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ABSTRACT 

Efficient and reliable materials for gas separation, syngas production, and hybrid 

nuclear power plants must be capable of reliably operating at a high-temperature range of 

700-1000°C and under exposure to highly oxidizing and reducing conditions. Candidate 

materials for these applications include alkaline metal doped lanthanum ferrite. 

In the first study, the impact of A site substitution by different alkaline metals on 

lanthanum ferrite (LMF, M=Ca, Sr, and Ba) was investigated. The study focused on 

thermal expansion near the Néel transition temperature and a magneto-elastic 

contribution to thermal expansion was identified for each sample. Iron oxidation, Fe3+ to 

Fe4+, was identified as a preferred charge-compensation mechanism for Ca substitution 

while a mix of iron oxidation and oxygen-vacancy formation was identified for Sr and Ba 

substituted samples. 

The second study focused only on calcium substituted lanthanum ferrite but with 

a comparison between stoichiometric and sub-stoichiometric quantities of iron on the B 

site. The samples were heat treated in oxidizing (air), mildly reducing (Ar), and very 

reducing (5% H2-N2) atmospheres to compare the impact of iron sub-stoichiometry and 

PO2 on the Néel transition and orthorhombic-to-rhombohedral transition temperatures. 

Treatment in reducing conditions caused the Néel transition temperature to increase for 

all samples. The orthorhombic-to-rhombohedral transition temperature was determined to 

decrease for samples treated in Ar and to occur gradually over a broad temperature range 
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when treated in 5% H2-N2. Iron deficiency during preparation was determined to cause a 

decrease in calcium actual content and a general increase in both phase transition 

temperatures in all samples. Iron vacancy formation was also determined to be unlikely 

due to the high energy of the defect and the samples compensated for iron sub-

stoichiometry by rejecting calcium on the A site in favor of lanthanum. 
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CHAPTER ONE: BACKGROUND 

1.1 Structure 

The perovskite structure is named after the crystal structure of the perovskite 

mineral, CaTiO3. The term perovskite refers to a large number of compositions that exist 

with the same structure. A perovskite is chemically described by ABX3, where the A and 

B denote two cation sites and the X denotes the anion site. In most cases, the X position 

is occupied by an oxygen atom and so the perovskite is commonly described as ABO3. 

The B site cation has 6-fold coordination with the anions and form BO6 octahedra. The A 

site cation ideally has 12-fold coordination and the anion has 2-fold coordination. 

1.1.1 Cubic Structure 

The ideal perovskite is a cubic structure and can be described with the A site 

cation existing on the corners or the cell with a BX6 octahedra resting in the middle of the 

cell (Fig. 1).1 However, most perovskite materials exist in a pseudo-cubic state due to 

distortions in orientation and position of the BX6 octahedra. Two of the most prominent 

structures for perovskites have orthorhombic and tetragonal symmetries where the 

octahedra tilt in at least one crystallographic direction.2 In most pseudo-cubic 

perovskites, the A site coordination maintains its 12-fold coordination. The anion 

generally maintains its 2-fold coordination in pseudo-cubic structures. 
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The primary cause for distortions to the cubic perovskite structure is 
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a perovskite. 

The primary cause for distortions to the cubic perovskite structure is octahedra 

phase tilting. In-phase 

tilt in unison along an axis and is shown in Fig. 2. Anti-

tilt in alternating directions along an axis and is shown 

anti-phase tilting 

The distortion caused by the tilting produces an elongation of the 
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1.2 Alkaline Doped Lanthanum Ferrite 

Alkaline metal doped lanthanum ferrite (LMF, M=Ca, Sr, Ba) is 

symmetry (space group #62, also often called 

es on the A site in place of a lanthanum cation. 

1.2.1 Defects and Distortions 

When an alkaline cation is substituted for lanthanum, there must be some 

compensation for the charge difference between M2+ and La3+ by either the oxidation of 
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iron from Fe3+ to Fe4+ or the formation of an oxygen-vacancy. Previous research has 

shown that for low concentrations of Ca, such as 10%, the primary mechanism for 

charge-compensation is the oxidation of iron and that a significant number of oxygen 

vacancies do not form except under reducing conditions;6, 7 however, there is less 

agreement on the charge-compensation mechanism for LF with Sr or Ba substitutions.3, 8  

In either case, both charge-compensation mechanisms cause significant changes 

to the LF system. The oxidation of iron causes a significant change for two reasons. The 

first reason is that the ionic radius of Fe4+ is r = 0.725Å and the ionic radius of high-spin 

Fe3+ is r = 0.785Å, which causes a contraction of the unit cell.9 If a large number of 

oxygen vacancies are formed to compensate for charge differences, then the cell may also 

increase since the relative charge of the vacancy will cause a Coulombic repulsion 

between neighboring cations and the positive charge of the vacancy. However, when the 

coordination of Fe3+ decreases from 6 to 5 or 4, the ionic radius decreases to 0.72 and 

0.639Å, respectively, decreasing the unit cell. If there is a small number of oxygen 

vacancies formed, then the unit cell could also experience a relaxation around the 

vacancy site and decrease in size. 

In addition to the changes caused by charge-compensation, the dopants cause 

changes to the size of the unit cell as well. The substitution of La with Ca causes little 

change in the structure since the ionic radii of each are about the same (rCa = 1.48Å and 

rLa = 1.50Å), while the substitution of Sr or Ba causes a measureable increase in size for 

the structure (rSr = 1.58Å and rBa = 1.75Å).9 
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1.2.2 Non-Stoichiometry 

There has been very little research on B site deficient perovskites with La as an A 

site cation, but B site deficient perovskites have been widely studied for a number of 

different compositions. The few studies that have been done on B site deficient 

perovskites involved A site cations other than lanthanum.10, 11 In these studies, the effect 

of B site deficiency on structure was investigated and a secondary phase called a 

Ruddlseden-Popper (RP) phase was identified. However, the RP phase can be ruled out 

for perovskite systems with La on the A site and iron on the B site due to geometric 

limitations.12 

While research has suggested that the formation of B site vacancies could occur, it 

is important to note that the formation of an iron vacancy is highly energetic due to the 

large relative charge of the vacancy. The relative charge of an iron vacancy in LF is -3 

and has 6-fold coordination with oxygen anions that each have a -2 charge. The close 

proximity of negative charges around the vacancy results in a very strong Coulombic 

repulsion and causes a very large amount of strain within the system. Due to the high 

energy of this defects it is not very likely to form and some other mechanism to 

compensate for the non-stoichiometry must occur. 

1.3 Experimental Approach 

For the experiments performed in the research presented in this paper, samples 

were produced using a multi-step solid-state reaction with batch sizes of at least 30 g to 

ensure a molar variance of ±0.00005 moles. The powders were then analyzed using X-ray 

diffraction (XRD) to verify the crystal structure of each material. The powders used for 

experiments comparing the effect of atmospheric conditions were pressed into pellets 



7 

 

with 30% mass cellulose and annealed at 1100′C to form porous pellets. The powders 

were left as prepared for experiments that required powdered form, such as XRD and 

vibrating sample magnetometry. 

1.3.1 Chapter Two 

There are two studies included in this paper. The first study is on the impact of 

alkaline substitutions on the A site of LaFeO3 on thermal expansion near the Néel 

transition temperature. The Néel transition is the magnetic transition of an anti-

ferromagnetic (AFM) material to a paramagnetic material. At room temperature, LaFeO3 

has an anti-ferromagnetic magnetic structure that originates from a super-exchange 

interaction that occurs between iron ions through an adjoining oxygen ion (Fe3+-O-Fe3+). 

