplished through thermally-accelerated nucleation and/or growth of crystalline 

grains during the sub-melting annealing [18], which will be discussed further in Chapter 

2.  

 
Figure 1.3 Diagram of standard current pulses for PCRAM programming during 
writing (SET or logic 1) and Erasing (RESET or logic 0).  Imelt refers to the current 
pulse amplitude needed to achieve the melting temperature and Icry refers to current 
pulse amplitude where the crystallization temperature occurs or the glass transition 
temperature [25]. 
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Finally, to READ the state of the bit, a predetermined READ voltage is applied to 

the cell; and the current flowing through the device, referred to as the READ current, is 

sensed (current sensing approach). The READ voltage must be low enough to avoid 

unintentional modifications of the cell contents due to unintended heating during readout.  

During the SET operation, there is a point where the resistance of the phase-

change material drops suddenly. This phenomenon takes place at the threshold voltage 

(Vth) of the material and is often referred to as "snap-back,” “threshold switching,” or 

“switching effect” of the device, due to the change in the current-voltage (I-V) trace. 

Figure 1.4 shows a typical I-V trace for the SET and RESET state. The I-V curve of the 

cell in its amorphous (or RESET) state shows an S-shaped behavior at about 1.2 V, which 

is the Vth for the measured device or the point where the conductivity of the cell changes 

and becomes comparable to that of the SET state. This effect is due to the threshold 

switching phenomenon [20], [21], [24], which consists of a sudden drop in the 

amorphous chalcogenide resistivity as the voltage reaches the threshold voltage (Vth) or 

equivalently when the current flowing through the cell exceeds the threshold current 

value (Ith). From an application point of view, threshold switching plays an essential role 

in the operation and performance of PCRAM cells; Vth defines the boundary between the 

voltage ranges for the READ and write (SET/RESET) pulse amplitudes in the memory 

cell [22]. Threshold switching is attributed to a voltage-current instability due to 

electronic excitation at high electric fields [28]–[32].  It should be noted that in some 

chalcogenide glasses, including GST, the threshold switching usually results in a 

transition from the amorphous to crystalline phase, while for other materials the 

switching process leaves the phase unaltered [33]. This difference can be explained by 
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the Joule heating, resulting from the large current increase at switching, which for 

sufficiently long electrical pulses can contribute to the transition to the crystalline phase 

for glasses with low crystalline point [22],[34].  

The programming operation of the PCRAM cell takes place in the high current 

regime of the SET and RESET trace, which is the location in Figure 1.4 where the 

amorphous (RESET) and crystalline (SET) I-V trace characteristics are almost 

indistinguishable (I = ~300 µA) [35].  

 
Figure 1.4 Measured I-V curves for the crystalline (SET state) and amorphous 
(RESET state) chalcogenide [35]. 

1.2.3 Technology Development 

The operation properties of PCRAM technology provide the characteristics to 

allow a drop-in replacement in a broad base of applications, while providing significant 

added value in: 1) wireless systems; 2) embedded applications (as a Flash replacement); 

3) solid state storage subsystem; and 4) computing platforms [36]. Moreover, as has been 
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mentioned in Section 1.2, PCRAM offers the possibility of improved scalability; the 

current state of the art is at the 20 nm technology node (cell half-pitch, F = 20 nm) with a 

cell size of 4 F2 (i.e., cell size = 4*(20 nm)2 ), as shown in Figure 1.5. Technology nodes 

are used to define the ground rules of device fabrication processes, governed by the 

smallest feature printed in a repetitive array [37]. 

 
Figure 1.5 Schematic of a memory cell array showing the cell size as 4 F2. 
Schematic image courtesy of Micron Technology.  

When comparing the technology node of PCRAM to Flash, FeRAM, and/or STT-

RAM in Table 1.1, it is apparent that PCRAM shows a significant improvement in terms 

of scaling (or shrinking) of the device. Furthermore, it should be noted that PCRAM has 

much lower programming read and write voltages than the other technologies, not to 

mention “direct overwriting” capabilities, meaning that the programming operation can 

be completed in one pass without having to erase the existing state of the bit first; NOR 

and NAND Flash do not have direct overwriting capabilities. Finally, for PCRAM, a 

reduced number of photo-lithography levels or “mask steps” are needed, due to fewer 
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device manufacturing or processing steps when compared to NAND and NOR. Moreover, 

the processing flow for PCRAM does not require the integration of ferroelectric and/or 

magnetic materials with the CMOS process flow, unlike FeRAM and STT-RAM. 

Table 1.1 Comparison of non-volatile memories characteristics  [8], [10], [38]–
[40].  

 

Among the companies that have invested in PCRAM technology, Micron is the 

first to supply high-volume availability of a 45 nm technology node, 1-Gigabit (Gb) 

LPDDR2, with an effective cell size of 5.5 F2  [36], [41], [42], in a multichip package. 

The technology development road map for PCRAM is reported in Figure 1.6, showing the 

aggressive technology scaling with each generation between Samsung and Micron 

(formally Numonyx, STMicroelectronics). 

The 180 nm technology node has been used as a vehicle to demonstrate and prove 

the viability of the technology, which for STMicroelectronics/Numonyx led to the 

development of both the 90 nm technology (the "Alverstone" technology) and on to the 

45 nm technology, which is now commercialized by Micron [42].  
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Figure 1.6 Technology development roadmap for PCRAM [36], [43]–[46]. 

1.3 Materials 

In this study, 45 nm 1-Gigabit (Gb) LPDDR2 PCRAM engineering devices 

fabricated at Micron were used in determining the optimal pulse conditions and in 

developing the reliability prediction method, which will be discussed further in Chapter 

2. Conceptually, the structure of the Micron 45 nm PCRAM cell architecture is simple, 

consisting of a top electrode, memory layer (GST), and the heater (as shown in Figure 

1.7), which form the storage element.   
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Figure 1.7 Representation of a cross-section of the Micron 45 nm storage element 
architecture [36]. 

Since the phase change material (or memory layer) in the storage element is 

programmable with the application of an applied electrical pulse, when programming an 

array of devices, a selecting device is required in order to decoded the correct storage 

element inside the 1-Gb array of devices [22]. Two primary solutions have been 

investigated for high-volume manufacturing: 1) vertical Bipolar Junction Transistor 

(BJT) and 2) planar metal-oxide-semiconductor field effect transistor (MOSFET) 

[22],[42], shown in Figure 1.8.  Considering that the aim of process integration is to build 

a compact and efficient PCRAM storage element coupled with its selector, the BJT/Diode 

was considered to be an innovative solution for high density, high performance 

applications.  
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Planar MOSFET Selector Vertical BJT Selector 

 
Figure 1.8 Schematic Depiction Single Transistor Per PCRAM Cell Structure: 
Left: Planar Metal-Oxide Semiconductor Field Effect Transistor (MOSFET), 
Selecting Device; Right: Vertical Bipolar Junction Transistor (BJT), Selecting 
Device [42]. 

A comparison of the process complexity, size, organization, application, and the 

schematic of the MOSFET vs. BJT/Diode is shown in Figure 1.9. In this comparison, one 

can see that the cell size of the MOSFET is ~20 F2, while the BJT/Diode cell size was 

reduced to ~5 F2. As a result of the smaller cell size, the BJT/Diode-selector has been 

chosen in the 45 nm commercialized PCRAM part, which allows for higher performance 

and density applications [21], [42].  

 
Figure 1.9 Comparison of the MOSFET and BJT/Diode selected PCRAM cell 
[42]. 
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The PCRAM architecture was originally developed considering the small cell size 

requirements, the process cost, and the high performance characteristics, with the focus 

of obtaining fast random access-time typical of NOR Flash applications [22], [47]–[49]. 

The standard “µTrench” storage element fabrication steps proposed for the 90 nm 

technology platform is shown in Figure 1.10. For the standard “µTrench” storage 

element, one base-contact of the BJT/Diode is used for every emitter [36].  

The active storage region is achieved at the intersection between the vertical thin-

film metallic layer or heater (which is deposited inside an opening on a Tungsten (W) 

plug), and a thin layer of chalcogenide material (GST) capped with a TiN barrier 

(deposited inside a sub-lithographic trench or “µTrench”), as shown in Figure 1.10 

[22],[42].    

 
Figure 1.10 Schematic of the Self-aligned “µTrench” fabrication steps [42]. 

With the enablement of a working and reliable storage element, ongoing 

development led to a more effective cell using one base contact for every four emitters 

[36]. This approach has been adopted on the 45 nm technology to achieve a cell size of 
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5.5 F2, leading to the design of the 1-Gb PCRAM product and “Wall” storage element, 

shown in Figure 1.11 [36].  

Process module optimization, in particular an innovative double Shallow-Trench 

Isolation (STI) approach (used for isolation between adjacent emitters) and material 

improvements, have permitted the evolution of the cell from the “µTrench” (Figure 1.10) 

to the “Wall” structure (Figure 1.11), simplifying the overall storage element process 

integration and maintaining a very controlled low RESET current [36], [42]. The 

reliability results (discussed further in Chapter 2), using the new “Wall” cell have been 

very positive both in terms of retention and endurance; these results show that the 

technology is able to meet the reliability expectations for 90 nm, 45 nm, and future scaled 

technology nodes [36], [42].   

 
Figure 1.11 Schematic of the “Wall” storage element and related cross-sections 
[36]. 

1.4 Conclusions 

In view of the need for new types of non-volatile memory (NVM) and with an 

understanding of PCRAM and where it fits when compared to other non-volatile 
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emerging memories, we now move into the investigation of PCRAM reliability presented 

in this dissertation. In Chapter 2, common methods used for reliability prediction will be 

reviewed. These methods lead to the objective of this dissertation which is to develop a 

reliability prediction method based on the pulse conditions, temperature, cycling data, 

and Bit Error Rate (BER). This new reliability prediction method presented in Chapter 2 

is able to model and predict a single combination of temperature and pulse conditions, 

giving the lowest Bit Error Rate (BER), on a 1-Gigabit (Gb) array of experimental 

PCRAM devices, using the Micron/Numonyx PCRAM 45 nm cell architecture. In the 

following chapter (Chapter 3), an overview of the testing method, equipment used, and 

theory supporting the new reliability method will be covered. In Chapter 4, the Design of 

Experiments (DOEs) used for in modeling of the optimal pulse conditions are presented. 

Finally, in Chapter 5, the DOE used for the Bit Error Rate (BER) model is presented.   
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CHAPTER 2: RELIABILITY  

2.1 Reliability and Failure Rate 

Reliability is one of the most important factors used to determine if a device 

fulfills its required functions for the prescribed period under the conditions for which it 

was designed.  Each device has a lifetime, which is the length of time that the device 

works as desired. The reliability indicates the probability for functioning correctly 

without failure until time (tlife), which is used as a random variable for the lifetime of a 

device in Equation 2.1. If the mission time (tmission) of the device is not specified, the 

reliability of the device becomes a real-value function for tmission. It should be noted that 

tmission is not a random variable. Then, the reliability function, R(tmission), which is the 

probability that tlife is greater than tmission, can be formulated as follows: 

𝑅(𝑡𝑚𝑖𝑠𝑠𝑖𝑜𝑛) = Pr�𝑡𝑙𝑖𝑓𝑒  >  𝑡𝑚𝑖𝑠𝑠𝑖𝑜𝑛� =  � 𝑓(𝜃)𝑑𝜃,
∞

𝑡
 

(2.1) 

where f(θ) is the probability density function (pdf) of tlife with respect to operating time θ.  

Failures are counted in calculating reliability. In semiconductor engineering, 

failures can be classified into types according to the failure source. The failure rate of a 

device is often expressed using what is called the "bathtub" curve as shown in the 

“Observed Failure Rate” curve of Figure 2.1. The bathtub curve takes into account the 

failure rate from the standpoint of time and classifies failures into three types according 

to the failure source: 1) early failures or, Decreasing Failure Rate (DFR), 2) Constant 
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Failure Rate (CFR), and 3) wear out failures or Increasing Failure Rate (IFR) [50]–[53].  

It should be noted that the failure rate of semiconductors shows a gradual decreasing 

failure rate with increased time similar to the early “Infant Mortality” failure curve in 

Figure 2.1; hence, the longer a particular semiconductor device is used, the more stable it 

will be. However, two points must be considered regarding the service life of a device: 1) 

the CFR region, and 2) IFR region or the wear out of the device.  

If a failure is caused by unrevealed manufacturing defects, it is classified as an 

early failure in the DFR region. Defects that do not materialize into yield losses can grow 

to failures during operation depending on the quantity of external and internal stresses 

[50], [52], [54]. These early failures are usually screened by accelerated life testing and 

burn-in [50]–[52]. 

 
Figure 2.1 Typical "Bathtub" curve for semiconductor devices [55]. 

2.2 Accelerated Life Tests 

Accelerated tests are typically used to find and identify potential failure 

mechanisms in semiconductor devices [50]. When performing accelerated tests for a 
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given failure mechanism, a common way of determining the presence of some stress 

(e.g., temperature cycling, electric field, current density) is through the acceleration 

factor. The mathematical relationship or equation commonly used for the acceleration 

factor due to changes in temperature for microcircuits and other semiconductor devices 

follows the format of the Arrhenius equation [50]. An example of the acceleration factor 

due to changes in temperature is shown in Equation 2.2: 

𝐴𝑇 = 𝜆𝑡
𝜆𝑠

= exp ��−𝐸𝑎
𝑘
� ∗ �1

𝑇𝑡
− 1

𝑇𝑠
��, (2.2) 

where Ea is the activation energy (in electronvolts (eV)), k is Boltzmann's constant 

(8.62E-5 eV K-1), Tt is the absolute temperature of the test (in Kelvin), Ts is the absolute 

temperature of the system (in Kelvin), λt is the failure rate at the test temperature, and λs 

is the failure rate at the system temperature. The acceleration factor can be calculated for 

electrical, mechanical, environmental, and other stresses when those stresses affect the 

reliability of a device [50].  With accelerated testing, caution should always be used since 

the relationship only holds if the failure rate is constant; however, very few practical 

situations exist in which the failure rate is truly constant. Nevertheless, the assumption of 

constant failure rate is still commonly used.  

2.3 PCRAM Reliability 

2.3.1 Design Constraints 

When developing a memory chip used for high-performance applications, fast 

programming (SET/RESET) and READ times are necessary; however, consideration also 

needs to be taken into preserving data retention capabilities [22]. Among the failure 

mechanisms seen, retention loss of amorphous or RESET cells is most fundamental to 
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PCRAM [56], due to the instability of the amorphous GST [57], [22]. Early retention 

failures of the RESET bit have been related to pre-nucleation sites [56], which spur the 

rapid development of a conducting percolation path (shown in Figure 2.2), after a cell is 

RESET [18], [58].  

  

 

 

 

Figure 2.2 Conducting percolation path of PCRAM: left, simulation example of 
retention failure by the formation of conducting percolation path, from t=0 to the 
formation of the path [58]; right (top), percolation path highlighted (red), the 
channel is made by a continuous low-Ea path; right (bottom), corresponding current 
density profile, where the low-Ea path is the channel that brings the higher 
percentage of the total current [18]. 

When reviewing the retention of SET cells, it should be noted that insufficient 

pulse widths for the SET pulse can also cause a SET bit to be placed in a partial-RESET 

state, meaning that better retention capabilities implies longer SET programming pulses 

widths [22].  For example, in Figure 2.3, as the PCRAM cell transitions from the high 

resistance RESET state (amorphous phase) to the low resistance SET state (crystalline 

phase), one can see that complete crystallization is achieved with very long SET pulses 

widths (10 µsec), even at lower programming currents (~200 µA). However, as the pulse 
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width is reduced, the GST is not able to fully crystallize, resulting in a higher SET 

resistance, limiting the READ margin or reading window between the SET and RESET 

states [22], [59].  It should be noted that it is unacceptable for high-performance products 

to have a SET pulse width of 10 µsec, thus requiring shorter pulses to be used, resulting 

in a trade-off or compromise between the READ margin and shorter SET pulse widths 

and the possibility of a SET cell not being sensed correctly during the READ pulse. 

 
Figure 2.3 Programming curves of a MOSFET-selected PCRAM cell for different 
SET pulse widths [22],[59].  

For the RESET pulse, shorter pulse widths have been found to be better, with 

advantages being seen in the PCRAM cell endurance, as shown in Figure 2.4. The theory 

behind the relationship between the cell endurance and the RESET pulse width is related 

to the overall time elapsed by the cell at higher temperatures during the RESET operation 

or the total energy dissipated inside the device [59]. It should be noted, that the 

experimental data in Figure 2.4 was fit using the power law. 
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Figure 2.4 PCRAM cell endurance as a function of the RESET pulse width [59]. 

2.3.2 PCRAM Reliability Risks 

The reliability risks of PCRAM can generally be grouped into three types: 1) data 

retention; 2) cycling endurance; and 3) data program and READ disturbs [56], [60], [61].  

In Sections 2.3.2.1- 2.3.2.3, the standard methods used on the Micron 45 nm PCRAM 

devices to test the reliability risks are reviewed. 

2.3.2.1 Data Retention 

The major figure of merit for a non-volatile memory (NVM) is the capability of 

retaining the stored information for a long time period; the actual specification is 10 years 

[62].  To assess the PCRAM technology retention, accelerated bake testing on PCRAM 

cells are performed [56], [60]–[62]. However, these studies are generally limited in two 

ways: 1) to accelerate the data collection, the data is generally collected at very high 

temperatures (Temperatures  > 180 °C), which requires a significant extrapolation when 

compared to the usable temperatures of the product and can affect the structure of the 

chalcogenide glass, and 2) the data collection is usually on a statistically small number of 
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cells, which likely does not expose possible defect failure modes that may be 

present/observed on a large array product [56]. For this reason, data retention needs to be 

examined at the part-per-million (PPM) level across a broad range of temperatures [56]. 

It should be noted that when the PCRAM device is subject to elevated temperatures, the 

resistance of the RESET PCRAM cell evolves with time as shown in Figure 2.5b [56], 

[57].  

The behavior of the resistance shown in Figure 2.5 is mainly related to the 

unstable amorphous phase (RESET state) of the PCRAM cell, which is affected by two 

types of structural modifications: 1) the Structural Relaxation (SR) effect (Figure 2.5a), 

and 2) the crystallization process (Figure 2.5b) [57].  

