
GPU-ACCELERATED MODELING OF MICROSCALE

ATMOSPHERIC FLOWS OVER COMPLEX TERRAIN

by

Anthony Rey DeLeon

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Mechanical Engineering

Boise State University

August 2012

c© 2012
Anthony Rey DeLeon

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Anthony Rey DeLeon

Thesis Title: GPU-accelerated Modeling of Microscale Atmospheric Flows over Com-
plex Terrain

Date of Final Oral Examination: 13 June 2012

The following individuals read and discussed the thesis submitted by student Anthony
Rey DeLeon, and they evaluated his presentation and response to questions during the
final oral examination. They found that the student passed the final oral examination.

Inanc Senocak, Ph.D. Chair, Supervisory Committee

Ralph Budwig, Ph.D. Member, Supervisory Committee

Paul Dawson, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Inanc Senocak, Ph.D., Chair,
Supervisory Committee. The thesis was approved for the Graduate College by John
R. Pelton, Ph.D., Dean of the Graduate College.

dedicated to my family

iv

ACKNOWLEDGMENTS

I would like to express my appreciation to everyone who has helped me through-

out my studies here at Boise State University. This thesis would not have been

completed without their help. In particular, I thank Dr. Inanc Senocak for presenting

me with the opportunity to work on the research discussed in this thesis and for

guiding me throughout the entire process. The experience has been very beneficial

to me, having been exposed to several new areas of study and learning numerous

valuable skills that will most certainly help me throughout my career. I also want

to thank Dr. Ralph Budwig and Dr. Paul Dawson for being members on my thesis

committee and all the helpful feedback they provided.

I would also like to thank Kyle Felzien and Marianna Budnikova, at the time

computer science undergraduate students, for their efforts in producing pre-processing

software for this research, and Marty Lukes for his efforts in maintaining our GPU

computing infrastructure here at Boise State. My thanks also go to Ken Blair, for

maintaining Boise State’s supercomputing cluster located at Idaho National Labora-

tory.

Being funded by a NASA EPSCoR fellowship, I would also like to thank the Idaho

Space Grant Consortium (ISGC) for awarding me this fellowship. This work was also

partially funded by the National Science Foundation (Award # 1043107).

v

ABSTRACT

With installed wind power capacities steadily on the rise, balancing the loads

on electrical grids is challenging due to the intermittency of the wind. Short-term

wind power forecasting can be a valuable tool for better informing grid operators on

the available wind power. Current short-term wind forecasting techniques typically

adopt mesoscale weather forecasting models with spatial resolutions on the order of a

kilometer. On relatively flat terrain, use of mesoscale models may prove effective,

but application to complex terrain induces large forecasting errors. To address

this issue, a baseline incompressible flow solver for GPU (graphics processing unit)

clusters is extended to simulate neutrally-stable atmospheric flows over complex

terrain with the ultimate goal of developing a comprehensive short-term wind fore-

casting capability that can resolve winds at turbine hub height. In the extended

wind model, the large-eddy simulation (LES) technique with a Lagrangian dynamic

subgrid-scale (SGS) model is implemented to better capture the effects of atmospheric

turbulence over complex terrain. Additionally, the immersed boundary method (IBM)

is adopted to numerically represent the complex terrain on a Cartesian mesh. Vali-

dation is performed using common benchmark cases. Performance results obtained

from simulating the Bolund Hill Experiment demonstrates that faster than real-time

computations are realized with GPU clusters. While the results are encouraging and

justifies the foundation for a short-term wind forecasting capability, the work does

not account for all factors in wind forecasting and the results can be considered as a

first attempt requiring further improvements.

vi

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . xiii

1 Introduction . 1

1.1 Thesis Statement . 3

1.2 Works Published . 7

2 Technical Background . 8

2.1 Governing Equations . 8

2.2 Numerical Methods . 9

2.3 GPU Computing . 10

2.4 GPU Cluster Implementation . 14

3 Large-Eddy Simulation Technique . 16

3.1 Subgrid Scale Models . 18

3.2 Validation of the LES Technique . 24

4 Immersed Boundary Method . 34

4.1 Overview of Immersed Boundary Methods . 34

4.2 Velocity Reconstruction Scheme . 40

vii

4.3 Extending the Reconstruction Scheme to Atmospheric Boundary Layer

Flows . 44

4.4 Immersed Boundary Method Validation . 46

5 Wind Flow Over Complex Terrain . 48

5.1 Brief Survey of Wind Forecasting Over Complex Terrain 48

5.2 IBM in Atmospheric Flows . 51

5.3 Hybrid RANS/LES . 52

5.4 Evaluation of Hybrid RANS/LES . 53

5.5 Bolund Hill Performance Tests . 56

6 Conclusions and Future Directions . 63

6.1 Conclusions . 63

6.2 Future Directions . 65

REFERENCES . 68

viii

LIST OF FIGURES

2.1 A simple illustration of a CUDA-enabled GPU hardware architecture.

Actual configurations of streaming multiprocessors and CUDA cores

vary depending on the particular model of NVIDIA GPU. The two-

headed arrows show how information is transferred between different

components. 12

2.2 A simple depiction of the CUDA programming model. The kernel is

initiated on the CPU and then divided up into a grid of blocks. Each

block, which consists of multiple threads, is then given to a SM. Note

that different grid sizes can be used for different kernels. 13

3.1 A comparison of the mean streamwise velocity profiles using different

models and mesh sizes (coarse - 64 × 64 × 96, fine - 128 × 96 × 128):

¤, Smagorinsky on coarse grid; +, Lagrangian dynamic on coarse grid;

◦, Smagorinsky on fine grid; ∗, Lagrangian dynamic on fine grid. 25

3.2 A comparison of the x-z component of the Reynolds shear stress tensor

using different turbulence models at different grid resolutions. ¤,

Smagorinsky on coarse grid (64 × 64 × 96); +, Lagrangian dynamic

on coarse grid; ◦, Smagorinsky on fine grid (128 × 96 × 128); ∗,

Lagrangian dynamic on fine grid. 26

ix

3.3 The rms values of streamwise velocity fluctuations: ¤, Smagorinsky

on coarse grid (64 × 64 × 96); +, Lagrangian dynamic on coarse grid;

◦, Smagorinsky on fine grid (128 × 96 × 128); ∗, Lagrangian dynamic

on fine grid. 27

3.4 The rms values of spanwise velocity fluctuations: ¤, Smagorinsky on

coarse grid (64 × 64 × 96); +, Lagrangian dynamic on coarse grid; ◦,

Smagorinsky on fine grid (128 × 96 × 128); ∗, Lagrangian dynamic on

fine grid. 28

3.5 The rms values of wall-normal velocity fluctuations: ¤, Smagorinsky

on coarse grid (64 × 64 × 96); +, Lagrangian dynamic on coarse grid;

◦, Smagorinsky on fine grid (128 × 96 × 128); ∗, Lagrangian dynamic

on fine grid. 29

3.6 Streamwise spectra of turbulent kinetic energy normalized with friction

velocity at approximately z+ ≈ 50 for Reτ = 180 on fine resolution

mesh (128 × 96 × 128). 30

3.7 The mean streamwise velocity of turbulent channel flow at Reτ = 395

compared to DNS results [59]. Only the Lagrangian dynamic model

was used. 31

3.8 The x-z component of Reynolds stress from Reτ = 395 turbulent chan-

nel flow compared to DNS results [59]. Only the Lagrangian dynamic

model was used. 32

3.9 A visualization of vortical flow structures using the Q-criterion for the

Reτ = 395 turbulent channel flow. The mesh size used was 192×128×384.33

x

4.1 A simple sketch of the ghost cell method. Image nodes are created by

mirroring the solid nodes included in the computational stencil about

the boundary. Solid nodes are assigned values by using interpolation

reconstruction schemes involving the image nodes that implicitly ap-

plies the boundary condition. 36

4.2 A sketch of the cut-cell method. Cells intersecting the solid are re-

shaped, creating an unstructured mesh at the solid-fluid interface. Cut-

ting the cell essentially reshapes the control volume that the governing

equations are solved over. 37

4.3 A sketch of the indirect imposition approach. A line normal to the

surface (triangle) is projected through the immersed boundary node

(green circle) until it intersects a plane of resolved values (orange

squares). The resolved values are interpolated onto the line and then

another interpolation is performed along the line to impose the bound-

ary condition at the immersed boundary node. 38

4.4 Sketch of the reconstruction scheme at an IB point, where a line is

projected along the normal direction of the nearest triangular element

into the fluid domain. 43

4.5 Streamlines of flow over a circular cylinder at Re = 20. 46

4.6 Streamlines of flow over a circular cylinder at Re = 40. 46

4.7 The u component of centerline velocity in the wake behind the circular

cylinder for both Re = 20 and Re = 40 in a domain of 31D × 24D.

Results are compared to Nieuwstadt and Keller [61]. 47

xi

5.1 Comparison of mean streamwise velocity profile for a turbulent channel

flow at Reτ = 1000 using hybrid RANS/LES technique. Grid size was

512×192×64 and the separation between wall and first u-component

was 30 wall units. IBM reconstruction schemes: ∗, logarithmic; ◦, linear 54

5.2 The surface created by the STL geometry of Bolund Hill used in this

paper. The wind flow direction is parallel to the superimposed line

with the windward side being the escarpment. 57

5.3 Closeup of a Cartesian mesh slice in the x-z plane superimposed on the

Bolund Hill STL. One cell has dimensions of 4 m in the x and 1 m in

the z. 57

5.4 Wind speedup 5 m above ground along the 270◦ line. The experimental

data is found in Berg et al. [6]. 58

5.5 Instantaneous wind velocity along the 270◦ line. The existence of

turbulent flow structures and vortex shedding in the wake demonstrate

that the LES is able to generate eddies well but requires better bound-

ary layer shear stresses to compute wind speed correctly. 58

5.6 Ensemble-averaged wind velocity along the 270◦ line. The acceleration

at the escarpment and the evidence of a wake are encouraging results. . 59

5.7 Instantaneous wind velocity vectors approximately 7 m from base of

hill indicating the present flow solver does capture some of the effects

of the complex terrain. 59

5.8 Comparison of normalized mean wind velocity along the 270◦ line (∗),

2 m south of the 270◦ line (◦) and 2 m north of the 270◦ line (¤) reveals

that the results are quite sensitive to the location meaning Bolund Hill

is not an ideal case for simulation evaluation. 61

xii

LIST OF ABBREVIATIONS

GPU – Graphics Processing Unit

CFD – Computational Fluid Dynamics

ABL – Atmospheric Boundary Layer

CUDA – Compute Unified Device Architecture

MPI – Message Passing Interface

LES – Large-eddy Simulation

SGS – Subgrid Scale

IBM – Immersed Boundary Method

NWP – Numerical Weather Prediction

ARMA – Autoregressive Moving Average

xiii

1

CHAPTER 1

INTRODUCTION

The integration of more renewable energy resources into our electrical power grids

is driven by several factors including: energy security and stability; environmental and

climate changes concerns; and economics. Wind energy has the potential to become a

larger energy resource in the United States, however producing electricity from wind

is far more complicated than just installing more wind turbines. Grid integration

is a major challenge, the focus being how to balance the load on the grid given the

highly variable nature of the wind. Economics is always a concern with the cost of

additional transmission lines, wind turbine manufacturing, and the maintenance of

wind farms. The uncertainty of forecasting wind power generation for short periods

of time (anywhere from an hour to a few days) is a challenge as well, since the results

from existing short-term wind forecasting capabilities vary greatly depending on the

location and time period investigated [10, 60, 82]. These and other challenges are

further described in a Department of Energy (DOE) report, 20% Wind by 2030 [93].

There is always uncertainty in wind predictions that is escalated when predict-

ing wind power generation, because power is directly proportional to wind velocity

cubed. This means that uncertainty in power is three times more than uncertainty in

wind velocity. A small confidence interval causes utility companies to conservatively

balance their reserves to compensate for the possibility of power underprediction.

2

Overprediction of wind power generation forces utility companies to curtail power

generation causing monetary losses for the wind fleet [11, 81]. In general, uncertainty

in wind speed and wind power generation causes economic losses for both utility

companies and the wind fleet. Reducing the uncertainty would be beneficial to both

parties.

Improvements in wind forecasting is the subject of several research projects in

recent years [10, 60, 82]. Numerical weather prediction (NWP) models solve the

complex mathematical models for wind velocity, temperature, pressure, and moisture

using mesoscale initial conditions provided by weather services to estimate the wind

conditions at wind farm locations [82]. The mesoscale is on the order of 1 km to

100 km horizontal spatial resolutions. The microscale, the scale applicable to wind

turbines, is less than 2 km [77]. The challenge is then to reduce uncertainty in

transforming mesoscale information to the microscale.