Super-exchange interactions occur via the coupling of electrons from two identical 

cations to the spin of the intermediate non-magnetic anion. In the case of LaFeO3, the 

unpaired d-electron of each Fe3+ couples to the spin of one of the electrons from the 

adjoining oxygen.13 An important feature in LaFeO3 is that the iron cation has 6-fold 

coordination and could theoretically participate in an exchange in any of the three 

directions; however, it has been shown using neutron diffraction that the exchange 

direction is along the long axis of the orthorhombic cell (b for Pnma, c for Pbnm).5 As a 

result, the iron ions form magnetic moments perpendicular to the exchange direction, 

which lies somewhere within the Pnma a-c plane. The moments align anti-parallel to 

each other and the resulting net moment of the system is zero for an ideal AFM 

lanthanum ferrite system. 

Previous research has shown that there are strong interactions between magnetic 

susceptibility, thermodynamic quantities, and thermal expansion. The magnetic heat 
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capacity and energy of formation has been researched by Paride et al.
14 and Stølen et al.

15 

and matched to the Néel transition temperature (TN).  Heat capacity also has a very direct 

relationship to thermal expansion and other properties. Due to the magnetic contribution 

to heat capacity, there is an indirect magnetic contribution to thermal expansion.3, 16, 17 

Chapter Two will investigate the impact that substituting lanthanum cations with alkaline 

metal cations has on the Néel temperature, thermal expansion, and the relationship 

between the two using a combination of high-temperature XRD, dilatometry, vibrating 

sample magnetometry, and neutron diffraction 

1.3.2 Chapter Three 

The second study included within this text is on phase transitions of B site 

deficient calcium doped lanthanum ferrite (LCF) in high-temperature reducing 

conditions. As a candidate material for high-temperature applications such as syngas 

production, the changes in phase transition temperatures and impact of non-stoichiometry 

is of significant interest.18, 19 The orthorhombic-to-rhombohedral (O-R) transition 

temperature (TOR) for pure LF is known to be around 1000°C, which is above the 

operating temperatures of proposed applications, but TOR is not known for LCF or non-

stoichiometric samples. In addition, most proposed applications require exposure to both 

oxidizing and reducing conditions at high-temperatures. The extreme concentration 

gradient of oxygen between surfaces has the potential to cause significant and permanent 

changes to the composition and structure of the materials and significantly compromise 

performance. 

This study focused on compositions of La0.9Ca0.1FeyO3-δ for y=1.000, 0.995, and 

0.990 and compared heat treatments of each sample in oxidizing and reducing conditions. 
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A suite of XRD, dilatometry, and thermal analysis (TG-DSC/DTA) was used to 

characterize the materials and establish TN and TOR for each composition and 

atmospheric condition. 
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CHAPTER 2: THERMAL EXPANSION OF ALKALINE-DOPED LANTHANUM 

FERRITE NEAR THE NÉEL TEMPERATURE 
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Abstract 

The thermal expansion and magnetic behaviors of divalent, alkaline-doped 

lanthanum ferrites (La0.9M0.1FeO3, M=Ca, Sr, Ba) were assessed using a combination of 

dilatometry, magnetometry, time-of-flight neutron diffraction, and high-temperature x-

ray diffraction. Néel temperatures were determined through vibrating sample 

magnetometry and correlated well with changes in thermal expansion behavior observed 

during both dilatometry and x-ray diffraction. The Néel temperatures observed for pure, 

Ca-doped, Sr-doped, and Ba-doped lanthanum ferrites were 471, 351, 465, and 466°C, 

respectively. The effect of divalent substitutions on the magnetic behavior are attributed 

to charge-compensation mechanisms and structural changes in the material.  
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2.1 Introduction 

Divalent cation-doped lanthanum ferrite materials (La3+
1-xM

2+
xFeO3-δ) exhibit a 

variety of useful properties including multi-ionic conductivity and multi-ferroic 

behavior.1  These materials have been suggested as candidates for high-temperature 

electrochemical devices such as  oxygen-conducting membranes for use in synthesis gas 

(syngas) or oxygen production, solid-oxide fuel-cell cathodes, and as catalysts for the 

oxidation of hydrocarbons.2, 3  Consequently, it is important to understand structural and 

magnetic phase transformations that may occur at elevated temperatures in order to 

optimize the performance and reliability of commercial devices.  

Lanthanum ferrite (LaFeO3, LF) is an orthorhombic (Pbnm) perovskite with a 

canted, G-type anti-ferromagnetic (AFM) structure and undergoes a transition to a 

paramagnetic state above the Néel temperature (TN ≈ 477°C).4  The AFM behavior in LF 

is caused by spin coupling of iron ions via a super-exchange interaction through an 

adjoining oxygen atom (Fe-O-Fe). Previous studies have shown a correlation between 

anti-ferromagnetic behavior, the Néel temperature, and thermal expansion in various 

perovskite systems.5-8 Selbach et al.
9 demonstrated the existence of magnetic 

contributions to thermal expansion behavior in LF. Their results show that the Néel 

temperature can be observed indirectly through thermal expansion measurements due to 

non-linear thermal expansion caused by magnetoelastic coupling and thermally induced 

spin excitations that increase the Pauli repulsion.9-11   

Despite their technological relevance, magnetic contributions to thermal 

expansion behavior of divalent substituted lanthanum ferrites have not yet been reported 

in the open literature. Substitution of divalent cations on the trivalent lanthanum A site 



15 

 

creates a charge imbalance, which requires compensation through either the formation of 

oxygen vacancies or an increase in the iron valence from Fe3+ to Fe4+.12, 13  Although it is 

possible for Fe4+ to disproportionate into a mixture of Fe3+ and Fe5+ in orthoferrite 

systems, this has only been observed below 200 K.14, 15 In addition to electronic and 

chemical changes, the different ionic radii of cation substitutions will affect the local 

structure of the material. Previous studies have reported that divalent cation substitutions 

in LSF and LCF cause a reduction in the Néel temperatures to approximately 390°C for 

LSF (x=0.1) 4, 16 and 277°C for LCF (x=0.2).15, 17 

In this study, the alkaline metals Ca2+, Sr2+, and Ba2+ were substituted for La3+ on 

the A site in order to produce samples with the composition La0.9M0.1FeO3 (M=Ca, Sr, 

Ba). The impact of divalent cation substitutions on the Néel temperature, thermal 

expansion, and magnetic behavior is shown using a combination of high-temperature x-

ray diffraction, time-of-flight neutron diffraction, dilatometry, and magnetometry.   

2.2 Experimental Procedures 

2.2.1 Sample Preparation 

Divalent-cation-doped lanthanum ferrite materials were synthesized via multi-step 

solid-state reactions under oxidizing conditions in air using the precursor powders La2O3 

(99.99% purity; Alfa Aesar, Ward Hill MA, United States), Fe2O3 (99.995%; Alfa), 

CaCO3 (99.995%; Alfa), SrCO3 (99.995%; Alfa), and BaCO3 (99.997%; Alfa). Due to 

their hydrophilic nature, the adsorbed gas contents of the powders were measured using 

thermogravimetric analysis and compensated for immediately prior to batching. Batch 

sizes were at least 30 g in order to ensure a molar variance of no greater than ±0.00005 
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moles during the weighing process. Precursor powders were milled with yttria-stabilized 

zirconia media and isopropyl alcohol (IPA) in polymer jars for 12 hours on a table-top 

mixer and were subsequently calcined at 1000°C for 6 hours in a box furnace. The 

calcined powders formed a cake-like compact that was subsequently crushed and milled 

as described above for an additional 10 hours. The calcined mixture was dried and 

isostatically pressed into green pellets. The pellets were sintered at 1350°C for 24 hours 

for densification. Once the sintering was complete, a few of the pellets were crushed 

using a mortar and pestle and ball milling to an approximately 1-2 µm particle size for 

powder diffraction and magnetic characterization.  

2.2.2 Sample Characterization Methods 

The Pbnm orthorhombic structure of synthesized samples was verified using a 

Bruker (5465 East Cheryl Parkway, Madison WI 53711, USA) AXS D8 x-ray 

diffractometer (XRD) with parallel beam geometry at room temperature. The expansion 

behavior was characterized by high-temperature XRD (HT-XRD) using a Siemens 

(Karlsruhe, Germany) D5000 XRD with Bragg Brentano geometry between room 

temperature and 600°C. Atomic bond angles and magnetic moments were characterized 

with neutron diffraction on the SMARTS beam line at Los Alamos National Laboratory. 