 
Figure 2.5 Resistance vs. time behavior during annealing, highlighting two 
possible structural phase modifications.  (a) Structural relaxation at room 
temperature (T = 25 °C). (b) Drop in the RESET state cell resistance due to the 
nucleation and growth of a crystalline phase [57]. 

Both of these types of structural modifications affect resistance, which can lead to 

reliability issues for the PCRAM cell. In Figure 2.5b, the cell is initially RESET to ~1 

MΩ, and the resistance is monitored at three different temperatures of 180 °C, 190 °C, 

and 210 °C [56]. Initially, the resistance in the cell increases due to resistance drift (a 
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phenomenon seen in amorphous chalcogenides) [56]; however, crystallization in the 

amorphous phase eventually sets in resulting in a drop in resistance and thereby, loss of 

data in the cell [56], [63]. 

 The Structural Relaxation (SR) only affects the amorphous phase and has been 

explained by defect annihilation in the amorphous network, as shown in Figure 2.6 by the 

schematical annihilation process for a dangling bond as it transitions to a more stable 

state [57].  

 
Figure 2.6 Schematic for the structural relaxation model in the amorphous 
chalcogenide material: (a) Structural defects (point defect such as a dangling bond); 
(b) The transition to the more stable state requires thermal excitation over an 
energy barrier EA [57].  

When multiple PCRAM cells are measured at the array level, a similar behavior is 

observed; however, the distribution of data retention failure times becomes broader.  

Figure 2.7 contains resistance distributions for an 512 Kb PCRAM array of RESET cells, 

which were run through successive high temperature bake steps [56]. The drift 

component is difficult to observe in this case due to the loss of measurement resolution 

above 1 MΩ; however, here a significant variation in % cell vs. resistance with increasing 

bake time across the distribution of cells can be observed. After the final bake, the 
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resistance of the cells ranges from essentially SET (Resistance  < 10 kΩ) to fully RESET 

(Resistance=1 MΩ) [56], and the percentage of cells moving toward the SET resistance 

increases with increased bake time.  

 
Figure 2.7 Resistance distributions of initially RESET PCRAM cells with 
increasing bake time at elevated temperature [56]. 

To estimate failure rates at product use conditions, an acceleration model for 

retention loss as a function of bake temperature is often used [56]. The experimental 

procedure consists of: 1) placing arrays of cells in a RESET state, and 2) baking the cells 

at elevated temperatures until retention loss is observed [56]. The PCRAM cells are 

considered fails once the resistance drops below a specified threshold (~100 KΩ), which 

is repeated at multiple temperatures on the same cells [56].  Temperatures between 125 

°C and 160 °C have been found to be sufficient to describe the failure using this process 

[56]. Once the data is collected, it is then fit to the Arrhenius equation (Equation 2.3) to 

determine the data retention time [56]. 

𝑡 ∝ 𝑒𝑥𝑝 �𝐸𝑎
𝑘𝑇
�, (2.3) 

 



25 

While more complex models have been developed to describe the crystallization 

process, the simple Arrhenius model is able to describe the failure process over a range of 

temperatures as shown in Figure 2.8 [56]. 

 
Figure 2.8 Arrhenius plot of Data Retention Failure Time vs. Temperature, 
including both array and single cell data [56]. 

2.3.2.2 Cycling Endurance 

 As with data retention, achieving high reliability for cycling endurance is very 

important and requires optimized device and pulse operation [60]. The cycling endurance 

tests can be conducted in three ways: 1) SET cycling, 2) RESET cycling, and 3) 

alternating SET and RESET cycling [61]. As shown in Figure 2.9, a resistance change of 

two orders of magnitude between the SET and the RESET state has been shown to be 

unchanged for more than 1011 programming cycles for a single PCRAM device with the 

alternating SET and RESET cycling [62]. 
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Figure 2.9 Cycling Endurance of a PCRAM cell [62]. 

When performing the cycling endurance tests, it should be noted that it is 

important that optimized programming pulses for SET and RESET be determined to 

ensure that the endurance of the device is maintained or improved [61]. It is also very 

important that the device is not over programmed as this can lead to early device failures 

such as: 1) “Stuck SET” or RESET fails, and 2) “Stuck RESET” or cell opens [60], [61]. 

In general, cells that get stuck in RESET after cycling show a higher threshold voltage, 

suggesting a failure mechanism related to the GST [60]. However, cells that get stuck in a 

SET state show a high resistance in the I-V curve at high current, suggesting that the 

failure mechanism is related to the heating element (or  “heater element”) [60].   

2.3.2.3 Data Program and READ Disturbs 

Since reading and programming device operations are based on the application of 

suitable voltage pulses, a major concern for every non-volatile memory technology is the 

ability of the cell to retain data when the writing and reading methods can cause various 
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disturb issues (related to the isolation between adjacent bits, shown in Figure 2.10), 

which can induce a transition from an amorphous state to a polycrystalline state in a 

PCRAM cell [62]. 

  
Figure 2.10 Left: Schematic description of the programming disturb phenomenon 
[62]; Right: TEM cross-section of aggressor (yellow) and disturbed cell (red); a 
portion of the amorphous GST dome is crystallized [64]. 

Disturbs are an intrinsic phenomena of the memory array [61]. There are two 

major disturb mechanisms: 1) thermal proximity disturb during programming, which are 

often referred to as “Data Programming Disturbs,” and 2) READ disturbs [61], [62].  

Data programming disturbs occur when reading or writing a certain PCRAM cell, which 

then can effect unwanted reading or writing at a nearest neighbor PCRAM cell, or at 

PCRAM cells connected to the same word-line/bit-line as shown in Figure 2.10 [62]. For 

the READ disturbs, this often involves the repetitive readout of a PCRAM cell in a 

RESET state, which eventually may cause a modification of its phase.   

To test for data programming disturbs, the following tasks are usually performed: 

1) all cells in the array are programmed into a RESET state, 2) selected cells in a 

checkerboard pattern across the array are then programmed up to 106 cycles, and 3) the 
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RESET state resistance before and after on the cells that were not cycled are then 

compared to determine the number of cells affected by the programming disturb [61].   

2.3.3 Bit Error Rate and Array Reliability   

In order to integrate PCRAM devices into large and yielding arrays, a large READ 

margin or “reading window” between the two memory logic states must exist and be 

maintained, with a probability of error or Bit Error Rate (BER) less than 10-6 (1 PPM) 

[65].  An example of the “reading window” can be seen in Figure 2.11 where a single-tile 

(4 Mb distributions) of SET and RESET resistances were collected on the μTrench 

PCRAM array [65]. While the SET distribution is log-normal with a resistance of 5 - 10 

kΩ, the RESET distribution is only log-normal for resistances between 400 kΩ - 1 MΩ. 

Starting around the cell resistance of ~400  kΩ a pronounced tail  or “RESET tail” is 

shown, which extends toward the low-resistance value of 20 kΩ and narrows the reading 

window between the SET and RESET states [65]. This RESET tail has been related to 

PCRAM cells that may have some abnormal material properties in or around the GST cell 

as a result of defects or processing issues that causes the PCRAM cell to behave 

differently to the applied electrical pulse [65].  It should be noted that this RESET tail 

and/or narrowing of the reading window is not a desirable characteristic; ideally the SET 

and RESET resistance distributions should have a large reading window between them so 

that the states of the cells can be easily distinguished. This means that out of all the 

PCRAM cells in a given memory array, the resistance of the cell with the highest SET 

resistance must be much lower than the resistance of the cell with the lowest RESET 

resistance.   
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Figure 2.11 Array statistics for 4 Mb of SET and RESET resistances collected on 
a μ-trench PCRAM array [65]. 

Looking at the resistance distribution for the SET and RESET states by cell 

percentage of 4Mb from an array of PCRAM devices (shown in Figure 2.11), it is 

apparent that the single electrical programming pulse used for the RESET operation is 

able to RESET the majority of the PCRAM cells. However, for the anomalous or 

abnormal cells (within the lower 2.27% cell percentage), a different RESET pulse may be 

required to increase the RESET state resistance of these cells and improve the reading 

window between the SET and RESET states [65]. It has been found that an improvement 

of the RESET tail resistance distribution can be obtained by optimizing the RESET 

programming operation with a faster quenching time (tQ) on the RESET electrical pulse 

as shown in Figure 2.12 and Figure 2.13, where tQ  is varied from a 60 ns RESET pulse 

width down to 20 ns [65].   
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Figure 2.12 RESET and SET current pulses and significant parameters 
(highlighting tQ or the quench time) [66]. 

With faster quenching time for the RESET pulse, the RESET tail becomes less 

apparent, meaning that the programming characteristics of the anomalous cells are now 

aligned with the intrinsic cell. This suggests that a faster quenching programming pulse is 

preventing the spontaneous crystallization of the PCRAM chalcogenide material, helping 

maintain the amorphous disordered state and high RESET resistance value [65].  

 
Figure 2.13 Resistance distribution improvements: RESET achieved with a faster 
quenching of the RESET pulse (Green: longer quench time; Orange: Short shorter 
quench time); SET achieved with longer pulse (Green: Short pulse; Blue: long 
pulse) [65], [66]. 

From a PCRAM reliability viewpoint, the characterization and understanding of 

the statistical spread of reliability parameters, such as the crystallization time and its 
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activation energy are extremely important [67]. Single-cell characterization only allows 

for the modeling of the intrinsic cell reliability with no insight into the reliability behavior 

of large arrays. The correlation between single cell performance and array performance 

still needs to be better understood. For example, a recent study was completed that 

compared the cumulative distribution of a single cell and array of cells (shown in Figure 

2.14) [67]. In this comparison, two distributions of the time to SET (t*set), which was 

listed as the SET pulse-width required to reduce the cell resistance below 0.1 MΩ, were 

reviewed for: 1) The "Cell" distribution, which is a collection of multiple pulses on the 

same single cell, and 2) the "Array" distribution, which was obtained from a single SET 

pulse applied to multiple cells within the same array [67].   

 
Figure 2.14 Cumulative distribution of measured set time t*

set that is the pulse-
width of the set pulse required for reducing the cell resistance below 105 Ω. A cell 
distribution (collected from many experiments on the same cell) and array 
distribution (collected from single experiments performed on many different cells 
within the array) are compared [67]. 

As shown in Figure 2.14, the single cell distribution displays a narrower spread 

than the array distribution. The statistical spread of the array data provides additional 

insight into the spread of crystallization parameters among the cells [67]. Moreover, it is 
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interesting to see how the single cell distribution supports the repeatability of the 

crystallization process for a single cell [67].   

2.4 Failure Rate Prediction 

Several different distributions can be used to model failure rate under appropriate 

circumstances such as the exponential, Weibull, and lognormal distributions. However, it 

should be noted that due to the window of operating conditions chosen in this research (to 

be defined in Chapter 3). The standard time-to-failure or lifetime prediction methods and 

distributions commonly used are not possible, since the 45 nm 1-Gb PCRAM chip is not 

sufficiently stressed to fail at the temperatures and voltages, which are used for 

determining the optimal pulse conditions for very long periods of time. For this reason, 

this reliability prediction method monitors the cell resistance distributions collected from 

sections of the PCRAM 1Gigabit (Gb) memory array and will predict a single 

combination of temperature and pulse conditions, giving the lowest Bit Error Rate (BER). 

2.4.1 Exponential Distribution 

An exponential distribution implies a constant failure rate. However, a constant 

rate does not occur if the product is insufficiently screened or improperly designed for 

reliability. It also does not occur if the product is past the bottom of the “bath tub” curve 

and into the wear-out phase. The exponential distribution is the least complex of all 

lifetime distribution models. The exponential distribution for the reliability function is 

defined in Equation 2.4, 

𝑅(𝑡) =  𝑒𝑥𝑝(−𝜆 ∗ 𝑡), (2.4) 
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the cumulative distribution function (CDF) or failure distribution, is defined in Equation 

2.5, 

𝐹(𝑡) = 1 −  𝑒𝑥𝑝(−𝜆 ∗ 𝑡), (2.5) 

and the probability distribution function (PDF), or the lifetime distribution model, which 

is obtained from the derivative (with respect to time) of the CDF, is defined in Equation 

2.6, 

𝑓(𝑡) = 𝜆 ∗ 𝑒𝑥𝑝(−𝜆 ∗ 𝑡), (2.6) 

where, t is time and λ is the failure rate or “hazard rate.”  

It should be noted that the mean time to failure (MTTF) of the exponential 

function is the inverse of the failure rate λ, which is defined in Equation 2.7. 

𝑀𝑇𝑇𝐹 =  1/𝜆, (2.7) 

In Figure 2.15-2.17, figures of the CDF, PDF, and hazard rate (λ), for the 

exponential distribution are shown. 

 
Figure 2.15 CDF or F(t) for exponential distribution [68]. 
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Figure 2.16 PDF or f(t) for exponential distribution [68]. 

 
Figure 2.17 Exponential distribution hazard rate [68]. 

2.4.2 Weibull Distribution 

A Weibull distribution can be used to model the “weakest link.” The Weibull 

function can be expressed in multiple ways [68]. The two-parameter version derives a 

characteristic life, and a shape parameter, usually called β. The three-parameter version 

for Weibull retains the characteristic life and β, but adds a “delay time” corresponding to 

the time required to initiate defects. The difference between the two-parameter and three-

parameter Weibull is whether or not failures start at time zero [68]. The equation of the 

three-parameter Weibull distribution shown in Equation 2.8 is the probability of survival 

between time zero and time t, or in other words the Weibull reliability function R(t), 
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𝑅(𝑡) =  𝑒𝑥𝑝 �− �[𝑡−𝛾]
𝛼
�
𝛽
�, (2.8) 

where, β is the shape parameter, γ is the location parameter, which is also referred to as 

the defect initiation time parameter, and α is the characteristic life or scale parameter 

[68].  If failures do not start at time zero, the defect initiation time parameter (also known 

as the location parameter) is zero, and the Weibull exponential expression is reduced to 

Equation 2.9,  

𝑅(𝑡) = 𝑒𝑥𝑝 �− �𝑡
𝛼
�
𝛽
�, (2.9) 

when β  = 1, Equation 2.9 becomes the exponential model, with α = 1/λ or the MTTF. 

The PDF of the two parameter Weibull distribution is defined in Equation 2.10, a plot of 

the PDF  is shown in Figure 2.19 for different values of β [68]. 

𝑓(𝑡) = 𝛽
𝑡
�t
α
�
β
𝑒𝑥𝑝 �−�𝑡

𝛼
�
𝛽
�, (2.10) 

The CDF of the two-parameter Weibull is defined in Equation 2.11,  

𝐹(𝑡) = 1 − 𝑒𝑥𝑝 �−�𝑡
𝛼
�
𝛽
�, (2.11) 

which is shown in Figure 2.18, and its associated hazard function is shown in Figure 

2.20. 

 



36 

 
Figure 2.18 CDF of Weibull function, varying β [68]. 

 
Figure 2.19 Weibull function PDF in units of α, varying β [68]. 

 
Figure 2.20 Hazard rate for Weibull function, varying β  [68]. 
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The cumulative failure rate of the two parameter Weibull model or so-called 

cumulative hazard rate is defined in Equation 2.12, 

𝐻(𝑡) = �𝑡
𝛼
�
𝛽

, (2.12) 

with the instantaneous failure rate defined in Equation 2.13. 

ℎ(𝑡) = 𝛽
𝛼
�𝑡
𝛼
�
𝛽−1

, (2.13) 

2.4.3 Lognormal Distribution 

The lognormal distribution is based on a normal distribution of failures vs. 

logarithm of time. The lognormal (also called Gaussian) distribution [68] for reliability 

function or survivor function is defined in Equation 2.14 as, 

𝑅(𝑡) =  1 −  Φ�ln(𝑡)−ln(𝑡50)
𝜎

�, (2.14) 

where, 

 Φ(𝑧) = 1
2
�1 + 𝐸𝑟𝑓 � 𝑧

√2
��. (2.15) 

 The characteristic fitting parameters are the time to 50% cumulative failure (t50) 

and sigma (σ), which is referred to as the shape parameter or the slope of the time to 

failure vs. the cumulative percent failure on a log scale and is a measure of the time 

dispersion of the failures [68]. The equation of the CDF for the lognormal distribution is 

shown in Equation 2.16. 

𝐹(𝑡) =  Φ�ln(𝑡)−ln(𝑡50)
𝜎

�, (2.16) 
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The probability distribution function (PDF), or the lifetime distribution model, is 

defined in Equation 2.17, 

𝑓(𝑡) = 1
√2𝜋𝑡𝜎

∗ 𝑒𝑥𝑝 �− 1
2

 �ln(𝑡)− ln(𝑡50)
𝜎

�
2
�, (2.17) 

In Figure 2.21-2.23, figures of the CDF, PDF, and hazard rate, for the lognormal 

distribution are shown. 

 
Figure 2.21 CDF of lognormal function with varying σ [68]. 

 

 
Figure 2.22 PDF of lognormal function with varying σ [68]. 
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Figure 2.23 Hazard Rate of lognormal function with varying σ [68]. 

When performing reliability testing, the following points must be considered 

before implementing a reliability test: 1) in what applications will the device be used, 2) 

in what possible environments and operating conditions will the device be used, 3) what 

are the possible failure modes and mechanisms, 4) what level of reliability does the 

market require for the device, and 5) how long is the device expected to be in service. 

Once this is determined, there are multiple accelerated stresses that can be applied to 

devices such as: 1) temperature, 2) voltage, 3) temperature difference, and 4) current 

[51]. An important consideration in reliability testing is that the testing must contribute to 

the appropriate evaluation and improvement of semiconductor reliability [51].  

2.5 Reliability Model Classification 

Reliability models can be classified into two types: 1) physical models, and 2) 

statistical models. Physical models are used to explain the electrical and parametric 

behavior of semiconductor devices, whereas statistical models are used to understand 

statistical inference and the estimation of defect and failure rates. Due to the long lifetime 

and low failure rate requirements of semiconductor devices, test under actual usage 

conditions would require extensive test time and excessively large sample sizes. To 
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shorten the test time, accelerated tests on voltage, temperature, and humidity have been 

developed. In addition, statistical sampling is used [50]–[53]. However, in recent years, 

customer demand for shorter development-to-shipment times as well as the increasing 

advancement and complexity of semiconductor devices has made failure analysis 

extremely difficult. Consequently, the evaluations of basic failure mechanisms are now 

being studied when a device is in the development phase. Products are divided into 

different test element groups such as process and design [51].   

