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This paper describes a field manipulation experiment where the effects of a simulated decline in acidified S 

inputs on the fate of N on Sitka spruce growing on an organo-mineral soil were investigated, along side those of 

the original treatments: ammonium nitrate, with and without sulphuric acid and sodium sulphate.  Five years of 

treatment, at canopy height, with up to 100 kg N and S ha-1y-1 were extended for a further 3 years, for half the 

plots, while the remaining plots were deprived of N, sulphuric acid or S.  Stem area increment was unresponsive, 

whereas foliar N and Mg concentrations and fine roots were sensitive to the removal of N and acidity. This 

recovery experiment confirmed that the presence of acidified S modifies the fate of N and suggests the reduction 

in acidified S deposition will increase the bioavailability of N.  
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1. Introduction 

Control measures to restrict sulphur (S) emissions were put in place in the 1980s. Between 

1986 and 2002, emission reductions in the UK were dramatic, down from almost 2000 kt S to 

< 600 kt S [1]. Sulphur deposition in the UK has also fallen, although by proportionally less 

than would be expected from the fall in emissions, because of the nonlinearities in source 

receptor relationships for S and N compounds [1].  Not withstanding this, the ratio of S to N 

has gone down, and yet we know little about the consequences of these ratio changes for our 

forests.  Particularly pertinent questions that need addressing are: to what extent has acidified 

S deposition modified the effects of N deposition to forests and, what changes are involved in 

recovery?  

The implications of changes in the ratio of acidified S to N for forests have not been 

widely investigated in the field and remain poorly characterised.  Sheppard [2], Sheppard and 

Crossley [3] and Sheppard et al [4,5]  treated young Sitka spruce (Picea sitchensis Bong. 

Carr.), growing on an organo-mineral soil, with S and N and combinations: ammonium nitrate 

(NH4NO3), with and without sulphuric acid (H2SO4 at pH 2.5), and sodium sulphate 

(Na2SO4).  In five years, stemwood quadrupled but the growth was heterogeneous with less 

than 30% being explained by the simulated anthropogenic deposition. Nitrogen additions of 

48 kg N ha-1 y-1 did enhance stemwood increments but the 20% increase over 5 years was only 

just significant (P< 0.05). The inclusion of acidity with N, even at double the acid + N dose, 

made no difference [5]. These observations suggested that neither enhanced N nor acidified S 

deposition pose a potential threat to the growth of young Sitka, at least in the short-term. 

 However, tree growth does not appear to be overly sensitive to N deposition. Wright 

and Rasmussen [6] concluded that effects of N deposition were strongly dependent on site 

type (soil chemistry and climate) and the developmental stage of the stand.   The stand 

reported in Sheppard et al [5] was in the exponential growth phase leading up to canopy 

closure and would have been expected to have a high N demand. Sigurgeirsson [7] suggests 
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that N inputs, similar to the single N dose (48 kg N ha-1 y-1) used in [5], are mostly retained by 

the soil and thus would be unlikely to significantly influence tree growth over the short-term. 

Emmett [8] also suggests that N inputs below 60 kg N ha-1 y-1 take several years to change 

growth.   

  Short-term experiments, <5 year minimum, cannot therefore be relied on to predict the 

potential impacts of enhanced acid and N deposition on tree growth, even when there are 

changes in foliar and soil chemistry [9]. It is also possible, when considering the combined 

effects of N and acidity, that the acid an d N effects cancel each other out. The capacity of tree 

growth to buffer change should not be underestimated. Sheppard et al [5] showed no growth 

effect at double the acid + N dose, despite significant increases in litterfall and canopy 

transparency and lowered foliar P and Mg status.  Innes [10] reports minimal growth effects 

until > 50% of the tree needles have been lost or damaged. 

  The issue of what to measure to assess the effect of acid deposition on N availability is 

complex, reflecting the temporal nature of effects, which in turn depend on each systems 

capacity to buffer the chemical changes and previous deposition history [11]. The Sheppard et 

al [5] study identified the responsiveness, rates and magnitudes, of different parts of the 

system to acidic S and N deposition and found that soil water N and S increased significantly 

as did the fine roots, which are in direct contact with the soil solution. The saprophyte 

community, which is coupled to litter and throughfall chemistry responded over a similar 

time-scale while the ectomycorrhizal community, buffered via the trees carbon supply [11], 

took longer. Amongst the slowest responding parts of the system studied by Sheppard et al [5] 

were foliar nutrient concentrations. Foliar N failed to register a significant change for annual 

N inputs of 48 kg N ha-1 y-1 over the 5 treatment years, though did show a significant albeit 

small increase (<20% ) in response to 96 kg N ha-1 y-1. Response times may be related to the 

sizes of the soil N pools [12] but these were not quantified.  
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Questions concerning sustainability, how long sites can continue to buffer 

anthropogenic inputs, or recover if inputs decline therefore remain highly topical as so few 

experiments extend beyond 3-5 years, typical grant lengths. The relevance of historical S 

loadings on N use is still important because unlike S emissions, N emissions have not fallen in 

recent years, in the UK [13]. 

 This paper reports on a three year extension of the experiment of Sheppard et al [5] 

which, in addition to evaluating the temporal aspects of the ecosystem response to acidified S 

and N additions, by maintaining the original treatments to half the plots, also examined the 

potential for recovery, by the removal of sulphuric acid, sodium sulphate and ammonium 

nitrate constituents. The aims were to: 

1. Evaluate above and below-ground responses to the combination of sulphuric acid and 

N additions to assess the influence of acidified S on N responses. 

2. Assess the rate of responsiveness of ecosystem recovery to the removal of acidified S, 

N or a combination of the two. 

2. Methods 

2.1 Site Description 

Table 1 near here 

The site was located within a young commercially managed Sitka spruce plantation, planted 

in 1986, in the Scottish Borders, 20 km S. W. of Edinburgh (290 m above sea level at latitude 

55046’N and longitude 3018’W on an organo-mineral soil, < pH 3.0 in CaCl2). The study area 

comprised 1.5 ha of trees, approximately 2 m apart on mounds formed, from the inversion of 

0.7 m of peat, litter and small but variable amounts of mineral soil, when drainage furrows 

were created using a double moleboard plough. This intervention created considerable plot to 

plot variability in soil properties due to the different amounts of mineral soil turned over by 

the plough [2,5]. 

2.1 Treatments 
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Two plots (selected at random, irrespective of block) were maintained on the original 

treatment, and the other two had an element of the treatment removed to simulate reductions 

in emission/deposition, as shown in table 1. The maintained treatments provided 50 kg ha-1 y-1 

and 48 kg ha-1 y-1 of S and N respectively, or twice those doses, at a maximum ionic strength 

of 1.6 or 3.2 mM.  The double dose was achieved by doubling the spraying frequency over the 

annual spray period, between May and November.  In the ‘recovery’ plots the N and S were 

withheld from the rainwater and H2SO4 (SAc) was withheld from the NSAcid (NSAc) and 

2NSAcid (2NSAc) treatments to leave only Nr or 2Nr. The new treatment regime was 

implemented in 2001, 2002 and 2003 (table 1).   