Diffraction data from XRD and neutrons were analyzed using the Rietveld method and 

the General Structure Analysis System (GSAS) code with the EXPGUI graphical user 

interface.18, 19   

Thermal expansion behavior was further measured by dilatometry using a Netzsch 

(129 Middlesex Turnpike, Burlington MA 01803) model 402E with an alumina standard 

supplied by Netzsch. Dilatometry samples were cut into 25 mm long rods from sintered 
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pellets and were heated during dilatometry at 10°C/min from room temperature to 

1000°C in certified dry air (80% N2-20% O2). 

The Néel temperature was measured by vibrating sample magnetometry (VSM) 

with a Lake Shore 7404 VSM (575 McCorkle Blvd, Westerville OH 43082). Samples 

were loaded into a pre-tested, non-magnetic boron-nitride sample holder and 

magnetization was measured as a function of temperature in 5°C increments in a resistive 

heated tube furnace under a field of 0.5 T. 

2.3 Results and Discussion 

2.3.1 X-Ray Diffraction 

Alkaline substituted lanthanum ferrite samples were fabricated with nominal 

stoichiometry of La0.9M0.1FeO3-δ (M=Ca, Sr, Ba; sample code LMF). The powder XRD 

patterns for sintered samples are shown in Fig. 2.1 and exhibit the expected orthorhombic 

structure (Pbnm, #62). None of the three compounds, LF, LCF, nor LSF showed any 

secondary XRD peaks; however, there was a minor peak observed in the LBF pattern at 

about 31° 2θ, which can be attributed to the minor impurity, BaLa2Fe2O7 and is anti-

ferromagnetic with a Néel temperature well below that of LaFeO3, thus it is not expected 

to affect to the magnetic or expansion results discussed in this paper.20 The refined lattice 

parameters and unit cell volumes determined from Rietveld analysis of the XRD data are 

listed in Table 2.1 and are consistent with those found in the open literature for LaFeO3.
1, 

4, 15 
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Fig. 2.1. XRD patterns at room temperature for all samples.  Patterns are 

normalized and offset for comparison. Rietveld refinement for LF sample is shown 

in lower box with cumulative χ2
 and peak indexing. 

 

Table 2.1. Lattice parameters and volume of each sample determined from XRD 

and the cell volume determined by the Ubic
22

 model. 

  a (Å) b (Å) c (Å) V (Å3) Vcalculated (Å
3) 

LF 5.5679±0.0002 5.5602±0.0002 7.8550±0.0003 243.1758±0.0140 241.365±0.780 
LCF 5.5497±0.0005 5.5350±0.0006 7.8195±0.0008 240.1951±0.0435 238.8098±0.595 
LSF 5.5555±0.0003 5.5337±0.0003 7.8584±0.0004 241.5890±0.0224 240.2796±0.563 
LBF 5.5557±0.0004 5.556±90.0003 7.8540±0.0005 242.4716±0.0262 241.3618±0.465 
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Fig. 2.2. Cell volume of samples as determined by Reitveld refined parameters and 

calculated using Ubic
22

 model.  

The estimated Shannon ionic radii are dependent on the coordination, valence, 

and spin of each cation. In LaFeO3, the A site of the perovskite structure is coordinated 

with 12 oxygen sites, giving the ionic radii: La3+=1.50, Ca2+=1.48, Sr2+=1.58, and 

Ba2+=1.75 Å.21 Intuitively, the larger ionic radii of Sr and Ba would be expected to result 

in an increase in lattice parameters; however, the introduction of divalent cations caused a 

decrease in the calculated lattice parameters for all samples. This behavior can be 

explained if charge compensation is dominated by the conversion of Fe3+ to Fe4+.  The 

formation of tetravalent iron would cause a reduction in lattice parameters due to the 

smaller ionic radius of Fe4+ (0.785 Å) as compared to Fe3+ (0.725 Å).21 Ubic et al.
22 

proposed a model for estimating unit cell parameters. Ubic’s model was used as a 

comparison for observed parameters and cell volumes calculated from both are shown in 
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Fig. 2.2. The calculated parameters were determined with full occupancy and only 

considered a charge compensation of Fe3+ to Fe4+. The values determined were found to 

be consistently lower than the values determined from XRD. The difference could be 

explained by an error in the refinement or missing factors in the model (the model was 

based off of non-doped samples and may not consider variations due to substituted ions). 

The high-temperature XRD data showed that the volume expansion about the 

Néel temperature, shown in Fig. 2.3, is continuous, implying that the transition is of 

second order. For temperatures lower than T/TN < 0.5, the volume expansion was 

observed to be linear, and is projected in Fig. 2.3 to higher temperatures as indicated by 

the dashed line. Above T/TN>0.5, the rate of change in the volume expansion increases 

until T/TN=1, after which it decreases and is approximately equal to that observed at 

lower temperatures. This non-linear expansion behavior has been observed in other 

studies of the magnetoelastic effects on thermal expansion of lanthanum ferrite.4, 9  



Fig. 2.3. The volume expansion measured by XRD about T

helps to illustrate the departures from linearity.

The changes in individual lattice parameters as a function of temperature are 

shown in Fig. 2.4 where shifts in the linearity, or changes in the thermal expansion 

coefficients, near TN can be seen. I

measureable shifts of all three lattice parameters occurring just prior to T

samples showed a significant shift in the rate of change in b and subtle shifts in the 

changes in a and c.  No noticeable 

from these data, but in all three doped materials, i.e., LCF, LSF, and LBF, it is apparent 

 

Fig. 2.3. The volume expansion measured by XRD about TN. The linear, dashed

helps to illustrate the departures from linearity. 

The changes in individual lattice parameters as a function of temperature are 

4 where shifts in the linearity, or changes in the thermal expansion 

can be seen. In the case of LF and LSF, there were small but 

measureable shifts of all three lattice parameters occurring just prior to T

samples showed a significant shift in the rate of change in b and subtle shifts in the 

changes in a and c.  No noticeable change in the expansion of LBF could be detected 

from these data, but in all three doped materials, i.e., LCF, LSF, and LBF, it is apparent 
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. The linear, dashed line 

The changes in individual lattice parameters as a function of temperature are 

4 where shifts in the linearity, or changes in the thermal expansion 

n the case of LF and LSF, there were small but 

measureable shifts of all three lattice parameters occurring just prior to TN. The LCF 

samples showed a significant shift in the rate of change in b and subtle shifts in the 

change in the expansion of LBF could be detected 

from these data, but in all three doped materials, i.e., LCF, LSF, and LBF, it is apparent 
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that the coefficient of expansion along the b direction (i.e., db/dT) is smaller at 

temperatures above TN.   

 

Fig. 2.4. Changes in lattice parameters, a, b, and c measured as a function of 

temperature by HT-XRD.  The Néel temperatures are annotated by the drop lines 

for each sample: LF (upper left), LCF (upper right), LSF (lower left), and LBF 

(lower right). 

 

2.3.2 Dilatometry 

Dilatometry was used to find the instantaneous coefficients of thermal expansion 

(CTE) and apparent values of TN (vertical lines) as shown in Fig. 2.5. The TN values 
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measured by dilatometry for LF, LCF, LSF, and LBF are 457°C, 341°C, 440°C, and 

442°C respectively and are consistently those found in the literature for LF, LCF, and 

LSF. The TN for LBF has not been previously reported in the literature. A summary of the 

Néel temperatures measured by both dilatometry and magnetometry are compared with 

those reported in the literature in Table 2.2.4, 17  In all four samples, the CTE values 

increased approximately linearly as the temperature approached the respective TN after 

which the values decreased or plateaued. The CTE behavior observed by dilatometry is 

consistent with the data obtained by high temperature XRD, where the volume expansion 

was non-linear about TN. The dilatometry data in Fig. 2.4 indicates that the CTE of 

lanthanum ferrite increases linearly at a rate of 0.0102T for T<TN, reaches a local 

maximum near TN, and decreases linearly at a rate of 0.0055T for T>TN. The data in Fig. 