2.6 Proposal 

The Micron/Numonyx 45 nm technology PCRAM production part will be used in 

mobile devices, such as smart phone and/or tablet. Considering the environment and the 

operating conditions that a mobile device is exposed to, if the mobile device were to be 

left in an automobile on a summer day, how many bits are at risk of being sensed 

incorrectly during the READ operation? Using the standard retention test discussed in 

Section 2.3.2.1, the retention prediction shows that the mobile device could sit in the car 

for 10 years and retain the state of the bit, if the ambient temperature of the car is below 

85 °C. However, what if a programming pulse or READ pulse were applied multiple 

times while the mobile device was at an elevated temperature? How many PCRAM cells 

within the array would be at risk of possible retention loss, or what would be the 

percentage of bits that would fall within the programming/reading window, which could 

possibly be sensed incorrectly? The market reliability requirement for the Bit Error Rate 

for an array of cells is 1 part-per-million (PPM). Would the current retention prediction 

model be adequate to predict a possible retention issue?  
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The hypothesis for this research is that a reliability prediction method that finds 

the optimal pulse conditions for an array of PCRAM devices (using ambient temperatures 

between 25 to 125 °C) and predicts the Bit Error Rate (BER) has the potential to predict 

reliability issues closer to the normal operating conditions for the device. In this work, the 

aim of this research is to develop a reliability prediction method, different than standard 

retention reliability methods, using lower ambient temperatures from 25 to 125 °C. This 

new method models and predicts a single combination of temperature and pulse 

conditions that give the lowest Bit Error Rate (BER) on a 1-Gigabit (Gb) array of 

experimental PCRAM devices, using the Micron/Numonyx PCRAM 45 nm cell 

architecture.  

2.7 Conclusions 

To support reliable large array products, PCRAM must be able to retain data over 

the life of the product [56]. The standard reliability prediction methods used on PCRAM 

and semiconductors have been reviewed, including the materials and geometries of the 

Micron/Numonyx 45 nm PCRAM experimental device, which was used in this study. The 

hypothesis for the research and aim of this dissertation has also been reviewed.  
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CHAPTER 3: EXPERIMENTAL SETUP AND OPTIMAL PULSE CONDITION 

STRATEGIES 

3.1 Experimental Setup 

In Chapter 3 the experimental setup used for developing the reliability prediction 

method is presented. This includes the screening of the voltage pulse amplitude and SET 

quench time, which is later used to determine the design space for the designed 

experiments. The prediction models are created for the optimal pulse conditions and Bit 

Error Rate (BER), which are then used to predict a single combination of temperature and 

pulse conditions giving the lowest Bit Error Rate (BER), on a 1-Gigabit (Gb) PCRAM 

array of Micron/Numonyx 45 nm PCRAM experimental devices.   

3.1.1 Electrical Test Setup 

In general, the most basic form of electrical testing for a single PCRAM device 

can be performed using a pulse generator (for programming the device) and an 

oscilloscope to determine the voltage drop across the device (through the use of a series 

load resistor) [69]. For the Micron/Numonyx 45 nm PCRAM experimental chip, in order 

to access the 1 Gigabit (Gb) array, a device specific probe card and tester capable of 

making array level measurements is needed. The probe card is specifically designed for 

the Micron/Numonyx 45 nm PCRAM experimental chip to collect the electrical 

measurement data. Also discussed in Chapter 2, the distribution of the resistances for the 

amorphous and crystalline phases (or RESET and SET states) over an array of PCRAM 
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devices depends on the shape of the programming pulse. For these reasons, all 

measurements were performed using the MicroMate (µM) tester (Figure 3.1), which is a 

Micron specific tool that consists of a self-contained module offering the combination of 

both single cell and array level electrical characterization.  

 
Figure 3.1 MicroMate (µM) Tester. 

Depending on the part, the bond pads or electrical contact points between the 

PCRAM device and the pins of the probe card can change. For this reason, the package 

part probe cards are interchangeable on the probe stations, allowing multiple part types to 

be tested on the same probe station.  

As shown in Figure 3.2, the device specific probe card can be inserted into a 

probe station just above the thermal chuck. Built-in clamps on the probe station are used 

to hold the package part probe card securely in place. The thermal chuck is used to hold 

the wafer in place by applying a vacuum on the back-side of the wafer; the thermal chuck 

also has electrical coils within the chuck, allowing the wafer to be heated for the 

temperature measurement tests.   
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Figure 3.2 Probe station, showing package part probe card and thermal vacuum 
chuck (directly below the probe card). 

As discussed in Chapter 1, each memory cell in the PCRAM array is referred to as 

a storage element. The storage element consists of a top electrode, memory layer (GST), 

and the heater storage element material. This storage element is connected to a BJT 

selection transistor, as discussed in Chapter 2 (shown in Figure 3.3, right). In the memory 

array, the base of all BJT select transistors is connected to the same row or “Word-Line,” 

while the top-electrode contacts the PCRAM cells belonging to the same column or “Bit-

Line.” The memory cell is selected by means of row (or Word-Line) and column (or Bit-

Line) decoders that generate the electrical control signals required for the READ and 

SET/RESET programming operations (shown in Figure 3.3, left).  

It should also be noted that the Micron/Numonyx PCRAM 45 nm 1-Gb 

experimental wafers have trims available that can be used to switch the SET pulse from 

current mode (or I-force) to a voltage mode (or V-force), as shown in Figure 3.3, right. In 

the production part, the current mode (I-force) is used for the SET pulse and voltage 
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mode (V-force) is used for the RESET pulse. For this reason, the optimal pulse conditions 

for the SET pulse using voltage mode (V-force) are not well understood on the 

Micron/Numonyx 45 nm 1-Gb part. For all tests performed in the designed experiments 

(to be discussed), V-force is used for both the SET and RESET programming pulses.  

 
Figure 3.3 Left: Diagram of PCRAM array [25], [42]; Right: Circuit schematic of 
an individual memory cell in the PCRAM array, Parasitics, Heater, Select 
Transistor, and programming pulse source. 

In voltage mode programming, the memory cell is biased by applying an adequate 

voltage level to the selected Bit-Line (BL) through the high-voltage PMOS transistors. 

The BJT is turned on by applying 0 V to the addressed Word-Line (WL), which is 

connected to the base of the PNP-BJT. The current flowing through the PCRAM cell is 

controlled by means of the WL voltage. The stored information is read-out by sensing the 

current flowing through the cell (which will be referred to as the READ current), when a 

suitable READ voltage is applied. To prevent unintentional programming of the GST 

state, the bit-line READ voltage is set to 1.20 V.  
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In order to measure the cell current of the SET and RESET state with high 

accuracy, the PCRAM array can be operated in direct memory access (DMA) mode, 

allowing the cell current (Icell)  to be sensed for a given bit within the array directly during 

the READ operation. The cell resistance (Rcell) is calculated as the ratio between the 

READ voltage (Vread), which is applied across the cell and the current sensed, which is 

flowing through the cell Icell (i.e., Rcell = Vread / Icell).  

3.1.2 The SET and RESET Pulse 

In beginning, the process of determining the optimal programming conditions for 

the SET and RESET programming pulses, a key aspect that needed to be considered was 

the shape of the RESET and SET programming pulses. As described in Chapter 1, a 

proper RESET pulse requires a rapid quenching of the chalcogenide material to place the 

PCRAM cell in the amorphous or RESET state. For this reason, a square pulse was 

chosen for the RESET pulse operation, with the RESET pulse width fixed at 45 nsec and 

a trailing edge or quench time set at 10 nsec. The quench time of 10 nsec is the fastest 

reproducible pulse that can be applied to the 1-Gb PCRAM array with this tester.    

For the SET pulse, a gradual trailing edge has proven to be more efficient when 

programming an array of devices into the crystalline or SET state [70], allowing the 

atoms within the chalcogenide material more time to arrange into a crystalline phase. For 

this reason, a trapezoidal, or “set-sweep,” form of pulse was implemented (shown in 

Figure 3.4). The set-sweep pulse is characterized by a maximum (VM) and minimum (Vm) 

SET voltage, and the time before quench is labeled as Ts [70], which we will later refer to 

as the SET quench time (Qs). In the literature, the set-sweep pulse of an array of PCRAM 

devices was programmed on an 8-Mb BJT selected array and found to have the advantage 
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of narrowing the SET distribution when programming multiple cells, due to the gradual 

change in the temperature profile [70].   

 
Figure 3.4 Set-Sweep program pulse [70]. 

The theory behind the set-sweep pulse is that each cell has a specific optimum 

SET voltage for a determined programming time [70]. By using a trapezoidal SET pulse, 

different optimum SET voltages can be applied to different cells being programmed 

simultaneously; hence, if the optimal program voltage of a cell is in the range of (VM) to 

(Vm), the cell turns out to be programmed with optimum conditions [70].   

Prior to conducting the designed experiments, initial screening of the RESET 

pulse amplitude (Vr) and the SET quench time (Qs) were performed to determine the 

window of values to use for the optimal pulse conditions Design of Experiment (DOE). 

The initial screening was performed to determine the high and low levels, which would 

be used for the DOEs as represented in the cube plots in Figure 3.5. In the Cube Plot 

shown (Figure 3.5, left), the left half of the two-dimensional geometric figure represents 

the observations of the cell resistance (Ri) collected when the RESET voltage (Vr) pulse 

amplitude is set at its low level, and the right half represents the observations collected at 
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its high level. Likewise, the bottom half of the cube plot represents the observations when 

the SET quench time (Qs) is set at its low level, and the top half represents the 

observations at the high level. When a third factor is introduced, an added dimension is 

created resulting in a three-dimensional geometric figure as shown in Figure 3.5, right. 

More than three factors can be used in a DOE; however, when monitoring the response, 

additional factors must be held constant while the three factor response is observed. Care 

needs to be used in creation of the treatment run combinations. If one of the corner points 

is going to result in failed product, then for the optimal conditions design, it is more 

beneficial to create a smaller design space inside the original design. 

 
Figure 3.5 Design of Experiment Cube Plot (left) and 23 Cube Plot (right). 

When setting up the design space window for modeling the optimal pulse 

conditions, consideration was taken to ensure that the window of pulse conditions and 

temperatures for the design space were large enough to capture the cell resistance 

response and determine the optimal conditions without causing over-programming of the 

PCRAM cell. In the initial testing, with the chosen RESET and SET pulse shapes 

presented, a “Program and Verify” technique was used for both the SET Quench time 

(Qs), shown in Figure 3.6, and for the RESET pulse amplitude (Vr), shown in Figure 3.7, 
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used in determining the quench time window for the SET pulse and voltage pulse 

amplitude window for the RESET and SET pulses.  

 
Figure 3.6 Sequence of programming and read pulses, showing the RESET-SET 
transition as a function of SET quench time (Qs). 

For the screening of the SET quench time (Qs), sequences of increasing Qs were 

applied to an array of cells, which were programmed into the amorphous or RESET state 

prior to the SET pulse. The median resistances of the 440 bits sampled from the 1-Gigabit 

PCRAM array is shown in Figure 3.6. As depicted, the pulse sequence consisted of first 

applying a RESET pulse (Vr) to place the partition of cells in an amorphous or RESET 
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state prior to applying the SET pulse with increasing quench time (Qs), followed by a 

READ (Vread) pulse. 

In this test, the SET quench time (Qs) sample window was between 100 nsec and 

650 nsec, while holding the SET pulse amplitude at 5 V for each applied SET pulses. To 

initialize the sequence, a 6 V RESET pulse is applied just prior to the SET pulse. After 

the SET pulse is applied, the READ current is sensed in DMA mode, and the cell 

resistance is calculated. The test was conducted at three different temperatures: 30 °C, 60 

°C, and 120 °C.  The READ points in Figure 3.6 are the median resistance values taken 

or READ after the SET and RESET voltage pulses were applied at a given temperature. 

As mentioned above, the sampled median resistance was obtained from 440 bits in the 1-

Gigabit array of PCRAM experimental cells.  

As shown in Figure 3.6, the RESET to SET transition shows a temperature 

dependence at lower values of Qs. At higher values of Qs the SET pulse is able to fully 

crystallize the active region above the heater, changing the phase of the active region 

from an amorphous phase to a crystalline phase. At 100 nsec, the SET pulse is marginal, 

showing overall higher median cell resistance than at higher values of Qs, meaning that at 

~100 nsec the SET pulse amplitude does not have sufficient time to cool after the 

programming pulse, which is needed to place the active area above the heater in a 

crystalline phase.   

For the screening of the RESET voltage (Vr) pulse amplitude, sequences of 

increasing Vr amplitude were applied to an array of cells, which were programmed into 

the crystalline or SET state prior RESET pulse. The median resistances of the 440 bits 

sampled from the 1-Gigabit PCRAM array are shown in Figure 3.7. As depicted, the 
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pulse sequence consisted of first applying a SET pulse (Vs) to place the partition of cells 

in a crystalline or SET state prior to applying the RESET pulse (Vr) and subsequent 

READ (Vread) pulse. 

 
Figure 3.7 Sequence of programming and read pulses, showing the SET-to-
RESET transition as a function of RESET pulse amplitude. 

In this test, the RESET voltage (Vr) pulse amplitude is increased with increments 

of 0.50 V while holding the total RESET pulse time at 55 nsec for each RESET pulse 

applied. To initialize the sequence, a 5.50 V SET pulse is applied just prior to the RESET 

pulse. After the RESET pulse is applied, the READ current is sensed in DMA mode, and 

the cell resistance is calculated. The test was conducted at five different temperatures: 25 

°C, 30 °C, 60 °C, 120 °C, and 125 °C.  The READ points in Figure 3.7 are the median 
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resistance values taken or READ after the SET and RESET voltage pulses were applied 

at a given temperature. As mentioned above, the sampled median resistance was obtained 

from 440 bits in the 1-Gigabit array of PCRAM experimental cells.  

As shown in Figure 3.7, the SET to RESET transition shows significant 

temperature dependence as the RESET voltage (Vr ) transitions from 4 V to 5 V, which is 

the point at which the amorphous dome starts to form over the heater. At 4 V, the RESET 

pulse is marginal. For the 60 °C trace, little to no change in the median resistance is 

measured between the 0 V and the 4 V pulse. At ~4 V, the RESET pulse amplitude does 

not have sufficient cell current to generate the Joule heating necessary to heat the active 

area above the melting temperature (Tm) for the majority of the 440 bits sampled.    

One more observation from Figure 3.7 is related to the cell resistance reaching an 

almost steady state for RESET voltages between 5 V and 6V but then decreasing on the 

25 °C and 125 °C traces between 6.5 V and 7 V. Note: The 25 °C and 125 °C were the 

only two traces that had RESET voltages applied up to 7V, all other temperature traces 

were only applied up to 6V. With increased programming voltage (Vr), the thickness of 

the amorphous dome increases [71]. This drop in resistance with increasing programming 

current is referred to as the “Over RESET phenomena,” which is defined as a decrease in 

the cell resistivity and activation energy even with the thickness of the amorphous cap 

increasing [71], as shown in Figure 3.8.  
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Figure 3.8 Over RESET phenomena: Top: TEM cross-sections of the active 
region of a PCRAM cell for programming currents A, B, C, and D; Bottom: READ 
resistance vs. programming current for sequences with increasing and decreasing 
programming current, showing decreasing activation energy for Over RESET bit D 
[71]. 

3.1.3 Distributions 

3.1.3.1 Phase Distributions 

To better understand the temperature dependence of the cell resistance in the 

RESET state, the natural log of the median cell conductance (of the data shown in Figure 

3.7) is plotted as function of 1/T (Figure 3.9), where T is the temperature (in Kelvin). In 

Figure 3.9, the temperature dependence of the conductance in the amorphous phase 

(RESET state) of the GST film can better be seen based on the slope of the line for the 

various RESET pulse voltages over the temperature range. For RESET, pulse amplitudes 

between 3.9 V and 4.5 V bits are being partially RESET by the applied voltage pulse, 

meaning that both the 3.9 V and 4.5 V pulses show an intermediate behavior between 
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amorphous (RESET) and crystalline (SET) phases.  The change in the slope of the 7 V 

trace should also be noted, which is related to the over programming phenomena shown 

in Figure 3.8, showing a similar change (or lowering of the conductance activation 

energy) as Vr is increased above 6 V. 

 
Figure 3.9 Temperature dependence of resistance for SET to RESET voltage 
pulse amplitude sequence. 

The temperature dependence of the cell resistance in the RESET state is largely 

due to the amorphous phase of the GST material. For RESET, pulse voltages between 

4.5-6 V, the slope and/or activation energies of the cells show a steady increase in the 
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conductance activation energy as Vr increases (as shown in Figure 3.9). Hence, the 

thickness of the amorphous dome is increasing as Vr increases and the energy barrier, 

which needs to be overcome for conduction in the chalcogenide glass to occur, is 

increasing. From the conduction activation energies calculated, the upper limit of the 

design space for Vr was set at 6 V, which shows the highest conduction activation energy 

prior to the over-reset transition.   

3.1.3.2 Cumulative Distributions  

To analyze the array performance to the SET and RESET programming pulses 

discussed in Sections 3.1.2 and 3.1.3, the cell percentages vs. resistance were reviewed to 

determine the spread of resistance values between the different cells inside the array, over 

the three different temperatures of 30 °C, 60 °C, and 120 °C.   

Figure 3.10 shows a 440-bit distribution from a single-tile of SET and RESET cell 

resistances that were collected using the programming method discussed in Sections 

3.1.2. Looking at the resistance distribution by cell percentage for the 440 bits of RESET 

PCRAM cells (shown in Figure 3.10 (middle)), it is apparent that the RESET voltage 

amplitude programming pulse used for the RESET operation is able to RESET the 

majority of the PCRAM cells, as the RESET voltage pulse amplitude reaches 5 V. The 

resistance tail discussed in Section 2.3 is present but not so apparent due to the small 

sample size (440 bits). The partial-RESET voltage pulse of 4.5 V has the most 

predominant RESET tail, which becomes less prevalent as the ambient temperature 

increases from 30 °C to 120 °C. It should also be noted that as the temperature increases 

each of the resistance distributions for a given RESET voltage pulse amplitude start to 
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spread apart. At 5.5 V, the pulse has slightly higher cell resistance values at lower cell 

percentages when compared to the 5.0 V and 6.0 V RESET voltage amplitude pulses.  