Several techniques have been proposed to improve wind forecasting. Ensemble

forecasting is an approach that runs various NWP simulations to obtain a frequency

distribution for weather events [83]. Ensemble forecasting is advantageous to use

because the chaotic nature of the weather causes slight variations in initial conditions

to be amplified. However, it requires extensive computational resources. Statistical

methods based upon autoregressive moving averages (ARMA) are another popular

approach to predict wind. ARMA relies on historical data to make predictions [10,

60, 82]. In general, the method performs very well over very short time horizons and

only require historical wind data. However, accuracy degrades as the time horizon

is extended and statistical methods cannot provide the wind flow details that NWP

can. Artificial neural networks (ANN) have also been applied to develop relationships

between the variables in statistical weather prediction approaches [10, 27]. While

capable of producing better results than purely statistical approaches, ANN still

3

suffers from the same disadvantages. Even though improvements have been made

over the years, no approach can be considered universally applicable to all wind farm

locations and a significant uncertainty still exists that would be beneficial to reduce.

1.1 Thesis Statement

The focus of this thesis is to provide a foundation for a short-term wind forecasting

capability that involves modeling the atmospheric boundary layer (ABL) over complex

terrain at the microscale. A comprehensive microscale wind forecasting model has to

consider atmospheric stability while taking into account the effect of surface roughness

and fluxes of heat and moisture. Therefore, turbulence modeling and imposing

complex terrain boundary conditions are of the utmost importance. For the core

components, large-eddy simulation (LES) will be hybridized with Reynolds-averaged

Navier-Stokes (RANS) for turbulence modeling. The immersed boundary method

(IBM) is then adopted to impose the complex terrain boundary conditions.

The fundamental idea behind LES is to separate the flow field into large- and

small-scales using a mathematical filter [48, 75]. Large-scales are resolved while the

small-scales are treated as statistically universal and their effect on the resolved flow

is modeled. Small-scales are often referred to as subgrid-scales (SGS) because their

length scales are smaller than the numerical grid. RANS is very similar to LES from

a mathematical perspective, however the statistical interpretation of the results are

very different [94]. LES provides filtered quantities with random components while

RANS time-averages the governing Navier-Stokes equations, which only provides

mean quantities of the turbulent flow. Most flow structures cannot be resolved with

RANS and their effect is accounted for using a turbulence model in conjunction

with the time-averaged equations. While LES provides more detail than RANS, LES

requires resolving near-wall boundary layers, which requires significant computational

4

resources and turn around times, particularly at high Reynolds numbers [70]. RANS

does not need as much resolution as LES and is more widely adopted for industrial

applications.

For wind forecasting and other atmospheric studies, LES is desirable for the detail

it provides with highly separated flows but today’s computational resources today do

not allow for fully-resolved LES at high Reynolds numbers. Also, SGS models in

LES do not take into account surface roughness or fluxes of heat and moisture at

the surface. Using RANS greatly reduces the amount of computational grid points

needed in the near-wall region and can act as a sort of wall model for the LES [75].

RANS can also provide a shear stress near the surface. Correct specification of stresses

at the surface is critical because any misprediction can lead to erroneous results in

the domain. Surface roughness and fluxes of heat and moisture can also be taken

into account with RANS turbulence models [4]. One technique that is practical to

implement is to hybridize the RANS and LES techniques where RANS acts as a

sort of wall model for LES. However, the differences in the scales of LES and RANS

causes a challenge when hybridizing the two approaches but several methods have

been investigated [70]. Since micro-scale ABL flows are highly turbulent, a hybrid

RANS/LES approach will be implemented similar to Senocak et al. [78].

A direct forcing IBM will be used to impose the boundary condition at the complex

terrain without having to generate a mesh that conforms to the terrain. Surface-

conforming meshes are tedious to generate and skewed cells can introduce errors

into the simulation. The IBM is a numerical technique where boundary conditions

created by complex objects immersed in a flow are imposed on a Cartesian mesh

by adding a forcing term to the momentum equations [56]. The advantage of this

technique is avoiding the cumbersome task of generating body-conforming grids and

avoiding possible sources of error from skewed cells resulting from conforming a mesh

5

to complex terrain. Therefore, this thesis will extend an IBM described in Gilmanov

et al. [25] that uses a stereolithography (STL) file of an arbitrarily complex object to

micro-scale ABL flows over complex terrain using techniques proposed by Senocak et

al. [79].

After implementing the hybrid RANS/LES and IBM, the wind simulation will

be tested on Bolund Hill. Bolund is a small, isolated hill located off the coast of

Denmark. It is 12 m high and is almost completely surrounded by water. Recently,

Bolund Hill has been the subject of several numerical and experimental studies, and

it constitutes a good test case to evaluate the accuracy and performance of wind

models.

The forecasting time horizon for this particular simulation is short-term and

requires use of high-performance supercomputing technologies. In recent years, the

graphics processing unit (GPU) has become the new paradigm in high performance

parallel computing for the tremendous speedups it provides to most numerical simula-

tions, and the cost-efficiency of these performance gains. GPUs are used in a variety of

fields including computational fluid dynamics (CFD), medical imaging, and molecular

dynamics [65, 66], to name a few.

GPUs provide the potential of greatly reducing the turn around time of climate

and meteorological models, which could greatly improve the speed of the weather

forecasting capability that we have today. GPU computing can also provide the

necessary performance gains to broaden the adoption of more intensive flow solver

techniques and weather forecasting methods, such as ensemble forecasting [27, 45],

which are considered infeasible due to long turn around times and significant compu-

tational resources. Therefore, the flow solver techniques are programmed for clusters

with NVIDIA GPU accelerators.

The contributions of this thesis are built upon an existing multi-GPU, incompress-

6

ible, three-dimensional flow solver that is the prior work of Julien Thibault [85] and

Thibault and Senocak [86], who developed a GPU-accelerated laminar flow solver that

was demonstrated as a basis for an urban dispersion model, and Dana Jacobsen [34],

who transformed the work of Thibault for use on GPU clusters [36, 37] and created a

full-depth parallel geometric multigrid solver with an amalgamation strategy for the

pressure Poisson equation [35]. Also, the pre-processor for the IBM (described later

in Section 4.2) was jointly developed by the author of this thesis along with Kyle

Felzien, a student in Computer Science at Boise State University [17].

This thesis is organized into chapters based on the numerical techniques used for

this wind forecasting simulation developed in this study. A chapter is devoted to the

governing equations and numerical methods of the present flow solver, which includes

a discussion of the GPU and the programming implementation. The implementation

and validation of LES and IBM each receive their own chapters. The coupling of

the hybrid RANS/LES with IBM along with a simulation attempting to replicate an

experimental field study is discussed in the fifth chapter. Conclusion and recommen-

dations for the future direction of this study are given in the final chapter. Relevant

literature reviews are provided in each chapter.

7

1.2 Works Published

Works published as part of this thesis:

• R. DeLeon, I. Senocak, “GPU-accelerated Large-Eddy Simulation of Turbu-

lent Channel Flows,” 50th AIAA Aerospace Sciences Meeting, Nashville, TN,

January 2012.

• R. DeLeon, D. Jacobsen, I. Senocak, “Large Eddy Simulations of Turbulent

Incompressible Flows on GPU Clusters,” pre-print, Computing in Science and

Engineering, March 2012.

• R. DeLeon, K. Felzien, I. Senocak, “Immersed Boundary Turbulent Flow Sim-

ulations on GPU Clusters,” Poster presented at the NVIDIA GPU Technology

Conference, San Jose, CA, May 2012.

• R. DeLeon, K. Felzien, I. Senocak, “Toward a GPU-accelerated Immersed Bound-

ary Method for Wind Forecasting Over Complex Terrain,” Conference paper to

be presented at the ASME Fluids Engineering Division Summer Meeting, Rio

Grande, PR, July 2012.

8

CHAPTER 2

TECHNICAL BACKGROUND

This chapter provides the governing equations and numerical methods used in

this flow solver. The core components for the wind solver are accelerated by the

massively-parallel, many-core graphics processing unit (GPU) to realize a forecasting

capability. A discussion of the GPU and the programming implementation of the

previous GPU-accelerated, incompressible flow solver [34, 85] that is the starting

point for the wind forecasting capability developed in this study is also included.

2.1 Governing Equations

The governing equations for LES of incompressible flows are the filtered form of

the Navier-Stokes equations given as,

∂uj

∂xj

= 0 (2.1)

∂ui

∂t
+

∂

∂xj

(uiuj) = −1

ρ

∂p

∂xi

+
∂

∂xj

(
2νSij − τij

)
, (2.2)

where

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.3)

9

is the deformation tensor, and

τij = uiuj − uiuj (2.4)

is the tensor representing the interaction of the subgrid-scales on the resolved large-

scales. The overbar in these equations represents a filtered quantity. The numerical

mesh typically provides this filter.

2.2 Numerical Methods

The governing equations were solved on a directionally-uniform Cartesian grid

using the projection algorithm [15] with second-order central difference schemes for

spatial derivatives and a second-order Adams-Bashforth scheme for time advance-

ment. The projection algorithm predicts the velocity by removing the pressure term

from the governing Navier-Stokes equations to get

u∗ = ut + ∆t
(
−ut∇ · ut + ν∇2ut

)
. (2.5)

A Poisson equation for pressure can then be written by imposing a divergence free

condition on the velocity field at time t + 1,

∇2P t+1 =
ρ

∆t
∇ · u∗. (2.6)

The pressure field at time t + 1 is found by solving Equation 2.6 with a geometric,

three-dimensional multigrid method with a weighted Jacobi solver. The pressure field

is then used to correct the predicted velocity, u∗ as follows

10

ut+1 = u∗ − ∆t

ρ
∇P t+1. (2.7)

The basic idea behind multigrid [12, 88] is to solve the problem on multiple meshes to

reduce long- and short-wavelength errors and accelerate the convergence. The most

basic multigrid routine, termed the V-cycle, is to coarsen the original mesh in levels

(i.e., repeatedly halving the number of grid points) until the coarsest mesh possible

is achieved. Coarsening the mesh is referred to as restriction. The solution is solved

at each level to smooth the results until the coarsest mesh is achieved. The solution

is directly solved on the coarsest grid and then interpolated back up the levels to the

original mesh in the prolongation stage.

2.3 GPU Computing

GPU computing or general-purpose computing on GPUs (GPGPU) are terms

referring to executing algorithms on the GPU, which are typically handled by the

central processing unit (CPU), such as scientific numerical algorithms. The GPU

is a massively-parallel, many-core architecture typically responsible for computer

graphics and, in recent years, has been proven to accelerate scientific calculations

in a variety of fields [65, 66]. GPUs have received a lot of attention by the scientific

computing community over the last five years because of the introduction of NVIDIA’s

Compute Unified Device Architecture (CUDA) in 2007 [76]. Scientific computations

had been attempted on the GPU prior to CUDA, but it was a painstaking task

because the algorithms had to be disguised in a graphics programming language

such as OpenGL or DirectX. The effort was usually not worth the performance

gains to scientists. Brook [13] was released in 2004, which made programming

for the GPU easier but it wasn’t until CUDA was debuted that GPU computing

became mainstream. CUDA-enabled devices boasted a unified shader pipeline that

11

previously had been two different pipelines, one for pixel shaders and the other

for vertex shaders. With one pipeline, a programmer could easily harness all the

resources on a GPU [42, 76]. Along with a GPU whose architecture was tailored

towards scientific computations, NVIDIA also released the CUDA C programming

language [63]. CUDA C, commonly referred to as just CUDA, is a very scalable,

single instruction on multiple data (SIMD) language that is an extension of C. Because

scientists no longer had to learn complicated graphics languages, the GPU was rapidly

adopted by the scientific computing community for the massive data parallelism that

could be achieved by the GPU hardware.

GPUs can provide significant speedups to traditional CPU codes. However, one

must know the architecture of the GPU and the optimal programming techniques to

realize these speedups [62]. While adding a bit more rigor to the programming task,

disregarding the architecture may cause an application to run slower than its CPU

counterpart. For a forecasting application where speed is essential, optimizing the

code to best exploit the GPU architecture is also essential.

Figure 2.1 is a simple depiction of the CUDA architecture. NVIDIA GPUs consist

of several streaming multiprocessors (SM), each of which consists of eight streaming

processors (SPs) on the first generation CUDA architecture (e.g., the NVIDIA Quadro

FX 5800), 32 SPs on the first release of the Fermi GPU architecture (e.g., the NVIDIA

Tesla C2075), or 48 on the latest release of the Fermi GPU architecture (e.g., Quadro

2000D). A SP, also referred to as a CUDA core, is not a core in the traditional sense,

but rather it is an arithmetic logic unit (ALU) capable of only arithmetic operations

and relies on the SMs to give it instructions. The SM on newer architectures can

deploy 32 threads per SP, referred to as a warp, which are of low latency and can

be created easily [63]. Each SM also has its own set of memory caches, including

thread registers and shared memory, which can only be used by the SPs on that

12

Figure 2.1: A simple illustration of a CUDA-enabled GPU hardware architecture. Ac-
tual configurations of streaming multiprocessors and CUDA cores vary depending on
the particular model of NVIDIA GPU. The two-headed arrows show how information
is transferred between different components.

specific SM [42]. NVIDIA GPUs have onboard dedicated memory referred to as

global memory that can be used by any SM but is slower to access than the shared

memory or thread registers [62]. The global memory is used to transfer data between

the device (GPU) and the host (CPU) memory. Some GPUs, such as the NVIDIA

Tesla C2075, have up to 6 GB of onboard memory and 448 SPs allowing researchers

to tackle very large problems.