The amount of treatment applied per spray event was equivalent to 2mm precipitation, just 

sufficient to wet the canopy but not the soil.  Treatments supplied an additional 10% 

precipitation over the year.  The trees were sprayed at a pressure of 1.5 bar with droplets of 

between 100 and 250 μm in diameter.  The galvanised steel scaffolding (13m x 5m) supported 

the 24 full cone sprayer units.   

2.2 Treatment periods and environmental parameters 

 The spraying schedule in relation to rainfall and soil temperature, 0-5 cm depth is given in 

Table 1. Treatments generally began in May preceding budburst. In 2001 and 2002 all the 

treatment was applied, compared to the final year when the ‘drought’ led to only sufficient 

rainfall being available to apply 75% of the treatment. Soil water collections corresponded to 

the start and finish of spraying, and winter no spray periods. Rainfall was based on a tipping 

bucket and together with soil temperature was measured about 1 mile north of the forest, 

across the moor. Mean soil temperatures over the spray and winter periods varied by < 1oC 

(table 1). Rainfall varied hugely from ~ normal in 2001 to very wet in 2002 to dry in 2003 

(table 1).  
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2.3 Measurements   

Stem area was measured annually at breast height to calculate stem area increment (SAI).    

For foliar chemistry, several two-year-old shoots were removed annually from the upper third 

of each tree in January, bulked by plot, separated into current and one year old shoots, dried, 

the needles separated and ground [5].  N and S were measured with a CNS analyzer (Vario-

EL elemental analyzer) and P, K, Ca and Mg in a modified Kjeldahl digest and analysed in a 

1% sulphuric acid on a Perkin Elmer 4300DV ICP-OES at a UKAS accredited laboratory. 

Litter was collected twice a year from 1m2 of guttering, which was also used to collect 

throughfall [13] in the first year of treatment change.  Soil water was collected with zero-

tension lysimeters [4].  One or two samples were collected for the winter period and between 

2 and 4 over the treatment period.  Field samples were preserved using thymol.  Volumes 

collected decreased significantly as the trees closed canopy.  Soil cores, 4 from the middle of 

each plot were removed, using a bulb planter, for assessment of fine roots and mycorrhizal 

infection and assessed at 2 depths. A separate assessment was also conducted to examine the 

C:N ratio of the litter.  Plot soil chemistry was assessed for the organic litter layer and the Ao 

horizon, 0-10 cm of peat, separately for the ridge and undisturbed area between the two lines 

of trees, in March 2003 on bulk samples each representing 10 cores.  pH was measured using 

1:2.5 vol.: vol. in deionised H2O and 0.01M CaCl2 on fresh soil before the soil samples were 

air dried, sieved, remaining fine roots removed and ground. Cation exchange and 

exchangeable cations, Ca, Mg, K, Na, Fe, Mn and Al were measured in 0.5M BaCl2 and the 

metals analysed on a Perkin-Elmer PE4300DV ICP-OES. 

2.4 Statistics 

 The N, S, SAc and 2SAc removal treatments were evaluated against their original treatment 

pairs for the 3 year period.  Data were analysed using Genstat 6 for Window’s, one-way 

ANOVA, no blocking and using plot moisture as a covariate, because of its highly significant 

correlation with growth over the previous 5 years [5].  Residuals were checked for normality 
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and data transformed as necessary.  Where the treatment effects were significant (P< 0.05) 

Fishers least significant difference test was used to separate the means. 

 

3. Results 

3.1 Tree growth, recovery from SAc and responses to N and timescale issues 

Table 2  near here 

 

Over the eight growing seasons of this experiment (1996-2003) annual relative SAI declined 

from > 60 % to < 10% as the trees, planted in 1986, reached canopy closure with an average 

area of 140 cm2 tree-1 at breast height and a predicted yield class of > 28. Treatment effects 

remain relatively modest (figure 1). N availability continued to exert a relatively small 

influence on SAI at this site, although the smaller SAI in response to N removal, indicates the 

additional N was beneficial. The removal of acidity and S did not significantly change growth 

increments (table 2).  The trees, in their exponential growth phase, responded positively to N 

but in the presence of large amounts of acidity the N response was overridden by ‘other’ 

influences.  The addition of the spray, ~ 10 % additional precipitation, to the canopy over the 

growing period had a significant (P< 0.05) detrimental effect on growth (table 3).   

Table  3near here 

Figure 1 near here 

 

3.2 Treatment effects on needle weights 

Figure2 near here 

Plot to plot variation in needle weight was high and no significant treatment effects were 

found.  The one year old needles were almost 50% heavier than current year needles (figure 

2). Over the three years of recovery needle weights declined, -15%, in the control plots. For 

current and one year needles, the removal of acidity tended to increase needle weights.  
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3.3 Responses of nutrient concentrations in current and one year old needles 

 In this field study, the treatments were applied to the canopy, enabling potential canopy as 

well as below-ground interactions. The needle weight and nutrient concentration data has 

been presented for the recovery treatment years and for the preceding year, when the 

replicates received the original treatments. Differences in needle weight can influence foliar 

nutrient concentrations [14].  In good growing years and / or mild winters, such as 1999/2000 

(pre-recovery), large amounts of non-structural carbohydrate can accumulate, serving to dilute 

nutrient concentrations, which are expressed per dry weight. The original and recovery 

treatment pairs often started at different weights or nutrient concentrations (figures 2,3).  To 

identify trends in the recovery treatments and divergence from the original treatment, linear 

fits to the 4 data points have been included when the R2 exceeded 0.9. 

Figure3 near here 

 

 Mg concentrations, in both needle age classes, were significantly affected by the treatments 

(P< 0.05).  In current year needles, acidity reduced Mg concentrations in proportion to dose, 

minus ~ 15 or 30% respectively over the 3 years relative to the control. Neither S nor N alone 

significantly affected Mg concentrations. Removing acidity almost restored Mg 

concentrations to those of the control. However, recovery was much slower in the double acid 

treatments (figure 3).   

 In one year old needles the double acid treatment significantly lowered %Mg. 

Removal of acidity had no effect at either dose (figure 3). N and S treatments had small 

positive effects on the Mg status of one year old needles, relative to the control, which was 

absent in the recovery treatments. The removal of S (Na2SO4) caused Mg concentrations to 

fall (figure 3). 

 Ca concentrations were not significantly affected by treatment (P>0.05) for either age class 

of needles.  In both current and one year old needles Ca concentrations declined over the 
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treatment period by ~ 40%, down from 0.25 % and 0.45% respectively. Removal of acidity 

slowed down the Ca decline (figure 3).  

K concentrations (data not shown) were not significantly affected by treatment, but in both 

year classes of needles the additional wetting of the canopy lowered %K by  ~ 25% below 

those in needles from unsprayed control trees. Mean K concentrations for all treatments were 

0.28, 0.34, 0.29 and 0.33% in prerecovery and recovery years 2001, 2002 and 2003 

respectively for current year needles, and 0.26, 0.27, 0.26 and 0.26 % in one year old needles.  