 
Figure 3.10 Cumulative distributions of the programmed resistance levels: Top: 
Legends for SET to RESET and RESET to SET pulse sequences; Middle: SET to 
RESET voltage pulse amplitude sequence; Bottom: RESET to SET voltage pulse 
quench time sequence.  

For the SET voltage pulse quench time sequence, it was interesting to see that the 

top portion of the SET distribution converges with increased SET quench time (Qs). 

However, as the temperature increased from 30°C to 120 °C, most of the bits in the 100 

nsec quench time distribution start to match up with the distributions with longer quench 

times; this result demonstrates how at higher temperatures the partially-RESET bits (from 
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the lower SET quench time of 100 nsec) start to transition to the SET state, possibly due 

to nucleation or crystallization of the partially-RESET bits at higher ambient temperature.   

3.1.4  Design of Experiments (DOEs) Setup 

After completing the initial screening, the design space was determined to be: 1) 

Temperature (ranging from 25 to 125 °C), 2) RESET/SET voltage (ranging from 4V to 

6V), and 3) Slope/Quench Time (ranging from 100 nsec to 1000 nsec) for the SET pulse. 

To keep the number of observations low and reduce the expense of the experiment, 

random sample wafers were gathered to avoid bias in the study, allowing a good sample 

and representation of the population of PCRAM engineering wafers. It should be noted 

that the die sampling within a wafer was selected from specific locations; however, the 

die selection was chosen at random. A representation of a lot, wafer, and die are shown in 

Figure 3.11.  

 
Figure 3.11 Representation of a PCRAM lot, wafer, and die. 

Three separate engineering lots were sampled: B286889, B282212, and B286883.  

These lots were generated at different times within the production fabrication process. 

Moreover, multiple tool groups were used at different processing steps within the traveler 

flow. From these three lots, three wafers were randomly selected: A3, B20, and C1 

respectively, as shown in Figure 3.12. Two of the wafers (A3 & B20) were used for the 
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measurements for the model creation, and the third wafer (C1) was used as the 

independent wafer to validate the optimal pulse condition model. DOEs were 

implemented using a selected window of pulse conditions and temperatures based on the 

initial screening. It should be noted that some of the conditions selected for the pulse 

voltages, SET quench times, and temperatures are outside of the normal operating 

conditions defined for the PCRAM product.  

 
Figure 3.12 Representation of the engineering lot numbers and wafers selected. 
Die selection was taken at random from regions at the Center, Middle, and Edge of 
the wafers. 

When setting up both the initial DOEs and subsequent DOEs, the use of statistical 

software (JMP) was needed to determine the best DOE model and to perform the 

statistical modeling needed to determine the main effects, interactions, and response of 

the PCRAM cell resistance. JMP (pronounced ‘jump’) is an interactive data visualization 

software and statistical analysis tool, allowing the user a wide range of statistical analyses 

and modeling tools [72]. JMP has been a part of Statistical Analysis System (SAS) since 
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1989, which is when the first version of the JMP software was launched [72]. JMP is 

used in applications such as DOEs, quality control, and scientific research [72].  

The use of regression analysis in JMP became a very powerful tool in determining 

the optimal pulse conditions model and Bit Error Rate (BER) model equations, which will 

be discussed further, later in this section. From the three separate engineering lots, 

random die selection measurements were taken at locations in the center, middle, and 

edge of the wafer. For the comparison of the RESET and SET cell resistance, the bits 

were programmed with the standard Micron programming conditions for both the RESET 

and SET pulses. The variability plot of the cell resistances from the center (C), middle 

(M), and edge (E) of the wafers selected are shown in Figure 3.13 (RESET state) and 

Figure 3.14 (SET state), 441 bits were sampled from each die location. 

 
Figure 3.13 RESET state cell resistances of 441 PCRAM bits from the engineering 
wafers sampled at the center (C), middle (M), and edge (E) of each wafer after 
applying a 5.50 V RESET pulse.  

The sample measurements taken show the variability present within-wafer and 

from lot-to-lot for the three separate engineering lots sampled.  From the variability plots, 
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the engineering wafers were found to be comparable. Lot# B282212 (wafer# B20) did 

show overall lower edge (E) resistance when compared to the other two lots in the 

RESET state.  

 
Figure 3.14 SET cell resistances of 441 PCRAM bits from the engineering wafers 
sampled at the center (C), middle (M), and edge (E) of each wafer, after wafers 
came from probe.   

To help in eliminating some of the unknown responses from the screening tests, 

surface design models were used to determine the optimal pulse conditions by 

simultaneously studying multiple variables at one time to determine the main effects and 

interactions. From this data, tabulated results, box plots, profile results, and surface 

responses plots were used to graph the response of the resistance of the PCRAM cells to a 

given process variable change. This approach helped in unfolding the true response for 

each of the variables. From the response graphs, the direction of the response was then 

analyzed to determine the significance of the variable and eventually to find the optimal 

location for the pulse conditions by temperature. 
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When performing the response surface design, for the optimal pulse conditions, 

the pulse sequence for the response surface design DOEs were completed by performing 

what we will call “seasoning cycling.”  The seasoning cycling consisted of ten alternating 

SET and RESET checkerboard pattern (CKB) pulses across a single partition in the array 

(67 Mbits), with the given pulse conditions for the SET and RESET pulse. This was done 

to ensure that the cell resistance values for the SET/RESET states were representative of 

the given pulse conditions and temperature applied.  Figure 3.15 shows an example of the 

voltage pulses for the RESET (Vr) and the SET (Vs) pulses.  

 
Figure 3.15 Top: Checkerboard programming pattern (CBK); Left: RESET 
programming pulse shape; SET programming pulse shape. 

The programming of the single partition in the array is shown in Figure 3.16. 

After the single partition has finished the seasoning cycling in the checkerboard pattern, 
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the READ pulse is applied to a select number of rows and columns from a single 4 Mb 

tile to collect the sample for the analysis. 

 
Figure 3.16 Representation of a single partition within a die being programmed 
with the checkerboard pattern.  

The reason for the seasoning cycling and the checkerboard patterning with the 

given SET and RESET pulse conditions (prior to performing the READ pulse) was to 

ensure that the interaction between the SET and RESET pulse was taking effect and to 

check for possible thermal proximity disturb (discussed in Section 2.3). For example, 

when programming a single bit or an array of bits, the effect of both the SET and RESET 

pulses needs to be taken into consideration for a given pulse sequence. The reason for this 

is that the resistance of the intermediate resistance states depends on the distribution of 

the amorphous and crystalline phases inside the GST layer. In particular, the thickness of 

the amorphous cap obtained after the RESET programming pulse is applied is a key 

parameter that controls the resistance, and thus the intermediate states in the case of a 
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partial-RESET for a given bit. The amorphous cap thickness is also important when 

considering the partial-SET after a programming sequence since; in this case, it affects 

the minimum value of the cell resistance and, hence, the reading window as discussed in 

Chapter 2. Finally, the effect of thermal proximity disturb during programming can affect 

the neighboring bit if the programming temperature gets too hot, which can lead to loss of 

retention. For this reason, the seasoning cycling in a checkerboard pattern was used.  

Considering that there was no cycling feature on the MicroMate (μM ) or method 

of converting the SET pulse programming mode from current mode to voltage mode, 

software using Python needed to be created to do these tasks and to interface with the 

μM. The Python script was built to request input parameters such as the partition that 

would be programmed, number of cycles, and the file location of the modified trims file. 

Some of the more common script functions written and used in the cycling tests are 

provided in the appendix of this dissertation. The modified trims file contains a list of the 

standard trim values, which included the trim values used to change the SET pulse to 

voltage mode and trim values for changing the RESET pulse amplitude, SET pulse 

amplitude, and SET quench time. It should also be noted that all of the trims in this file 

could manually be changed if desired. After importing the modified trims file values into 

the EI manager of the μM, the script would then perform the seasoning cycling and the 

DMA READ on the given partition. The trim value changes that were made to go from 

current mode to voltage mode and to change the SET and RESET pulse conditions are 

listed in Table 3.1.  
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Table 3.1 Table of Trim Changes used for Voltage Mode RESET and SET pulse 
parameters.  

Trim Changes Address Was (HEX value):  IS (HEX value): 
RESET Pulse Amplitude 47C0 0x0007 0x0000 to 0x001F 
SET Imola Voltage Mode 47C6 0x0000 0x0100 

Bit Line Compensation 47DF 0x0110 0x0220 
SET VHPRG 47C3 0x004B 0x001C 

SET Pulse Amplitude 47C2 0x0048 0x0087 to 0x00CA 
SET Quench Time 47C4 0x0006 0x0000 to 0x000C 
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CHAPTER 4: MODELING  

4.1 Optimal Pulse Condition Modeling 

The aim of this chapter is to present the model creation method used in 

determining the optimal pulse conditions for a given temperature. In the development of a 

prediction model for the optimal pulse conditions for the RESET and SET programming 

pulse (for a given temperature), the cell resistance was modeled as a function of 

temperature ( T), RESET voltage (Vr), SET voltage (Vs),  and SET quench time (Qs). For 

the regression analysis, the least means squares method was used to generate the 

parameter estimates, model equations, surface plots, contour plots, and finally the 

profiling data used in determining the optimal pulse conditions. 

4.1.1 Least Squares Regression 

For all regression analysis performed in the Design of Experiments (DOEs), linear 

regression was used. The linear regression model describes the response to a set of 

independent variables, which in our case are T, Vr, Vs, Qs, and Cycling. Standard least 

squares regression is used in this process. The technique fits a line that minimizes the 

sums of the squared distances from each individual point to the fitted-line and determines 

the line that fits best.  For example, for a regression line where Resistance (R) is the 

dependent variable and Temperature (T) is the applied independent variable on a standard 

scatter Y by X plot, then the vertical deviation of the point (Ti, Ri) from the fit line 

𝑅 = 𝑏0 + 𝑏1𝑇 is 
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ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 − ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑖𝑛𝑒 = 𝑅𝑖 − 𝑏0 + 𝑏1𝑇𝑖 ,                             (4.1) 

the sum of the squared vertical deviations from the points (Ti,Ri),..., (Tn,Rn) to the line is 

then  

𝑓(𝑏𝑜, 𝑏1) = ∑ [𝑅𝑖 − 𝑏0 + 𝑏1𝑇𝑖]2𝑛
𝑖=1 .                                 (4.2) 

The point estimates of β0 and β1 are coefficients of 𝑏0, … , 𝑏𝑘 which minimize 

Equation 4.2. To determine the point estimates of β0, β1,..., βk, the partial derivatives of 

𝜕𝑓
𝜕𝑏0

, 𝜕𝑓
𝜕𝑏1

, … , 𝜕𝑓
𝜕𝑏𝑘

 are taken and set equal to zero, resulting in a system of normal equations 

for the estimates. The errors in the fitted model, called “residuals,” are the differences 

between the actual value of each observation and the value predicted by the fitted model. 

It is important to note that the residual data should have no systematic patterns, and the 

distribution of the residual data should be normal, otherwise a transformation of the cell 

resistance is needed to normalize the residuals and/or remove the patterns. Transforming 

the data entails creating another variable that is a function of the original response, such 

as the square root or log transformation. Transforming the data, prior to fitting the model 

may alter the variability patterns of the residuals and allow the model to be fit. If the 

model is found to fit after transforming the data, the results from the regression analysis 

of the transformed model need to then be back transformed for the point estimate values 

to be used in the model equation. 

When a linear regression model is fit to the data, all eligible model parameters are 

estimated. One question that has to be answered before investigating assumptions and 

using the model for predictions is whether the regression relationship is significant. If it 
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is, then the assumptions can be tested and response predicted. This question can be stated 

in terms of the statistical hypothesis test shown in Equation 4.3:  

𝐻𝑜 = 𝛽1 = 𝛽2 = … .𝛽𝑘 = 0 

𝐻𝑎:𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0 , 

(4.3) 

where, Ho is the null hypothesis and Ha is the alternative hypothesis. The purpose of any 

statistical data analysis is to meet certain experimental objectives and to answer certain 

experimental questions. These experimental objectives and questions are stated in the 

form of hypothesis statements, which consist of both a null (Ho) and alternative 

hypothesis (Ha). Prior to any data being collected and analyzed, it is important to 

establish what it is that is being researched. The null hypothesis (Ho) is a statement about 

the value of one or more population parameters that is usually suspect. In other words, 

the null hypothesis usually contains the statement that reflects the process under normal 

conditions. These hypothesized values can be based on historical data, customer 

requirements, experience, or educated speculation. Most often statistical analyses are 

performed to disprove or invalidate the statement specified in the null hypothesis. The 

alternative hypothesis (Ha) is a statement about the value of one or more population 

parameters that is thought to be true. Usually, the statement in the alternative hypothesis 

reflects change or deviation from normal conditions.  

In proving out the statistical hypothesis, test statistic (t-statistic) and p-values are 

often used.  A test statistic is calculated using the sample data and is generally a 

transformation of the sample statistic by standardizing the difference between what is 

observed and what is hypothesized, given the amount of variation and the sample size. 

For each t-statistic, there is a p-value associated with it. The p-value is the likelihood or 
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probability of observing the observed value of the t-statistic or more extreme value given 

the scaled estimate is truly zero. The smaller the p-value the more likely the null 

hypothesis will be rejected. In other words, if the p-value is small (< 0.05) for a particular 

factor, then the conclusion is that the factor is statistically significant, or rather, there is a 

significant increase or decrease in the response as the factor is adjusted. If the p-value is 

large, then the factor could be removed from the model to help strengthen the other 

effects and to simplify the model. 

  There are four DOEs used in this research. For all DOEs, the null and alternative 

hypothesis is as shown in Equation 4.3. If any of the point estimate values yields a t-

statistic (or t-ratio) greater than zero and have a p-value of less than 0.05, then the null 

hypothesis is rejected, and there is some significant response.   

After determining the statistical hypothesis, for the model type, the response 

surface model design was then defined, which takes into account each of the relations as 

well as the squared terms for the model effects. The purpose of using a response surface 

model was to find the optimal values of the terms that produce the maximum or 

minimum expected response. This is accomplished by fitting a collection of terms in a 

quadratic model. For example, if there are two independent variables, Temperature (T) 

and Voltage (V), then: 

Response Surface (T) fits:    𝛽0+𝛽1𝑇 + 𝛽2𝑇2 

Response Surface (T,V) fits: 𝛽0+𝛽1𝑇 + 𝛽2𝑇2 +  𝛽3𝑉 + 𝛽4𝑉2 + 𝛽5𝑇𝑉 
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Once the regression analysis is completed, estimates of β0 and β1 are generated 

and sorted to screen the variables, which show the most significant effects. Sorting is 

based on the t-statistic (or t-ratio) and the p-value (or Prob >|t|).  

4.1.2 DOE 1 

4.1.2.1 DOE 1 RESET State Analysis 

In determining the optimal pulse conditions for the RESET and SET pulse shape, 

a surface response Design of Experiment (DOE) was setup that takes into account low, 

medium, and high values for: 1) T, ranging from 25 to 125 °C, 2) Vr and Vs, ranging from 

4 V to 6 V, and 3) Qs, ranging from 100 nsec to 1000 nsec. The purpose of this design is 

to optimize RESET and SET pulse conditions by looking for the locations of maximum 

and minimum cell resistance for the RESET and SET states, respectively. When building 

a response surface design with multiple responses, often a factor setting that is optimal 

for one response may not be optimal for several responses. For this reason, it is best to 

determine a range for each response that is considered optimal and then simultaneously to 

analyze all the response surfaces to determine the optimal settings that are acceptable 

according to the ranges determined for each response. This method of simultaneously 

analyzing response surfaces is performed using the prediction profiler, which will be 

discussed later in this chapter.   

 The layout of this DOE was created using the DOE response surface design 

generator in JMP. The cube structure for this design is referred to as a “face center cube,” 

which is a form of a Central Composite Design (CCD), as shown in Figure 4.1. 
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Figure 4.1 Centra Composite Design (CCD), Face Center Cube. 

Using the face center cube design, the use of low, medium, and high values were 

implemented for T, Vr, Vs, and Qs, to check for possible curvature in the response through 

the use of the medium values or “center points,” as shown in Table 4.1. 

Table 4.1 DOE 1 matrix of parameters. 

T [°C] Vr [V] Vs [V] Qs[nsec] TEST 
Sequence 

25 4 4 1000 1 
25 4 4 500 2 
25 4 6 100 3 
25 5 5 100 4 
25 6 4 500 5 
25 6 6 1000 6 
25 6 5 1000 7 
80 4 5 1000 8 
80 5 5 500 9 
80 5 6 500 10 
80 6 5 100 11 
125 4 4 100 12 
125 5 4 100 13 
125 6 4 1000 14 
125 6 4 500 15 
125 6 6 500 16 
125 4 6 100 17 
125 4 6 1000 18 
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After performing DOE 1, the individual resistance cell values collected from the 

designed experiment were grouped by T, Vr, Vs, and Qs, as shown in the variability plot of 

Figure 4.2, which is showing only the RESET cell resistance values that were collected 

after the RESET programming pulse. From the variability plot, it is apparent that the 

variability in the RESET state resistance distribution for cells programmed with a RESET 

voltage (Vr) of 4 V is significantly larger than the other distributions that were 

programmed at higher Vr, at the same temperature. 

 
Figure 4.2 Variability plot of the RESET cell resistance bit values for DOE 1 
going from SET to RESET state for the given pulse sequence and temperature. 

It should also be noted that the overall distribution and median cell resistance of 

the test sequences programmed with Vr = 4 V show a statistically different RESET state 

than the other bits. This result shows that the majority of the bits, which were RESET at 

Vr = 4 V, are only partially RESET. This was expected based on the initial screening test 

performed in Section 3.1.3. The partial RESET of the bits is related to the limited volume 

of amorphous chalcogenide material (GST) above the heater element (or in the active 
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region). To fully RESET the bit, a larger volume of chalcogenide material needs to be 

melted through Joule heating prior to the quench into an amorphous state or RESET state 

for the device. In other words, the thickness of the amorphous cap obtained after the 

RESET programming controls the resistance and the intermediate states (in this case a 

partial-RESET) for the bits programmed at Vr = 4 V. To understand the cell resistance 

response and possible interactions that are occurring between the RESET and SET pulse 

parameters and Temperature, the least squares analysis was performed.  