The CUDA programming model starts with a kernel. Each kernel is a set of

instructions initiated on a CPU and performed by all the GPU threads. In CUDA,

threads are grouped together in blocks where the optimal number of threads per

block is a multiple of the half warp size for older architectures and full warp size for

newer architectures [62]. Each block is given to a SM by a thread scheduler where the

computations are performed [42]. The entire set of blocks is referred to as a grid [63].

13

Figure 2.2: A simple depiction of the CUDA programming model. The kernel is
initiated on the CPU and then divided up into a grid of blocks. Each block, which
consists of multiple threads, is then given to a SM. Note that different grid sizes can
be used for different kernels.

Figure 2.2 illustrates how blocks and threads are arranged.

Threads operate independently of each other and built-in variables in CUDA C

are used to determine the address of the data a thread will access. The data resides in

global memory, which is the onboard dedicated memory, and can be copied between

the device and host at any time although global memory accesses and host/device

communication are relatively slow processes. Shared memory, while limited, allows

for communication among the threads and can improve performance by reducing

global memory accesses. The latency of accessing global memory is high compared to

accessing SM caches [62]. Also, the global memory is sequentially aligned in segments

14

and the thread accesses should reflect this same alignment otherwise performance

decreases. Aligned thread accesses are not always possible and therefore global

memory accesses must be coalesced [63]. Minimizing the amount of host-device

data transfer is also imperative for achieving maximum performance due to the very

slow bandwidth of CPU/GPU communication compared to the bandwidth of global

memory accesses [62].

2.4 GPU Cluster Implementation

The work performed for this thesis was built upon a flow solver first developed by

Julien Thibault [85] and later advanced by Dana Jacobsen [34]. Their work and others

[35–37, 86] created a parallel three-dimensional, incompressible Navier-Stokes flow

solver accelerated by multiple GPUs that uses dual-level parallelism by interleaving

CUDA and Message Passing Interface (MPI). The same programming optimizations

in the previous flow solver are adopted in the algorithms used in the current study.

MPI [30] is a parallel programming language that consists of portable message-

passing systems that allows multiple processes to communicate with each other.

Similar to CUDA, MPI is a C-based language. In the present flow solver, MPI handles

the coarse-grain parallelism (partitioning the data into large sections) while CUDA

handles the fine-grain parallelism (executing parallel instructions on individual data

elements).

Communication is always a bottleneck in parallel computing and must be mini-

mized to achieve the best performance. Interleaving MPI and CUDA produces two

different communication bottlenecks: CPU/GPU data transfer and network commu-

nication among a cluster. In an effort to reduce the negative effects of communication,

MPI communication and CPU/GPU data transfers are overlapped with computations

using non-blocking MPI communication calls and asynchronous CUDA memory copy-

15

ing operations using CUDA streams. Non-blocking communication routines allow

the program to continue without having to finish the data transfer. Asynchronous

memory transfer are also non-blocking and allow the program to continue without the

completion of the CPU/GPU data transfer. This communication strategy is described

in detail in Jacobsen’s thesis [34] and in Jacobsen et al. [37].

Multigrid methods are worthwhile to implement because of their superior con-

vergence rates [88] but require special care when implementing in parallel. The

problem that arises is that the entire domain needs to be coarsened to achieve the

best convergence but the domain is distributed over multiple processes. Therefore,

the entire computational mesh can only be coarsened so far on multiple processes

before data starvation becomes an issue. To address this, Jacobsen [34] and Jacobsen

and Senocak [35] developed an amalgamation strategy that brings the distributed grid

partitions to one process and continues the multigrid cycle. During prolongation, the

mesh is broadcasted back to the distributed process at the level where amalgamation

took place.

16

CHAPTER 3

LARGE-EDDY SIMULATION TECHNIQUE

LES uses the idea that larger eddies, which interact with and extract energy

from the mean flow, are highly dependent on the geometry of the problem domain,

boundary conditions and body forces, while smaller eddies exhibit a more universal

behavior being nearly isotropic [94]. Therefore, the effect of the smaller eddies could

be captured by a model while the larger eddies could be resolved. Mathematically,

this can be accomplished by specifying a cutoff length with a mathematical low-pass

filter. The smaller eddies that pass below the filter are called subgrid-scale (SGS)

eddies and must be replaced by a SGS model [48]. Several challenges face LES. One

comes from the replacement of SGS eddies with a model that introduces errors to the

simulation [75]. Another is the computational expense of wall-bounded flows at high

Reynolds numbers [94]. A third challenge is boundary conditions introducing errors

when the flow is not deterministically known, particularly with inflow conditions that

do not introduce the proper turbulent kinetic energy and flow structure information

[39].

James W. Deardorff is considered the pioneer of LES, being the first to simulate

turbulent channel flow at a large Reynolds number [16] with a SGS model. He used

the Smagorinsky eddy-viscosity model [80], which became one of the most popular

SGS models. Even though the simulation had a very coarse domain, Deardorff’s work

17

showed the feasibility of three-dimensional computation of turbulence. This led to

future studies [58, 72, 74] of LES applied to turbulent channel flow to gain a better

understanding of wall-bounded turbulent flows. Throughout the years, development

of several SGS models and tremendous advances in computational hardware have

enabled LES to make a major impact in applications such as combustion, aero-

dynamics of vehicles, aero-acoustics, propulsion, turbomachinery, and atmospheric

modeling [48, 75].

LES is one of three numerical approaches to turbulence calculation. The other

two are Reynolds-averaged Navier-Stokes (RANS) and direct numerical simulation

(DNS). In the RANS approach, the governing equations are time-averaged such

that the resulting quantities are mean values. This is the least computationally

expensive form of turbulence calculation and is thus widely adopted in industry

[94]. However, RANS cannot resolve most flow structures given the time-averaged

governing equations and requires an additional turbulence model to account for their

effect. To date, no single turbulence model can be considered universal for turbulent

flow simulations, and therefore must be chosen depending on the flow scenario. The

DNS approach numerically resolves all scales of turbulent flow as is by far the most

computationally expensive. For example, a modest Reynolds number of 104 would

require approximately 109 grid points in a DNS [94]. Thus, DNS is primarily used in

fundamental turbulence research.

Determination of inflow conditions and resolution of wall-bounded flows are two

of the major challenges of LES. Inflow conditions need to have the energy and flow

structure information and are the focus of many studies. Keating et al. [39] survey

several approaches to specify inflow conditions. Some examples being recycling the

outflow planes using similarity or using a precursor simulation as an inflow condition.

In the current study, inflow conditions are set as periodic and further investigation

18

will be the focus of future work.

The full resolution of boundary layers at high Reynolds numbers using LES is im-

practical. Thus, wall models have been proposed to alleviate the near-wall resolution

requirements by modeling the inner-layer scales with a velocity profile relating the

outer-layer velocity to wall stress or using a Reynolds-averaged parametrization. Pi-

omelli [70] gives a survey of wall-modeling methods for LES with some examples being

the use of a constant-stress shear layer near the wall or using a hybrid RANS/LES

methods that uses RANS to calculate the near-wall flow while LES calculates the

flow away from the wall. In the present study, a hybrid RANS/LES approach is

implemented.

3.1 Subgrid Scale Models

For turbulence closure in LES, the subgrid-scale motions are replaced by a SGS

model [47, 53]. Arguably the most common type of SGS model is the Smagorinsky

eddy-viscosity model [80], which creates a proportionality between local SGS stresses

and the second invariant of the strain rate tensor. There are several derivatives of

the Smagorinsky model including dynamic models [21]. Another type of SGS model

is the spectral eddy-viscosity model that closes the governing equations in Fourier

space [43]. Giving information about possible stretching and dislocations of the vortex

field from perturbations in the flow, spectral eddy-viscosity models provide very good

results for mixing layers [47]. The structure-function models use local kinetic energy

spectrums in physical space to model the SGS scales [55]. While being costly to

implement, models based on structure functions provide good results for mixing layers

particularly at high Mach numbers. Similarity models postulate that SGS scales are

similar to those above the filter width [2]. Correlations between actual stresses and

stresses produced by similarity models are high. This model also produces realistic

19

backscatter of energy but does not dissipate energy well and is typically blended

with an eddy-viscosity model [53]. The present study uses the Lagrangian dynamic

model [54] based on the original Smagorinsky eddy-viscosity model for its applicability

to complex geometries and practicality of implementation.

The original Smagorinsky model [80] is perhaps the most popular SGS model but

has well-known deficiencies. The model parameters are constant and are chosen a

priori [16]. Constant parameters do not cause the eddy viscosity to vanish at near

wall boundaries. An ad hoc fix to the problem is to use van Driest damping [18].

In 1991, Germano et al. [21] proposed an alternative method to dynamically

calculate the empirical parameters in a SGS model using information from the re-

solved velocity field. The dynamic Smagorinsky model introduced by Germano et

al. correctly predicts a decaying eddy viscosity near wall boundaries, but it has the

disadvantage of requiring homogeneous directions in the flow problem at hand, which

has later been addressed by other researchers [22, 54, 71].

The original Smagorinsky model relates local SGS stresses with the local rate of

strain on the large-scale eddies. It is given by

τij = −2νtSij +
1

3
τiiδij (3.1)

where νt is the turbulent or SGS eddy viscosity and is calculated by

νt = (CS∆)2

√
2SijSij. (3.2)

∆ is the filter width and can be defined by either a mathematical filter (e.g., top-hat

filter) or by using the numerical grid as ∆ = 3
√

dx · dy · dz, where dx, dy and dz are

the grid spacings [16]. Before dynamic SGS models were developed, the CS model

coefficient was a constant parameter in the original Smagorinsky model. Choosing a

20

proper CS value, which depends upon the mesh and the flow problem being inves-

tigated, is critical. For wall boundaries in a channel flow, the model parameter CS

must be adjusted to reflect the vanishing eddies by multiplying CS with the van-Driest

damping function [18], which is given as

1 − exp

(−y+

A

)
, (3.3)

where y+ is the non-dimensional distance given in wall units and A is a constant that

is approximately 25.

Damping the Smagorinsky coefficient through an arbitrary function significantly

improves the LES results, but the procedure is ad-hoc and does not readily extend

to complex geometry. This particular shortcoming is overcome by the adopting the

dynamic procedure [21, 49, 69]. The dynamic procedure uses information from the

existing flow field to calculate the model coefficient dynamically while the simulation

is advancing.

The first dynamic subgrid scale model was proposed by Germano et al. [21]. In

their dynamic procedure, a second filter with a larger width, denoted by the hat,

is applied to a resolved field. The basis of the dynamic procedure is the Germano

identity

Lij = Tij − τ̂ij. (3.4)

The individual terms in this algebraic relation are given by

Tij = ûiuj − ûiûj, (3.5)

τ̂ij = ûiuj − ûiuj. (3.6)

21

The tensor, Lij, is referred to as the Leonard stresses and can be calculated as follows

Lij = ûiuj − ûiûi. (3.7)

Using the Germano identity and the Smagorinsky model, Germano et al. [21] proposed

to calculate CS by

C2

S =
1

2

〈
LijSij

〉
〈
MijSij

〉 , (3.8)

which uses spatial averaging in homogeneous directions as denoted by the angle

brackets. The advantages of this method are that an arbitrary damping function

is no longer required to make eddy viscosity diminish near walls and determination

of an a priori CS is no longer necessary. The dynamic Smagorinsky model was later

modified by Lilly [49] who used a least-squares method to obtain

C2

S =
1

2

〈LijMij〉
〈MijMij〉

. (3.9)

In both cases, the tensor, Mij, is given by

Mij = 2∆2

[
̂|S|Sij − α2|Ŝ|Ŝij

]
, (3.10)

where α represents the ratio of filters and is typically 2. The dynamic Smagorinsky

model has the disadvantage of requiring spatial averaging in homogeneous directions

to smooth CS and stabilize the computations. Ghosal et al. [22] put the dynamic

procedure on a better mathematical foundation through a constrained variational

formulation where the averaging of the dynamic coefficient in homogeneous direction

is justified. But most practical flow problems lack a homogeneous direction. There-

22

fore, Meneveau et al. [54] proposed a dynamic model from a Lagrangian perspective

by averaging along the flow pathlines rather than in homogeneous directions. The idea

is to minimize the error caused by using the Smagorinsky model and the Germano

identity by taking previous information along the pathline to obtain a current value.

This formulation applies to fully inhomogeneous turbulent flows as seen in many en-

gineering applications and requires less computational resources than other localized

dynamic models [22], therefore making it a practical option in fluids engineering.

The Lagrangian dynamic model uses backward time integration and an expo-

nential weighting function that decreases the weight of past events. The weighted

backward time integration can then be written as two relaxation-transport equations

∂JLM

∂t
+ u · ∇JLM =

1

T
(LijMij − JLM) , (3.11)

∂JMM

∂t
+ u · ∇JMM =

1

T
(MijMij − JMM) , (3.12)

where T is the relaxation time scale. Meneveau et al. [54] chose to define T as

T = 1.5∆ (JLMJMM)−1/8 . (3.13)

After solving Equations 3.11 and 3.12, the value of CS is then calculated using the

relation,

C2

S =
JLM

JMM

, (3.14)

which can be directly substituted into the Smagorinsky eddy-viscosity model.