S concentrations (data not shown) were not significantly affected by treatment (P> 0.05). 

Mean concentrations for all treatments increased from year to year: 0.09, 0.1, 0.11, 0.12 %S 

and 0.09, 0.11, 0.12, 0.14 %S in new and one year old needles respectively.  

P concentrations for all treatments showed almost no annual or treatment variability and 

averaged 0.12% P in current and 0.11% P in one year old needles.   

N concentrations in current year needles were increased by treatments containing N by 

comparison with the control, significantly in recovery year 2 (P= 0.051, <0.001, 0.18 

respectively) (figure 3).  Removal of acidity increased foliar N concentrations.    Removal of 

N caused % N to decrease.  In 2003, foliar N concentrations were noticeably higher than 

previous years, in the treatments received N, especially where acid was removed from the 

double acid treatment. Similar but mainly none significant treatment trends were seen in one 

year old needles (figure 3).  In year three the increase in N status in response to the removal of 

the double acid dose was significant with respect to the control.   

 

3.4 Changes in litterfall 

Figure 4 near here 

 

Prior to implementing the recovery treatments there were differences (none-significant) 

between the treatment pairs, especially for the 2NS Acid treatment (figure 4). Between 
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seasons 2001 and 2003 the effects of treatment recovery on litter weights were small and non-

significant. In 2000 the average litter loss was high ranging from 300 gm –2 in most plots, and 

up to 750 g m2 in the double acid + N treatment, but proceeded to stabilize in subsequent 

years as more of the plots reached canopy closure.  

3.5 Effects of recovery treatments on forest floor litter accumulation, litter pH and N 

concentrations and fine root mass and N concentration 

Tabl 4  near here 

 

 After two treatment seasons’ removal of acidity was reflected in litter pH, but not 

significantly (table 4).  The weight of the litter layer, was reduced when acid was removed, 

significantly so in the double acid plots (table 4). C:N ratios (table 4) were all >30, just above 

the critical ratio of 25-27 indicating N saturation [15].  There were no significant treatment 

effects on litter N (P=0.21). Litter N concentrations were >40% higher than N concentrations 

in the live foliage and the N treatments increased litter N by ~ 10%. The removal of acidity 

had a positive though non-significant effect on fine root mass, whereas removing N reduced 

fine root mass.  The +N treatments contained most fine roots. Concentrations of N in the fine 

roots exceeded those in the foliage by > 40%. Fine root N concentrations were not 

significantly affected by any treatment (table 4), but were higher in the single acid treatment 

when acidity was removed. Nitrogen removal did not affect fine root N concentrations.  

  

3.6 Treatment effects on Ectomycorrhizas (ECM) fruitbody numbers and root morphotypes 

Table 5 near here 

 

Fruitbody numbers were significantly lower where the original treatments contained N, except 

when the N was applied with acid at the single N+ acid dose (table 5), particularly those of 

Lactarius rufus.  Numbers of the smaller Inocybe were also low, as were numbers of 

saprophytic fruiting bodies in these treatments (table 5).  Of the saprophytic fruitbodies, 

Mycena spp. were most sensitive to acidic conditions, being absent from the acid plots (table 
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5).  There was no significant recovery in fruitbody numbers in response to two years of acid 

or N removal.  

Table 6  near here 

 

Proportions of root with the Tylospora morphotype were greatest in the N plots, which 

had least Lactarius rufus (table 6).  Depth sampling showed that proportions of Tylospora 

morphotypes were greater in the 0-5 cm layer, whereas ECMs of L. rufus. Cortinarius and 

Inocybe were more prevalent at depth (data not shown). The contrasting effects of the original 

treatments and soil depth on the occurrence of Tylospora and L. rufus morphotypes meant 

their distribution across the site was inversely related (P <0.001; r = -0.85).  Cortinarius and 

Inocybe morphotypes were again sparsely distributed. Cortinarius was most sensitive to the 

acid treatments, being completely absent from the double acid +N plots. Inocybe preferred the 

S plots (table 6).  Removal of acidity, S and N increased the production of saprophytic 

fruitbodies after 2 years, but not significantly.  Responses to the recovery treatments were 

small among the ECM morphotypes and fruiting bodies of the larger sporocarp formers.     

3.7 Effects of the original treatments and removal of N, S and acidity on soil chemistry 

Soil pH:  

Table 7 near here 

Soil pH governs many biological activities in the soil from microbial transformations to root 

growth [16].  Thus, changes in soil pH may be crucial to the vitality and sustainability of the 

below-ground community structure and function.  Soil pH (CaCl2) in 2003, into the third 

treatment season, showed no treatment effect, whereas in water  pH showed significant 

increases due to removal of the double acid dose and N from the N treatment (table 7).  pH in 

water indicated a significant acidifying effect of the acid and also N treatments on the peat 

soil so that after 7 years,  acidity was increased more by adding N than by adding N + acid. 

Soil water:  
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Figure 5 near here 

 

Soil water Mg was unaffected by acidity in 2001 but in 2002 and 2003, was almost doubled 

compared to that measured in the control treatment which averaged ~ 30µmolc throughout, 

except in 2003 when it rose to~ 50µmolc (figure 5). By comparison the N and S treatments 

produced similar Mg concentrations to the control.  Highest Mg concentrations were in the 

acid treatments. During the winters, in the absence of treatment, Mg concentrations remained 

similar to or below the control for all treatments. When acidity was removed the Mg response 

disappeared, Mg concentrations fell well below the original treatments, and were at least 50% 

below the control concentrations. The effects of S and N removal on soil water Mg 

concentrations were minimal as neither treatments had significantly affected soil water Mg 

concentrations.  

 Soil water Ca concentrations (figure 5) mirrored the treatment responses reported for Mg 

(figure 5) except that the effects were all more exaggerated. Ca concentrations exceeded those 

of Mg. Removal of acidity caused Ca concentrations to decline to below control 

concentrations. Control Ca concentrations averaged ~ 40µmolc all except for 2002 when they 

rose to 80 µmolc.  

Soil water K responded differently to the original treatments by comparison with Mg and Ca 

(figure 5). In 2001, except for the S treatment, all other treatments had lower K concentrations 

than the control, which measured 11µmolc. Over both winter periods concentrations likewise 

tended to be below the control values of ~8 and ~10µmolc for 0102 and 0203 respectively. In 

2002, the effects of the spray treatments were pronounced with the acid and N treatments 

increasing K concentrations and the S and double acid + N dose treatments reducing K 

concentrations to below the ~16µmolc in the control. Removing S especially and N increased 

K concentrations. In 2003 only the large impact of removing S was maintained (figure 5), 

there was no effect of the acid removal.  
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Soil water Al responded similarly to Mg and Ca (figure 5).  In 2001 concentrations for the 

acid and N treatments were similar to the control (~ 26 µmolc)(figure 5). Doubling the acidity 

+ N increased soil water Al as did removing S. Acid removal from the double acid + N  

treatment did lower the Al concentration but in the absence of treatment, winter, this effect 

disappeared. As seen with Mg and Ca during the 2002 spray season, all the treatments showed 

elevated concentrations, ~80% higher for the control (~ 44µmolc). In 2002 the single acid + N 

treatment increased Al which was reversed in the minus acid recovery treatment. Al 

concentrations were significantly lowered. N and S removal increased Al, but not 

significantly. After this summer peak in 2002, all Al concentrations fell back to control values 

or less during the winter no spray period and were barely increased during the restricted 2003 

treatment season. 