In order to perform the least squares analysis in JMP, the data table size had to be 

reduced due to data storage memory errors, when using JMP, from the large amount of 

array data collected. To reduce the file size, the median resistance for each DOE test 

sequence was calculated and only the median values were considered in the least squares 

analysis for DOEs 1 through 4.  The median cell resistance values used for DOE 1 are 

shown in Figure 4.3. As briefly mentioned in Section 4.1.1, from the least means squares 

analysis, the parameter estimates (example shown in Figure 4.4) were generated. The 

model parameters from DOE 1-4 are sorted by the Prob>|t| tests with the most significant 

variables located at the top. It should be noted that the solid blue vertical lines on the 

parameter estimates graph show the Prob > |t| = 0.05 significance level for each of the 

variables for the RESET response in Figure 4.4. 
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Figure 4.3 Variability plot of the median resistance values for the RESET state 
of DOE 1 used in the prediction profiler in JMP.   

As shown in Figure 4.4, not all of the variables used in the RESET model for 

DOE 1 are significant. For the RESET state model, the SET voltage (Vs) and the SET 

quench time (Qs) have Prob>|t| values greater than 0.05, meaning that they are not 

statistically significant in terms of the least means squares analysis response for the 

RESET state.  

 
Figure 4.4 Parameter estimates for the RESET state of DOE 1.  

These parameters were purposely not excluded from the model, since the 

interaction of SET programming pulse parameters will be included into our model for 
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optimal pulse conditions. It should be noted that this report does not show the intercept 

(β0); nevertheless, all other point estimates for the variables are shown. From the 

parameter estimates, the model equation for the RESET state of DOE 1 can be generated, 

as shown in Equation 4.4. 

𝑅𝑅𝐸𝑆𝐸𝑇_𝐷𝑂𝐸1 = −6.25 ∗ 106 + 2.43 ∗ 106 ∗ (𝑉𝑟) − 4.35 ∗ 104 ∗ (𝑇) − 3.55 ∗ 104 ∗

�(𝑇 − 76.1) ∗ (𝑉𝑟 − 5.00)� + 863 ∗ (𝑇 − 76.1)2 − 1.78 ∗ 106 ∗ (𝑉𝑟 − 5.00)2 −

1.21 ∗ 106 ∗ (𝑉𝑠 − 4.94)2 + 2.51 ∗ 105 ∗ (𝑉𝑠) + 448 ∗ 𝑄𝑠,    

 

(4.4) 

It should be noted that the significant figures for the parameter point estimates for 

DOEs 1 through 4 were set with three significant figures. This number was determined 

by the tool limitations (i.e., Vread : 1.20 +/- 0.01, 3-significant figures; Icell = 0.08 to 19.99 

+/- 0.02 µA, 4-significant figures), for the precision needed for the prediction 

expressions.  

Using the RESET model Equation 4.4, a surface and contour plot of the two most 

significant variables (T and Vr) for DOE 1 are displayed in Figure 4.5, showing the 

RESET state cell resistance as a function of changing T and Vr.  
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Figure 4.5 DOE 1: Left: Surface Plot of the RESET cell resistance; Right: 
Contour plot of the RESET cell resistance response of DOE 1.  

From the surface plot and contour plots of the RESET cell resistance response, it 

is apparent that the direction of highest cell resistance is toward lower T and higher Vr.  It 

should be noted that the dots next to the contour lines in the contour plot show the 

direction of higher cell resistance. 

4.1.3.2 DOE 1 SET State Analysis 

For the SET pulse conditions of DOE 1, when looking at the variability plot of the 

cell resistance distributions of the cells programmed with a SET Quench Time (Qs) of 

100 nsec (shown in Figure 4.6), it is apparent that the variability in the cell resistance 

distributions is much higher than the other test performed at the same temperature, 

showing how the SET pulse can lead to a partial-RESET operation over an array of cells 

if Qs ~100 nsec.  
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Figure 4.6 Variability plot of the SET state cell resistance for DOE 1 going from 
RESET to SET state for the given pulse sequence and temperatures. 

Since the crystallization process must be active to reduce the amorphous volume 

size, the crystallization dynamics requires a longer programming duration [25]. It is clear 

that for optimal programming conditions for the SET state, quench times longer than 100 

nsec are needed to fully crystallize the amorphous cap (created by the RESET pulse) 

and/or create a complete crystalline path between the top electrode and the heater element 

for the majority of the bits.  

When performing the least means squares analysis for the SET state, the median 

resistance values for each of the test sequences from DOE 1 were calculated similar to 

the RESET state resistance values, which are shown in Figure 4.7.  
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Figure 4.7 Variability plot of the median resistance values for the SET state of 
DOE 1 used for prediction profiler in JMP.   

The significance of the SET quench time (Qs) is also shown in the parameter 

estimates in Figure 4.8, where the three most significant parameters are Qs, T, and the 

combination of Qs.  

 
Figure 4.8 Parameter estimates for the SET state of DOE 1. 

In should be noted that due to the residuals not being normally distributed when 

performing the linear regression analysis (without a transformation for SET resistance 

model), to obtain an accurate model for the SET state of DOE 1, a transformation of the 

SET state cell resistance values had to be performed prior to the regression analysis. The 

reciprocal transformation of the SET state cell resistance values was found to have the 
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best fit and a normal distribution for the residuals. From the parameter point estimates in 

Figure 4.8, the SET model equation was generated and is shown in Equation 4.5. 

𝑅𝑆𝐸𝑇_𝐷𝑂𝐸1 = 1/(3.80 ∗ 10−6 + 1.08 ∗ 10−8 ∗ (𝑄𝑠) + 4.57 ∗ 10−8 ∗ (𝑇) − 1.59 ∗

10−11 ∗ (𝑄𝑠 − 533)2 + 1.91 ∗ 10−6 ∗ �(𝑉𝑟 − 5.00) ∗ (𝑉𝑠 − 4.94)� −  7.08 ∗ 10−7 ∗

(𝑉𝑟) +  3.49 ∗ 10−7 ∗ (𝑉𝑠)),                            

 

(4.5) 

Looking into the surface plot and contour plots of the SET state for Qs vs. T 

(shown in Figure 4.9), one can see that the direction of minimal cell resistance is in the 

direction of longer Qs times and higher T, with the largest drop in the cell resistance of 

the SET state taking place between 100-200 nsec for Qs.  

 
Figure 4.9 DOE 1: Left: Surface Plot of the SET state cell resistance response; 
Right: Contour plot of SET state cell resistance response.  

This spike in the cell resistance at T =25 °C and Qs =100 nsec is related to the 

SET pulse behaving like a RESET pulse, not allowing the chalcogenide material enough 

time to crystallize at lower ambient temperatures. This failure to crystallize is due to the 

speed of the quench, causing the majority of the bits to be placed in a partially RESET 

state, as discussed previously.     
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When looking at the programming window results from DOE 1 (shown in Table 

4.2), the largest programming window exists at: T = 25 °C, Vr = 6 V, Vs = 5 V, and Qs = 

1000 nsec, which aligns with the highest RESET resistance values. For both the RESET 

and SET median resistance, the resistance is reduced for higher temperatures. This is 

more apparent for the RESET state, because of the temperature dependence of the 

amorphous film as mentioned in Chapter 2 and Section 3.1.3.  

Table 4.2 DOE 1: Resistance values for SET and RESET states by pulse 
conditions and Temperature. 

T [°C] Vr [V] Vs [V] Qs [nsec] RESET: Median 
(R [Ohms]) 

SET: Median 
(R [Ohms]) 

25 4 4 1000 1.24E+06 8.65E+04 
25 4 4 500 1.07E+06 9.41E+04 
25 4 6 100 9.16E+05 1.52E+06 
25 5 5 100 9.23E+06 9.38E+05 
25 6 4 500 1.00E+07 1.91E+05 
25 6 6 1000 1.00E+07 8.36E+04 
25 6 5 1000 1.09E+07 9.17E+04 
80 4 5 1000 5.69E+05 7.66E+04 
80 5 5 500 3.43E+06 8.30E+04 
80 5 6 500 3.33E+06 8.29E+04 
80 6 5 100 3.75E+06 2.33E+05 
125 4 4 100 3.64E+05 8.91E+04 
125 5 4 100 1.64E+06 5.33E+05 
125 6 4 1000 2.00E+06 7.68E+04 
125 6 4 500 1.97E+06 9.41E+04 
125 6 6 500 2.00E+06 7.39E+04 
125 4 6 100 3.90E+05 2.41E+05 
125 4 6 1000 3.60E+05 6.94E+04 

4.1.3 DOE 2 

4.1.3.1 DOE 2 RESET State Analysis 

The results from DOE 1 led to the next designed experiment (DOE 2), described 

in Table 4.3. For DOE 2, the goal was to better understand the response of the RESET 
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voltage pulse amplitude (Vr) and the SET quench (Qs) times pulse variables, which were 

found to be more significant to the overall cell resistance for the RESET and SET states, 

respectively. To understand these variables better, the window of values used for the 

design space of DOE 2 were adjusted, and the SET voltage (Vs) was held at 6 V. From 

DOE 1, it was apparent that Vr = 4 V is not sufficient to fully RESET the array of bits and 

that Qs = 100 nsec for the SET pulse is not long enough to fully SET the array of bits. To 

account for this, the design space in DOE 2 was as follows: 1) T, ranged from 25 to 125 

°C, 2) Vr, ranged from 5V to 6V, and 3) Qs, ranged from 500 nsec to 1500 nsec.   

Table 4.3 DOE 2 matrix of parameters. 

T [°C] Vr [V] Vs [V] Qs [nsec] TEST_Sequence 
25 5.5 6 1000 1 
25 5.5 6 500 2 
25 5.5 6 1500 3 
25 5 6 1500 4 
25 6 6 500 5 
25 6 6 1000 6 
25 6 6 1000 7 
80 5.5 6 1000 8 
80 5 6 500 9 
80 5 6 500 10 
80 6 6 1500 11 
125 5.5 6 1500 12 
125 5 6 1500 13 
125 6 6 1000 14 
125 6 6 500 15 
125 6 6 500 16 
125 5.5 6 1500 17 
125 5.5 6 1000 18 

 

In Figure 4.10, the cell resistances going from a SET to RESET state are shown in 

the variability plot, which is grouped by the pulse condition variables and temperature 

used in DOE 2. From Figure 4.10, it is apparent that the ambient temperature change 
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from 25 to 125 °C is causing a significant shift in the cell resistance; the overall cell 

resistance lowers as the ambient temperature increases. Moreover, it should be mentioned 

that due to the design window change of the RESET voltage pulse (Vr) amplitude 

increasing from 4 V to 5 V, the significance of the RESET voltage becomes less 

apparent. Hence, the ambient temperature plays a more significant role in the cell 

resistance for the RESET state of DOE 2, as was expected due to the sensitivity of the 

amorphous GST material to temperature.  

 
Figure 4.10 Variability plot of RESET state cell resistance for DOE 2 going from 
SET to RESET state for the given pulse sequence and temperature. 

For DOE 2, the same method discussed for DOE 1 was used, in which the median 

cell resistance values were calculated prior to performing the least squares regression due 

to memory errors in JMP. In Figure 4.11, the cell resistance values for the RESET state 

of DOE 2 are shown in the variability graph. From the median resistance values collected 

in DOE 2, it can be seen that due to the change in the design space for Vr, Vs, and Qs, the 

significant variable for the RESET state for DOE 2 is now the temperature (T), which is 
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showing an almost staircase-like drop in the RESET cell resistance as the ambient 

temperature increases. 

 
Figure 4.11 Variability plot of the median resistance values for the RESET state 
of DOE 2 used for prediction profiler in JMP.   

The significance of the temperature can also be seen in the parameter estimates, 

which show T, and the combination of T, as the two most significant parameters for the 

RESET state (shown in Figure 4.12). However, it should also be noted that the 

combinations of Vr and T with Vr  are the third and fourth most significant parameters, 

meaning that with the window of RESET voltages being tightened closer to the optimal 

pulse conditions, the interaction of Vr and T is now more significant than the single 

parameter of Vr. 
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Figure 4.12 Parameter estimates for the RESET state of DOE 2. 

In order to get the point estimates shown in Figure 4.12, a transformation of the 

RESET cell resistance had to be performed. Due to the significant temperature 

dependence of the RESET state of DOE 2, a transformation was needed; the residuals 

without the transformation were not found to be normal, and for this reason a log 

transformation of the RESET state cell resistance was used and found to have the best fit 

with a normal distribution for the residuals. From the parameter point estimates in Figure 

4.12, the RESET model equation was generated, which is shown in Equation 4.6. 

𝑅𝑅𝐸𝑆𝐸𝑇_𝐷𝑂𝐸2 = 𝑒𝑥𝑝 (16.4 − 1.74 ∗ 10−2 ∗ (𝑇) +  2.92 ∗ 10−5 ∗ (𝑇 − 76.1)2 −

 2.34 ∗ 10−1 ∗ (𝑉𝑟 − 5.58)2 + 1.23 ∗ 10−3 ∗ �(𝑇 − 76.1) ∗ (𝑉𝑟 −  5.58)� + 1.29 ∗

10−7 ∗ (𝑄𝑠 − 1.00 ∗ 103)2 + 3.25 ∗ 10−2 ∗ (𝑉𝑟) − 1.74 ∗ 10−6 ∗ (𝑄𝑠)), 

(4.6) 

From Equation 4.6, the surface and contour plots of the RESET cell resistance vs. 

the two most significant single variables T and Vr is shown in Figure 4.13. In the surface 

plot, the direction of increased resistance again in the direction of lower T; however, this 

time the Vr is not playing much of a role in the effect of the RESET state cell resistance. 

This change is due to the values of Vr used in the design space window being between 5 

and 6 V, showing the RESET cell resistance to be overall fairly aligned within this design 

space.  
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Figure 4.13 Surface Plot for the RESET state of DOE 2. 

4.1.3.2 DOE 2 SET State Analysis 

For the SET state cell resistance of DOE 2, shown in the variability plot of Figure 

4.14, by changing the lower limit of the design space window for Qs from 100 nsec to 

500 nsec, the significance of Qs on the SET state cell resistance is reduced. Moreover, 

from DOE 2 it is apparent that 500 nsec for the minimum value of Qs appears to be 

sufficiently long enough to crystallize the active area or amorphous chalcogenide GST 

cap and/or create a complete crystalline path between the top electrode and the heater 

element. As a result, there was very little change seen in SET state cell resistance 

distributions between the different test sequences performed in DOE 2. 
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Figure 4.14 Variability plot of the SET state cell resistance for DOE 2, going from 
RESET to SET state for the given pulse sequence and temperatures. 

For the SET state of DOE 2, the median cell resistances were again calculated 

prior to performing the regression analysis. The variability plot of the SET state cell 

resistances are shown in Figure 4.15.  

 
Figure 4.15 Variability plot of the median resistance values for the SET state of 
DOE2 used for prediction profiler in JMP.   

After performing the least means squares analysis on the SET state for DOE 2, 

multiple parameter estimates were found to be statistically significant; T, Qs, and the 
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combination of T and Qs were the most significant parameters, as was found in DOE 1. 

The only notable change between DOE 1 and DOE 2 was the set of interaction terms, as 

shown in parameter estimate table in Figure 4.16.   

 
Figure 4.16 Parameter estimates for the SET state of DOE 2. 

From the point estimate values in Figure 4.16, the SET model equation was 

generated, as shown in Equation 4.7. 

𝑅𝑆𝐸𝑇_𝐷𝑂𝐸2 = 7.52 ∗ 104 − 119 ∗ 𝑇 − 7.88 ∗ 𝑄𝑠 + 6.27 ∗ 10−2 ∗ �(𝑇 − 76.1) ∗

(𝑄𝑠 −  1.00 ∗ 103)� + 7.26 ∗ 10−3 ∗ (𝑄𝑠 − 1.00 ∗ 103)2 + 5.02 ∗ 103 ∗

(𝑉𝑟 − 5.58)2 + 1.56 ∗ 103 ∗ (𝑉𝑟),  

 

(4.7) 

From Equation 4.7, the surface and contour plot of the SET cell resistance vs. the 

two most significant variables (T and Qs) is shown in Figure 4.17. In the surface plot, 

very little information is gathered, due to the change in the design space window of Qs 

from 100 -1000 nsec to 500 – 1500 nsec, which shows no sudden increase in cell 

resistance, as expected. Moreover, only a slight resistance and color change in the surface 

plot is detectable. From this slight color change in the surface model and contours of the 

cell resistance in the contour plot (show in Figure 4.17, right), one can see that the 

direction of minimum cell resistance for the SET state of DOE 2 is in the direction of 

higher T and longer Qs as shown in DOE 1. 
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Figure 4.17 Surface Plot for the SET state of DOE 2. 

The median cell resistance values from the different test sequences of DOE 2 are 

shown in Table 4.4. From the median cell values, the largest separation or reading 

window of median resistance values from DOE 2, exists at: T = 25 °C, Vr = 5.5 V, Vs = 6 

V, and Qs = 1500 nsec, which aligns with the highest RESET resistance values for DOE 

2. Moreover, for both the RESET and SET median resistance, the resistance again is 

reduced for higher temperatures as was shown in DOE 1. 

Table 4.4 DOE 2:  Resistance values for SET and RESET states by pulse 
conditions and Temperature. 