5 also show that three the divalent-doped materials behave similarly, reaching a local 

maximum in CTE near TN. The non-linear volume expansion behavior and variations in 

the instantaneous CTE around TN shown in Fig. 2.5 are consistent with expansion 

behavior around TN found in LaFeO3 by Selbach et al. 9  These results illustrate that the 

magnetoelastic contribution or coupling (mechanism) to the thermal expansion found in 

LaFeO3 is also present in divalent-cation substituted lanthanum ferrites. 

  



Fig. 2.5. Coefficients of thermal expansion measured by dilatometry. The changes in 

the linearity of the CTE indicate the Néel temperatures, as annotated by the drop 

Table 2.2. Comparisons of the Néel temperatures found for all samples observed in 

this study and TN listed in literature. 

Thermogravimetric Analysis to determine the Néel Temperature while Fossdal used 

HT-XRD.
4, 15, 16 

Composition TN (°C) from 
Dilatometry

LaFeO3 457
La0.9Ca0.1FeO3 341
La0.9Sr0.1FeO3 440
La0.9Ba0.1FeO3 442
La0.9Ca0.2FeO3 - 

 

Fig. 2.5. Coefficients of thermal expansion measured by dilatometry. The changes in 

the linearity of the CTE indicate the Néel temperatures, as annotated by the drop 

lines. 

Comparisons of the Néel temperatures found for all samples observed in 

listed in literature. Komornick and Wattiaux used 

Analysis to determine the Néel Temperature while Fossdal used 

(°C) from 
Dilatometry 

TN (°C) from 
VSM 

Komornicki15 

457 471 477°C 
341 351 - 
440 465 - 
442 466 - 

- 277°C 
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Fig. 2.5. Coefficients of thermal expansion measured by dilatometry. The changes in 

the linearity of the CTE indicate the Néel temperatures, as annotated by the drop 

Comparisons of the Néel temperatures found for all samples observed in 

Komornick and Wattiaux used 

Analysis to determine the Néel Temperature while Fossdal used 

Fossdal4 Wattiaux16 

450°C 452°C 
- - 

380°C ≈400°C 
- - 
- - 
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2.3.3 Vibrating Sample Magnetometry 

Magnetization measurements were made by VSM as a function of temperature in 

order to directly determine the Néel temperature as shown in Fig. 2.6. The TN values are 

indicated by relatively sharp peaks shown in Fig. 2.6. The TN of LaFeO3 was 471°C. The 

LSF and LBF samples had slightly lower values of TN, 465°C and 466°C, respectively, 

and the TN of LCF was the most suppressed at 351°C. Above TN, the magnetization of LF 

remained relatively constant until approximately 520°C was reached and then decreased 

more rapidly with increasing temperature as the material became fully paramagnetic. In 

the cases of the doped samples, the magnetization decreases relatively rapidly at 

temperatures above TN. The TN values measured by magnetometry are consistent with the 

transition temperatures determined by dilatometry and further validate the conclusion that 

magnetostatic coupling is the mechanism of magnetic contribution to thermal expansion.   
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Fig. 2.6. Magnetometry results showing the Néel temperature (peaks) associated 
with the anti-ferromagnetic to paramagnetic transformations. The magnetizations 

are offset and normalized to better illustrate the relative changes in TN.  

The suite of characterization methods used in this study demonstrated that Ca 

substitutions result in a larger decrease in the Néel temperature compared to Sr or Ba 

substitutions where only very small changes in TN were observed. If the reduction in Néel 

temperature was solely due to charge compensation by the formation of tetravalent iron, 

then all three of the divalent-doped lanthanum ferrite materials studied here would be 

expected to have approximately the same Néel temperature, therefore, the differences in 

the observed values of TN must be associated at least in part by another competing 

mechanism. As stated earlier, divalent substitutions on the trivalent A site require charge 

compensation by either the creation of oxygen vacancies or the oxidation of Fe3+ (3d5
 ) to 
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Fe4+ (3d4). In the event that Fe3+ changes to Fe4+, the number of unpaired electrons 

available for magnetic coupling across the Fe-O-Fe bond (i.e., super-exchange) is 

reduced. Additionally, the coupling of Fe3+-O-Fe4+ is weakly ferromagnetic and will 

reduce the Néel temperature as it breaks up the long range AFM ordering and causes an 

increase in the paramagnetic behavior of the material. The reduction in the Néel 

temperature of LCF observed in our materials was consistent with the experimental 

results of Komornicki et al.
15 in which oxidized LCF samples, which were charge-

compensated almost entirely by the formation of Fe4+, showed a significant reduction in 

TN (Table 2.2). Alternatively, Grenier et al.
23 found that the Néel temperature remained 

nearly constant regardless of the amount of divalent calcium substitution in LCF 

materials annealed in a low oxygen partial pressure environment. Grenier showed that 

there was no evidence of Fe4+ using Mössbauer spectroscopy, indicating that the charge 

compensation was exclusively associated with the formation of oxygen vacancies. 

Therefore, the  AFM Fe3+-O-Fe3+ coupling remained unaffected in samples populated by 

only Fe3+ because magnetic nearest neighbors remain unchanged throughout all of his 

compositions. The contrasting work of Komorniki et al.15 and Grenier et al.20 clearly 

show that the extent of the suppression of the Néel temperature is dependent on the 

charge compensating mechanisms (Fe4+/VO ratio), which is dependent on both the 

concentration of divalent substitution and the partial pressure of oxygen to which the 

materials are exposed.  

2.3.4 Neutron Diffraction 

In addition to charge compensation mechanisms, structural distortions can also 

affect the Néel temperature. A correlation between AFM, TN, and the Fe-O-Fe bond 
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angle has been investigated by several authors for RFeO3 compounds.24, 25  These authors 

have suggested that as the Fe-O-Fe bond angle is increased along the direction of the 

super-exchange interaction, there is more overlap between the iron eg (high energy d-

orbital) and the oxygen 2p orbitals, resulting in an increase AFM strength and higher TN. 

Zhou and Goodenough26 showed a linear correlation between TN and cos4(ω/2)/d7, where 

ω = (180-θ), θ is the distortion angle, and d is the Fe-O bond length. This relationship can 

be used to estimate the difference between the expected TN for calcium-, strontium-, or 

barium- substituted samples through linear extrapolation of data from Zhou and 

Goodenough. The neutron diffraction data in Table 2.3 indicates that the Fe-O1-Fe bond 

angle is increased from 156.8° in LaFeO3 to 161.3° in LSF and 161.4° in LBF, and is 

reduced to 156.0° in LCF (the bond angle of interest is determined by the Fe and O1 

atomic positions along the Pbnm c-axis). A simple calculation based on the differences of 

observed bond angles gives an estimated increase in TN of about 50°C for LSF and LBF 

as compared to LCF.  

Table 2.3. Fe-O1-Fe bond angle, change in TN from bond angle changes, and 

moment/ion found through neutron diffraction. The moments are refined along the 

a-axis and the super exchange of Fe
3+

-O-Fe
3+

 occurs along the c-axis and 

corresponds to the Fe-O1-Fe bond angle. The ∆TN listed is based on the assumption 

of identical iron content between samples and is determined solely upon the change 

in the Fe-O1-Fe bond angle. 