 The base cation (BC) to Al ratio where BC=Mg+Ca+K, was highest in the N treatment and 

reduced by the removal of N, in line with the control (figure 5). The ratios were lowest in 

2001/2 but were 3 fold higher in 2003. The S and double acid + N treatments had the lowest 

BC/Al ratios, which were not affected by the removal of S or acidity.  

Sodium concentrations remained relatively constant in the control (~140, 180, 270,150, 110 

µmolc) except during the 2002 spray season when concentrations almost doubled (figure 5).  

The S treatment (Na2SO4) more than doubled soil water Na compared with the control and 

even in the absence of spray, Na concentrations remained elevated. Omitting Na2SO4 caused 

Na concentrations to fall. Sodium concentrations were fairly unresponsive to the N and N + 

acid treatments although, N removal tended to increase Na concentrations. 

Figure 6 near here 

 

Soil water pH control values measured 4, 4.1, 3.7, 4.2, 4.3 over the five periods, being 

significantly more acid in 2002, when all the cation concentrations were elevated (figure 6). 

Soil water pH was more acid than the control in all the spray treatments except the one 
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receiving only N.  The S treatment did not significantly affect on soil water pH, during any 

period (figure 6).  Adding N made soil water more acid but where N was removed the soil 

water pH was lower still. The acid + N treatments had the most acid soil water and there were 

none significant increases in soil water pH when acidity was removed.  

Soil water NH4 + concentrations over the three years were relatively stable in the control 

(~6.0, 5.5, 7.5, 10, 8 µmolc) Adding or removing S did not affect soil water NH4
+. There was 

a large response to adding the double acid + N treatment (+5 fold soil water NH4 +) whereas, 

the single acid + N treatment had no effect and N alone only doubled soil water NH4 +.  Over 

the winter no spray periods, NH4
+ concentrations were all more similar to control 

concentrations, except where acidity was removed from the double acidity + N treatment, 

when concentrations remained high (figure 6). The addition of acid + N led to higher NH4
+ 

(significantly in 2003) than when N alone was added (figure 6). 

 Soil water NO3
- concentrations exceeded NH4

+ concentrations in the N addition treatments 

(N, NSAcid and 2NSAcid) but were barely measurable in the control and S treatments (<1 

µmolc figure 6). Adding N alone increased NO3
- concentrations more than N + acidity. When 

N was removed the NO3
- concentrations fell back to control values. Generally removal of 

acidity increased NO3
- concentrations (figure 6).   

Soil water SO4
2- concentrations varied seasonally in the control plots (~ 90, 60, 140, 60, 50 

µmolc).  There appeared to be treatment effects even where S was not added (figure 6).  

Treatments containing S significantly enhanced SO4
2- concentrations during the spray period 

and there was also a small memory effect (figure 6).  N additions reduced the amount of SO4
2- 

relative to the dose (figure 6). Removal of S caused SO4
2- concentrations to fall back to 

concentrations measured in control plots. 

 Soil water PO4
3- concentrations behaved in a different way from all other ions and the 

concentrations were very low e.g. controls over the five measurement periods were 0.4, 0.3, 

1.2, 3.3 and 1µmolc respectively. Treatment effects varied with the measurement period, but 
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some generalisations were apparent.  Phosphate concentrations were very low in the double 

acid treatment and there was negligible recovery (figure 6). Effects of single acid + N were 

much less pronounced. In 2002 plots treated with N or which had received N, had increased 

phosphate concentrations (figure 6). Adding S barely affected soluble PO4
3- concentrations.  

3.8 Relationships between ions in soil water:  

Figure 7 near here 

 

A range of relationships between ions were explored, and the best relationships were between 

SO4
2- and Al3+ (Figure 7) for double acid + N R2= 0.9609, acid + N R2 = 0.9738 and for the 

recovery treatments minus acid R2 = 0.9767 and minus N R2 = 0.9209. Ca2+ concentrations 

were also linearly related to SO4
2- concentrations in the acid treatments R2= 0.9718 (double) 

and 0.93 (single). 

 

3.9 Exchangeable cations  

Figure 8  near here 

 

These were only assessed once in the spring following the eighth and final year of treatment.  

Cation concentrations were highly variable between plots and between the ridges, where the 

trees were planted, and the undisturbed area between the two rows of trees. No significant 

treatment effects were found, either between the original or recovery treatments for either area 

and so the data were averaged for the ridge and middle areas. Data for the main cations, likely 

to affect the trees are shown in figure 8, as proportions of the CEC, ~185 cmolc kg-1. The 

exchange complex was dominated, > 50% by Al3+, which was increased in all the treatments. 

Ca2+ occupied 8-19%, < 10% by Mg2+ and <5% for the monovalent cations K+ and Na+. 

4 Discussion 
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This recovery experiment was established to investigate how quickly different parts of a forest 

ecosystem (Sitka spruce), which had been treated with elevated N, S and acid + N deposition, 

could recover when these pollutants were removed.  Some responses were quite rapid, 

parameters that had responded quickly to the original treatments, e.g. elevation of cation 

concentrations in the soil water appeared to be reversed equally quickly, with no enhancement 

once acidity was removed. By comparison most effects of the double acid + N treatment, 

which involved supplying pH 2.5 H2SO4 + NH4NO3, at twice the frequency and thus N and S 

doses as the acid + N treatment, produced significant effects that were often not, or less 

effectively, reversed. 

4.1 Growth, N responses and factors influencing growth 

Tree growth appears to be something of an enigma on this site, yield class 27 is good, yet the 

needle nutrient concentrations, for N, P and Ca all lie very close to the minimum values 

reported by Innes [10] for 30-40 year old Sitka spruce surveyed in the UK. Concentrations of 

soil solution Mg which was very sensitive to the treatments, was relatively abundant in the 

needles, possibly reflecting the maritime influence at this site [17,18].  Foliar N 

concentrations, although low were still 10-20% above the minimum reported values, possibly 

explaining the absence of a large growth response to N.  However K concentrations, not 

unexpectedly as peat is notoriously K deficient [19], were less than half of the minimum 

reported by Innes [10].  By comparison with minimum nutrient concentrations for Norway 

spruce [10], our nutrient values still fell at the low end of values expected to restrict growth 

and cause deficiency symptoms, neither of which were apparent.   