T [°C] Vr [V] Vs [V] Qs [nsec] RESET: Median 
(R [Ohms]) 

SET: Median 
(R [Ohms]) 

25 5.5 6 1000 1.09E+07 7.16E+04 
25 5.5 6 500 1.20E+07 8.11E+04 
25 5.5 6 1500 1.20E+07 6.98E+04 
25 5 6 1500 1.09E+07 6.98E+04 
25 6 6 500 1.09E+07 8.16E+04 
25 6 6 1000 1.09E+07 7.42E+04 
25 6 6 1000 1.09E+07 7.45E+04 
80 5.5 6 1000 4.00E+06 6.81E+04 
80 5 6 500 3.75E+06 7.32E+04 
80 5 6 500 3.87E+06 7.28E+04 
80 6 6 1500 4.00E+06 6.67E+04 

 



88 

125 5.5 6 1500 2.03E+06 6.12E+04 
125 5 6 1500 1.77E+06 6.16E+04 
125 6 6 1000 2.03E+06 6.33E+04 
125 6 6 500 2.00E+06 6.67E+04 
125 6 6 500 2.03E+06 6.65E+04 
125 5.5 6 1500 2.03E+06 5.85E+04 
125 5.5 6 1000 1.94E+06 6.05E+04 

4.1.4 DOE 3 

4.1.4.1 DOE 3 RESET State Analysis 

The results from DOE 1 and DOE 2 led to the next designed experiment DOE 3, 

shown in Table 4.5. The goal for DOE 3 was to reduce the design space window for T, 

which was found to be the dominant variable in DOE 2 for the RESET cell resistance 

response. Moreover, the SET voltage (Vs) pulse amplitude is adjusted once again to see if 

a larger response could be generated. DOE 3 takes into account low, medium, and high 

values for: 1) T, ranging from 50 to 90 °C, 2) Vr, ranging from 5 V to 6 V, 3) Vs, ranging 

from 4.5 V to 6 V, and 4) Slope/Quench Time ranging from 500 nsec to 1500 nsec for the 

SET pulse.  

Table 4.5 DOE 3 matrix of parameters 

T [°C] Vr [V] Vs [V] Qs [nsec] TEST_Sequence 
50 5.5 4.5 1000 1 
50 5.5 4.5 500 2 
50 5.5 6 1500 3 
50 5 5.5 1500 4 
50 6 4.5 500 5 
50 6 6 1000 6 
50 6 5.5 1000 7 
70 5.5 5.5 1000 8 
70 5 5.5 500 9 
70 5 6 500 10 
70 6 5.5 1500 11 
90 5.5 4.5 1500 12 
90 5 4.5 1500 13 
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90 6 4.5 1000 14 
90 6 4.5 500 15 
90 6 6 500 16 
90 5.5 6 1500 17 
90 5.5 6 1000 18 

 

In Figure 4.18, the results from DOE 3 going from a SET to RESET state are 

shown in the variability plot, which is broken apart into the given test sequences from 

DOE 3. From Figure 4.18, it is apparent that the ambient temperature change between 50 

and 70 °C shows a significant difference in the cell resistance; the overall cell resistance 

is lowered as the ambient temperature increases. It should also be noted that it appears 

that the probe pins during testing may have had marginal contact during test sequence 

#11 (T = 70 °C, Vr=6 V, Vs= 5.5 V, and Qs= 1500 nsec) due to the bi-modal distribution 

of bits shown with the RESET voltage at 6 V. 

 
Figure 4.18 Variability plot of the RESET state cell resistance of DOE 3, going 
from SET to RESET state for the given pulse sequence and temperature. 
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The median resistance values were generated in the same method in DOE 3, as 

was done in the prior DOEs 1 and 2. The median cell resistance for the RESET state is 

shown in Figure 4.19.  

 
Figure 4.19 Variability plot of the median resistance values for the RESET state 
of DOE 3, which were used for prediction profiler in JMP.   

With the reduced temperature, the staircase-like effect was not as apparent as it 

was in DOE2. However, the most significant variables for the RESET state of DOE 3 

were still found to be T, combination of T, and Qs as shown in Figure 4.20, which was 

somewhat unexpected since the SET quench time (Qs) had not shown up as one of the top 

three significant variables for the RESET state in DOE 1 or 2. However, due to the lower 

median resistance from the bi-model distribution in test sequence #11, it appears that this 

lowering of the median resistance has caused increased significance of Qs. 
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Figure 4.20 Parameter estimates for the RESET state of DOE 3. 

From the point estimate values in Figure 4.20, the RESET model equation was 

generated and is shown in Equation 4.8. 

𝑅𝑅𝐸𝑆𝐸𝑇_𝐷𝑂𝐸3 = 1.18 ∗ 107 − 7.79 ∗ 104 ∗ (𝑇) + 3.89 ∗ 103 ∗ (𝑇 − 70.0)2 − 720 ∗ 𝑄𝑠 −

7.10 ∗ 105 ∗ 𝑉𝑟 − 1.69 ∗ 106 ∗ (𝑉𝑟 − 5.58)2 + 2.32 ∗ 105 ∗ (𝑉𝑠),    

 

(4.8) 

Using the RESET model Equation 4.8, the surface and contour plots of the 

RESET cell resistance vs. T and Vr for DOE 3 is shown in Figure 4.21. In the surface 

plot, the RESET state cell resistance is increasing in the direction of lower T, with the 

maximum median cell resistance at ~5.5 V for Vr, similar to what was seen in DOE 2. 

 
Figure 4.21 Surface Plot for the RESET state of DOE 3. 
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4.1.4.2 DOE 3 SET Regression Analysis 

For the variability plot of the SET state cell resistance (shown in Figure 4.22), by 

adjusting the design space window of the ambient temperature from 25 to 125 °C to 50 to 

90 °C, again no significant SET state cell resistance differences are seen. 

 
Figure 4.22 Variability plot of the SET state cell resistance of DOE 3, going from 
RESET to SET state for the given pulse sequence and temperatures. 

For the SET state cell resistance, the variability graph of the median resistance 

values from DOE 3 are shown in Figure 4.23.  
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Figure 4.23 Variability plot of the median resistance values for the SET state of 
DOE 3, which were used for prediction profiler in JMP.   

From the parameter estimates shown in Figure 4.24, the top three significant 

variables were found to be the SET quench time (Qs), Temperature (T), and the 

combination of Qs, in terms of the response of the cell resistance in the SET state among 

the variables.  

 
Figure 4.24 Parameter estimates for the SET state of DOE 3. 

Using the point estimate values shown in Figure 4.24, the creation of the SET 

model Equation 4.9 was generated. 

𝑅𝑆𝐸𝑇_𝐷𝑂𝐸3 = 7.88 ∗ 104 − 8.94 ∗ 𝑄𝑠 −  119 ∗ 𝑇 + 1.28 ∗ 10−2 ∗ (𝑄𝑠 − 1.00 ∗  
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103)2 − 2.04 ∗ 103 ∗ (𝑉𝑠) + 2.76 ∗ 103 ∗ (𝑉𝑟) + 1.39 ∗ 10−1 ∗ �(𝑇 − 70.0) ∗

(𝑄𝑠 − 1.00 ∗ 103)�,    

(4.9) 

Using Equation 4.9, surface and contour plots of the SET state cell resistance vs. 

the two most significant variables (T and Qs) for DOE 3 are shown in Figure 4.25. In the 

surface plot for the SET state cell resistance, similar to DOE 2, very little information is 

gained from the surface plot due to the tight resistance distribution between the different 

test sequences; the optimal SET pulse condition is in the direction of minimal cell 

resistance for the SET state, which is in the direction of higher T and higher Qs as was 

seen for DOEs 1 and 2. 

 
Figure 4.25 Surface Plot for the SET state of DOE 3. 

The median resistance results from DOE3 are shown in Table 4.6. When looking 

at the programming window results from DOE 3, the largest programming window exists 

at: T = 50 °C, Vr = 5.5 V, Vs = 6 V, and Qs = 1500 nsec, which again aligns with the 

highest RESET resistance values from DOE 3.  
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Table 4.6 DOE 3: Resistance values for SET and RESET states by pulse 
conditions and Temperature. 

T [°C] Vr [V] Vs [V] Qs [nsec] RESET: Median 
(R [Ohms]) 

SET: Median 
(R [Ohms]) 

50 5.5 4.5 1000 6.00E+06 6.99E+04 
50 5.5 4.5 500 6.00E+06 7.78E+04 
50 5.5 6 1500 6.00E+06 6.42E+04 
50 5 5.5 1500 5.22E+06 6.46E+04 
50 6 4.5 500 5.71E+06 8.31E+04 
50 6 6 1000 5.71E+06 6.67E+04 
50 6 5.5 1000 5.71E+06 6.82E+04 
70 5.5 5.5 1000 3.00E+06 6.54E+04 
70 5 5.5 500 3.43E+06 7.10E+04 
70 5 6 500 3.33E+06 7.08E+04 
70 6 5.5 1500 1.74E+06 6.64E+04 
90 5.5 4.5 1500 2.18E+06 6.34E+04 
90 5 4.5 1500 2.26E+06 6.40E+04 
90 6 4.5 1000 2.50E+06 6.66E+04 
90 6 4.5 500 2.50E+06 7.27E+04 
90 6 6 500 2.40E+06 6.88E+04 
90 5.5 6 1500 3.16E+06 6.21E+04 
90 5.5 6 1000 3.08E+06 6.45E+04 

4.1.5 Optimal Pulse Conditions 

Using results from DOEs 1, 2, and 3, the design space between each of the DOEs 

was changed slightly to see if the response within the overlapping areas of each design 

space showed similar response trends. The condensed minimum and maximum 

parameters used for T, Vr, Vs, and Qs are shown in Table 4.7. 

Table 4.7 DOE 1, 2, 3: Design Space Max and Min parameters values used for 
T, Vr, Vs, and Qs. 

T [°C] 
(Min/Max) 

Vr [V] 
(Min/Max) 

Vs [V] 
(Min/Max) 

Qs [nsec] 
(Min/Max) 

DOE 

25/125 4/6 4/6 100/1000 1 
25/125 5/6 6 500/1500 2 
50/90 5/6 4.5/6 500/1500 3 
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To validate the optimal condition model from DOEs 1, 2, and 3, an independent 

wafer was measured at a T between 25 and 125 °C, with voltage values between 4 and 6 

V for Vr and Vs, and Qs from 100 to 1000 nsec. For the independent wafer measurements, 

a single checkerboard cycle instead of 10 seasoning cycles was used to see how DOEs 1, 

2, and 3 performed with the independent wafer with a single programming pulse.  After 

reviewing each of the RESET models from DOEs 1, 2, and 3, DOE 1 was found to have 

the best fit of the three models. As shown in Figure 4.26, the model was found to respond 

well to the data collected from the independent wafer, showing the largest variation at T = 

125 °C, Vs = 5 V, Vr = 5 V, and Qs = 550, which is a center point for the model.  

 
Figure 4.26 Variability plot of the RESET model vs. data collected from an 
independent wafer.  

Similarly to the RESET model vs. independent wafer, the SET model from DOE 

1 vs. independent wafer also responded very well to the data collected. The largest 

variation between the SET model and the independent wafer was seen at T = 25 °C, for 

Qs = 100 nsec, and Vs of 4V, as shown in Figure 4.26.  
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Figure 4.27 Variability plot of the SET model vs. data collected from an 
independent wafer.  

From the results collected in DOEs 1, 2, and 3, only DOE 1 was examined when 

considering the optimal pulse conditions for the Micron/Numonyx PCRAM experimental 

wafers, considering that it is the only DOE that covers the design window of temperature 

and pulse conditions for the test.  As shown in the variability plot in Figure 4.26, in the 

design space window for each of the DOEs, the predicted results align with the data 

collected on the independent wafer. However, for values outside the design window for 

DOEs 2 and 3, the prediction is no longer accurate. This can be seen best in the 

predictions of DOE 3 at T = 25 °C and 125 °C (which are outside of the design space 

window for the DOE). At these two temperatures, the model equation from DOE 3 is not 

able to accurately predict the response, and the values predicted are completely different 

than the actual response from the independent wafer. However, it should be noted that at 

T =50 °C, the prediction of DOE 3 is very close to the other predictions from DOEs 1 

and 2, as shown in Figure 4.26. 
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Figure 4.26 Variability plot of RESET models equations from DOEs 1, 2, and 3 vs. 
data collected from an independent wafer.  

After concluding that DOE 1 was the best fit for the overall design space, the next 

step was to determine the optimal programming pulse for the both the RESET and SET 

states. In determining the optimal programming pulse conditions, a dynamic prediction 

profiler was used in JMP. Profiling is an approach to visualizing the regression response 

by seeing what would happen if you changed just one or two factors at a time. 

Essentially, a profile is a cross-section view of the least squares regression response of 

each of the variables used in the analysis. JMP’s statistical software contains an 

interactive profiler, allowing dynamic profiling as the user drags the cursor along the 

response lines (shown in Figure 4.27). This dynamic profiling is very useful in 

determining the optimal conditions for a given temperature.   
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Figure 4.27 Prediction Profiler for the RESET state of DOE 1. 

After adjusting the cursor to the maximum resistance for each of the variables, it 

is apparent that the profile response for T and Vr, for the RESET state shows a more 

significant effect on the cell resistance than VS and Qs, as expected from the earlier 

analysis. From the profiler response, it was found that the optimal pulse conditions for the 

RESET state of DOE 1 are at: T = 25 °C, Vr = 6 V, Vs = 5 V, and Qs =1000 nsec.   

Moving to the prediction profiler view (or cross-section view) of the resistance for 

the RESET and SET model equations from DOE 1, one can see the interactions between 

the RESET and SET programming pulse operations across the temperature range of 25 

°C to 125 °C.  The combined RESET and SET (or stacked) prediction profiler view was 

created from Equations 4.4 and 4.5. From the prediction profiler, the optimal conditions 

(or the maximum RESET resistance and minimum SET resistance) from DOE 1, at an 

ambient temperature of 25 °C was found to be: Vr  = 6 V, Vs = 5 V, and Qs =1000 nsec. 

These optimal conditions matched the RESET model, due to the large resistance response 

changes seen in the RESET resistance values when compared to the SET resistance 

values for the conditions used in DOE 1. 
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Figure 4.28 Prediction Profiler of the RESET and SET states of DOE 1. 

For DOE 1, the prediction profiler values obtained in Figure 4.28 are considered 

the optimal pulse conditions for the given pulse conditions applied in the temperature 

range of 25 °C to 125 °C.   

4.2 Conclusions 

The method used for generating the RESET and SET models for the optimal pulse 

conditions were performed using least squares regression analysis. DOEs 1, 2, and 3 were 

analyzed separately, and model equations were generated for each; however, the optimal 

pulse conditions were only generated from DOE 1, because of the accuracy of the 

predicted response over the desired design window. To validate the model data of DOEs 

1, 2, and 3, an independent experimental wafer was used.  The final model for the RESET 

and SET optimal pulse conditions will be discussed in Chapter 5, and is used to generate 

the BER model.  
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CHAPTER 5: CYCYLING DOE 4 & RELIABILITY PREDICTION 

5.1 DOE 4 

From the data collected in DOEs 1, 2, and 3, the optimal pulse conditions were 

found without taking into consideration the effect of cycling. Hence, an additional DOE 

was setup to determine accuracy of prediction of the model equations after multiple 

programming cycles were performed on an array of PCRAM devices. This needed to be 

understood before performing the Bit Error Rate (BER) prediction analysis. From 

PCRAM reliability methods discussed in Chapter 2, it is apparent that cycling plays a role 

in the cell resistance response as the material is programmed from the SET to RESET 

state multiple times, and therefore needs to be considered when determining the optimal 

pulse conditions and when looking into the number of bit failures within the reading 

window for the Bit Error Rate (BER) model. For this reason, an additional cycling DOE 

(DOE 4) was created. 

5.1.1 RESET Regression Analysis 

The pulse conditions for DOE 4 matched the low, medium, and high values used 

in DOE 1 with the added variable of cycling. The cycling Design of Experiment (DOE 4) 

was setup (as shown in Table 5.1) to look into the main effects and interactions for the 

following factors: 1) T, ranging from 25 to 125 °C, 2) Vr and Vs, ranging from 4 V to 6 V, 

3) Qs, ranging from 100 nsec to 1000 nsec, and 4) Cycling, ranging from 1 to 1000 

cycles.  
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In order to accurately capture all of the main effects, a full factorial response 

surface design was used. This response surface model needed 28 runs due to the added 

variable of cycling being implemented into DOE 4. The sample size used during the 

READ operation was 41 columns and 41 rows (1,681 bits) in DMA mode.  

Table 5.1 DOE 4 matrix of parameters. 

T [°C] Vr [V] Vs [V] Qs[nsec] Cycles TEST 
Sequence 

25 4 4 100 1 1 
25 4 4 1000 1000 2 
25 4 6 100 1000 3 
25 4 6 1000 1 4 
25 5 5 550 100 5 
25 6 4 100 1000 6 
25 6 4 1000 1 7 
25 6 6 100 1 8 
25 6 6 1000 1000 9 
75 4 5 550 100 10 
75 5 4 550 100 11 
75 5 5 100 100 12 
75 5 5 550 1 13 
75 5 5 550 100 14 
75 5 5 550 100 15 
75 5 5 550 1000 16 
75 5 5 1000 100 17 
75 5 6 550 100 18 
75 6 5 550 100 19 
125 4 4 100 1000 20 
125 4 4 1000 1 21 
125 4 6 100 1 22 
125 4 6 1000 1000 23 
125 5 5 550 100 24 
125 6 4 100 1 25 
125 6 4 1000 1000 26 
125 6 6 100 1000 27 
125 6 6 1000 1 28 
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In Figure 5.1, the variability plot of the RESET cell resistance values for the 

RESET state of the DOE 4 are shown. From the variability plot, it is apparent that a 

RESET voltage (Vr) of 4 V is not sufficient to RESET all the bits in the array (similar to 

DOE 1), showing more variability in the cell resistance and an overall lower cell 

resistance distribution across the bits sampled. 

 
Figure 5.1 Variability plot of the RESET cell resistance bit values for the DOE 4, 
going from SET to RESET state for the given pulse sequence and temperature. 

For the SET pulse conditions of the DOE 4, it is apparent that the SET Quench 

Time Qs =100 nsec is insufficient in placing the majority of the bits in a SET state as 

mentioned previously in Chapter 4. This time is not long enough to allow crystallization 

of the amorphous dome over the top of the heater as shown in Figure 5.2. 
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Figure 5.2 Variability plot of the SET state cell resistance for DOE 4, going from 
RESET to SET state for the given pulse sequence and temperatures. 

After performing the READ operation on 41 columns and 41 rows (1,681 bits) 

and sensing the DMA current for the individual bits, a Fast-DMA (FDMA) READ was 

performed on a 4 Mbit tile, which outputs the number of cells at given cell current. 

