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ABSTRACT

In this thesis, we studied the gold and silver relationship using stochastic-parameter

regression models. We formulated their time-varying relationship as a state-space

model and used the Kalman filter algorithm to estimate the stochastic regression

parameters for gold and silver prices. The data set used in this thesis covers 31 years

using the London fix prices between January 1969 and December 2000. The start

date was selected as the first full year silver prices were included in the London fix

prices. Our stochastic parameter regression model explained well the time-varying

relationship between gold and silver prices. As a special case of the stochastic param-

eter regression model, we also fitted the random walk, the random walk with drift

model and random coefficient model. The random walk with drift model appeared to

have the closest fit with 12-month forecast errors minimal among those four models

considered in this thesis.
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CHAPTER 1

INTRODUCTION

Throughout history, gold and silver have been used as currency. In the last two

centuries, governments of many countries backed their printed money with gold or

silver, or both. This is called gold or silver, or bi-metallic standard. However, during

the second half of the last century, most countries abandoned gold and silver standards

and stopped using gold and silver in their currencies. Since then, gold and silver have

become commodities traded on general commodities markets. Still, gold and silver

hold a special place in the minds of investors who would like a hedge against inflation.

In addition, given recent changing economic conditions along with a growing distrust

of the monetary system, many states in the U.S. have chosen to legalize gold and

silver as currency: Idaho, Utah, and Washington are a few of them.

From an investment point of view, there are additional incentives for investors

in gold and silver. Both are used in the jewelry markets. Recently demand has

increased for silver in industrial uses (such as the medical field, food preparation, and

contaminant remediation). Gold has similar industrial uses, but there is a significant

difference in their prices. Gold is extensively used in electronics manufacturing, more

than silver, because it has good electrical properties and is not prone to oxidation as

silver is.

There have been a number of studies in economics on the time-varying relationship
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between gold and silver prices. Chan and Mountain [2] analyzed weekly data and

interest rates for the early 1980s and developed time series models to test for the

causality between the price of gold, the price of silver and interest rates by using

an arbitrage model that takes advantage of a price difference between two or more

markets. They concluded that there is a causal feedback relationship between the

price of gold and the price of silver.

Akgiray et al. [1] investigated daily returns for gold and silver for the period be-

tween 1975 and 1986, where the returns were the natural logarithms of the ratio of the

two successive daily spot prices. They found no forecastibility in the way of returns.

Because the variance of the returns was not constant, they modeled this variance as

a GARCH process (Generalized Auto Regression Conditional Heteroscedasticity).

Escribano and Granger [4] focused on gold and silver price during 1971-1990. They

found that cointegration occurred during certain periods, especially during the bubble

period from September of 1979 to March of 1980. To establish a linear relationship

for the entire data set between gold and silver prices, they used dummy variables

for intercept terms. They claimed their model performed better than the random

walk model for available data. However, their model failed for the out-of-sample

predictability. They concluded that a dependency between gold and silver prices

decreased after 1990, indicating that the two markets were separating.

Lee and Lin [7] used the AR(1)-GJR-GARCH(1,1) model and three copula func-

tions to analyze the dynamic relationship of gold and silver futures in TOCOM and

COMEX markets before and during uptrend. First, they applied the Chow test

to separate the sample period prior to and during uptrend and before applying

the AR(1)-GJR-GARCH(1,1) model. They did this to investigate the returns and

volatility of the two commodities in both market. Then, they used three copula
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functions to fit the marginal and joint probability density function (pdf), resulting in

a better model. They found that silver returns were higher than gold in both markets

during this period.

The analysis performed in this work is different from previous works, because

we studied the historical relationship between gold and silver prices and the future

direction of their relationship. We analyzed the relationship of gold and silver London

Fix prices between 1969 and 2001 using a state-space model. We investigated this

relationship using four models: first order autoregression coefficient, random walk

with drift, random walk without drift, and random coefficient models. The results of

these analysis are compared based on their forecasting ability.

The state-space model (SSM) formulation is considered to be a powerful tool

that is applicable to a wide range of time series models [8]. Once a problem was

configured in a state-space form, the Kalman filter was applied in conjunction with

the Newton-Raphson maximum likelihood estimator algorithm to estimate the fixed

parameters of the state-space model. Then the fixed parameters were used to estimate

regression parameters for smoothing and prediction.
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CHAPTER 2

BACKGROUND

2.1 Gold and Silver

2.1.1 A Brief History of Gold and Silver

Many historical facts about gold and silver are likely of not much use to the analysis

in this work. However, they provide insight on the close historical relationship between

gold and silver. As far back as 3100 B.C., there is evidence of a gold/silver value ratio

set by the founder of the first Egyptian dynasty as 10/25 [12]. This is the earliest

set relationship between gold and silver. In 1700, Sir Isaac Newton in his capacity of

Master of the Mint, fixes the price of gold in Britain at 84 shilling, 11 pence per troy

ounce. During this time, the royal commission recalls all gold currencies and fixes

the gold silver ratio as 16/1. This legal ratio lasted over 200 years [12]. Throughout

history, gold and silver have been used as currency and their prices were controlled by

the governments. Starting around the second half of the 20th century, governments

of the world started to loosen their control on the price of gold and silver.