Thelin [20] used the ratio of N to other nutrients as an indicator of nutrient status, the 

higher the value the more deficient the nutrient relative to N. Our ratios for Sitka spruce, 

expressed as a percentage relative to N, at ~29, 10, 10, 19 for K, P, Mg and Ca respectively 

for current year needles fall at the very lowest end for K, quoted for Norway spruce [20].  

Doubling acidity reduced the K ratio to 20, and yet growth was not obviously reduced. This 
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treatment also shed most needles and may have redistributed nutrient through internal 

recycling to meet demand, but this theory is not supported by other nutrient data.  

  The sprayed control trees performed poorly compared with the other treatments, 

particularly the no spray control, which also received no additional nutrients.  Significant 

leaching of K with just water was measured in throughfall from all treatments [17,18].  We 

were unable to detect these losses in measurements of the foliar nutrient concentrations, 

suggesting that reporting nutrients as percent dry weight may not be representative of 

physiologically active nutrient pools. Sitka spruce, before canopy closure, appears to be more 

tolerant than Norway spruce of unfavourable nutrient concentrations / nutrient ratios, so long 

as N is not deficient. This experiment has highlighted the increased risk of K deficiency, from 

enhanced leaching, for Sitka spruce growing on organic soils under a wetter climate. 
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4.2 Effects of acid removal on base cations 

After 8 years of treatment with acid + N the concentrations of soil water Mg and Ca were still 

elevated, while K concentrations were low. After removal of the acid these ion concentrations 

barely exceeded the control, but because Al concentrations also fell, the BC:Al ratio remained 

relatively stable. Values fall within the range that Sverdrup and Warfvinge [21] consider 

unlikely to negatively affect the growth of Norway spruce, which would appear to be more 

conservative than Sitka spruce with respect to its soil chemical tolerance. Hruška et al. [22] 

found a negative relationship between the BC/Al ratio in the organic rooting zone and 

defoliation however their values were < 2; our values ranged between 2 and 5. Foliar base 

cation concentrations reflected these falling soil solution base cation concentrations, but on 

this site remained sufficient. We cannot comment on how long the base cation status could be 

sustained, but with the maritime source of Mg, which the trees were able to take up [17], 

together with the potentially reducing demand of a closed canopy, it seems likely that on this 

site the reducing base cation concentrations as a response to falling acidity would not 

compromise tree growth. 
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  Declining K availability as acidity inputs fall could reduce growth.  Nitrification 

responded positively to falling acidity and this could increase K leaching, via the mobile 

anion effect. However, sulphate concentrations also fell back to below control values in the 

recovery treatments and could counteract the nitrification effect. Both Ca2+ and Al3+ 

concentrations were positively related to SO4
2- concentrations, as observed by Sogn and 

Abrahamsen [23] in a lysimeter experiment with H2SO4 and NH4NO3. The benefit of falling 

Al concentrations would be offset by the concomitant fall in Ca2+ concentrations.  In this soil 

there was no ‘memory effect’ and desorption of SO4
2- over and above control concentrations, 

as implied by Matzner and Murach [24] suggested that when soil solution SO4
2-concentrations 

fall to very low levels the legacy of previous S deposition may desorb, offsetting the benefits 

of lower S deposition. One possible explanation for minimal desorption maybe that the large 

C and organic ligand resource present restricted the amount of SO4
2- retained [24] by this soil 

over the eight years of inputs. 

4.3 Effects of acid removal on N uptake and availability 

The presence of acidity has had contrasting effects on N uptake by the trees. At the canopy 

level, NO3
- uptake was stimulated by the presence of acidity, H+ ions, via co-transport to 

maintain electroneutrality, whereas the uptake of NH4
+ ions fell in the presence of acidity, out 

competed by H+ for uptake sites [17,18]. Supplying N with acidity negated its stimulatory 

effect on fine roots, so restricting the potential of the trees to take up the additional N via the 

roots [5].  Fine root growth responded positively to the significant increase in soil pH (H2O) 

assessed after 2 years, when acidity was removed.  These changes led to a noticeable increase 

in foliar N status. These results strongly suggest that as the proportion of acid to N deposition 

declines, N uptake will increase in response to the improvement in fine root growth.  

Mycorrhizas were less affected by acidity per se and we have already seen that N additions 

alone can reduce their diversity [25]. Whether the increased potential for N uptake by spruce 

represents an improvement in the status quo will depend on the N status of the ecosystem. 
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The removal of acidity also influenced the availability of N in the soil.  On this acid 

peat, the removal of acidity from the double acid treatment led to higher soil solution NO3
- 

concentrations. Ammonium concentrations appeared to go in the opposite direction, implying 

increased nitrification in response to lower acidity [26]. Adding N with acid enhanced soil 

water NO3
- concentrations by less than half as much as N and even when the acid was 

removed soil water NO3
- concentrations remained below those in the N only treatment, again 

implying that the acidity had reduced nitrification. Removing acidity had variable, seasonally 

dependent effects, probably linked to the microbial nitrifying community, (nitrification was 

not assessed). Killham [27] suggests between year variation in the scale of change in soluble 

N reflects the balance between soil moisture and temperature effects on nitrification.  

Nitrification is also sensitive to allelopathy, so the effect of removing acidity may not just be 

direct, but may also involve effects on other microorganisms which may include soil fauna, 

fungi and heterotrophic bacteria [27].  Equally NH4
+ may not be the only N source, nitrifying 

fungi can use organic N which is much more abundant (> 10 fold) than the inorganic ions, 

even where the treatment includes mineral N. The acidity effects on N availability in this acid 

peat soil appear to be mediated through nitrification and a high degree of pH sensitivity 

amongst the soil microbial community. 

4.4 Fate of applied N 
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Increases in foliar N status and stemwood growth, relative to the control trees, were relatively 

modest on this site, suggesting the extra N (400 and 800 kg N ha-1) was not stored above 

ground.  Large pools of N were measured in the fine roots and litter, almost 50% higher than 

N concentrations in the foliage, but neither the N nor acidity had significantly enhanced root 

N concentrations. Ectomycorrhizal fungi can sequester N in osmiophilic vacuolar bodies in 

the fungal mantles that enclose mycorrhizal roots, which tend to be more common following 

N additions [28]. No difference in % N was found, but there were large differences in root 

mass in response to N, probably diluting the N concentration. Acidity restricted fine root 

growth and N uptake but root mass was substantially increased by N without acidity. N 

additions also increased litter, especially when added with acid. On this site 25% of the 

additional N, was sequestered in the litter layer. There was no effect of the single acid dose on 

the amount of N sequestered.  The double acid + N treatment sequestered about the same 

proportion of its mineral N input explaining the higher soil solution N concentrations. 

These observations suggest that acidity increases the amount of N that will leach and 

be lost from the system. The C:N ratio  which ranges from 30 to 37 still exceeds the critical 

ratio below which NO3
- leakage is predicted [29]. However, our results suggest that when N is 

deposited with acidity the system will be more likely to leak N at a higher C:N ratio.   