The Lagrangian dynamic Smagorinsky model was chosen for the current applica-

tion for being practical to implement and does not require statistically homogeneous

directions, which do not exist in arbitrarily complex terrain. The Lagrangian dynamic

23

model requires two filters. The base filter is the computational mesh. A simple top-hat

filter is used as the second filter in the Lagrangian dynamic model. Time advancement

in the Lagrangian dynamic model (Equations 3.11 and 3.12) is performed using the

first-order schemes recommended by Meneveau et al. [54], which are given as

J n+1

LM (x) = H
{
ǫ [LijMij]

n+1 (x) + (1 − ǫ)J n
LM(x − un∆t)

}
, (3.15)

J n+1

MM (x) = ǫ [MijMij]
n+1 (x) + (1 − ǫ)J n

MM(x − un∆t), (3.16)

where

ǫ =
∆t/T n

1 + ∆t/T n
(3.17)

and T is defined in Equation 3.13. The ramp function in Equation 3.15 is required

to clip away negative C2
S values that result from numerical inaccuracies. A trilinear

interpolation scheme evaluates the “upstream” values at x − un∆t.

24

3.2 Validation of the LES Technique

Periodic turbulent channel flow at Reτ = 180 and 395 were used to validate the

LES capability. The dimensions of the computational domain are (2πδ, πδ, 2δ) in

(x, y, z) where δ is the channel half-height, x, y and z are the streamwise, spanwise,

and wall-normal directions, respectively. Two grids were used for the Reτ = 180

case, a coarse resolution mesh with 64 × 64 × 96 points, and a fine resolution mesh

with 128 × 96 × 128 points. Grid stretching was not applied in the wall-normal

direction because a structured adaptive mesh refinement strategy is envisioned in

future extensions of the present wind solver.

The turbulent channel flow was initialized in an approach similar to Gowardhan

[28] that superimposes a sinusoidal fluctuating component on a logarithmic profile as

in

u = uτ

(
1

κ
ln y+ + 5.5

)
+ sin (πz) cos x sin y, (3.18)

v = − (1 + cos (πz)) sin x sin y, (3.19)

w = −π sin (πz) sin x cos y. (3.20)

The fluctuating components can be scaled by a constant. However, because periodic

boundary conditions are imposed in the streamwise directions, the amplitude of the

fluctuations did not matter for the current cases as the solution eventually converges

on to a statistically stationary turbulent state. Thus, the sinusoidal fluctuation

amplitudes were set to unity.

A CS value of 0.1 was chosen for the original Smagorinsky model. The Lagrangian

dynamic model was initialized with the initial conditions recommended in Meneveau

et al. [54] that sets JLM = CSMijMij and JMM = MijMij, with CS also being 0.1.

25

Figure 3.1: A comparison of the mean streamwise velocity profiles using different
models and mesh sizes (coarse - 64 × 64 × 96, fine - 128 × 96 × 128): ¤, Smagorinsky
on coarse grid; +, Lagrangian dynamic on coarse grid; ◦, Smagorinsky on fine grid;
∗, Lagrangian dynamic on fine grid.

Periodic boundary conditions [29] were applied in the stream- and span-wise directions

to both velocity and scalar quantities. On channel walls, the no-slip condition was

imposed on the velocity field, and Neumann boundary conditions for pressure and

the scalar quantities found in the Lagrangian dynamic model were set to zero. The

flow was maintained by imposing a height independent constant pressure gradient in

the streamwise direction that is u2
τ/δ. The simulation was allowed to develop for 200

dimensionless time units (uτ t/δ). Statistics were sampled for 20 dimensionless time

units.

Figure 3.1 shows the mean velocity profiles for the fine and coarse grids with the

26

Figure 3.2: A comparison of the x-z component of the Reynolds shear stress tensor
using different turbulence models at different grid resolutions. ¤, Smagorinsky on
coarse grid (64 × 64 × 96); +, Lagrangian dynamic on coarse grid; ◦, Smagorinsky
on fine grid (128 × 96 × 128); ∗, Lagrangian dynamic on fine grid.

Smagorinsky model with van Driest damping and the Lagrangian dynamic model.

The profiles were compared to both the theoretical law of the wall and the DNS

performed by Moser et al. [59]. As expected, the finer mesh did considerably better

than the coarse mesh, having two points in the viscous sublayer as opposed to one.

All simulations did well with the x-z component of the Reynolds shear stress as

depicted in Figure 3.2. The Smagorinsky model gave a higher Reynolds shear stress

near the wall than the DNS while the Lagrangian dynamic model gave lower values

than the DNS. Both models gave larger values of Reynolds shear stress away from

the wall, particularly the Lagrangian dynamic at the coarse grid resolution.

The root mean square (rms) values of the velocity fluctuations are shown in Figures

27

Figure 3.3: The rms values of streamwise velocity fluctuations: ¤, Smagorinsky on
coarse grid (64 × 64 × 96); +, Lagrangian dynamic on coarse grid; ◦, Smagorinsky
on fine grid (128 × 96 × 128); ∗, Lagrangian dynamic on fine grid.

28

Figure 3.4: The rms values of spanwise velocity fluctuations: ¤, Smagorinsky on
coarse grid (64 × 64 × 96); +, Lagrangian dynamic on coarse grid; ◦, Smagorinsky
on fine grid (128 × 96 × 128); ∗, Lagrangian dynamic on fine grid.

3.3-3.5. With the streamwise velocity fluctuations in Figure 3.3, the coarse grid

Lagrangian dynamic model does worse than the coarse grid Smagorinsky toward the

center of the channel but better toward the wall. However, the fine grid approaches

yields the exact opposite, with the Smagorinsky model performing better toward the

wall but worse away from the wall. With the velocity fluctuations in the spanwise

direction (Figure 3.4) and the wall-normal direction (Figure 3.5), the Smagorinsky

model gives better results than the Lagrangian dynamic model, on both grids.

Energy spectra are calculated by taking the Fourier transform of the turbulent

fluctuation covariance [44]. The streamwise energy spectra from both models on the

fine resolution mesh were compared to the theoretical -5/3 slope of the Kolmogorov

spectrum [73] in Figure 3.6. Both models produced very similar results and gave a

29

Figure 3.5: The rms values of wall-normal velocity fluctuations: ¤, Smagorinsky on
coarse grid (64 × 64 × 96); +, Lagrangian dynamic on coarse grid; ◦, Smagorinsky
on fine grid (128 × 96 × 128); ∗, Lagrangian dynamic on fine grid.

30

10
−1

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k
x

E
uu

/u
τ

Streamwise Energy Spectra at z+ ≈ 50

Smagorinsky
Lagrangian Dynamic
−5/3 slope

Figure 3.6: Streamwise spectra of turbulent kinetic energy normalized with friction
velocity at approximately z+ ≈ 50 for Reτ = 180 on fine resolution mesh (128 × 96
× 128).

slope close to theoretical one roughly around wavenumbers five through ten.

The Reτ = 395 test case was performed in the same manner as the Reτ = 180 case,

but with a computational mesh of 192 × 128 × 384 to get at least two grid points

in the viscous sublayer. Figures 3.7 and 3.8 are the profiles of the mean streamwise

velocity and Reynolds stress from the Reτ = 395 turbulent channel flow simulation

using the Lagrangian dynamic SGS model. These exhibit very good agreement with

the DNS results [59]. However, the resolution of the mesh is on the order of a DNS

since directionally-uniform grids were used. A visualization of the channel flow is

given in Figure 3.9, which depicts the isosurfaces of the Q-criterion at Q=400. The

Q-criterion is a vortex-identification method useful for visualizing structures in a

31

Figure 3.7: The mean streamwise velocity of turbulent channel flow at Reτ = 395
compared to DNS results [59]. Only the Lagrangian dynamic model was used.

32

Figure 3.8: The x-z component of Reynolds stress from Reτ = 395 turbulent channel
flow compared to DNS results [59]. Only the Lagrangian dynamic model was used.

turbulent flow [48]. The abundance of flow structures depicted in Figure 3.9 is an

outcome of LES where large-scale motions are resolved in the computations.

The GPU clusters used consisted of NVIDIA Tesla C2070 GPUs connected by

PCI Express 2.0 x16 buses and a quad data rate (QDR) Infiniband interconnect. The

Reτ = 180 case was performed on a single GPU because the problem size was not

large enough to benefit from multiple GPUs. The turn around time was 18 hours.

The Reτ = 395 case was executed on eight GPUs and the turn around time was 45

hours. To give an idea on a typical turn around time for CPU based implementations,

Cheng and Liu [14] performed an 13.5 million grid LES with OpenFOAM [84] on eight

CPU cores that finished in 1000 hours. The Reτ = 180 case was also performed on

33

Figure 3.9: A visualization of vortical flow structures using the Q-criterion for the
Reτ = 395 turbulent channel flow. The mesh size used was 192×128×384.

a single NVIDIA GeForce GTX 470 GPU that produced a turn around time of 19.5

hours while providing the same accuracy of results. This reinforces the point that

the inexpensive GeForce gaming GPUs can provide performance similar to that of

the more expensive Tesla GPUs and can allow researchers an inexpensive tool for

problems involving relatively small data sets.

34

CHAPTER 4

IMMERSED BOUNDARY METHOD

Immersed boundary method (IBM) is a numerical technique that imposes bound-

ary conditions created by embedded solids on Cartesian meshes. This technique

eliminates the cumbersome task of generating body-fitted grids. Body-fitted grids

may not be suitable for a short-term wind forecasting over highly complex terrain

because of the possibility of skewed cells that would introduce significant error to the

solution. Also, Cartesian meshes fit much more naturally to the GPU architecture as

opposed to unstructured body-fitted grids, resulting in better acceleration of the

computations. For these reasons, IBM was chosen for this study. This chapter

provides general details of IBM and the specific details of the implementation.

4.1 Overview of Immersed Boundary Methods

The conventional approach to resolving flow around immersed solid bodies is to

generate multi-block structured or unstructured grids that conform to the geometry,

which can be a cumbersome endeavor. The essential idea behind IBM is to eliminate

the time-consuming body-fitted grid generation task by imposing the proper boundary

conditions on a Cartesian mesh [56]. This is accomplished by introducing body forcing

terms into the governing equations. These forcing terms need to reflect that the

boundary of the solid almost always does not coincide with the Cartesian mesh. The

35

accuracy of the body force terms and the stability of computations has been the focus

of many studies.

There are two primary approaches in IBM: continuous forcing and discrete forcing.

The discrete forcing approach is used in the present study. The continuous forcing

approach came about when the IBM concept was first proposed by Peskin [67] to

simulate blood flow in a heart using a Cartesian mesh. This approach adds a body

forcing term to the governing equations before discretization, requiring the numerical

method to resolve another continuous term. The continuous forcing approach works

well for flow involving elastic boundaries, which usually falls into biological [9, 68]

and multiphase flows [89, 92]. The disadvantage of the continuous forcing approach is

formulating a proper body force term without creating additional numerical stability

constraints in flow with rigid bodies [56].

The discrete forcing method, proposed by Mohd-Yusof [57] and later applied by

Verzicco et al. [95], remedied the numerical stability issue by imposing the forcing term

after the governing equations are discretized, eliminating the need for calculating an

additional continuous term in the governing equations. The discrete forcing method

can be categorized further into two different groups of boundary condition imposition:

indirect and direct. Indirect imposition is used in this thesis.

In the direct imposition approach, the near-boundary computational grid is mod-

ified such that the boundary conditions are imposed directly at the boundary to

create a “sharp” interface and is typically used at high Reynolds numbers where

accurate boundary layer resolution is necessary [56]. An example of this approach is

the ghost-cell method [90] used in finite difference approaches. Figure 4.1 is a simple

sketch of the ghost-cell method. Image nodes are created by mirroring the solid nodes

included in the computational stencil about the boundary. Solid nodes are assigned

values by using interpolation reconstruction schemes involving the image nodes that

36

Figure 4.1: A simple sketch of the ghost cell method. Image nodes are created by
mirroring the solid nodes included in the computational stencil about the bound-
ary. Solid nodes are assigned values by using interpolation reconstruction schemes
involving the image nodes that implicitly applies the boundary condition.

37

Figure 4.2: A sketch of the cut-cell method. Cells intersecting the solid are reshaped,
creating an unstructured mesh at the solid-fluid interface. Cutting the cell essentially
reshapes the control volume that the governing equations are solved over.

implicitly applies the boundary condition. As an example, linear interpolation of

the velocity at the boundary between a solid node and its corresponding image node

should be zero after reconstruction.

The cut-cell method [91] is another direct imposition approach used in finite

volume methods. This creates an unstructured grid around the solid by reshaping

cells intersecting the solid, as shown in Figure 4.2. Cutting the cell essentially

reshapes the control volume that the governing equations are solved over. This

approach guarantees the conservation of mass and momentum since control volumes

are adjusted to conform with the solid when using a finite volume approach.

The indirect imposition approach reconstructs the velocity field at grid points

near the solid boundary with a prescribed boundary condition. Figure 4.3 depicts

38

Figure 4.3: A sketch of the indirect imposition approach. A line normal to the
surface (triangle) is projected through the immersed boundary node (green circle)
until it intersects a plane of resolved values (orange squares). The resolved values are
interpolated onto the line and then another interpolation is performed along the line
to impose the boundary condition at the immersed boundary node.