We found it useful to provide a list of some of the more significant historical facts

and dates that is pertinent to our work [10], [12]:

• 1961: owning gold is forbidden for Americans abroad as well as at home. At the

same time the central banks of Belgium, Italy, The Netherlands, Switzerland,
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West Germany, United Kingdom, and United States form the London Gold pool

and agree to buy and sell gold at $35.0875 per ounce.

• 1964: The U.S. is taken off the silver standard. The issuance of silver certificates

is stopped and the redemption of them is suspended after 1968.

• 1968: Governors of the central banks in the gold pool announce they will no

longer buy gold and sell gold in the private market. A two-tier pricing system

starts: Official transactions between monetary authorities are to be conducted

at an unchanged price $35 per troy ounce, and other transactions are to be

conducted at a fluctuating free-market price. Gold backing of Federal Reserve

notes is eliminated. In technology side, Intel introduces a microchip with 1024

transistors interconnected with gold circuit. More new uses of gold in electronics

and medical fields are being discovered.

• 1969: The U.S. Mint presses its last silver coin.

• 1971: The U.S. terminates all gold sales or purchases, thereby ending conversion

of foreign officially held dollars into gold. Under the Smithsonian agreement,

the U.S. dollar is devalued by raising the value of gold to $38 per troy ounce.

• 1973: The U.S. devalues the dollar again and announces it will raise the official

dollar price of gold to $42.22 per troy ounce. All currencies allowed to freely

float without regard to gold prices. In June, the gold price rises more than $120

in London market. Japan lifts the prohibition on import of gold.

• 1974: Americans allowed to own gold other forms than just jewelry.
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• 1975: U.S. treasury and IMF start selling its gold. Trading in gold for future

delivery begins on New York’s Commodity exchange and on Chicago’s Interna-

tional Monetary Market and Board of Trade. The Krugerrand is launched on

to U.S. markets.

• 1978: The IMF and the U.S. abolish the official price of gold. Member govern-

ments can buy or sell gold in private markets. The U.S. Congress passes the

American Arts Gold Medallion Act, representing the first official issue of a gold

piece for sale to individuals. Japan lifts its ban on gold exports.

• 1979: Canada introduces 1 ounce Maple leaf.

• 1979/June-1980/March silver bubble caused by the Hunt brothers of Texas.

This resulted substantial changes in market trading rules [5].

• 1980: IMF sells 1/3 of its gold to IMF members. The U.S. sells 15.8 million

troy ounce of gold to strengthen its trade balance. A weakening U.S. dollars

raises interest in gold, assumed to be aided by historic events such as the

U.S. recognition of Communist China, events in Iran and Sino-Vietnam border

disturbances. Gold reaches historic high of $870 and drops to $591 at the year

end.

• 1981: The U.S Treasury forms a gold commission to assess and make recom-

mendations with regard to the policy of the U.S. government concerning the

role of gold in domestic and international monetary system. Gold is used in

coating of the first space shuttle’s liquid impellers.

• 1986: The American Eagle gold Bullion coin is introduced by the U.S. Mint.

Treasury starts purchasing newly minted gold. On the technological side, gold
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coated compact discs are introduced, which provides perfect reflective surfaces,

eliminates pinholes and eliminating all possibility of oxidative deterioration of

the surfaces.

• 1987: British Royal Mint introduces the Britannia Gold Bullion coin. World

stock market crashes on October; in commodities market shows increase in gold

activity. The world gold council is established to sustain and develop demand

for the end uses of gold.

• 1988: Japan purchases huge amounts of gold to mint a commemorative gold

coin to celebrate 60th anniversary of Emperor Hirohito’s reign.

• 1989: Austria introduces the Philharmonic bullion coin.

• 1993: Germany lifts its tax restriction on financial gold, causing a increase in

private demand of gold. India and Turkey free their gold markets.

• 1994: Russia formally establishes gold market.

• 1996: The Mars Global surveyor is launched with an on board gold coated

parabolic telescope-mirror.

• 1997: The U.S. Congress passes a bill allowing U.S. individual retirement

account holders to buy gold bullion coins and bars for their accounts as long as

they are 99.5% purity of gold.

• 1999: The Euro is introduced backed by a new European Central Bank holding

15% of its reserves in gold.

• 2000: Gold coated mirrors is used in space observatories.
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The post-1968 data is necessary to interpret the shock to the price of gold and

silver. For that reason, we will be referring to these points in the later sections while

interpreting our model results.

2.1.2 Industrial Uses of Gold and Silver

Throughout history, gold and silver were mainly used as currency and jewelry.

However, recent changes in their status as currency do not diminish their value. They

are two of the best conductors of electricity and heat, most reflective of all metals,

are powerful anti-bacterial agents, and are easily worked since they are malleable and

ductile. These properties make them two of the most sought out and revered metals

[13], [11].