4.5 N effects below ground 
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The significance of increasing N concentrations, and acidity, with respect to effects on fine 

roots and mycorrhizas has been widely debated [30].  In this very acid soil fine root mass was 

highly sensitive to the effects of acidity and N inputs. Removing acidity significantly 

increased fine root mass whereas removing N reduced the mass of fine roots. There were no 

significant changes in mycorrhizas in response to N or acid removal. Nitrogen additions 

significantly increased the proportion of non-mycorrhizal tips. None of the treatments affected 

live root percentages. Our results appear to contradict those discussed by Matzner and Murach 

[30] who report negative effects of increasing N inputs on fine roots. Our results indicate 

Sitka spruce roots respond positively to N but negatively to acid, but that N does compromise 

mycorrhizas.  For a more detailed discussion of the effects of N deposition on mycorrhizas see 

Sheppard and Wallander [31].  

5 Conclusions 

A decline in acidity will affect the bioavailability of N through several mechanisms: improved 

fine root growth ie. increased uptake surface and improved conditions for nitrification. Base 

cation concentrations will also be reduced but the impact on tree growth will be site and 

species dependent.  Effects on N and base cations were quite rapid. Where acid inputs have 

been high, recovery may be slow and significant amounts of N deposition may be lost through 

leaching. As observed previously the soil solution is very responsive to N and acid inputs, 

unlike tree growth. Foliar nutrient concentrations appear to be more responsive to the  

removal of acidity and N than their addition. 

 

Acknowledgements 

This work was funded by Defra through the Terrestrial Umbrella, EPG 1/3/94 and CEH. 

Frank Harvey is thanked for undertaking the treatment application for 8 years and helping 

with the shoot sampling. Comments from an anonymous referee have significantly improved 

this manuscript. 



 23

References 
[1]    Fowler, D., Muller, J.B.A., Smith, R.I., Cape, J.N., and Erisman, J.W. 2004.    

     Nonlinearities in source receptor relationships for sulphur and nitrogen compounds.   
     Ambio 34, 41-46. 

      [2]   Sheppard, L.J., Crossley, A., Cape, J.N., Harvey, F., Parrington, J. and White, C., 1999.    
              Early Effects of Acid Mist on Sitka Spruce Planted on Acid Peat Phyton 39, 1-25. 

[3]   Sheppard, L.J. and Crossley, A., 2000. Responses of a Sitka Spruce Ecosystem after 4    
        years of Simulated Wet N Deposition: Effects of NH4NO3 Supplied with and without   
       Acidity (H2SO4 pH 2.5). Phyton 40, 169-174. 
[4]   Sheppard, L.J., Crossley, A., Parrington, J., Harvey, F.J. and Cape, J.N., 2001. Effects of   
        simulated acid mist on a Sitka spruce forest approaching canopy closure: significance of  
        acidified versus non-acidified nitrogen inputs. Water, Air and Soil Pollution 130, 953- 
        958. 
[5]   Sheppard, L.J., Crossley, A., Harvey, F.J. Skiba, U., Coward, P. and Ingleby, K. 2004. 
        Effects of five years of frequent N additions, with or without acidity, on the growth and  
        below-ground dynamics of a young Sitka spruce stand growing on an acid peat:  
        implications for sustainability. Hydrology and Earth System Sciences 8. 377-391. 
[6]   Wright, R.F., and Rasmussen, L. 1998. Introduction to the NITREX and EXMAN 
        projects. Forest Ecology andl Management 101, 1-9.  
[7]   Sigurgeirsson, A. 2003.Final report from SNS projects. Scandinavian Journal of Forest  
        Research 18. 487-498. 
[8]   Emmett, B.A., 1999. The impact of nitrogen on forest soils and feedbacks on tree growth.  
        Water Air and Soil Pollution 116, 65-74. 
[9]   Kreutzer, K., Beier, C., Bredemeier, M., Blanck, K., Cummins, T., Farrell, E.P.,  
        Lammensdorf, N., Rasmussen, L., Rothe, A., De Visser, P.H.B., Weis, W., Weilβ, T.  
        and Xu,Y.-J. 1998. Atmospheric deposition and soil acidification in five coniferous  
        forest  ecosystems: a comparison of the control plots of the EXMAN sites. Forest  
        Ecology and Management. 101 125-143. 
[10]  Innes, J.L., 1993. Forest Health: Its Assessment and Status. CAB International, Oxford.  
         ISBN 085198 793 1. 
[11]  Vogt, K., A., Grier, C.C., Meier, C.E., and Edmonds, R.L. 1982. Mycorrhizal role in net   
         primary production and nutrient cycling in Abies amabilis ecosystems in Western  
         Washington. Ecolology 63. 370-380. 
[12]  Nilsson, L-O. and Wiklund, K. 1994. Nitrogen uptake in a Norway spruce stand  
         following ammonium sulphate application, fertilisation, irrigation, drought and nitrogen- 
         free ferilisation. Plant and Soil 164, 221-229. 
[13]  NEGTAP 2001. Transboundary Air Pollution: Acidification, Eutrophication and  

Ground-Level Ozone in the UK.ISBN 1 870393 61 9.  
[14]  Linder, S., 1995. Foliar analysis for detecting and correcting nutrient imbalances in    
         Norway spruce. Ecological  Bulletins  44, 178-190. 
[15]  Gundersen P & Rasmussen L 1990 Nitrification in forest soils: effects of N deposition    
        on soil acidification and Al release. Review Environmental Contamination Toxicology  
         3  1-45. 
[16]  Deans J.D., Leith I.D., Sheppard L.J., Cape J.N., Fowler D., Murray, M.B. and Mason  
         P.A. 1990. The influence of acid mists on growth, dry matter partitioning, nutrient  
         concentrations and mycorrhizal fruiting bodies in red spruce seedlings.  New  
        Phytologist 115: 459-464. 
[17]  Cape, J.N., Dunster, A., Crossley, A., Sheppard, L.J. and Harvey, F.J., 2001.  
         Throughfall chemistry in a Sitka spruce plantation in response to six different simulated  

polluted mist treatments. Water Air and Soil Pollution 130, 619-624. 