 
Bond Angles (°) 

∆TN from Bond 
Angle 

(µB/Fe) 

LaFeO3 156.8 NA 3.77 
La0.9Ca0.1FeO3 156 0 3.15 
La0.9Sr0.1FeO3 161.3 +50 2.8 
La0.9Ba0.1FeO3 161.4 +50 3.08 
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The Néel temperature of oxidized, Ca-substituted samples is greatly reduced 

because of the nearly complete charge compensation through the formation of tetravalent 

iron, rather than oxygen vacancies, and a slight decrease in the Fe-O1-Fe bond angle. The 

Sr- and Ba-doped samples also have a suppressed TN due to the formation of Fe4+ but 

also have increased Fe-O1-Fe bond angles, which increases the magnetic coupling and 

thus increases the strength of the super-exchange interactions between the remaining Fe3+ 

pairs. The estimated increase in TN (50°C) due to the increase in bond angle is not 

sufficient to explain the large difference in TN (∆≈100°C) between LCF and the LSF and 

LBF samples. Consequently, it is likely that partial charge compensation by vacancies is 

more prevalent in the LSF and LBF systems than in the LCF system. Further assessment 

on the charge compensation mechanism has been reported by Price et al.27 

It is notable that only the Fe-O1-Fe bond angle increased with divalent cation 

substitutions, while the Fe-O2-Fe bond angle remained nearly constant, as shown in 

Table 2.3. The ideal cubic perovskite unit cell contains three equivalent oxygen lattice 

sites. In non-cubic perovskites, octahedral tilting reduces the symmetry and the unit cell 

expands accordingly. In the case of the Pbnm orthorhombic structure, the reduction of 

symmetry creates two unique oxygen lattice sites (O1 and O2). There are twice the 

number of O2 lattice sites (8) as there are O1 lattice sites (4). The O1 oxygen atoms are 

located at the vertices of the FeO6 octahedra and align along the long c-axis of the Pbnm 

unit cell, as shown in Fig. 2.7.   
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Fig. 2.7. The Pbnm structure of LaFeO3. The O1 site oxygen atoms shown in white 

are located at the vertices of the FeO6 octahedra and are aligned along the long c-

axis. The large A site cations are shown in green. The iron cations are shown in the 

center of the octahedra.  

Huspeth et al.28 deduced, from neutron diffraction data, that the direction of the 

AFM moment is indiscernible between the two nearly equivalent pseudo-cubic lattice 

parameters, as was the case in our neutron diffraction data.27 However, the correlation 

between the Néel temperature and the calculated Fe-O1-Fe bond angle suggests that the 

super-exchange interaction occurs along the long axis. This correlation is further 

strengthened by the fact that super-exchange is maintained along the symmetrically 

similar long axes of the lanthanum ferrite perovskite derivatives, known as the Grenier 

and brownmillerite structures. These results are consistent with high-resolution neutron-

diffraction data of LaFeO3 shown by Peterlinneumaier and Steichele,29 which indicate 

that the direction of AFM is slightly canted along the a-axis of the Pbnm unit cell. It is 
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suspected that the direction of the canted AFM behavior is preserved along the a-axis in 

the divalent cation-substituted lanthanum ferrite materials studied here. 

2.4 Conclusions 

The thermal expansion behaviors of pure LaFeO3 and La0.9R0.1FeO3 (R=Ca, Sr, 

Ba) were correlated with the anti-ferromagnetic-to-paramagnetic phase transformations 

using a combination of dilatometry, vibrating sample magnetometry, and high 

temperature x-ray diffraction. Néel temperatures determined via dilatometry, XRD, and 

VSM were in agreement and were consistent with values available in literature. This is 

the first such study that has used a combination of these three techniques to measure both 

the Néel temperature and expansion behavior for alkaline-doped perovskites. The results 

confirm those of Selbach et al.9 who suggested that the thermal expansion behavior has 

contributions from magneto-static coupling.  

Differences between the observed Néel temperatures in LF, LCF, LSF, and LBF 

specimens were attributed to both the nature of the charge compensation mechanism and 

the effect of the substituent on the super-exchange bond angle. For divalent calcium-

substituted LaFeO3, the Néel temperature is significantly reduced due to the reduction of 

Fe3+ to Fe4+ from charge compensation and a decreased Fe-O1-Fe bond angle. For 

strontium- and barium-substituted LaFeO3, it is suspected that charge compensation was 

accomplished by both the reduction of iron from Fe3+ to Fe4+ and the formation of oxygen 

vacancies. Due to the formation of oxygen vacancies in Sr and Ba substituted samples, 

the number of iron ions being reduced to Fe4+ decreases compared to the Ca doped 

samples and the disruption to the long range magnetic ordering is low. In addition, the 

disruption to long range magnetic ordering is mitigated by an increase in the Fe-O1-Fe 



32 

 

bond angle and the super exchange interaction is strengthened. These two factors, oxygen 

vacancy formation and increased bond angle, cause the strontium and barium doped 

samples to have only a minor decrease in Néel temeperature. The correlation between 

calculated bond angles from neutron diffraction data and Néel temperatures suggest that 

the super-exchange still occurs along the c-axis of the Pbnm unit cell for divalent doped 

samples. The directions of the anti-ferromagnetic moment in LCF, LSF, and LBF were 

indiscernable from our data, but likely remained slightly canted along the a-axis, as is 

suggested in literature for the case of pure LF. 
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CHAPTER THREE: PHASE TRANSITIONS OF La0.9Ca0.1FeyO3-δ AT LOW OXYGEN 

PARTIAL PRESSURES 

This chapter has been submitted for publication to Elsevier in Journal of the 

American Ceramic Society and should be referenced appropriately. 
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2013 
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Abstract 

The phase equilibria of calcium-doped lanthanum ferrite (La0.9Ca0.1FeyO3-δ) were 

assessed at temperatures to 1100°C in air, argon, and 5% H2-N2 as a function of Fe 

concentration (y = 1.000, 0.995, 0.990).  Phase transformations were characterized using 

a combination of dilatometry, x-ray diffraction, electron microscopy, differential 

scanning calorimetry, differential thermal analysis, and thermogravimetric analysis. Two 

transformations were observed, a relatively low temperature (345-468°C) magnetic phase 

transformation and a higher temperature (835-883°C) orthorhombic to rhombohedral 

transformation. The samples made with nominal iron deficiencies behaved as if they had 

a decreased concentration of calcium. The magnetic or so called Néel transition 

temperature was found to increase with decreasing iron content and decreasing oxygen 

partial pressure, PO2. The transition temperature associated with the orthorhombic to 

rhombohedral transformation was also found to decrease with PO2 but increased with 

decreasing iron content. 

3.1 Introduction 

Perovskites comprised of rare earth elements have been studied for many decades 

due to the variety of useful properties that they have and the ease of modifying or 

tailoring properties through processing and adjustments in composition.  Perovskites have 

a pseudo-cubic structure of the form ABO3, such as CaTiO3, where the A- and B-sites are 

occupied with cations most often of valences 2+ and 4+, respectively. Typically, the A-

site is a larger cation such as alkaline or rare earth metals and the B-site is often a smaller 

transition metal such as iron or titanium. The thermal and physical properties can be 
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manipulated by combining different cations on the A- or B-sites to form various defects 

such as oxygen vacancies or affecting the oxidation states of certain cations.  

Lanthanum ferrite- (LaFeO3) based perovskites have been shown to have mixed 

electronic-ionic conductivity, with possible applications in gas separation, catalysis, 

syngas production, fuel cells, and hybrid energy production[1-4]. The most common 

substitutions include 2+ alkaline metals on the La- or A-site and transition metals on the 

Fe- or B-site, which generally results in increased ionic conductivity as the valence 

differences can lead to the creation of both oxygen vacancies and enhanced electrical 

conductivity[5-7].  