39

the components required for the indirect imposition approach. A line normal to the

surface is projected such that it passes through the immersed boundary node that

will eventually intersect a plane of resolved fluid nodes. The resolved values are

interpolated onto the line and then another interpolation is performed along the line

to impose the boundary condition at the immersed boundary node. This indirect

approach has been successfully applied by Fadlun et al. [19], Verzicco et al. [95],

and Iaccarino and Verzicco [32] for engineering fluid flow applications at moderate

Reynolds numbers.

The treatment of the pressure boundary condition at the immersed boundary is

different among authors. Fadlun et al. [19] explain that because of the linearization

of the governing equations at the immersed boundary, the pressure gradient in the

normal direction is zero and an explicit application of a Neumann boundary condition

is not necessary. They also described how not including the Neumann pressure bound-

ary condition varies the solution on the order of 10−3-10−4 for a linear reconstruction.

This was also implemented in Balaras [1]. Kim et al. [41] describe a mass source/sink

term in the pressure Poisson equation defined as (in two dimensions)

q = − u1

∆x
− v1

∆y
=

1

∆x∆y
(−û1∆y − v̂1∆x) (4.1)

where u1 and v1 are the vector components inside the solid and the hat on the velocity

components denotes a predicted velocity. This mass source/sink term can cancels out

the error of not including the Neumann boundary condition. Other authors such as

Tseng and Ferziger [90] and Ye et al. [96] include the Neumann boundary condition

in their respective approaches that provide good results. Ikeno and Kajishima [33]

mention that an inconsistency exists between velocity and pressure at the wall when

using the aforementioned techniques and they provide an IBM reconstruction scheme

40

that provides consistency between pressure and velocity. The present study follows

Fadlun et al. [19] with no explicit application of the Neumann pressure boundary

condition.

4.2 Velocity Reconstruction Scheme

The discrete forcing with indirect boundary imposition was chosen for this flow

solver because Cartesian meshes are well-suited for the GPU architecture and RANS

will provide a mean velocity profile near the surface so a direct boundary imposition

isn’t necessary. In the discrete forcing IBM, a solid boundary is represented by adding

a forcing term to the momentum equations given in Equation 2.2. The discretized

form of the u-momentum equation is

un+1

i − un
i

∆t
= RHSi + Fi, (4.2)

where RHSi includes the pressure gradient, convective, and diffusive terms, as well as

SGS terms when addressing turbulent flows. Using the direct forcing method [19, 57],

the velocity at the boundary can be prescribed as un+1

i = V n+1

i , then the body force

becomes

Fi = −RHSi +
V n+1

i − un
i

∆t
, (4.3)

by solving Equation 4.2 for Fi. Using this approach, the body force can be taken into

account implicitly by prescribing the velocity field or in other words, substituting

Equation 4.3 into Equation 4.2. However, the complex geometry boundaries are

usually not coincident with the Cartesian grid and reconstruction schemes (i.e., inter-

polation procedures) are required to impose the proper velocity boundary conditions

41

on grid points near the solid geometry. The steps in applying the IB method within

the projection algorithm are summarized as follows

1. In the preprocessing stage, separate the Cartesian cells as solid, fluid, or im-

mersed boundary (IB). Determine the necessary parameters for the velocity field

reconstruction schemes.

2. Predict the velocity by solving the momentum equations as per the projection

algorithm.

3. Set the solid Cartesian cells to zero and apply reconstruction scheme to IB

nodes.

4. Solve the pressure Poisson equation by imposing the divergence free condition.

5. Correct the velocity field and set solid cells to zero.

For this application, the reconstruction scheme used will be similar to the IBM

approach described in Gilmanov et al. [23–25] but will be extended to atmospheric

flows with a rough surface following the approach described in [79]. No Neumann

pressure boundary condition is applied in the IBM because studies by Fadlun et

al. [19] have shown the error of omitting this step is very small (on the order of

103 − 104).

The basic idea for the reconstruction scheme consists of linear interpolation along

a line normal to the solid surface. This method is intended for stereolithography

(STL) CAD geometry files where a surface is represented by an unstructured mesh

of triangular elements. Each triangular element is defined by the coordinates of the

vertices and a surface normal. Although the IB method can be implemented for

analytical geometries (e.g., circle, sphere, etc.), its extension to arbitrarily complex

geometries requires the development of a preprocessor to calculate the intersection

42

of the CAD geometry with the underlying Cartesian mesh. The preprocessor was

jointly created by Kyle Felzien, a computer science undergraduate student at Boise

State University, the author of this thesis, and Senocak [17].

The first stage of the preprocessor identifies all Cartesian points within the small

search radius, ds0, from the solid boundary. The value of the search radius is

determined by finding the maximum distance from opposite corners of a cell (i.e.

ds0 =
√

dx2 + dy2 + dz2). The position vectors of these points, rNB, are compared

to the position vector of the mth triangular element’s centroid, rm+1/2, until the

following condition is satisfied

min
m=1,M

|rNB − rm+1/2| < ds0. (4.4)

Any point that satisfies the above condition is called a near-boundary node. Note

that near-boundary nodes can be either internal or external to the solid boundary.

The next stage is to determine which of the near-boundary points are actually

within the solid. For every near-boundary point, all triangular elements located within

the search radius centered at the near-boundary node are identified. Examining the

sign of the scalar product, nm+1/2 ·(rnb−rm+1/2), determines whether a near-boundary

point is internal or external to the solid boundary. If nm+1/2 · (rnb− rm+1/2) > 0 for at

least one triangular element within the sphere from the point, then the Cartesian mesh

point is external to the body and flagged as an IB node. If nm+1/2 · (rnb − rm+1/2) < 0

for all triangular elements within the sphere from the point, the Cartesian mesh point

is internal to the body and flagged as solid. All points residing in the solid can be

identified by checking which points are between two nodes that are internal to the

solid, or between a solid node and the computational domain’s boundary in the case

where the object extends beyond the boundaries.

43

Figure 4.4: Sketch of the reconstruction scheme at an IB point, where a line is
projected along the normal direction of the nearest triangular element into the fluid
domain.

The final stage after the IB nodes are identified is to project a line starting at

the IB node parallel to the surface normal of the nearest triangular element into

the fluid domain as shown in Figure 4.4. This line is referred to as the IB line in

this thesis. The IB line will eventually intersect a Cartesian cell face. The values of

neighboring Cartesian grid points are then interpolated on to the IB line where the

intersection with the cell face occurs. The velocity at the IB node is then found by

an interpolation between the known boundary value at the surface and the values

that are interpolated on the IB line. Multilinear interpolation of the points α, β, γ,

and δ can be used to find the value of a quantity (e.g., velocity, pressure) on the IB

line. For laminar flow conditions, the reconstruction of a quantity at the IB node is

accomplished by linear interpolation between the point of intersection along the IB

line and the value of the boundary condition at the surface.

44

4.3 Extending the Reconstruction Scheme to Atmospheric

Boundary Layer Flows

The linear interpolation reconstruction scheme may also work well for turbulent

flows if the grid resolution is fine enough to capture the viscous sublayer where

u+ = y+ as suggested by the law of the wall. However, a clear viscous sublayer

does not exist within the ABL due to the rough surface. A linear interpolation

scheme could underestimate the surface stresses, because a logarithmic or power

wind profile is typically observed in atmospheric flows. One also has to consider

how the reconstruction scheme influences the SGS model. A consistency between the

underlying assumptions in the turbulence model and the IBM reconstruction scheme

is desirable to obtain satisfactory results. Therefore, a logarithmic reconstruction

scheme [79] is proposed so when combined with Prandtl’s mixing length model [94]

(discussed later), the aforementioned consistency is maintained.

Atmospheric flows over complex terrain are influenced by roughness, atmospheric

stability, and fluxes of sensible and latent heat and moisture, all of which play a major

role in the observed wind profiles. Typically, the boundary conditions are imposed

through stress and flux terms

τ = ρu′w′ (4.5)

H = ρCpw′Θ′ (4.6)

E = ρw′q′ (4.7)

where τ is the turbulent stress at the surface, H and E are the fluxes for heat and

moisture, respectively. u′, w′, Θ′, q′ represents the fluctuations of streamwise wind,

vertical wind, potential temperature, and moisture, respectively. Direct implementa-

45

tion of these terms in Equations 4.5-4.7 within an immersed boundary method would

be tedious and can complicate the IBM, which has historically become popular due

to the simplicity of its implementation. Therefore, the reconstruction schemes should

operate only on the primitive variables (e.g., u, v, w, Θ, q) to retain the simplicity of

the IB method for atmospheric flows computations.

The reconstruction scheme proposed is the log-law reconstruction scheme [79]

because of its consistency with the Monin-Obukhov similarity theory for neutral sta-

bility conditions that is also used in turbulence model assumptions. The logarithmic

reconstruction is derived from the assumption that friction velocity remains constant

in the direction normal to the wall. Therefore, similarity in the velocity profile is

maintained at different distances from the wall. Dividing the rough surface log-law,

U

uτ

=
1

κ
ln

(
z

z0

)
, (4.8)

where z0 is the equivalent roughness height at the boundary results in

U1 = U2

[
ln (z1/z0)

ln (z2/z0)

]
, (4.9)

where U1 and U2 are the magnitude of the velocity at locations shown in Figure 4.4,

and z1 and z2 are the normal distances to the surface along the IB line as shown in

Figure 4.4. The magnitude of the velocity must then be broken down into u, v and

w components, which can be done using azimuth and elevation angles. For now, the

assumption is made that the angles at location 1 and location 2 are the same and

thus cancel out in Equation 4.9, meaning the relation can be directly applied when

reconstructing each component. Also, only a neutrally stratified ABL is considered in

this thesis but the scheme in Equation 4.9 can be extended to atmospheric conditions

with stable and unstable stratification [79].

46

Figure 4.5: Streamlines of flow over a circular cylinder at Re = 20.

Figure 4.6: Streamlines of flow over a circular cylinder at Re = 40.

4.4 Immersed Boundary Method Validation

Laminar flow over a circular cylinder at Reynolds numbers of 20 and 40 were used

to validate the immersed boundary implementation. The domain was 31D × 24D

in the x and z directions, respectively, where x is the direction of flow and D is the

diameter of the cylinder. The center of the cylinder was placed at 10.5D in the x

direction and at the halfway point in the z direction. The boundary conditions were

an inlet and convective outlet in the streamwise direction with all other boundary

condition set to freeslip. A linear reconstruction scheme was applied to this flow

scenario. The resolution of the mesh was 1024 × 768 with 64 cells in the longitudinal

direction. Approximately 30 cells were placed with the diameter of the cylinder.

The streamlines are presented in Figures 4.5 and 4.6. Figure 4.7 shows the u

component of the centerline velocity in the wake compared to the computations of

47

Figure 4.7: The u component of centerline velocity in the wake behind the circular
cylinder for both Re = 20 and Re = 40 in a domain of 31D × 24D. Results are
compared to Nieuwstadt and Keller [61].

Nieuwstadt and Keller [61] at both Reynolds numbers. The results in the near wake

show very good agreement while the results deviate slightly from Nieuwstadt and

Keller in the far wake in both cases. This deviation in the far wake mainly depends

on the overall computational domain size and further extending the domain would

alleviate these issues. The agreement in near wake of the cylinder is very good, and

this test case serves as a good validation case for the IBM implementation.

48

CHAPTER 5

WIND FLOW OVER COMPLEX TERRAIN

In this chapter, the methods described in preceding chapters are extended to sim-

ulate wind flow over complex terrain. A literature review on recent wind forecasting

techniques is also provided. The IBM extended to atmospheric flows as described in

Section 4.3 along with a hybrid RAN/LES method will be implemented since fully

resolving the ABL with LES is impractical. Results of wind flow over a complex

terrain are presented as well.

5.1 Brief Survey of Wind Forecasting Over Complex Terrain

Balancing reserves is a challenge that becomes more difficult as more wind capacity

is installed into an electrical grid. The difficulty arises from the intermittency of the

wind. Wind forecasting is a tool used by the wind industry on a routine basis to

alleviate this difficulty [81]. The accuracy of the forecasts is of the utmost importance

as power generated from wind is directly proportional to wind velocity cubed. The

forecasting takes place over different time horizons that require different simulation

capabilities. Different time horizons include very short-term, short-term, medium-

term, and long-term [82]. Very short-term covers a time less than a few minutes.

Short-term describes a time horizon ranging from a half hour to 6 hours. Medium-

49

term forecasts generally range from 6 hours to a day while long-term forecasts are

measured in days.

In the present survey, only short-term wind forecasting techniques are reviewed.

The most basic short-term wind forecasting model that often serves as a benchmark

for new models is a persistence model [27]. A persistence model uses the assumption

that the future value will equal the current value [81]. Persistence models typically

work well within an hour or two but the quality of the results rapidly degrades when

the time horizon is increased.

There are two additional wind forecasting approaches that typically produce better

results than persistence models: the physical approach and the statistical approach

[82]. The physical approach is based on using numerical weather prediction (NWP)

models. NWP solves the complex mathematical models describing wind flow over

complex terrain, temperature, and pressure. A major challenge of this approach is

the uncertainty when using the mesoscale wind speeds provided by a weather service

on the microscale spatial domain of the wind farm site [45]. NWP requires significant

computational resources and are often limited to medium- and long-term forecasts

because of the difficulty of providing the mesoscale weather information. The best

results are obtained in neutrally stratified weather conditions [82].