 24

[18]  Chiwa, M., Crossley, A., Sheppard, L.J., Sakugawa, H. and Cape, J.N., 2003.  
        Throughfall chemistry and canopy interactions in a Sitka spruce plantation sprayed with    
          six different simulated polluted mist treatments. Environmental Pollution 127, 57-65. 
[19]  McIntosh, R., 1983.  Fertilizer treatment of Sitka spruce in the establishment phase in  
         upland Britain. Scottish Forestry 35, 3-13. 
[20]  Thelin, G., 2000. Nutrient imbalance in Norway spruce. Dissertation, Lund 2000. 
[21]  Sverdrup, H., Warfvinge, P. and Nihlgård, B., 1994. Assessment of soil acidification  
         effects on forest growth in Sweden.  Water Air and Soil Pollution, 78, 1-36. 
[22]  Hruška, J., Cudlĭn, P.and Krăm P. 2001. Relationship between Norway spruce status  
         and soil water base cations / aluminium ratios in the Czech Republic. Water Air and  
          Soil Pollution 130, 983-988. 
[23]  Sogn, T.A. and Abrahamsen G. 1998. Effects of N and s deposition on leaching from an  
         acid forest soil and growth of Scots pine (Pinus sylvestris L.) after 5 years of treatment.  
         Forest Ecology and Management 103, 177-190. 
[24]  Gobran, G.R. and Nilsson, S.I. 1988. Effects of forest floor leachate on sulphate  
         retention in a spodosol soil. Journal.of Environmental Quality 17, 235-239. 
[25]  Carfrae, J.A., Skene, K.R., Sheppard, L.J., Ingleby, K. and Crossley, A. 2006. Effects of  
          nitrogen with and without acidified sulphur on an ectomycorrhizal community in a  
         Sitka spruce (Picea sitchensis Bong. Carr) forest. Environmental Pollution 141, 131-    
         138. 
[26]  Sverdrup, H., Hagen-Thorn, A., Holmquist, J., Wallman, P., Warfvinge, P., Walse,C.   
         and Alvetey, M. 2002. Biogeochemical processes and mechanisms. In: Sverdrup, H.,  
         Stjernquist, I. (Eds), Developing principles and models for sustainable forestry in  
        Sweden, Dordrecht, The Netherlands, Kluwer Academic publishers, 197-271. 

[27] Killham K. 1994. Soil Ecology. The Nitrogen Cycle, 106-138.  Cambridge 
University  Press UK. ISBN: 0 251 43521. 

[28]  Wallenda, T. and Kottke, I. 1998. N deposition and ectomycorrhizas. New Phytologist  
         139. 169-187. 
[29]   Gundersen, P., Emmett, B.A., Kjonas, O.A., Koopmans, C.J. and Tietema, A. 1998.  
          Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX  
          data. Forest Ecology and Management 101, 37-55.  
[30]   Matzner, E. and Murach, D. 1995. Soil changes induced by air pollutant deposition and  

             their implication for forests in central Europe. Water Air and Soil Pollution 85 63-76. 
      [31]  Sheppard, L.J., and Wallander H 2004 Atmospheric Nitrogen deposition - pollutant or  
               fertiliser? In: S. Amâncio and I. Stulen (Eds) Nitrogen acquisition and assimilation in                 

         higher plants. Kluwer Academic Publishers, pp. 65 – 98. 
 
 

 

 

 



 25

 

 

Figure legends: 

 

Figure 1 Effects of 3 years of recovery treatments: removing acidity (SAc), S, double acidity 

(2SAc) and N, applied to a 15 year old Sitka spruce canopy growing in Deepsyke forest in the 

Scottish borders, implemented in 2001, on stem relative area increment (SRAI) % at 1.3m  

(n=2,+ n=4 adjusted for covariate plot moisture). 

Figure 2 Weights (g) of 100 current (new) and one year old (old) needles collected in January 

from a 15 year old Sitka spruce canopy growing in Deepsyke forest in the Scottish borders. 

Mean values are given for the pre recovery treatment year for the paired plots and the three 

years of recovery treatments: removing SAc (NSAr), S (Sr), 2SAc (2NSAr) and N (Nr). 

Where the trends corresponded to linear fits R2 > 0.9 the line has been included. 

Figure 3 Mg, Ca and N concentrations (% dwt) in current and one year old needles collected 

in January from a 15 year old Sitka spruce canopy growing in Deepsyke forest in the Scottish 

borders. Mean values are given for the pre recovery treatment year for the paired plots and the 

three years of recovery treatments: removing SAc (NSAr), S (Sr), 2SAc (2NSAr) and N (Nr). 

Where the trends corresponded to linear fits R2 > 0.9 the line has been included. 

Figure 4 Weights of litter (g m-2) in paired plots taken from a 15 year old Sitka spruce canopy 

growing in Deepsyke forest in the Scottish Borders.  The pairs received the original treatment 

up to the end of 2000. The recovery treatments, removing SAc, S, 2SAc and N, were 

implemented in 2001 (dashed lines). 

Figure 5 Cation concentrations (µ molc l-1) of Mg, Ca, Al, K, BC to Al ratio and Na in soil 

water collected by zero tension lysimeters, (bulk of 10 per plot) during the time the recovery 

treatments (NSAc-SAc, 2NSAc-2SAc, S-S and N-N) were implemented, 2001-2003. The 

original treatments were NSACID, 2NSACID, S and N. 
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Figure 6 H+, NH4-N, NO3-N, SO4-S and PO4-P concentrations (µ molc l-1) in soil water 

collected by zero tension lysimeters, (bulk of 10 per plot) during the time the recovery 

treatments (NSAc-SAc, 2NSAc-2SAc, S-S and N-N) were implemented, 2001-2003. The 

original treatments were NSACID, 2NSACID, S and N. (Control values omitted for clarity, 

given in text). 

Figure 7 Relationships between soil water SO4
2-

 concentrations and the concentrations of Al3+ 

and Ca2+ for original and recovery treatments for the five spray and no spray sampling 

periods. The relationships are shown for the different treatments, SO4
2- versus Al3+, R2 for 

2NSAc = 0.9609, NSAc = 0.9738, -NSAc = 0.9767, S = 0.9209; for SO4
2- versus Ca2+, R2 for 

2NSAc = 0.97, NSAc = 0.93. 

Figure 8 Proportion (%) of the cation exchange capacity, below the litter layer, occupied by 

Ca, Mg, Al, Na, and K after 3 years of recovery treatments and 8 years of the original 

treatments, data for the middle and ridge have been combined. There were no significant 

treatment effects. 
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Table 1 Dates of spray treatment periods between 2001 and 2003 when the ‘recovery’ 

treatments were applied. Rainfall (mm) amounts during the winter with no treatment and over 

the spray periods. In 2003 only 25% of the treatment was applied due to insufficient rainfall. 

Recovery treatments implemented in 2001: (2 plots per treatment, 4 wet and dry control 

plots). N inputs were 48 or 96 kg N ha-1 y-1 and S were 48 or 96 kg S ha-1 y-1. 

 2001 2002 
   
Spray start  22 May 8 May 13 May 
Spray finish 29 

November 
18 
October 

20 
November 

Rain Jan. to start spray (mm) 310 427 146 
Rain over the spray treatment period (mm) 521 883 411 
Mean soil temp Jan. to start of spraying (oC) 3.4 4.5 3.9 
Mean soil temp. over the spray treatment 
period (oC) 

10.0 10.1 10.7 

 

2003 ~ 
 

  

Phase 1      Phase II 

NSAcid   (NH4NO3 +H2SO4)    NSAcid pH 2.5    

       N-SAc removal of S and acidity (-SAc) 

2NSAcid   2*(NH4NO3 +H2SO4)   2NSAcid pH 2.5  

      2N-2SAc removal of S and acidity (-2SAc) 

N only  NH4NO3   N only      

      N - N removal of N to rainwater only 

S only  Na2SO4   S only      

      S - S removal of S to rainwater only 

Control rainwater   Control no change 

No spray     No spray no change 
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Table 2 Effects of Recovery treatments, removing SAc, S, 2SAc and N, applied to a 15 year 

old Sitka spruce canopy growing in Deepsyke forest in the Scottish Borders, implemented in 

2001, on absolute growth area increments (cm2) adjusted for covariate (n=2).  The ratio of 

treatment means pre and post recovery are provided for comparative purposes. (†At this time 

both pairs received the same treatment).  Probabilities for treatment (Fpr) and covariate 

(Fprcov) effects are also included. 