In the specific case of a calcium substitution in LaFeO3, it has been shown that the 

primary mechanism for charge compensation for low concentrations of calcium in 

oxidizing conditions, less than 20 mole percent, is the oxidation of Fe3+ to Fe4+ with a 

very small amount of oxygen vacancies formed[3, 5, 8, 9]. It has also been shown in Sr-

doped LaFeO3 that the preferential mechanism of charge compensation in the room 

temperature structure is the oxidation of iron to Fe4+, but upon heating weakly bound 

oxygen is released and oxygen vacancies are formed[10]. It was suggested that the 

oxygen was released in an ordered fashion throughout the bulk of the material, causing a 

general elongation of the lattice parameters. The release of oxygen would also cause the 

Fe4+ to be reduced back to Fe3+ in order to maintain charge neutrality. In addition, Mori et 

al.[11] investigated the thermal expansion coefficients, α, of Ca- and Sr-doped lanthanum 

manganites and found that for Ca contents of 0 < x < 0.1 changes in α were affected 

primarily by oxygen release and the increase of the average ionic radii of B-site cations 

as the valence is reduced from 4+ to 3+. 
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While numerous studies have been conducted to assess the impacts of oxygen 

vacancies and multiple transition metals on the B-site, there has been little study on the 

effects on non-stoichiometry on the B-site itself, and in particular B-site deficiencies. In 

this study, calcium is substituted on the A-site of lanthanum ferrite at a fixed nominal 

concentration of 10% with a varying amount of iron to created iron deficient samples. 

With the introduction of 10% calcium, a relatively low amount, charge compensation 

should be dominated by further oxidation of the iron from Fe3+ to Fe4+ with a negligible 

amount of oxygen vacancies formed. However, the synthesis of samples with a nominal 

iron deficiency will require either the formation of iron vacancies or will maintain a 

stoichiometric material by limiting the number of available A sites. If there is a limit to 

the number of A sites, then a random or preferential selection of A site species will occur. 

3.2. Experimental Methods 

3.2.1Sample Preparation 

Calcium-doped lanthanum ferrite (La0.9Ca0.1FeyO3-δ) was fabricated with three Fe 

concentrations (y = 1.000, 0.995, 0.990) using the solid state reaction method previously 

reported.12 For the purpose of brevity, each variation of sample composition, y = 1.000, 

0.995, 0.990, will be denoted as Fe00, Fe05, and Fe10, respectively. The phase purity of 

the starting samples was verified by x-ray diffraction (XRD) using a Bruker (5465 East 

Cheryl Parkway, Madison WI 53711, USA) AXS D8 x-ray diffractometer with parallel 

beam geometry and a Panalytical (117 Flanders Road, Westborough MA 01581, USA) 

X’Pert x-ray diffractometer. XRD was done at room temperature with Cu Kα x-rays of 

wavelength 1.5418 Å. Diffraction data from XRD and were analyzed using the Rietveld 
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method and the General Structure Analysis System (GSAS) code with the EXPGUI 

graphical user interface.13, 14 

Following initial characterization, the powders were mixed with 30% by mass 

crystalline cellulose, pressed into pellets, and annealed in air at 1100°C to create porous 

pellets. Some of the pellets were set aside for dilatometry and TGA-DSC/DTA analysis 

and the others were treated under varying atmospheric conditions in a Thermolyne 59300 

high-temperature tube furnace (81 Wyman Street, Waltham Ma 02454, USA). 

3.2.2 Characterization Methods 

In all controlled-atmosphere experiments, including annealing, dilatometry, 

thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and 

differential thermal analysis (DTA), the samples were exposed to slightly pressurized, 

certified dry air (20% O2-N2), ultra high purity Ar (UHP-Ar), or UHP 5% H2-N2. In order 

to verify the oxygen partial pressure an Ametek (1100 Cassatt Rd., Berwyn, PA 19312, 

USA) CG1100 oxygen analyzer was used for the UHP-Ar and an Ametek 303B moisture 

analyzer was used for the 5% H2-N2. The temperature was ramped at 10°/min from room 

temperature to 1100°C for all experiments except the dilatometry in 5% H2-N2, which 

was limited to 900°C. The experiments run in air and Ar were held at temperature for one 

hour, at which point mass loss or gain plateaued and no further oxidation or reduction 

occurred. For the experiments run in 5% H2-N2, samples were held at temperature for 4 

hours to allow for mass loss or gain to plateau. 

Thermogravimetric and calorimetric data were collected on a Netzsch (129 

Middlesex Turnpike, Burlington, MA 01803) 449 F3 Jupiter Simultaneous TGA-

DSC/DTA. Experiments run in air and UHP-Ar used Pt crucibles with a DSC sample 
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carrier and for experiments run in 5% H2-N2 a tungsten crucible and a DTA sample 

carrier was used. Dilatometry was performed on a Netzsch Dil 402 E dilatometer using 

~12 x 2 x 2 mm rods and held in an alumina sample carrier. Dilatometry experiments 

were corrected using a 12 mm Al2O3 polycrystalline standard. 

Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) 

were performed using a Hitachi (Europark Fichtenhain A12, 47807 Krefeld, Germany) S-

3400N VP-SEM with an Oxford Instruments (300 Baker Avenue, Concord, MA 

01742, USA) Energy+ electron dispersive spectrometer. X-ray photoelectron 

spectroscopy was performed using a PHI (18725 Lake Drive East, Chanhassen, MN 

55317) VersaProbe II Scanning XPS Microprobe with an Al x-ray source. 

3.3 Results and Discussion 

3.3.1 X-Ray Diffraction 

Lanthanum ferrite samples with 10% calcium substitution and nominal B site 

deficiency (La0.9Ca0.1FeyO3-δ) were successfully fabricated and were shown to be phase 

pure by x-ray diffraction and SEM. All compositions were confirmed by XRD to be 

orthorhombic with Pnma symmetry, regardless of the starting iron content, as shown in 

Fig. 3.1, which presents the patterns and Rietveld analyses of the baseline materials. The 

samples were further characterized using EDS and SEM to assure that there were no 

minor second phases or segregation in the starting material. The grain sizes of each 

material were verified to be 1-2 µm using SEM and backscattered electron imaging. 

Chemical compositions were measured for as-prepared samples using EDS and XPS and 

are shown in Fig. 3.2. The iron content determined from both methods was near constant 
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and does not give any indication as to the formation of B site vacancies during 

preparation. In addition, the La/Ca ratio has some variation between samples but no clear 

pattern suggesting whether one species is favored over another. 

Previous research on B site deficient perovskites showed the formation of a 

secondary phase called the Ruddlseden-Popper phases (RP).15-17 Beznosikov  et al.
18 

established geometric limits on the size of cations for RP phase where RA < 0.73RX.  

Therefore, due to these geometric limitations, the RP phase can be ruled out as a possible 

phase in either sample. 

 

Fig 3.1. a) Full XRD patterns of as-prepared samples and b) the high-angle patterns 
to highlight the peak positions. B) Rietveld refinement calculated line and observed 

points to show an example of the refinements done. 
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Fig 3.2. Concentrations of La, Ca, Fe and La/Ca ratio of as-prepared samples 

determined by EDS (solid squares) and XPS (solid circles). EDS points were 

determined by the mean of 20+ scans with a 95% confidence. 

 

As shown in Fig. 3.1, the iron deficiency created little discernable difference in 

the XRD peak position nor, as shown in Fig. 3.3, were there measurable differences 

between the calculated lattice parameters (<0.01Å). It has been suggested in previous 

studies the unit cell contracts with the introduction of  calcium due to the decreased ionic 

radii of Fe4+ (ri = 0.725 Å) compared to Fe3+ (ri = 0.785 Å).3, 5, 9, 19 However, the 

contraction of the cell from calcium doping may be disrupted by making the samples iron 

deficient. In a study on B site deficiencies, Mori et al.
20 investigated the impacts of both 

A site and B site non-stoichiometry on La-doped SrTiO3 and found that the cell expands 

with the introduction of Ti vacancies. They suggested that this is due to an increase in 

Columbic repulsion between the oxygen anions and the large negative charge of the Ti 
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vacancy. This would also be expected in FE05 and Fe10 but there is a negligible change 

in the lattice parameters or cell volume. If iron vacancies are not forming, then there 

should be a change in composition of La, Ca, or both. 

 

Fig. 3.3. Lattice parameters and cell volume of all samples determined from 

Rietveld refinement. The b parameter is described by the ratio bshown=bactual/√2. 