However, the FDMA data is limited in that it does not provide the row and column 

information for the individual cell currents, only providing the number of cells at a given 

cell current.  

The distribution of cell currents for each of the test sequences in DOE 4 was used 

to determine the number of failed bits within the programming window and was used to 

determine the pulse conditions that provide the lowest BER at the part-per-million (PPM) 

level. 
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For the optimal pulse condition modeling, the median resistance values from DOE 

4 were calculated. These values are shown in the variability plot of Figure 5.3 and were 

used for the least squares regression analysis. 

 
Figure 5.3 Variability plot of the median resistance values for the RESET state 
of the DOE 4, which were used for the optimal pulse condition model.   

For the RESET state model of DOE 4, T was found to be the most significant 

variable in terms of the response of the RESET state median cell resistance, as shown in 

Figure 5.4. The temperature response is followed by Vr and by the combination of T and 

Vr in terms of significance of the cell resistance response. It should be noted that Cycles 

was not found to be significant in terms of the response of the median cell resistance for 

the RESET state model. 
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Figure 5.4 Parameter estimates for the RESET state of DOE 4. 

From the point estimate values in Figure 5.4, the RESET model equation for DOE 

4 was generated, as shown in Equation 5.1. 

𝑅𝑅𝐸𝑆𝐸𝑇_𝐷𝑂𝐸_𝑓𝑖𝑛𝑎𝑙 = −1.68 ∗ 106 − 4.66 ∗ 104 ∗ (𝑇) +  2.23 ∗ 106 ∗ (𝑉𝑟) − 3.53 ∗

104 ∗ �(𝑇 − 75.0) ∗ (𝑉𝑟 − 5.00)� − 6.23 ∗ 105 ∗ �(𝑉𝑟 − 5.00) ∗ (𝑉𝑠 − 5.00)� −

2.57 ∗ �(𝑄𝑠 − 550) ∗ (𝐶𝑦𝑐𝑙𝑒𝑠 − 367)� + 1.05 ∗ 104 ∗ �(𝑇 − 75.0) ∗ (𝑉𝑠 − 5.00)� −

4.92 ∗ 105 ∗ (𝑉𝑠) + 20.7 ∗ �(𝑇 − 75.0) ∗ (𝑄𝑠 − 550)� −  700 ∗ 𝑄𝑠 − 468 ∗ 𝐶𝑦𝑐𝑙𝑒𝑠,    

 

(5.1) 

Using Equation 5.1, the prediction profiler was generated and used to determine 

the optimal pulse conditions for the RESET state of DOE 4. The optimal values were 

found to be: T = 25 °C, Vr = 6 V, Vs = 5 V, Qs = 1000 nsec, Cycles = 1 as shown in Figure 

5.5. The prediction profiler T and Vr show the largest response for the RESET state 

similar to DOE 1. It should also be noted that Vs shows a higher RESET resistance at 4 

V; however, as will be shown later in Figure 5.10, the SET resistance also increases at 4 

V. For this reason, 5 V for Vs was considered optimal. 
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Figure 5.5 Prediction Profiler for the RESET state of the DOE 4. 

From Equation 5.1, the surface and contour plot of the two most significant 

variables, T and Vr, for the RESET state of the DOE 4 are shown in Figure 5.6, which 

shows the surface profile and contour view of RESET state cell resistance. From the 

surface and contour plots, the direction of maximum resistance is found to be at higher Vr 

and lower T, similar to the results shown in DOE 1 , 2, and 3.  

 
Figure 5.6 Surface and contour plot for the RESET state of the DOE 4. 

Using RESET model Equation 5.1, surface models were also generated of the 

RESET state cell resistance for T vs. Vr, Vs, and Qs, which are shown in Figure 5.7.   

 



108 

 
Figure 5.7 Surface Plot for the RESET state of the DOE 4. Top: Median cell 
Resistance (R) vs. Temperature (T) and RESET voltage (Vr); Bottom Left: Median 
cell Resistance (R) vs. Temperature (T) and SET voltage (Vs); Bottom Right: 
Median cell Resistance (R) vs. Temperature (T) and SET Quench Time (Qs).  

For the RESET state model, from the surface plots generated, it is apparent that 

lower ambient T is important to maintaining higher RESET state cell resistance. It should 

also be noted that between T of 25 °C and 85 °C, the largest drop in RESET cell 

resistance is seen, similar to DOE 1. This large drop in the RESET state cell resistance is 

largely a function of the temperature dependence of the dome of amorphous GST material 

directly over the heater as mentioned in Chapters 2 and 3.  
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5.1.2 SET Regression Analysis 

For the optimal pulse condition modeling, the median resistance values from DOE 

4 were calculated. These are shown in the variability plot of Figure 5.8, and were used for 

the least squares regression analysis. 

 
Figure 5.8 Variability plot of the median resistance values for the SET state of 
the DOE 4, which were used for prediction profiler in JMP.   

For the SET state of the DOE 4, the top three parameter estimates of the RESET 

state median cell resistance were Qs, the combination of T and Qs, and T, as shown in 

Figure 5.9.  
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\

 
Figure 5.9 Parameter estimates for the SET state of DOE. 

From the point estimate values in Figure 5.9, the SET model equation was 

generated, which is shown in Equation 5.2. 

𝑅𝑆𝐸𝑇_𝐷𝑂𝐸_𝑓𝑖𝑛𝑎𝑙 = 7.84 ∗ 104 − 630 ∗ 𝑄𝑠 +  12.6 ∗ �(𝑇 − 75.0) ∗ (𝑄𝑠 − 550)� −

4.62 ∗ 103 ∗ (𝑇) − 8.63 ∗ �(𝑇 − 75.0) ∗ (𝐶𝑦𝑐𝑙𝑒𝑠 − 367)� − 2.12 ∗ 105 ∗

�(𝑉𝑟 − 5.00) ∗ (𝑉𝑠 − 5.00)� − 8.03 ∗ 101 ∗ �(𝑄𝑠 − 550) ∗ (𝐶𝑦𝑐𝑙𝑒𝑠 − 367)� −

 383 ∗ �(𝑉𝑟 − 5.00) ∗ (𝑄𝑠 − 550)� + 300 ∗ 𝐶𝑦𝑐𝑙𝑒𝑠 + 1.58 ∗ 105 ∗ (𝑉𝑟) + 1.15 ∗

(𝑄𝑠 − 550)2 − 2.58 ∗ 103 ∗ �(𝑇 − 75.0) ∗ (𝑉𝑟 − 5.00)� − 237 ∗ �(𝑉𝑠 − 5.00) ∗

(𝐶𝑦𝑐𝑙𝑒𝑠 − 367)� − 3.03 ∗ 104 ∗ 𝑉𝑠,    

 

 

(5.2) 

In determining the optimal programming pulse conditions, the dynamic prediction 

profiler in JMP was used similar to DOE 1, which is shown in Figure 5.10. 
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Figure 5.10 Prediction Profiler for the SET state of DOE. 

In the prediction profiler view (or cross-section view) of the cell resistance for the 

RESET and SET model equations from DOE 4 (shown in Figure 5.10), one can see the 

interactions between the RESET and SET programming pulse operations across the 

temperature range of 25 °C to 125 °C with cycling.  The combined RESET and SET (or 

stacked) prediction profiler view was created from Equations 5.1 and 5.2. From the 

prediction profiler, the optimal conditions (or the maximum RESET resistance and 

minimum SET resistance) from DOE 4, at an ambient temperature of 25 °C and at 1000 

cycles, was found to be: Vr  = 6 V, Vs = 5 V, and Qs =1000 nsec. These results match the 

optimal conditions from the model generated in DOE 1. 

From Equation 5.2, the surface and contour plots of the SET state cell resistance 

were generated for the two most significant variables (T and Qs), which is shown in 
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Figure 5.11. The graphs show the direction of minimum cell resistance in the direction of 

higher T and Qs, which matches what was seen in the prior DOEs.  

 
Figure 5.11 Surface and contour plots for the SET state of the DOE 4. 

From the SET state model Equation 5.2, surface plots were generated for the SET 

state cell resistance for T vs. Qs, Vr  and Vs, as shown in Figure 5.12. From the surface 

plots of the SET model equation, it is apparent that higher values for Qs, T, and Vs are 

important for maintaining minimum SET state cell resistance. It should also be noted that 

for the SET state, the largest change in the resistance response is seen with the change in 

Qs between 100 nsec and 200 nsec, similar to DOE 1.  
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Figure 5.12 Surface Plot for the SET state of DOE 4. Top: Median cell Resistance 
(R) vs. Temperature (T) and SET Quench Time (Qs); Bottom Left: Median cell 
Resistance (R) vs. Temperature (T) and RESET voltage (Vr); Bottom Right: Median 
cell Resistance (R) vs. Temperature (T) and SET Voltage (Vs).  

5.2 Reliability Prediction Modeling 

In this section, the model creation for reliability prediction using the BER from 

the optimal pulse conditions is discussed. The reliability model was generated from the 

FDMA data collected in DOE 4. In the development of a model capable of predicting the 

BER for a given pulse condition, fail criteria limits were based on the resistance of the 

cell for the SET and RESET states. The bit failure limits for the RESET and SET state 

were arbitrarily chosen, however, to ensure a reading window of at least one order of 

magnitude. The lower limit for the RESET state was placed at 1 MΩ, and the upper limit 
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for the SET cell resistance was placed at 0.1 MΩ; these limits were based on the 

collected resistance distributions. From the sum of the bits, which failed the criteria for 

the RESET and SET states, the BER was then calculated using Equation 5.3.  

 𝐵𝐸𝑅 =
# 𝐹𝑎𝑖𝑙𝑒𝑑 𝐵𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑑
 

(5.3) 

5.2.1 RESET Reliability Prediction Model 

The sample size for each of the test sequences of DOE 4 was 2 Mbits. The 

percentage of failed bits for each of the test sequences or BER for DOE 4 is shown in 

Figure 5.13.  

 
Figure 5.13 Variability plot of the BER going from the SET state to RESET state 
with the given pulse conditions.  

For the regression analysis, the least means squares method was used to generate 

the prediction estimates, model equations, profiling data, and finally the surface model of 

 



115 

the reliability prediction model for the BER. From the least means squares analysis, the 

parameter estimates were generated and are shown in Figure 5.14. Similar to what was 

seen in DOEs 1 through 4, for the optimal pulse conditions regression analysis, the 

variables that were found have the most significant response in terms of the Bit Error 

Rate (BER) were found to be Vr, T, and the combination of T (third term in Figure 5.14). 

 
Figure 5.14 Parameter estimates for RESET state BER of DOE 4. 

From the parameter estimates shown in Figure 5.14, the BER model equation for 

the RESET state of DOE 4 was generated, as shown in Equation 5.4. 

𝐵𝐸𝑅𝑅𝐸𝑆𝐸𝑇𝐷𝑂𝐸 = 0.99 − 2.66 ∗ 10−1 ∗ (𝑉𝑟) + 4.41 ∗ 10−3 ∗ (𝑇) + 1.41 ∗ 10−4 ∗ �(𝑇 − 75.0) ∗

(𝑇 − 75.0)� +  2.76 ∗ 10−1 ∗ (𝑉𝑟 − 5.00)2 + 2.24 ∗ 10−3 ∗ �(𝑇 − 75.0) ∗ (𝑉𝑟 − 5.00)� +  1.54 ∗

10−4 ∗ �(𝑉𝑟 − 5.00) ∗ (𝐶𝑦𝑐𝑙𝑒𝑠 − 357)� − 7.42 ∗ 10−7 ∗ (𝑄𝑠 − 550)2 +  2.16 ∗ 10−6 ∗

�(𝑇 − 75.0) ∗ (𝐶𝑦𝑐𝑙𝑒𝑠 − 357)� + 3.56 ∗ 10−2 ∗ 𝑉𝑠 + 3.01 ∗ 10−5 ∗ 𝐶𝑦𝑐𝑙𝑒𝑠 + 2.20 ∗ 10−5 ∗ (𝑄𝑠),     

 

(5.4) 

Using Equation 5.4, the prediction profiler was generated to show the cross-

sectional view of the BER response for each variable. The prediction profiler response of 

the BER for the RESET state is shown in Figure 5.15. From the prediction profiler, the 
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parameters that were found to produce the minimum BER for the RESET state of DOE 4 

were at:  T = 25 °C to 85°C with the programming pulse values at Vr = 6 V, Vs = 4 V, Qs 

=1000 nsec. Moreover, it should be noted that in the RESET state BER model, the 

optimal RESET voltage (Vr) pulse changes from 6 V to 5.5 V as the cycling increases 

from 1 to 1000 cycles. The prediction profile for the 1000 cycles is shown in Figure 5.15. 

 
Figure 5.15 Prediction Profiler for the RESET state BER of the DOE 4. 

Using the RESET model Equation 5.4, surface and contour plots were generated 

for the two most significant variables, T and Vr, of the BER response for the RESET state 

of DOE 4. The graphical representation of the RESET state BER response model is 

displayed in Figure 5.16, showing the direction of minimum BER to be for T < 85 °C and 

Vr  between 5.4 and 6V.  
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Figure 5.16 Surface and contour plot for the RESET state BER of the DOE 4. 

Using the RESET model (Equation 5.4), surface models of the RESET state BER 

for T vs. Vr, Vs, and Qs are shown in Figure 5.17. For the RESET state surface plots 

generated, it is apparent that maintaining T < 85°C and Vr between 5.4 and 6 V is 

important to keeping the minimum BER for the RESET state. It should also be noted that 

for T > 85°C, a significant increase in the BER is seen, showing the temperature sensitive 

nature of the amorphous GST material and loss of resolution of the state of the bit as T > 

85°C. Moreover, at Vr < 5.4 V, a significant increase in the BER is also seen. This 

increase is due to lack of current for Joule heating, such that the GST material directly 

over the heater element is not being heated above the melting temperature of ~600 °C 

through Joule heating, and as a result the volume of the amorphous dome directly over 

the heater element is minimal, leading to higher bit sensing failures and/or BER. 
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Figure 5.17 Surface Plot for the RESET state of the DOE 4. Top: BER vs. 
Temperature (T) and RESET voltage (Vr); Bottom Left: BER vs. aTemperature (T) 
and SET voltage (Vs); Bottom Right: BER vs. Temperature (T) and SET Quench 
Time (Qs).  

5.2.2 SET Reliability Prediction Model 

For the SET state model, the BER for each of the test sequences from DOE 4 was 

calculated similarly to the RESET state BER values (using Equation 5.3) with the fail 

criteria set at 0.1 MΩ. The variability plot of the BER percentages for the SET state is 

shown in Figure 5.18.  
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Figure 5.18 Variability plot for DOE 4 of the BER, going from the RESET state to 
SET state with the given pulse conditions.  

As seen in the variability graph of the BER from the SET state cell resistance 

values, the SET quench time (Qs) was found to have the most significant BER response in 

the SET state among all the variables, with Qs between 100 nsec and 500 nsec showing 

the largest difference in the SET state BER. The significance of Qs is also shown in the 

parameter estimates in Figure 5.19, where the three most significant parameters in terms 

of the SET state BER response were found to be Qs, T, and the combination of Vs. 
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Figure 5.19 Parameter estimates for the SET state BER of the DOE 4. 

From the point estimate values in Figure 5.19, the SET state model equation for 

the prediction response of the BER was generated, as shown in Equation 5.5. 

𝐵𝐸𝑅𝑆𝐸𝑇_𝐷𝑂𝐸 = 𝑒𝑥 𝑝(14.5 − 1.08 ∗ 10−2 ∗ (𝑄𝑠) − 4.65 ∗ 10−2 ∗ (𝑇) + 3.33 ∗

(𝑉𝑠 − 5.00)2 − 3.66 ∗ 10−3 ∗ �(𝑉𝑟 − 5.00) ∗ (𝑄𝑠 − 550)� − 3.61 ∗ 10−3 ∗

�(𝑉𝑠 − 5.00) ∗ (𝑄𝑠 − 550)� − 6.52 ∗ 10−5 ∗ �(𝑇 − 75.0) ∗ (𝑄𝑠 − 550)� − 1.42 ∗

�(𝑉𝑟 − 5.00) ∗ (𝑉𝑠 − 5.00)� − 1.34 ∗ 𝑉𝑠 + 2.57 ∗ 10−3 ∗ �(𝑉𝑠 − 5.00) ∗

(𝐶𝑦𝑐𝑙𝑒𝑠 − 357)� − 5.14 ∗ 10−1 ∗ (𝑉𝑟) − 8.79 ∗ 10−4 ∗ 𝐶𝑦𝑐𝑙𝑒𝑠),   

 

(5.5) 

From the SET model equation, surface and contour plots of the BER for the SET 

state of the two most significant variables Qs and T were generated as shown in Figure 

5.20. It can be seen that the direction of minimum BER is in the direction of higher Qs 

and higher T.  
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Figure 5.20 Surface and contour plot for the SET state BER of the DOE 4. 

Using the model SET model equation 5.5, surface models of the SET state BER 

for Temperature (T) vs. RESET Voltage (Vr), SET Voltage (Vs), SET Quench Time (Qs) 

were generated, as shown in Figure 5.21.  For the SET state surface plots generated, it is 

apparent that higher Qs is important for maintaining the minimum BER for the SET state. 

At a quench time of 100 nsec, one can see the significant increase in the BER, which is 

more apparent at lower ambient temperatures. 
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Figure 5.21 Surface Plot for the SET state of DOE 4. Top: BER vs. Temperature 
(T) and SET Quench Time (Qs); Bottom Left: BER vs. Temperature (T) and RESET 
voltage (Vr); Bottom Right: BER vs. Temperature (T) and SET Voltage (Vs).  

From the prediction profiler shown in Figure 5.22 of the BER for the SET state of 

DOE 4, the minimum BER at an ambient temperature of 25 °C was found to be at the 

conditions of: Vr  = 6 V, Vs  = 5 V, and Qs  =1000 nsec for 1 cycle. 
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Figure 5.22 Prediction Profiler for the SET state BER of DOE 4. 

5.3 Pattern Cycling Test  

To validate the optimal pulse conditions and to look into possible thermal 

proximity disturb issues related to the programming and READ operation and/or other 

reliability issues when using the optimal pulse conditions, pattern cycling tests were 

performed. For the first patterning cycling test, multiple die were sampled across two 

different wafers, with the array only cycled once (1 cycle) prior to the pattern cycling. 