 

 Increment after 5 yrs 

prerecovery † 

Ratio Increment post 3 yrs 

recovery 

Ratio 

NSAc 81.3  36.4  

-SAc 81.1 1.00 37.2 0.98 

S 67.2  29.7  

-S 64.5 1.04 28.1 1.06 

2NSAc 77.2  32.5  

-2SAc 77.1 1.0 33.2 0.98 

N 82.1  41.6  

-N 78.2 1.05 33.8 1.23 

F pr 0.36  0.62  

F prcov <0.01  <0.001  

Table 3 Effect of 8 years treatment with 48-50 kg N/S ha-1 y-1 or 96-100 kg N/S ha-1 y-1 with 

or without acidity on relative area increment RAI (%) or actual stem area at 1.6m (cm2) (n=2 

or 4, adjusted for the covariate plot moisture).  Values followed by the same letter are not 
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significantly  different. 

 

 
RAI  1996-2003 

% 

Area 1996-2003 

cm2 

NSAcid 652 a 138.5 

S 595 a 124.4 

2NSAcid 600 a 132.3 

N 546 ab 137.1 

Control + 464 b 114.3 

Dry control + 606 a 141.2 

F pr treat 0.032* 0.164  

LSD 141 32.2 

CV% 10.2 9.8 
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Table 4. Forest floor properties and fine root distribution and N chemistry in the original and 

recovery treatments, sampled in November 2002 after 2 treatment seasons. Values followed 

by the same letter in each column are not significant at P<0.05. Paired effects of recovery are 

shown in bold. 

 

 Litter 

pH 

Litter  

g m2  

Litter 

N% 

Litter 

C:N  

ratio 

Fine roots  

g m2 

Fine roots 

%N 

NSAcid 3.91 ab 1500 ab 1.62 33.1 164 1.55 

N-SAc 4.0 b 1120 b  1.63 32.5 363 1.65 

S 4.17 bc 510 c 1.44 36.9 83 1.51 

Min S 4.24 c 682.c 1.4 37.1 54 1.67 

2NSAcid 3.79 a 1733 b 1.57 34.2 191 1.56 

2N-SAc 3.86 a 1177 a 1.68 31.9 257 1.58 

N 4.05 bc 1215 b 1.7 30.8 318 1.67 

Min N 4.12 bc 1030 b 1.66 31.7 190 1.68 

Control 4.21 bc 757c 1.55 33.8 116 1.52 

No Spray 4.15 bc 857c 1.45 35.8 83 1.65 

P value 0.012 0.01 0.21 0.39 0.24 0.89 

LSD na 509 0.27 6.9 271 0.3 
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Table 5 Effects of the Original treatments on fruitbody (FB) numbers and species diversity 

assessed in autumn 2002, n=2. 

 

 NSAcid S 2NS 

Acid 

N Control No 

spray 

P value

Total ECM FB 238bc 322ab 94c 79c 386ab 611a 0.005 

Tylospora 

fibrillosa  

21.2 20.6 16.5 24.4 20.8 20.7 0.064 

Lactarius rufus 199abc 256ab 77bc 30c 337a 556a 0.021 

Cortinarius spp.  3.4 16.3 0 8.7 20.8 24.0 0.170 

Inocybe spp. 0.51bc 2.34a 0.16c 1.40abc 1.66ab 2.33a 0.016 

Laccaria spp. 12.0 6.7 0.2 4.8 2.0 0 0.175 

ECM diversity  1.87 3.40 1.62 2.38 3.04 3.31 0.051 

Total sapro. FB 129a 112a 30b 79a 136a 116a 0.005 

Marasmius 

androsaceus 

122 68 25 59 99 98 0.142 

Mycena spp. 0c 11.6ab 0.2c 6.6b 22.6a 16.8a <0.001 

Galerina sp. 6.8 32.4 4.8 13.1 14.3 1.4 0.945 

Saprophytic 

diversity  

1.00cd 1.94ab 0.81d 1.42bcd 1.75abc 2.40a 0.013 

Letters indicate LSD between means in the same row if P <0.05. Log(n+1) transformations 

were performed on all data except diversity measurements. Means have been adjusted for the 

covariate. 
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Table 6 Effect of the original treatments on litter depth, root growth and proportions of 

ECM morphotypes sampled from the central undisturbed area between the two rows of trees. 

 

 NS 

Acid 

S 2NS 

Acid 

N control No 

spray 

Proba

bility 

Litter depth (cm) 1.13b 1.03b 2.42a 1.13b 0.56c 1.15b <0.001

Total root tips 3351ab 3888ab 3725ab 5963a 3065bc 1547c 0.009 

Fine root dry wt (mg) 831a 687a 683a 796a 548ab 306b 0.010 

% live roots 23.6 24.2 25.2 19.9 21.9 22.9 0.914 

% non-mycorrhizal 

tips 

24.1b 18.8bcd 43.2a 21.2bc 13.5cd 9.1d <0.001

% Tylospora 45.6ab 30.0b 40.0ab 59.1a 25.1bc 12.7c 0.002 

% Lactarius rufus 24.4c 37.4bc 16.8c 14.6c 52.8ab 72.8a 0.001 

% Cortinarius 5.2 6.8 0 0.6 7.9 5.6 0.158 

% Inocybe 0.72b 6.68a 0b 3.07b 0.95b 0b 0.001 

Means are adjusted using soil moisture (%) as a covariate. Letters indicate LSD between 

means in the same row if P <0.05. Square root transformations were performed on root tips 

and root dry weight, and arcsine transformations on percentages. 
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Table 7 Soil pH measured in June 2003 (5 cores/plot from the upper 10cm) measured in 

CaCl2 (10-2M) and water. Values followed by the same letter in each column are not 

significantly different at P<0.05. Paired effects of recovery are shown in bold. 

 

 pH in CaCl2  pH in H2O 

NS Acid 2.98 3.84 b 

N-Ac 2.88 3.91 b 

S 3.01 4.0 b 

-S 2.96 3.94 b 

2NSAc 2.88 3.69 a 

2N-Ac 3.02 4.0 b 

N 2.93 3.67 a 

-N 2.92 3.84 b 

Control 2.92 4.02 b 

No spray 3.00 4.05 b 

P value 0.26 0.011 
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