NWP is difficult because any slight variation in the initial conditions dramatically

changes the outcome due to the dynamic nature of the weather. An alternative that

is not often employed because of large computational requirements is the ensemble

forecasting approach [83]. This approach runs several NWP simulations using slightly

different initial conditions to get a frequency distribution of probable events. Each

simulation is called an ensemble member. The number of ensemble members is

often limited by available computational resources, although when used, the method

demonstrates a strong potential in wind forecasting [26]. An approach similar to

50

ensemble forecasting is to take a combination of different NWP implementations with

the same initial conditions to produce a frequency distribution, but it still requires

the same resources as ensemble forecasting [45].

The statistical approach to wind forecasting is the use of time series using the

auto-regressive moving average (ARMA). The basic idea of ARMA is to estimate a

future value of an individual time series as a linear combination of previously observed

values [27]. There are several derivatives to the ARMA approach [10, 60, 82] including

the Box-Jenkins approach of autoregressive integrated moving average (ARIMA),

the seasonally adjusted ARIMA (SARIMA), and the approach of fractional-ARIMA

(f-ARIMA), to name a few. There are several other time series techniques that have

been employed and surveys of these are given in Bhaskar et al. [10] and Soman et

al. [82].

A popular area of wind forecasting research in recent years has been in artificial

neural networks (ANN) [10]. The ANN technique is based on artificial intelligence

where the program mimics the human learning process to discover relationships

between the variables in a system [31]. ANN does not require explicit declarations

of mathematical expressions and thus takes less development and computational

time than ARMA models [10]. Depending on the implementation and application,

ANN models can produce better or worse results than ARMA models as shown by

comparing the conclusions of Gomes and Castro [27] and Soman et al. [82].

Hybridization of ANN with physical and statistical approaches is common as well

[10]. Several techniques exist, too many to fit into this literature review. However,

the basic idea is to use the physical and statistical approaches to train the neural

network. In general, the results are improved but the implementation increases in

complexity. Evolutionary optimization algorithms such as the genetic algorithms or

particle swarm optimization can also be used to train ANN.

51

A physical approach is pursued in this study. Statistical approaches provide

good results for short time horizons but the accuracy of the results degrade as the

time horizon is extended. Typically, physical approaches are useful for medium-

and long-term forecasts (> 6 hours) because of the amount of computations and

difficulty obtaining information in short time horizons [82]. Hence, the simulation has

been developed for GPU clusters for their potential to accelerate the computations

to predict in the short-term while still maintaining the applicability to longer time

horizons. Also, time series only provide mean wind velocity predictions. Resolving

the wind in the ABL can provide predictions on the mean and random components

of wind velocity as well as other quantities such as pressure and temperature.

5.2 IBM in Atmospheric Flows

IBM in meteorological applications is not without precedent. Senocak et al. [79]

extended the discrete forcing approach to atmospheric boundary layer simulations

over a flat terrain by adopting the same length scale assumptions in the turbulence

model and reconstruction schemes. Lundquist et al. [52] presented a 2D implementa-

tion of the ghost-cell approach within the Weather Research and Forecasting Model

(WRF) for analytical geometries without any consideration for turbulence modeling

and turbulent stresses at the immersed surfaces. Jafari et al. [38] performed a RANS

simulation of wind flow over complex terrain also using a ghost-cell approach.

To the best of the author’s knowledge, no study to date has extended an IBM

approach to atmospheric flows and coupled it with either a RANS or LES approach

for turbulence with provisions for addressing the issues of atmospheric stability, repre-

senting turbulent stresses on immersed surfaces, and accounting for land-surface fluxes

of heat and moisture. The goal of this thesis is to implement the core components

for a short-term wind forecasting simulation that address the coupling of IBM with

52

turbulence modeling and lay the foundation for future incorporation of models that

maintain atmospheric stability and account for land-surface fluxes. One of the first

steps is to couple the IBM with a logarithmic reconstruction schemes described in

Chapter 4 with a hybrid RANS/LES turbulence modeling technique.

5.3 Hybrid RANS/LES

The LES technique is pursued because of the information it provides on turbulent

fluctuations and has potential to capture the details of highly separated flows that

are found in wind flow over complex terrain. The Lagrangian dynamic Smagorinsky

model was chosen for the SGS model because homogeneous directions of turbulence

are not a requirement. However, LES requires resolution in the viscous sublayer

and with Reynolds numbers being on the order of 107 along with the surface being

rough, fully resolving the boundary layer is impractical. This is the motivation for

hybridizing LES with RANS at high Reynolds numbers to form a hybrid RANS/LES

technique. RANS models the contribution of the near-wall eddies and acts as a

sort of wall model for the LES. Hybrid RANS/LES has been applied to atmospheric

scenarios with success in Senocak et al. [78], Bechmann et al. [5] and Bechmann

and Sørensen [4], to name a few. There are several methods to hybridize LES and

RANS [75], but the method chosen for this simulation is the smooth length scale

transition suggested by Senocak et al. [78]

νt =

[(
1 − exp

(−z

h

))2

(CS∆)2 + exp

(−z

h

)2

(κz)2

]
|S|, (5.1)

where κ is the von Kármán constant and h is the RANS/LES transition height.

Equation 5.1 blends the length scales produced from the dynamic SGS model with

a mixing length RANS model. The logarithmic reconstruction in the IBM main-

53

tains consistency with the mixing length turbulence model. The transition height is

determined by the following relationship based on the Nyquist theorem,

γ =
h

2∆
, (5.2)

where ∆ is the base filter width and γ is a parameter chosen depending on the flow.

The value of γ dictates how many cells near the wall are modeled by RANS. Ensuring

that h is large enough to encompass at least one full cell is of the utmost importance,

particularly when the aspect ratio of a cell is larger in the wall-normal direction than

in the lateral directions.

5.4 Evaluation of Hybrid RANS/LES

The consistent coupling of the hybrid RANS/LES and IBM implementations

were evaluated using periodic turbulent channel flow (see Chapter 3). The friction

Reynolds number was set to 1000 to ensure a sufficiently large log-law region. The

dimensions of the channel were also increased to (8πδ, 3πδ, 2δ) in (x, y, z). To test the

IBM, the walls were placed such that they were not coincident with any of the grid

points, but were still parallel to the x-y plane. Thirty wall units separated a wall to

the first u component. The computational grid was chosen to be 512 × 192 × 64. No

grid stretching was applied. Note the z dimension is actually larger than the height

of the channel to maintain the thirty wall unit separation. The same forcing, initial

conditions and time sampling intervals used in the LES validation were applied. A

length scale transition height for the hybrid RANS/LES was chosen to be 4∆ or γ

= 2 in Equation 5.2. The simulations were performed on four NVIDIA Tesla C2070

GPUs connected by an Infiniband QDR interconnect. The turn around time was

twenty hours.

54

10
0

10
1

10
2

10
3

0

5

10

15

20

25

z+

u+

Linear Reconstruction
Logarithmic Reconstruction
Log Law
Viscous Sublayer

Figure 5.1: Comparison of mean streamwise velocity profile for a turbulent channel
flow at Reτ = 1000 using hybrid RANS/LES technique. Grid size was 512×192×64
and the separation between wall and first u-component was 30 wall units. IBM
reconstruction schemes: ∗, logarithmic; ◦, linear

55

Figure 5.1 is a comparison of different IBM reconstruction schemes to the the-

oretical law of the wall. A logarithmic reconstruction scheme (Equation 4.9) was

developed using smooth wall log-law given as,

U

uτ

=
1

κ
ln

(yuτ

ν

)
+ B, (5.3)

where κ is the von Kármán constant and B is a constant. The value of the von

Kármán constant is 0.41 and B is 5.2 [73]. The logarithmic reconstruction performs

much better than the linear reconstruction. The linear reconstruction severely under-

predicts the velocity. On the other hand, the logarithmic reconstruction provides more

reasonable result consistent with the law of the wall. The underprediction of velocity

with linear reconstruction is not surprising, since the separation between the wall

and the first calculated component is 30 wall units. At this distance, linear relations

present in the viscous sublayer no longer hold and forcing a linear relationship does

not provide the proper shear stress near the wall. The distance is in the region where

the log-law holds, and therefore logarithmic reconstruction agrees well with theory.

These results demonstrate the importance of consistency between the IBM and

turbulence modeling. The mixing length model used in the present study is derived

from the log-law. When applying a linear reconstruction scheme in a region where

the log-law holds, the velocity was underpredicted because of incorrect shear stress.

On the other hand, applying a logarithmic reconstruction produced results agreeing

well with the theory. Therefore, ensuring that underlying theories for the IBM and

hybrid RANS/LES are consistent is essential for this study to reduce the error in

future wind forecasts.

56

5.5 Bolund Hill Performance Tests

Using the implementation described in Sections 5.2 and 5.3, simulations were

performed on Bolund Hill, a 12-meter-high isolated coastal hill located in Roskilde

Fjord, Denmark. Because of its isolation and small shape, it has been the subject of

several studies, both experimental [6] and computational [3, 38].

Figure 5.2 is a surface rendering of the Bolund Hill stereolithography (STL) file

used in this paper. The feature that makes the Bolund Hill case challenging to

simulate is the steep vertical escarpment. Figure 5.3 shows a slice of the Cartesian

mesh used superimposed on the STL at the escarpment. In this solver, the x and y

directions correspond to the lateral directions and z to the vertical direction, with the

x direction being perpendicular to the escarpment in Figure 5.2. The computational

Cartesian mesh used in this paper was 256 × 192 × 128 in the x, y, and z directions,

respectively, with a lateral resolution of 4 m and vertical resolution of 1 m. A no-slip

condition was imposed at the terrain surface with a free-slip condition at the top

of the domain and periodic lateral boundary conditions. The equivalent roughness

height for the logarithmic reconstruction (Equation 4.9) was 0.0003 m for the water

and 0.015 m for the hill as was suggested in Berg et al. [6]. A height-independent,

constant forcing of 0.001 was applied.

In the Bolund Hill Experiment, masts with sonic anemometers were set up along

in the vicinity of the line in Figure 5.2. This line is referred to as the 270◦ line in the

Bolund Experiment when the escarpment is the windward side. The simulation was

compared to data of wind 5 m above the ground along the 270◦ line. Figure 5.4 shows

the velocity sampled over the hill normalized to a value sampled from the reference

mast [3, 6]. The results are not very satisfactory and deviate from the experimental

data but several factors may be responsible for the erroneous results.

One factor is that periodic boundary conditions imply periodically placed islands

57

Figure 5.2: The surface created by the STL geometry of Bolund Hill used in this paper.
The wind flow direction is parallel to the superimposed line with the windward side
being the escarpment.

Figure 5.3: Closeup of a Cartesian mesh slice in the x-z plane superimposed on the
Bolund Hill STL. One cell has dimensions of 4 m in the x and 1 m in the z.

58

−100 −50 0 50 100 150
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Relative Position (m)

N
or

m
al

iz
ed

 W
in

d
S

pe
ed

, U
/U

re
f

Figure 5.4: Wind speedup 5 m above ground along the 270◦ line. The experimental
data is found in Berg et al. [6].

Figure 5.5: Instantaneous wind velocity along the 270◦ line. The existence of
turbulent flow structures and vortex shedding in the wake demonstrate that the LES
is able to generate eddies well but requires better boundary layer shear stresses to
compute wind speed correctly.

59

Figure 5.6: Ensemble-averaged wind velocity along the 270◦ line. The acceleration at
the escarpment and the evidence of a wake are encouraging results.

Figure 5.7: Instantaneous wind velocity vectors approximately 7 m from base of hill
indicating the present flow solver does capture some of the effects of the complex
terrain.

60

and may incorrectly influence the upstream velocity. While the influence might be

minor because of the hill having a low profile, replacing the periodic lateral boundary

conditions with open lateral boundary conditions would be worthwhile to pursue.

Another factor is the spatial resolution, particularly in the vicinity of the surface. As

shown in Figure 5.3, only 4 to 6 cells are currently resolving the vertical escarpment.

When looking back to the laminar cylinder case, approximately 30 cells were needed

to obtain good results. Therefore, grid refinement is necessary. Also, issues with the

hybrid RANS/LES and IBM when applied to complex geometry may not have arisen

when simple benchmark cases were performed. Further evaluation of these techniques

is required. However, Figure 5.4 shows that the acceleration and deceleration of the

wind is captured, but the errors in the magnitudes can be attributed errors in the

surface stresses.

While unsatisfactory results were obtained in the wind speeds at several locations,

the flow solver is able to capture the influence of the complex terrain qualitatively.

Figure 5.5 is a visualization of the instantaneous velocity along the 270◦ line. The

existence of turbulent flow structures and vortex shedding demonstrate that the

turbulence modeling performs well but requires better boundary layer shear stresses

to accurately model atmospheric turbulence.

Figure 5.6 depicts the time-averaged wind velocity values along the 270◦ line.

The acceleration at the escarpment looks good from a qualitative perspective when

compared to results from Jafari et al. [38]. The wake behind the hill compares

reasonably well also compared to Jafari et al., again from a qualitative standpoint.