 

Figure 4 shows the XRD patterns of the thermally treated samples. In the high 

angle patterns, drop lines are annotated on the position of the Fe00 peaks to show there is 

a shift to lower 2θ values as the nominal iron content is decreased. This shift in peak 

position is consistent with studies on varying concentrations of alkaline doping where 

lattice parameters decrease with increasing alkaline concentration.3, 5, 9 The peak shift to a 

lower 2θ suggests that the nominally iron-deficient samples are forming stoichiometric 
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samples and rejecting the calcium to maintain charge neutrality, thus forming samples 

with an effective composition of La0.9+xCa0.1-xFeO3. However, with only a small amount 

of iron vacancy formation, there could also be relaxation in the octohedra and thus a 

decrease in d-spacing and a shift to a lower 2θ.  The only compensation mechanisms that 

can be ruled out from the peak position shift are the preferential selection of calcium over 

lanthanum and random selection of either lanthanum or calcium. 

In a study by Dann et al.
8 on Sr-doping of LaFeO3 under oxidizing and reducing 

conditions, 0 < [Sr] < 0.2, it was shown that all compositions maintained Pnma symmetry 

regardless of the atmosphere but there was a decrease in the orthorhombic distortion after 

exposure to 5% H2-N2. Our findings were in agreement with Dann’s where each of the 

three La0.9Ca0.1FeyO3-δ compositions retained their Pnma orthorhombic structure 

regardless of the atmospheric conditions but the super lattice reflections, annotated in Fig. 

3.4.a, diminished in intensity in the samples exposed to 5% H2-N2, suggesting a decrease 

in orthorhombic distortion. The high-angle peaks of samples treated in 5% H2-N2 also 

show a very slight shift in peak position compared to those treated in air. This implies a 

nearly complete reduction of Fe4+ to Fe3+ in samples treated in 5% H2-N2, whereas 

samples treated in air became more oxidized with nominal iron concentration. 
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Fig. 3.4. XRD patterns for samples exposed to designated atmosphere at 1100°C. 
Column a) shows the entire XRD pattern with asterisk annotating some of the 

super-lattice reflections. Column b) shows the high angle data with drop lines to 

highlight the slight shift of peaks to lower angles with decreasing iron content. 

 
The refined lattice parameters and unit-cell volumes of the heat-treated samples 

are also shown in Fig. 3.3 and listed in Table 3.1. Overall, neither the air, Fig 4-b, nor Ar, 

Fig. 3.4-c, caused any appreciable difference in the lattice parameters or the cell volume, 
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although there was a slight decrease in lattice parameter a of composition Fe10 when 

treated in Ar. When treated in Ar, it would be expected that small quantities of oxygen 

vacancies would form and that some the tetravalent iron would reduce to charge 

compensate for the oxygen vacancies. The reduction of iron should cause an increase in 

lattice parameters since the ionic radius of Fe3+ is greater than the ionic radius of Fe4+, 

however with only a slight reduction taking place a relaxation in the lattice is likely to 

occur and compensate for the expansion caused by changes in the average iron radius. 

After exposure to 5% H2-N2, the b and c lattice parameters of each composition 

increased measurably with a corresponding increase in the unit cell volume. Under the 

extremely reducing condition of 5% H2-N2, a substantial quantity of oxygen vacancies 

would be expected to form and would require the reduction of Fe4+ to Fe3+. As mentioned 

above, the reduction of Fe4+ to Fe3+ would increase the average iron radius. However 

with a substantial amount of oxygen vacancy formation the Coulombic repulsion between 

cations and vacancy sites will cause an increase in unit cell volume, as is seen in all three 

samples and shown in Fig. 3.4-d. 
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Table 3.1 Lattice parameters and unit cell volumes of La0.9Ca0.1FeyO3-δ compounds 

determined by XRD. 

 

  [Fe] a (Å) b (Å) c (Å) Vol. (Å3) 

A
s-

Pr
ep

. 

1.000 5.561 7.826 5.537 241.0 

0.995 5.560 7.823 5.537 240.8 

0.990 5.567 7.823 5.534 241.0 
A

ir
 

1.000 5.553 7.831 5.534 240.6 

0.995 5.550 7.823 5.535 240.3 

0.990 5.563 7.842 5.547 242.0 

A
r 

1.000 5.548 7.843 5.535 240.9 

0.995 5.544 7.836 5.535 240.5 

0.990 5.550 7.850 5.533 241.1 

5%
 H

2-
N

2 1.000 5.565 7.847 5.547 242.2 

0.995 5.559 7.846 5.546 241.9 

0.990 5.562 7.846 5.549 242.1 

3.3.2 Dilatometry 

Dilatometry was used to observe the thermal expansion behavior and phase 

transformations, specifically the Néel transition and orthorhombic-to-rhombohedral 

transition temperatures, which we refer to as TN and TOR, respectively. The Néel 

transition is a magnetic transition from anti-ferromagnetic to paramagnetic and TN is the 

temperature at which the transition occurs.21 The Néel transition of rare earth ortho-

ferrites has been extensively studied.  It has been shown that the transition is strongly 

dependent on the bond angle formed in the Fe3+-O-Fe3+ super-exchange that occurs along 

the long axis, which is the b direction in the case of the Pnma structure.9, 22, 23 The 

orthorhombic (Pnma symmetry)-to-rhombohedral ��3�� symmetry) transition is a first-

order reconstructive transition for lanthanum ferrite that occurs near 1000°C.24  
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Figure 5 shows how the measured coefficients of thermal expansion (CTE) vary 

with temperature and atmosphere. Both TN and TOR were easily observed in the CTE data 

for those samples treated in air and Ar, as annotated in Fig. 3.5 and documented in Tables 

2 and 3.  In air, TN decreased with increasing iron content from 400°C for Fe10 and to 

345°C for Fe00. A similar trend was observed in samples treated in Ar as TN was 435°C 

for Fe10 and 359°C for Fe00. A slight increase in TN is expected as the atmospheric PO2
 

is decreased, as it has been shown in previous studies that reducing atmospheres will 

cause the TN of alkaline doped LaFeO3 to become more like pure LaFeO3 due to the 

reduction of Fe4+ to Fe3+.22 Consistent with this prior observation, the Néel transition 

temperature of samples exposed to the more reducing 5% H2-N2 atmosphere were all 

found to be approximately 465°C, which is within the range of TN values listed in 

literature for pure LaFeO3.
12, 23, 25 It is notable that the CTE peaks used to determine the 

TN for Fe10 samples in air and Ar (Fig. 3.5) are not well defined, suggesting the 

transition is somewhat gradual. These transition ranges are annotated with both data sets 

shown in Fig. 3.5 using two arrows rather than one.  For the purpose of this paper, we 

assume that the transition temperature corresponds to the maxima in CTE. 

 

Fig. 3.5. Coefficient of thermal expansion (CTE) plots for all three atmosphere 

treatments with a +1 offset between compositions to more clearly show distinction 
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between compositions. The Néel transition (TN) is annotated for each sample. The 

orthorhombic-to-rhombohedral transition is annotated for air and Ar runs but was 

not observable for the 5% H2-N2 treated samples. Different TNs were observed for 

each composition in air- and Ar- treated samples. No difference in TN was observed 

for any composition in the 5% H2-N2 treatment. All transition temperatures 

annotated here are listed in Tables 3.1 and 3.2. 

 

Table 3.2. Orthorhombic-to-rhombohedral transition temeratures determined by 

dilatometry (DIL) and differential scanning calorimetry (DSC) in dry air and argon. 

The orthorhombic-to-rhombohedral transition measured in 5% H2-N2 occurred 

over a relatively wide temperature range and therefore could not be determined 

with precision by DSC or dilatometry. 

Fe content Air-DIL (°C) Ar-DIL (°C) Air-DSC (°C) Ar-DSC (°C) 
1.000 844 835 873 859 
0.995 852 841 877 863 
0.990 863 852 883 868 

 

Table 3.3. Néel transition temperatures determined by dilatometry. 