For the second test, a single die was sampled (to monitor the change in cell resistance for 

specific bits with cycling), with the array cycled 10 times (10 cycles) prior to the pattern 

cycling. The array pattern cycling test used a checkerboard pattern (shown in Figure 

5.23); the White (W) and Black (B) cells were defined prior to starting the test. Once the 

cells were pre-defined, the following test sequence was performed: 1) white cells were 

programmed into a RESET state (and were not cycled again, but read two times between 
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each of the cycling tests), and 2) black cells were cycled at increments of 1, 10, 100, and 

1000 cycles.  

 
Figure 5.23 Checkerboard pattern for the pattern cycling tests “White” cells 
marked with “W” and Black cells marked with “B”.  

After each cycling increment was completed, both the White and Black cells were 

READ just after the final pattern cycle for the RESET state and the pattern cycle for the 

SET state. The results are shown in Figure 5.24. 

From the results for the pattern cycling tests (shown in Figure 5.24), one can see 

the slight increase in cell resistance for the White cells (which were not cycled), between 

the pattern cycles from 1 to 1000 cycles. This increase was also seen for the Black cells 

but was not consistent between each of the cycling tests. The slight increase in resistance 

for the White cells is most likely a function of the resistance drift phenomena, related to 

the amorphous material as discussed in Chapter 2. 

For the Black cells, as the cycling is increased above 100 cycles, a separation 

between the White and Black cells becomes more apparent; the median cell resistance for 

the Black cells starts to lower on some of the tests, which may be related to an increase in  

Sb % in the active area of the GST material as the bits are cycled [73], [74]. Examples of 

this phenomenon are shown in Figure 5.25. 

  

 



125 

1 Array Cycle before Pattern Cycling 10 Array Cycles before Pattern Cycling  

 
Figure 5.24 Median cell resistances (of Black and White cells) vs. programming 
cycle of the Black cells. 

In this example, shown in Figure 5.25 (left), before cycling, the GST film does not 

show agglomeration of any of the atoms (Ge, Sb, Te); however, after cycling, the 

agglomeration of Sb atoms and a deficiency of Ge atoms is seen in the active region, just 

above the heater (or BEC) [73]. In Figure 5.25 (right), the cell resistance was monitored 

for different GST films and was found to decrease with increasing Sb% [74]. 
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Figure 5.25 Left: Results of EDX elemental analysis showing an agglomeration of 
Sb atoms at the GST / Bottom Electrode Contact (BEC) interface after cycling [73]; 
Right: Cell resistance for the SET and RESET state with increasing Sb %, showing 
a decrease in cell resistance [74]. 

To look into the pattern cycling test further, the activation energies from the 

pattern cycling tests were calculated for each of the pattern cycles and then compared 

between the White vs. Black cells. As mentioned in Chapter 2, the activation energy can 

be calculated from the Arrhenius equation and/or the slope of the regression line of the 

ln[σ] vs. 1/T plot, where σ is the conduction and T is the temperature in Kelvin. The slope 

of the regression line is equal to - Ea / k, where Ea is the activation energy and k is 

Boltzmann’s constant. 

For the pattern cycling test with 1 cycle prior to pattern cycling, the activation 

energies of the White cells were found to change slightly (RESET: 0.188 eV vs. SET: 

0.192 eV) when comparing the RESET and SET pattern cycle READ measurements 

(seen in Figure 5.26, top-left). However, for the pattern cycling test, which had 10 cycles 

prior to the pattern cycling, the activation energies were found to be aligned and were 

lower (RESET/SET: 0.162 eV) when comparing the RESET and SET pattern cycle 

READ measurements for the White cells, as seen in Figure 5.26, top-right.  
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1 Cycle before pattern cycling 10 Cycles before pattern cycling 

 
Figure 5.26 Natural log of the cell conductance vs. 1/Temperature plots, showing 
the temperature response and conduction activation energies for White (top) and 
Black (bottom) cells. Right (top/bottom): Pattern cycling test with 1-cycle performed 
prior to the pattern cycling. Left (top/bottom): Pattern cycling test with 10-cycles 
performed prior to the pattern cycling. 

This lowering of the activation energy was also seen for the Black cells, when 

comparing the RESET and SET pattern cycle READ measurements (shown in Figure 

5.26, bottom). In a recent paper reviewing the impact of Ge-Sb-Te concentration on the 

SET operation performance, it was found that with increasing Sb % the conduction 

activation energy is reduced as shown in Figure 5.27 [74].  
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Figure 5.27 Conduction activation energy of RESET and SET states and 
threshold voltage trends as a function of increasing Sb concentration [74]. 

In determining the cycling effect, the activation energy was calculated for three 

different temperature ranges: 1) 25 °C to 80 °C, 2) 80 °C to 125 °C, and 3) 25 °C to 125 

°C. A plot of the conduction activation energy vs. pattern cycles was generated as shown 

in Figure 5.28. 

 For the 1-cycle prior to patterning test, it was found that the activation energies 

were not aligned until the Black cells had been cycled up to 100 cycles (shown in boxed 

region of Figure 5.28, top-left). However, when looking at the 10 cycle test, the Black 

cells were aligned very early, and the activation energies were to found to also match for 

the White cells (shown in Figure 5.28, top-right). It should also be noted that from 100 to 

1000 cycles a slight increase in the activation energy can be seen in the Black cells for 

both the 1 Cycle and 10 Cycle tests (shown in Figure 5.28, bottom-left/right), which 

conflicts with the Sb % data, since the activation energy should be going down with 

increased cycling, unless the agglomeration of Sb changes with the number of cycles.  

 



129 

 
Figure 5.28 Conduction activation energy vs. Cycling. Left (top/bottom): Pattern 
cycling test data for 1-cycle test prior to pattern cycling; Right (top/bottom): Pattern 
cycling test data for 10-cycle test prior to pattern cycling. 

For the contour map of the cell resistance vs. bit location (column vs. row) in the 

array, after performing the pattern cycling test, high resistance islands were found to be 

forming as increased cycling was performed in the RESET state. The high resistance 

islands more commonly grow around some of the Black cells, which were found to have 

high resistance after a single cycle.  With increased cycling the high resistance islands 

begin to spread to neighboring White cells, and eventually at 1000 cycles the Black and 

White cells show similar high resistance values in the RESET state, which is shown in 

Figure 5.29. 
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Figure 5.29 Contour map of the cell resistance vs. bit location (column and row) 
for a single tile, with pattern cycling performed, showing the resistance change after 
1, 100, and 1000 cycles in the RESET state. 

To explore the cause of the high resistance islands, which were found to grow in 

the RESET state, the pattern cycling test was performed again; this time the tests were 

performed on a 200 mm production wafer, which had been through Wafer Level 

Reliability (WLR) testing at Micron. As mentioned, the initial thought was that the high 
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resistance islands could be the result of the resistant drift phenomena and not related to 

thermal proximity disturb between the bits. To determine if this was the case, the third 

pattern cycling test was performed by: 1) cycling the array 10 times in the “Black” and 

“White” checkerboard pattern prior to performing the pattern cycling, 2) for the pattern 

cycling a “no operation” time delay was put into the script instead of an actual cycling 

pulse for the Black cells to imitate the time delay between 1, 10, 100, and 1000 cycles 

(and monitor the resistance drift with time), and 3) the READ pulse was performed after 

the same time delay at 1, 10, 100, and 1000 cycles at T = 25 °C. The results are shown in 

Figure 5.30. 

 
Figure 5.30 Pattern Cycling vs. No Operation Pattern Cycling after 1, 100, and 
1000 cycles. 

From the results shown in Figure 5.30, the cell resistance of the no operation 

pattern cycling test was found to more closely match the 1 array cycle pattern cycling 

than the 10 array cycles prior to pattern cycling test.  

Due to no operation being performed on the Black cells in the third pattern 

cycling, it is apparent that the increase in resistance shown in Figure 5.30, with increased 
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cycles (or in this case time) is related to the resistance drift phenomena and not thermal 

proximity disturb. However, the reason for the cell resistance difference between the 

Black cells being slightly lower than the White is not well understood, and may be 

influenced by the Black cells having been cycled 10 times at the start of the test. Looking 

into the contour plots of the cell resistance, the high resistance islands were again found, 

and the island growth was still present. However, it should be noted that the islands are 

not as easy to see until the no operation pattern cycling test reached the same time delay 

of 1000 cycles.   

Since the no operation pattern cycling test does not perform any program cycling 

on the Black bits, other than the initial 10 cycles, it was concluded that the high resistance 

island growth shown in Figure 5.31 is not a function of cycling Black bits or related to 

thermal proximity disturb, but is more a function of the resistance drift phenomena.  
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Figure 5.31 Contour map of the cell resistance vs. bit location (column and row) 
for a single tile No Operation Pattern Cycling test showing the cell resistance after 1, 
100, and 1000 cycles. 

5.4 Application 

The novelty of this reliability method and the associated prediction models is 

twofold: 1) the reliability prediction model predicts a single combination of temperature 
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and pulse conditions giving the lowest BER for temperatures between 25 to125 °C, and 2) 

the ability to design a circuit that can self-adjust the pulse conditions according to the 

temperature of the memory, in order to provide the lowest BER. Once the model 

equations are created for a given PCRAM part, they can be used as a representation of the 

population sampled. However, if the product changes, the reliability prediction method 

will need to be performed again to update the pulse condition and BER models.  

In performing the new reliability prediction method, the following steps are 

needed:  

1) Collect several wafers at random to represent the population being sampled; 

2) Perform the initial screening of the pulse conditions for temperatures 

between 25 °C and 125 °C; 

3) Determine the design space for the Design Of Experiment (DOE); 

4) Create a response surface DOE; 

5) Perform the DOE and gather distribution data on at minimum 1 Mbits for 

the BER modeling; 

6) Use regression analysis to develop the model equations from the cell 

resistance response for the pulse conditions and the BER; and 

7) Use the prediction profiler in JMP to determine the optimal pulse conditions 

and the location of lowest BER to determine the single combination of 

temperature and pulse conditions giving the lowest BER for temperatures 

between 25 °C and 125 °C. 
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5.5 Conclusions 

This dissertation was devoted to finding the optimal pulse conditions on 

experimental wafers from the Micron/Numonyx 45 nm technology PCRAM devices and 

to developing a reliability prediction method to model and predict a single combination 

of temperature and pulse conditions to give the lowest Bit Error Rate (BER). 

Chapter 1 described the motivation for looking at PCRAM as a promising 

emerging memory with respect to other innovative non-volatile memory technologies. 

Moreover, the properties as well as the working principles of a PCRAM cell were 

covered. In Chapter 2, reliability methods used for semiconductors and PCRAM, 

including some of the limitations, were reviewed and the proposal for the new reliability 

method was presented. Chapter 3 described the experimental setup for DOEs 1, 2, 3, 

along with the initial screening for the design space. In Chapter 4, modeling of DOEs 1, 

2, and 3 was performed using the least squares method and used to find the optimal pulse 

conditions, which were determined to be T = 25 °C, Vr = 6 V, Vs = 5 V, Qs =1000 nsec 

from DOE 1.  

Finally, in Chapter 5, DOE 4, which incorporated device cycling into the optimal 

pulse condition model, was performed, and the reliability prediction model of the 

PCRAM devices was generated. This model predicts a single combination of temperature 

and pulse conditions, which give the lowest Bit Error Rate on the Micron/Numonyx 45 

nm technology.  

The BER model was generated from distribution data from a 4 Mbit tile, 

predicting a single combination of temperature and pulse conditions giving the lowest 

BER, which are : Vr  = 6 V, Vs = 5 V, and Qs =1000 nsec for  lower cycles and  Vr  = 5.5 
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V, Vs = 5 V, and Qs =1000 nsec for 1000 cycles.  Pattern cycling tests were performed to 

determine possible reliability and/or disturb issues using the optimal pulse conditions 

found. The test results show resistance drift for the White cells and possible Sb% change 

for the Black cells with cycling. When looking at the contour maps of the cell resistance 

across the array, islands of high resistance were found, which spread to neighboring 

White cells.  Looking into the high resistance islands on the no operation cycling pattern 

test, a similar pattern as was seen in the pattern cycling test. Since the no operation 

pattern cycling test does not perform any program cycling to the Black bits, we can safely 

conclude that the high resistance island growth is not a function of the cycling of the 

phase change material and/or thermal proximity disturb with the optimal pulse conditions 

but is more a function of the resistance drift phenomena.  

From this research, the future work includes: 1) Investigate the cell resistance 

difference between the White and Black cells in the RESET state, 2) explore how the 

optimized pulse conditions perform with increased cycling, and 3) Correlating the 

optimal pulse conditions to data retention lifetime prediction. 
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APPENDIX 

Python Script for Cycling 

#JaredBarclay 
# Input Variable list: Loop count, Partition 
 
import sys 
import Microsoft 
sys.path.append("G:\RD\FAB\CMP\JBARCLAY2\scripts")  
import um2_cli; 
import re; 
import fileinput 
import os 
import getopt 
from um2_cli import * 
from System.Collections.Generic import * 
 
#Global Variables 
Gl_Loop = int(sys.argv[1]) 
Gl_Partition = int(sys.argv[2]) 
#End Global Variables 
 
# Overwrite Begin 
def 
cell_overwrite(partition_start=0,partition_end=0,row_start=0,row_end=2047,col_start=0,
col_end=2047,polar="True",pat="Ones"): 
    "This does a cell overwrite of the whole partition against some pattern" 
    u.Cli('um-set-polarity %s' %(polar)) #True, Complement, Alternating 
    u.Cli('um-set-background %s' %(pat)) #Ones, Logical Checkboard 
    u.RunCommandGetResults('Overwrite ApplyShadow=1 Display_SR_Time=0 
OverWriteMode=1 part_s=%i part_e=%i row_s=%i row_e=%i col_s=%i col_e=%i' 
    %(partition_start,partition_end,row_start,row_end,col_start,col_end)) 
# Overwrite End 
 
# Write Pattern Begin 
def 
Write_Pattern(partition_start=0,partition_end=0,row_start=0,row_end=2047,polar="True
",pat="Ones"): 
    "This does a cell overwrite of the whole partition in ones pattern" 
    u.Cli('um-set-polarity %s' %(polar)) #True, Complement, Alternating 
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    u.Cli('um-set-background %s' %(pat)) #Ones, Logical Checkboard 
    u.RunCommandGetResults('Write_Pattern ApplyShadow=1 Display_SR_Time=0 
Write_CK=0 Write_CKbar=1 part_s=%i part_e=%i row_s=%i row_e=%i' 
    %(partition_start,partition_end,row_start,row_end)) 
# Write Pattern End 
 
# Dma Begin 
def 
Dma(partition_start=0,partition_end=0,row_start=0,row_end=2047,col_start=0,col_end=
2047,polar="True",pat="Ones"): 
    "This takes the DMA on some in a partition on all row+columsn by default against 
some pattern" 
     
    u.Cli('um-set-polarity %s' %(polar)) #True, Complement, Alternating 
    u.Cli('um-set-background %s' %(pat)) #Ones, Logical Checkboard 
    #Delete the UM2 data file before running so data is clean 
    #u.ClearOutputPane('Data') 
    mte.Globals.VariableValue["TestComplete"] = 0 #clears the flag that indicates when 
the test is done 
    isComplete = mte.Globals.VariableValue["TestComplete"]  # at the end of the test, the 
VBA macro will set this variable to a 1. 
    isStopped = mte.Tester.IsActiveBinTestStopped   #set to true if you stop the test by 
hitting the stop button. 
    u.RunCommandGetResults('Dma ApplyShadow=1 tile_s=7 tile_e=7 dq_s=7 dq_e=7 
part_s=%i part_e=%i row_s=%i row_e=%i col_s=%i col_e=%i' 
    %(partition_start,partition_end,row_start,row_end,col_start,col_end)) 
     isComplete = mte.Globals.VariableValue["TestComplete"]  # at the end of the test, the 
VBA macro will set this variable to a 1. 
# Dma End 
 
# Distribution Begin 
#modified on - changed while loop to include isStopped condition 
def 
Distribution_Pattern(Read_CK=1,Read_CKN=0,current_start=0,current_end=15,current
_step=0.5,partition_start=0,partition_end=0,polar="True",pat="Ones"): 
    "This takes the Distribution on some section in a partition on all row+colums by 
default against some pattern" 
    u.Cli('um-set-polarity %s' %(polar)) #True, Complement, Alternating 
    u.Cli('um-set-background %s' %(pat)) #Ones, Logical Checkboard 
    mte.Globals.VariableValue["TestComplete"] = 0 #clears the flag that indicates when 
the test is done 
    isComplete = mte.Globals.VariableValue["TestComplete"]  # at the end of the test, the 
VBA macro will set this variable to a 1. 
    isStopped = mte.Tester.IsActiveBinTestStopped   #set to true if you stop the test by 
hitting the stop button. 
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    u.RunCommandGetResults('Distribution_Pattern ApplyShadow=1 SingleTile=1 tile=9 
row_s=0 row_e=2047 Read_CK=%i Read_CKN=%i current_s=%i current_e=%i 
CurrentStep=%f part_s=%i part_e=%i' 
    
%(Read_CK,Read_CKN,current_start,current_end,current_step,partition_start,partition_e
nd)) 
# Distribution End 
 
 
#Cycling Begin  
cell_overwrite(Gl_Partition,Gl_Partition,0,2047,0,2047,"Complement","Ones")  #RESET 
Array 
Dma(Gl_Partition,Gl_Partition,0,2,0,2,"True","Ones")  #READ Array 
 
j = 1 
while j < Gl_Loop: 
    
    Write_Pattern(Gl_Partition,Gl_Partition,0,2047,"True","Ones") # writes CKB ones 
pattern 
     
    #Dma(Gl_Partition,Gl_Partition,0,1,0,1,"True","Ones") # performs Dma Read. 
     
    Write_Pattern(Gl_Partition,Gl_Partition,0,2047,"Complement","Ones") # writes CKB 
ones complement pattern. 
     
    #Dma(Gl_Partition,Gl_Partition,0,1,0,1,"Complement","Ones") # performs Dma Read. 
     
    j = j + 1 
 
print('1000 CKB cycles') # prints out cycle count once loop is completed 
# Cycling End 
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