Figure 5.7 is a vector plot of wind velocity at approximately 7 m from the base

of the hill. The flow simulation is capturing the influence of the complex terrain on

the flow reasonably well as is evident with the vectors conforming around the hill.

However, a few errors may exist because of the large vectors in the upper right of

61

−100 −50 0 50 100 150
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Relative Position (m)

N
or

m
al

iz
ed

 W
in

d
S

pe
ed

, U
/U

re
f

2 m south

270° line
2 m north

Figure 5.8: Comparison of normalized mean wind velocity along the 270◦ line (∗),
2 m south of the 270◦ line (◦) and 2 m north of the 270◦ line (¤) reveals that the
results are quite sensitive to the location meaning Bolund Hill is not an ideal case for
simulation evaluation.

Figure 5.7, although this may be sudden acceleration due to turbulence. This may

be an issue that did not arise when testing was performed on simple benchmark cases

and prompts further evaluation of the IBM and hybrid RANS/LES.

Figure 5.8 provides another reason for further evaluation of the simulation. This

figure compares numerical results along the 270◦ line against results from 2 m north

and south of the same line. The results do not deviate greatly 2 m north of the 270◦

line. However, sampling 2 m south greatly deviates from the other two demonstrating

that the results are highly sensitive to the location, which implies that simulation is

also highly sensitive to the complex geometry of this particular case. The sensitivity

suggests that Bolund Hill is too difficult a complex terrain to be an ideal case for

evaluating a simulation. Other simpler test cases should be used alongside this one

to gain a better understanding of the model.

Regarding the computational performance of the current wind solver, the 256

62

× 192 × 128 case performed at 20% of real-time. That is, for every 5 seconds

of computational wall time, 1 second physical time was resolved. The computing

platform used consisted of four NVIDIA Tesla C2070 GPUs connected by PCI Express

2.0 × 16 buses and a quad data rate (QDR) Infiniband interconnect. Mesh sizes of 192

× 128 × 64 and 128 × 128 × 33 with the same spatial resolutions were also attempted

although the results are not shown in this thesis. The 192 × 128 × 64 mesh performed

at approximately 70% of real-time on the same computing platform but with only

two GPUs. Using four GPUs resulted in approximately the same performance but a

large majority of the GPU remained idle for this problem size.

The 128 × 128 × 33 on average performed better than 50% faster than real-

time. However, this one was tested on two different platforms. The first was one of

the Tesla GPUs mentioned above, which executed at twice that of real-time. The

other platform consisted of two NVIDIA GeForce GTX 470 GPUs with a single data

rate (SDR) Infiniband interconnect, which gave a performance of about 1.5 that

of real-time. This reinforces the point that the inexpensive GeForce gaming GPUs

can provide performance similar to that of the more expensive Tesla GPUs and can

allow researchers an inexpensive tool for problems involving relatively small data sets.

Overall, the computational performance to realize forecasting is very encouraging.

63

CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

During the course of this study, the LES technique with a Lagrangian dynamic

SGS model and the immersed boundary method were successfully implemented on

GPU clusters. These two methods provide the foundation for a short-term wind

forecasting application. LES of turbulent channel flows provides results that agree

well with DNS data. These simulations, which typically take a week or more to

complete, were performed in under two days. Simulation of laminar flow over a

circular cylinder using the IBM produced results that agree well with benchmark

data. No computational performance analysis or comparisons were made because no

turn around times from CPU-based implementations were available. However, the

turn around times were still reasonable even with the excessively large computational

meshes. The coupling of LES and IBM was also successful in the test case of

turbulent channel flow, which completed in a matter of a few hours. Thus, these

implementations have reinforced the impact that the GPU can have on the field of

computational fluid dynamics.

LES is no simple task when applied to complex terrain. This became apparent in

this study when LES was applied to simulate the Bolund Hill Experiment. The wind

speed results do not agree well with the experimental data. The results were also

64

very sensitive to location because of the complexity of Bolund Hill. However, other

attempts by other researchers using LES on Bolund Hill have encountered similar

problems [3], indicating that further in-depth study is needed. Difficulty modeling

wind over Bolund Hill demonstrates that LES applications involving complex terrain

suffer from poor representation of surface stress, inadequate spatial resolution, and

turbulence modeling in the vicinity of the surface.

To pursue possible insights into atmospheric turbulence, the goal of this thesis was

to extend a baseline incompressible flow solver to model neutrally stratified wind over

complex terrain at the microscale to investigate if a coupling of hybrid RANS/LES

and IBM would provide a foundation for a wind forecasting capability. While results

did not agree well with experimental data, the potential to reach the goal has been

demonstrated. The work in this thesis can be considered a first attempt as several

modeling issues such as inflow conditions, mesh refinement near the vicinity of the

surface, and modeling fluxes of heat and moisture were not addressed in this study.

Resolving these modeling issues is expected to significantly improve the results. At

this point in the development process, the approach undertaken in this study cannot

be dismissed because not all of the necessary components are in place yet.

The computational performance of the present flow solver remains encouraging.

The fact that real-time calculations can be sustained on GPU clusters opens doors

for other wind and weather forecasting applications to be ported to GPU computing

platforms. Concerning the present application, several numerical techniques exist

that could potentially reduce the number of computations and further increase per-

formance. Some of these are discussed in the next section. Also, programming opti-

mizations to the current implementation of algorithms may be possible, particularly

with new GPU technologies being released [64]. The real-time performance metrics

mentioned here may increase with these possible improvements and a short-term wind

65

forecasting application may come to fruition.

6.2 Future Directions

This thesis laid the foundation for developing a short-term, microscale wind

forecasting capability. Initial attempts at simulating wind over complex terrain

have shown that further research and testing against different terrains is necessary.

In particular, the calculation of surface stresses, the modeling of turbulence in the

vicinity of the surface, and the critical issue of inflow conditions need to be addressed

in the flow solver. First, further evaluation of both the hybrid RANS/LES technique

and the IBM are needed with geometries more complex than the simple benchmark

cases used in this study but simpler than the Bolund Hill. Other complex geometries

may bring to light issues that were not evident with simple benchmark cases.

Next, periodic lateral boundary conditions should be replaced with open lateral

boundary conditions. Periodic boundary conditions imply the existence of periodi-

cally placed islands and is not the case since the wind comes from an open body of

water. These boundary conditions may be acceptable for the Bolund Hill case because

of its relatively low height. However, other complex terrain cases are much higher

and periodic boundary conditions will not be suitable for such cases. The proper

replacement of the periodic boundary conditions is an on-going research topic and is

one of the major challenges of LES [39, 75]. One possibility is to sample values from a

precursor simulation of flow over flat terrain using periodic boundary conditions. The

sampled values would provide the inflow conditions for the simulation with complex

terrain [4]. Other possibilities to investigate are the stochastic and deterministic

inflow conditions summarized and compared in Keating et al. [39] and Sagaut [75].

A popular deterministic approach described in both [39] and [75] is the recycling

and rescaling method of Lund et al. [51] that rescales the outer and inner layers

66

of the downstream velocity profile separately and imposes the rescaled data as the

inlet. This approach does require the similarity laws to remain intact throughout

the domain, which may not be possible with complex terrain. A stochastic approach

would be better suited, the basic idea being to prescribe a mean velocity profile at

the inlet and superimpose a fluctuating component. The disadvantages is finding the

correct mathematical description for the fluctuations to introduce the proper flow

structures and turbulent kinetic energy. Which approach to use and how well it

applies to complex terrain flow scenarios will be the focus of future work.

The interface region between the LES and RANS regions is also a possible area

of future investigation, particularly at the inflow boundary conditions. This directly

ties into the inflow condition challenge because the different length scales between

RANS and LES regions would likely require different inflow conditions specified for

each region [40].

Integrating an adaptive mesh refinement (AMR) [7, 8] is a future direction for

this flow solver. The basic idea is to refine the mesh in areas of high interest (e.g.,

escarpment of Bolund Hill) but coarsen the mesh in areas of large-scale eddies (e.g.,

flat terrain). Currently, the directionally-uniform Cartesian mesh often provides more

computational nodes than are necessary, which is particularly evident in the laminar

flow over a circular cylinder validation study. AMR would improve the simulations

by providing a more detailed description of flow around complex terrain and reducing

the memory requirements.

To help improve the performance and achieve forecasting, the current Adams-

Bashforth time advancement scheme could be replaced by a Runge-Kutta time ad-

vancement scheme [46]. The Runge-Kutta scheme would allow for a larger Courant-

Friedrichs-Lewy (CFL) number. The central difference discretization of the viscous

term could also be replaced by an implicit Crank-Nicolson scheme to eliminate the

67

viscous stability limit. The end result would be larger time steps, but with the extra

cost of solving tri-diagonal matrices.

As of now, surface fluxes of heat and moisture are not accounted for in the model.

These fluxes could have an effect on the wind in the ABL [20]. Therefore, future

work will also require the incorporation of flux models [50, 87]. Accounting for the

influence of surface fluxes is expected to reduce the uncertainty in wind forecasts.

Last but not least, the applicable time horizon of the wind forecasting capability

after the aforementioned issues are addressed needs to be determined. The wind solver

is meant to be used in the short-term forecasting time horizon (less than six hours).

However, without the proper initial conditions, the flow may take longer to develop

than the targeted time horizon and the forecasts would be incorrect. A possible

idea would be to couple this microscale forecasting simulation with a mesoscale

forecasting simulation such as the Weather Research and Forecasting (WRF) model.

WRF could provide realistic initial and boundary conditions to this wind forecasting

capability and reduce the development time of the wind flow. This wind forecasting

capability could also improve the mesoscale predictions of WRF by providing better

parameterizations for the boundary conditions. An endeavor such as this would be a

worthwhile future investigation.

68

REFERENCES

[1] E. Balaras. Modeling complex boundaries using an external force field on fixed
Cartesian grids in large-eddy simulations. Computers & Fluids, 33(3):375 – 404,
2004.

[2] J. Bardina, J. H. Ferziger, and W. C. Reynolds. Improved turbulence models
based on large eddy simulation of homogeneous, incompressible, turbulent flows.
Technical Report No. TF-19, Department of Mechanical Engineering, Stanford
University, Stanford, CA, 1983.

[3] A. Bechmann, N. Sørensen, J. Berg, J. Mann, and P.-E. Réhoré. The Bolund
experiment, part II: Blind comparison of microscale flow models. Boundary-Layer
Meteorology, 141:245–271, 2011. 10.1007/s10546-011-9637-x.

[4] A. Bechmann and N. N. Sørensen. Hybrid RANS/LES method for wind flow
over complex terrain. Wind Energy, 13(1):36–50, 2010.

[5] A. Bechmann, N. N. Sørensen, J. Johansen, S. Vinther, B. S. Nielsen, and
P. Botha. Hybrid RANS/LES method for high reynolds numbers, applied to
atmospheric flow over complex terrain. Journal of Physics: Conference Series,
75(1):012054, 2007.

[6] J. Berg, J. Mann, A. Bechmann, M. Courtney, and H. Jørgensen. The Bolund
experiment, part I: Flow over a steep, three-dimensional hill. Boundary-Layer
Meteorology, 141:219–243, 2011. 10.1007/s10546-011-9636-y.

[7] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrody-
namics. Journal of Computational Physics, 82(1):64 – 84, 1989.

[8] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. Journal of Computational Physics, 53(3):484 – 512, 1984.

[9] R. P. Beyer and R. J. Leveque. Analysis of a one-dimensional model for the
immersed boundary method. SIAM Journal on Numerical Analysis, 29(2):pp.
332–364, 1992.

69

[10] M. Bhaskar, A. Jain, and N. Venkata Srinath. Wind speed forecasting: Present
status. In Power System Technology (POWERCON), 2010 International Con-
ference on, pages 1 –6, oct. 2010.

[11] A. Botterud, J. Wang, V. Miranda, and R. J. Bessa. Wind power forecasting in
U.S. electricity markets. The Electricity Journal, 23(3):71 – 82, 2010.

[12] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial (2nd
ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000.

[13] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan. Brook for GPUs: Stream computing on graphics hardware. In
ACM Transactions on Graphics, volume 23, pages 777–786, New York, NY,
USA, 2004. ACM Press.

[14] W. Cheng and C.-H. Liu. Large-eddy simulation of flow and pollutant trans-
ports in and above two-dimensional idealized street canyons. Boundary-Layer
Meteorology, 139:411–437, 2011. 10.1007/s10546-010-9584-y.

[15] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Mathematics
of Computation, 22(104):pp. 745–762, 1968.

[16] J. W. Deardorff. A numerical study of three-dimensional turbulent channel flow
at large reynolds numbers. Journal of Fluid Mechanics, 41(02):453–480, 1970.

[17] R. DeLeon, K. Felzien, and I. Senocak. Toward a gpu-accelerated immersed
boundary method for wind forecasting over complex terrain. To appear in ASME
Fluids Engineering Division Summer Meeting 2012, Paper number 72145, 2012.

[18] E.R. Van Driest. On turbulent flow near a wall. Journal of Aeronautical Sciences,
23(11):1007–1011, 1956.