Fe content Air (°C) Ar (°C) 5% H2-N2 (°C) 
1.000 345 359 468 
0.995 360 370 465 
0.990 400 435 464 

 

With the introduction of calcium in to LaFeO3, the long-range anti-ferromagnetic 

(AFM) ordering is expected to be disrupted by the formation of Fe4+.9, 12 Unfortunately, 

there are no data in the open literature that have characterized the impact of B site 

deficiency on the Néel transition or TN. As stated above in the discussion on XRD results, 

it is probable that the samples are effectively La1-xCaxFeO3 with x varying from 0.1 for 

Fe00 to approximately 0.09 for Fe10. If this were the case, then a higher TN would be 

expected for Fe10 since the long-range AFM ordering would be less disrupted. If there 

were iron vacancies formed then the disruption to the long-range AFM ordering would be 

expected to increase and a lower TN would be observed. Similarly, with iron vacancies, 
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there would be disruptions to the long-range AFM ordering for samples treated in 5% H2-

N2; however, all three samples show the same TN when completely reduced and are very 

near the TN of pure LaFeO3. This suggests that with complete reduction the long range 

AFM ordering is restored and all of the iron exists in a Fe3+ state, which is in agreement 

with the study by Grenier et al.22 and Komornicki et al. 23 on lanthanum ferrite behavior 

under reducting conditions. 

The orthorhombic-to-rhombohedral transition temperature (TOR) observed via 

dilatometry, shown in Fig. 3.5 and tabulated in Table 3.2, increased with Fe deficiency, a 

trend similar to that seen for TN. The TOR determined from dilatometry in air is 863°C for 

Fe10 and 844°C for Fe00 (Fig. 3.5.a); however, unlike the Néel transition, values of TOR 

determined from dilatometry in Ar decreased rather than increased with increasing iron 

content and were 852°C and 835°C for Fe10 and Fe00, respectively. As stated above, the 

O-R transition is a first-order reconstructive transition. The bonding between octahedra in 

a fully oxidized sample, such as the samples treated in air, will generally be much 

stronger and uniform than the bonding between polyhedral in a reduced sample where 

bonds have been broken during oxygen-vacancy formation. As such, the reconstructive 

transformation temperature should be lower for reduced samples, which is observed. 

3.3.3 TG-DSC/DTA 

Both DSC and DTA analyses were performed on each composition as shown in 

Figs. 6. The orthorhombic-to-rhombohedral transformation temperatures can be seen in 

the endothermic peaks in the DSC data and are tabulated in Table 3.2. The TOR was found 

to increase as the nominal iron content decreases and to decrease with decreasing PO2
. 

There was no distinct peak to mark the O-R transition for the samples run in the DTA in 
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5% H2-N2, and instead the DTA curves showed a broad arcing shape from about 600 to 

1100°C and increases in intensity from Fe00 to Fe10. This suggests that the O-R 

transition in highly reducing atmospheres is not a short, instantaneous transformation but 

a time-dependent process that takes place over a finite temperature range. 

 

Fig. 3.6. TOR in air and Ar was determined by the position of the endothermic peak 
in the DSC data and is annotated on the graph (left column). The right column 

shows the TG data for both air and Ar and has the Néel and O-R transitions 

annotated to show mass losses about the transitions. 

 

The one hour isotherm used in heat treating the samples was not long enough for 

the samples to reach an equilibrium mass loss. Thus, the samples were held in a five hour 

isotherm at 1100°C and analyzed using TG-DTA in 5% H2-N2, shown in Fig. 3.7.  The 

most telling information from exposure to 5% H2-N2 are the two distinct points of mass 

loss. The first is a small mass loss that occurs near TN determined from dilatometry of 
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about -0.6% for non-stoichiometric samples and about -0.72% for stoichiometric samples 

(Fig. 3.8). The 0.6% mass loss corresponds to an oxygen δ of 0.09 and the 0.7% mass 

loss corresponds to an oxygen δ of 0.11. This makes the oxygen stoichiometry roughly 

2.91 and 2.90 and provides more than enough vacancies for complete charge-

compensation of calcium doping. The decreased loss of oxygen for Fe05 and Fe10 makes 

sense if there is a decreased amount of calcium and thus a decreased amount of Fe4+ to be 

reduced. The amount of oxygen lost in all three samples also requires the reduction of 

more Fe4+ than the amount that would be formed by calcium doping, implying that a 

slight amount of Fe3+ would need to be converted to Fe2+. The presence of trace amounts 

of Fe2+ would cause some disruption to long range AFM ordering and explain why there 

is a slight decrease in TN compared to pure LaFeO3. 

 

Fig. 3.7. TG-DTA data for samples treated in 5% H2-N2. Neither the Néel nor TOR 

could be identified from the DTA data. A significant mass loss occurs and ends at 

the TN determined from dilatometry and corresponds to a complete oxidation of 

Fe
4+

 to Fe
3+

 and some Fe
3+

 becoming Fe
2+

. 
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Fig. 3.8. Total mass loss over the Néel transition for samples in 5%H2-N2. The mass 

loss for non-stoichiometric samples is suggests that the iron is already reduced and 

that the TN for non-stoichiometric samples should be higher than for stoichiometric 

samples. 

The most significant mass loss observed begins at around 900°C and continues 

into the isotherm until a critical mass loss and decomposition occurs. The mass loss, 

corresponding to oxygen loss, for each sample after decomposition is shown in Fig. 3.9 

and decreases with decreasing nominal iron concentration, much like the oxygen loss 

near TN. This same trend is shown in Fig. 3.10 where the time to complete decomposition 

is shown. With the consideration that iron deficiency produces a decreased concentration 

of calcium, the data shows that La1-xCaxFeO3 becomes more unstable with increasing 

calcium content due to the increased oxygen loss.  

 

Fig. 3.9. Decomposition mass loss for samples in 5% H2-N2. The increasing 

magnitude of mass loss confirms that there was less oxygen available for non-
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stoichiometric samples and there were more intrinsic oxygen defects in the samples 

compared to stoichiometric samples. 

 

Fig. 3.10. Time to decomposition for samples held at 1100°C showing that non-
stoichiometric samples are more stable and stoichiometric samples. 

3.4 Conclusions 

Phase transitions and impacts of non-stoichiometry in calcium doped lanthanum 

ferrite (La0.9Ca0.1FeyO3-δ) were successfully studied. It was found that the formation of 

significant B site vacancies is unlikely due to the high energy of the defect. Rather, the 

samples maintained a stoichiometric A to B ratio during preparation by limiting the 

number of A sites available and preferentially selecting lanthanum over calcium to fill the 

A sites. Thus, nominal iron deficiency during preparation equates to a decrease in 

calcium content for La0.9Ca0.1FeyO3-δ. As seen in previous literature, an increase in 

calcium content causes a decrease in both the Néel transition temperature and the 

orthorhombic-to-rhombohedral transition temperature due at least in part to a higher 

concentration of Fe4+. Using DSC and dilatometry, this was observed as both transition 

temperatures were shown to decrease increases in nominal iron content and confirmed 

that there is preferential selection of lanthanum over calcium during preparation. In 

addition, it was confirmed that reducing conditions increases the Néel transition 

temperature and decreases the orthorhombic-to-rhombohedral transition temperature. It 
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was also shown that oxygen-vacancy formation can be controlled by the exposure to 

reducing atmospheres during heating and that oxygen loss is accompanied by the 

reduction of Fe4+ to Fe3+. When exposed to highly reducing atmospheres, such as 5% H2-

N2, the Fe4+ becomes entirely reduced to Fe3+ at the Néel transition and further release of 

oxygen is negligible until 900°C. Further oxygen loss occurs after 900°C and is most 

significant for samples with higher calcium concentrations. In addition, samples with 

lower calcium concentrations also took longer to reach a critical oxygen reduction and 

decomposition. 
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