[19] E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-
boundary finite-difference methods for three-dimensional complex flow simula-
tions. Journal of Computational Physics, 161(1):35 – 60, 2000.

[20] J.R. Garratt. The Atmospheric Boundary Layer. Cambridge University Press,
1994.

[21] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale
eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7):1760–1765,
1991.

[22] S. Ghosal, T.S. Lund, P. Moin, and K. Akselvoll. A dynamic localization model
for large-eddy simulation of turbulent flow. Journal of Fluid Mechanics, 286:229–
255, 1995.

70

[23] A. Gilmanov and S. Acharya. A hybrid immersed boundary and material point
method for simulating 3D fluidstructure interaction problems. International
Journal for Numerical Methods in Fluids, 56(12):2151–2177, 2008.

[24] A. Gilmanov and F. Sotiropoulos. A hybrid Cartesian/immersed boundary
method for simulating flows with 3D, geometrically complex, moving bodies.
Journal of Computational Physics, 207(2):457 – 492, 2005.

[25] A. Gilmanov, F. Sotiropoulos, and E. Balaras. A general reconstruction algo-
rithm for simulating flows with complex 3D immersed boundaries on Cartesian
grids. Journal of Computational Physics, 191(2):660 – 669, 2003.

[26] T. Gneiting and A. E. Raftery. Weather forecasting with ensemble methods.
Science, 310(248):248–249, Oct 2005.

[27] P. Gomes and R. Castro. Wind speed and wind power forecasting using statistical
models: Autoregressive moving average (ARMA) and artificial neural networks
(ANN). International Journal of Sustainable Energy Development, 1(1):36–45,
2012.

[28] A. A. Gowardhan. Towards Understanding Flow and Dispersion in Urban Areas
Using Numerical Tools. PhD thesis, University of Utah, 2008.

[29] M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical Simulation in Fluid
Dynamics: A Practical Introduction. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 1997.

[30] W. Gropp, R. Thakur, and E. Lusk. Using MPI-2: Advanced Features of the
Message Passing Interface. MIT Press, 1999.

[31] Mohamad H. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press,
Cambridge, MA, USA, 1st edition, 1995.

[32] G. Iaccarino and R. Verzicco. Immersed boundary technique for turbulent flow
simulations. Applied Mechanics Review, 56:331–347, 2003.

[33] T. Ikeno and T. Kajishima. Finite-difference immersed boundary method consis-
tent with wall conditions for incompressible turbulent flow simulations. Journal
of Computational Physics, 226(2):1485 – 1508, 2007.

[34] D. Jacobsen. Methods for multilevel parallelism on gpu clusters: Application to a
multigrid accelerated navier-stokes solver. Master’s thesis, Boise State University,
2010.

[35] D. A. Jacobsen and I. Senocak. A full-depth amalgamated parallel 3D geometric
multigrid solver for GPU clusters. In 49th AIAA Aerospace Science Meeting,
2011.

71

[36] D. A. Jacobsen and I. Senocak. Scalability of incompressible flow computations
on multi-GPU clusters using dual-level and tri-level parallelism. In 49th AIAA
Aerospace Science Meeting, jan 2011.

[37] D. A. Jacobsen, J. C. Thibault, and I. Senocak. An MPI-CUDA implementation
for massively parallel incompressible flow computations on multi-GPU clusters.
In 49th AIAA Aerospace Science Meeting, 2010.

[38] S. Jafari, N. Chokani, and R. S. Abhari. An immersed boundary method
for simulation of wind flow over complex terrain. Journal of Solar Energy
Engineering, 134(1):011006, 2012.

[39] A. Keating, U. Piomelli, E. Balaras, and H.-J. Kaltenbach. A priori and a
posteriori tests of inflow conditions for large-eddy simulation. Physics of Fluids,
16(12):4696–4712, 2004.

[40] A. Keating, G. De Prisco, and U. Piomelli. Interface conditions for hy-
brid RANS/LES calculations. International Journal of Heat and Fluid Flow,
22(5):777–788, 2006.

[41] J. Kim, D. Kim, and H. Choi. An immersed-boundary finite-volume method for
simulations of flow in complex geometries. Journal of Computational Physics,
171(1):132 – 150, 2001.

[42] D. B. Kirk and W. W. Hwu. Programming Massively Parallel Processors: A
Hands-on Approach. Elsevier Inc., 2010.

[43] R. H. Kraichnan. Eddy viscosity in two and three dimensions. Journal of
Atmospheric Science, 33:1521–36, 1976.

[44] M. T. Landahl and E. Mollo-Christensen. Turbulence and Random Processes in
Fluid Mechanics. Cambridge University Press, 2 edition, 1992.

[45] M. Lange and U. Focken. New developments in wind energy forecasting. In Power
and Energy Society General Meeting - Conversion and Delivery of Electrical
Energy in the 21st Century, 2008 IEEE, pages 1 –8, July 2008.

[46] H. Le and P. Moin. An improvement of fractional step methods for the incom-
pressible navier-stokes equations. Journal of Computational Physics, 92(2):369
– 379, 1991.

[47] M. Lesieur and O. Métais. New trends in large-eddy simulations of turbulence.
Annual Review of Fluid Mechanics, 28:45–82, 1996.

[48] M. Lesieur, O. Métais, and P. Comte. Large-Eddy Simulations of Turbulence.
Cambridge University Press, 2005.

72

[49] D.K. Lilly. A proposed modification of the Germano subgrid-scale closure
method. Physics of Fluids A: Fluid Dynamics, 4(3):633–35, 1992.

[50] J.-F. Louis. A parametric model of vertical eddy fluxes in the atmosphere.
Boundary-Layer Meteorology, 17:187–202, 1979. 10.1007/BF00117978.

[51] T. S. Lund, X. Wu, and K. D. Squires. Generation of inflow data for spatially-
developing boundary layer simulations. Journal of Computational Physics,
140(2):233–258, 1998.

[52] K.A. Lundquist, F.K. Chow, and J.K. Lundquist. An immersed boundary
method for the weather research and forecasting model. Monthly Weather
Review, 138:796–817, 2010.

[53] C. Meneveau and J. Katz. Scale-invariance and turbulence models for large-eddy
simulation. Annual Review of Fluid Mechanics, 32:1–32, 2000.

[54] C. Meneveau, T.S. Lund, and W.H. Cabot. A Lagrangian dynamic subgrid-scale
model of turbulence. Journal of Fluid Mechanics, 319:353 – 85, 1996.

[55] O. Métais and M. Lesieur. Spectral large-eddy simulation of isotropic and stably
stratified turbulence. Journal of Fluid Mechanics, 239:157–194, 1992.

[56] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of
Fluid Mechanics, 37:239–261, 2005.

[57] J. Mohd-Yusof. Combined immersed boundary/B-spline methods for simulations
of flow in complex geometries. Annual Research Briefs, Center for Turbulence
Research, NASA-Ames/Stanford University, 1997.

[58] P. Moin and J. Kim. Numerical investigation of turbulent channel flow. Journal
of Fluid Mechanics, 118:341–377, 1982.

[59] R. D. Moser, J. Kim, and N. N. Mansour. Direct numerical simulation of
turbulent channel flow up to Reτ = 590. Physics of Fluids, 11(4):943–945, 1999.

[60] M. Negnevitsky, P. Mandal, and A.K. Srivastava. An overview of forecasting
problems and techniques in power systems. In Power Energy Society General
Meeting, 2009. PES ’09. IEEE, pages 1 –4, july 2009.

[61] F. Nieuwstadt and H.B. Keller. Viscous flow past circular cylinders. Computers
& Fluids, 1(1):59 – 71, 1973.

[62] NVIDIA. NVIDIA CUDA C Best Practices Guide. 2011.

[63] NVIDIA. NVIDIA CUDA C Programming Guide 4.0. 2011.

73

[64] NVIDIA. Kepler architecture. http://www.nvidia.com/object/

nvidia-kepler.html, 2012.

[65] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and
T. J. Purcell. A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

[66] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips.
GPU computing. Proceedings of the IEEE, 96(5):879 –899, May 2008.

[67] C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of
Computational Physics, 25(3):220 – 252, 1977.

[68] C. S. Peskin. The fluid dynamics of heart valves: Experimental, theoretical,
and computational methods. Annual Review of Fluid Mechanics, 14(1):235–259,
1982.

[69] U. Piomelli. High reynolds number calculations using the dynamic subgrid-scale
stress model. Physics of Fluids A: Fluid Dynamics, 5(6):1484–1490, 1993.

[70] U. Piomelli. Wall-layer models for large-eddy simulations. Progress in Aerospace
Sciences, 44(6):437 – 446, 2008. ¡ce:title¿Large Eddy Simulation - Current
Capabilities and Areas of Needed Research¡/ce:title¿.

[71] U. Piomelli and J. Liu. Large-eddy simulation of rotating channel flow using a
localized dynamic model. Physics of Fluids A: Fluid Dynamics, 7(4):839–848,
1995.

[72] U. Piomelli, P. Moin, and J. H. Ferziger. Model consistency in large eddy
simulation of turbulent channel flows. Physics of Fluids, 31(7):1884–1891, 1988.

[73] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[74] R. S. Rogallo and P. Moin. Numerical simulation of turbulent flows. Annual
Review of Fluid Mechanics, 16(1):99–137, 1984.

[75] P. Sagaut. Large Eddy Simulation for Incompressible Flows: An Introduction.
Springer-Verlag Berlin Heidelberg New York, 2 edition, 2002.

[76] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley, 7 2010.

[77] S.H. Schneider, M.D. Mastrandrea, and T.L. Root. Encyclopedia of Climate
and Weather. Number v. 1 in Encyclopedia of Climate and Weather. Oxford
University Press, 2011.

74

[78] I. Senocak, A. Ackerman, M. Kirkpatrick, D. Stevens, and N. Mansour. Study
of near-surface models for large-eddy simulations of a neutrally stratified at-
mospheric boundary layer. Boundary-Layer Meteorology, 124:405–424, 2007.
10.1007/s10546-007-9181-x.

[79] I. Senocak, A.S. Ackerman, D.E. Stevens, and N.N. Mansour. Topography model-
ing in atmospheric flows using the immersed boundary method. Annual Research
Briefs, Center for Turbulence Research, NASA-Ames/Stanford University, 2004.

[80] J. Smagorinksy. General circulation experiments with the primitive equations.
Monthly Weather Review, 91(3):99–164, 1963.

[81] J.C. Smith, M.L. Ahlstrom, R.M. Zavadil, A. Sadjadpour, and C.R. Philbrick.
The role of wind forecasting in utility system operation. In Power Energy Society
General Meeting, 2009. PES ’09. IEEE, pages 1 –5, july 2009.

[82] S.S. Soman, H. Zareipour, O. Malik, and P. Mandal. A review of wind power and
wind speed forecasting methods with different time horizons. In North American
Power Symposium (NAPS), 2010, pages 1 –8, sept. 2010.

[83] J.W. Taylor, P.E. McSharry, and R. Buizza. Wind power density forecasting
using ensemble predictions and time series models. Energy Conversion, IEEE
Transactions on, 24(3):775 –782, sept. 2009.

[84] The OpenFOAM Foundation. Openfoam user guide. http://http://www.

openfoam.org/docs/user/, 2011.

[85] J. Thibault. Implementation of a cartesian grid incompressible Navier–Stokes
solver on multi-GPU desktop platforms using CUDA. Master’s thesis, Boise
State University, Boise, Idaho, May 2009.

[86] J. C. Thibault and I. Senocak. Accelerating incompressible flow computations
with a Pthreads-CUDA implementation on small-footprint multi-GPU platforms.
The Journal of Supercomputing, 59:693–719, 2012.

[87] I. B. Troen and L. Mahrt. A simple model of the atmospheric boundary layer;
sensitivity to surface evaporation. Boundary-Layer Meteorology, 37:129–148,
1986. 10.1007/BF00122760.

[88] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Elsevier, 2001.

[89] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber,
J. Han, S. Nas, and Y.-J. Jan. A front-tracking method for the computations of
multiphase flow. Journal of Computational Physics, 169(2):708 – 759, 2001.

[90] Y.-H. Tseng and J. H. Ferziger. A ghost-cell immersed boundary method for
flow in complex geometry. Journal of Computational Physics, 192(2):593 – 623,
2003.

75

[91] H.S. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna. A sharp interface
Cartesian grid method for simulating flows with complex moving boundaries.
Journal of Computational Physics, 174(1):345 – 380, 2001.

[92] S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous, incom-
pressible, multi-fluid flows. Journal of Computational Physics, 100(1):25 – 37,
1992.

[93] US DoE. 20% wind energy by 2030: Increasing wind energy’s contribution to
US electricity supply. Technical report, Washington, D.C., 2008.

[94] H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid
Dynamics: The Finite Volume Method. Prentice Hall, 2 edition, 2007.

[95] R. Verzicco, J. Mohd-Yusof, P. Orlandi, and D. Haworth. Large eddy simulation
in complex geometric configurations using boundary body forces. AIAA Journal,
38:427–433, 2000.

[96] T. Ye, R. Mittal, H.S. Udaykumar, and W. Shyy. An accurate Cartesian grid
method for viscous incompressible flows with complex immersed boundaries.
Journal of Computational Physics, 156(2):209 – 240, 1999.