The most important industrial use of gold is in electronics manufacturing. A

small amount of gold is used in almost every electronic device. Silver is the best

conductor of electricity so it finds many uses in electronics as well. Even though

gold is a number-3 conductor. One of gold’s advantages is that it does not oxidize.

Chemical reactions use silver as a catalyst. More than 700 tons of silver are used

each year to produce ethylene oxide and formaldehyde, both of which are essential to

the plastics industry. Silver oxide-zinc batteries are being used in portable electronic

devices, like watches, cameras, and other small electronic devices. As one of the most

reflective metals next to gold, silver is used in specialized optical devices, automobile

windshields, and both commercial and household mirrors [11], [13].

Another use of gold is in health care. Gold is known to have been used in

dentistry as early as 700 B.C. Gold is also used as a drug to treat rheumatoid

arthritis. Radio-active gold has been used as a medical diagnostic tool and in cancer

treatments. Gold is also used in surgical instruments [13]. Ancient people knew that
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silver kept the freshness and prevented spoilage of oil, wine, and water. Wealthy

ancient Greeks and Romans stored these in silver jugs. Silver compound shows a

toxic effect on bacteria, viruses, algae, and fungi. Silver also has wide range of

use in health and medical applications. These include dressing and ointments for

burns and wounds, anti-bacterial pharmaceutical, and coating of surgical instruments.

Silver is being used for water purification and treatment containing radioactive and

biological contaminants [11]. Even though gold has similar antibacterial properties,

using gold instead of silver would be a very expensive alternative. Recently clothing

is being manufactured with silver-impregnated fabric to kill bacteria and fungi in

order to reduce disease and odor. Recent research shows that silver also promotes

the production of new cell growth, speeding the healing process of wounds and bones

[11].

Gold is too expensive to use randomly. It is used purposefully and only when less

expensive alternatives cannot be found. Most of the ways gold is used in industry

have been developed only during the past three decades. This trend will most likely

continue. As the use of sophisticated electronics increase, the use of industrial gold

will increase. The need for silver is also expected to keep increasing [11].

There is very little gold/silver recovery from industrial-use and that use is increas-

ing. The combination of increased demand and limited supply of both gold and silver

will increase their value and importance over time [13].
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2.2 Regression Models with Stochastic Parameters

2.2.1 The State-Space Model

The state-space model or dynamic linear model (DLM), in its basic form, employs

an order one autoregression (AR(1)) as the state equation:

βt − β = Φ(βt−1 − β) + at (2.1)

where the state equation determines the rule for the generation of the K × 1 state

vector βt from the past K × 1 state βt−1, for time points t = 1, . . . , n. The K × 1

stochastic parameter βt has constant mean β, and Φ is a K × K matrix of fixed

parameters. We assume at are K × 1 independent and identically distributed (IID),

zero mean normal vectors withK×K covariance matrixQ. In the state equation (2.1),

we assume the process starts with initial vector β0 that has mean µ0 and K × K

covariance matrix Σ0 (or σ0 for univariate case). The state-space model adds an

additional component to the regression model in assuming we do not observe the

state vector βt directly, but only a linear transformed version of it with noise added:

yt = α + z′tβt + et (2.2)

where zt is q×K measurement or observations vector, yt are q× 1 observation vector

in (2.2) and et are q × 1 IID, zero mean normal vectors with q × q covariance matrix

R, and α is an intercept term. The model in (2.2) is called measurement, or space

equation.

The state-space model is a powerful tool which opens the way to handling a wide

range of time series models. Once a problem is put in a state-space form, the Kalman



11

filter may be applied and this in turn leads to algorithms for prediction and smoothing.

The Kalman filter is a recursive procedure for computing the optimal estimator of

the state vector at time t based on all the information available at time t, [8], [3], [6].

The current values of the state vector is of prime interest and Kalman filter

enables the estimate of the state vector to be continually updated as new observations

(or information) become available. The state vector may not have an economic

interpretation but in cases where it does, it is more appropriate to estimate its value

at a particular point in time using all the information in the sample, not just a part

of it.

In econometrics, the Kalman filter became important, due to its forecasting ability.

Another reason for the popularity of the Kalman filter is that when the disturbances

and the initial state vector are normally distributed, it enables the likelihood function

to be calculated via what is known as the prediction error decomposition. This opens

the way for the estimation of any unknown parameters in the model. It also provides

the basis for statistical testing and model specification.

The derivation of the Kalman filter given below is based on the assumption that

the disturbances and initial state vectors are normally distributed. A standard result

on the multivariate normal distribution is then used to show how it is possible to

recursively calculate the distribution of βt, conditional on the information set at time

t for all t from 1 to T . These conditional distributions are themselves normal and

thus are completely specified by their means and covariance matrix.

After having derived the Kalman filter, it is shown that the mean of the conditional

distribution of βt is an optimal estimator of βt in the sense that it minimizes the mean

square error (MSE) of predictions. When the normality assumption is dropped there

is no longer any guarantee that the Kalman filter will give the conditional mean of the
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state vector. However, it is still an optimal estimator in the sense that it minimizes

the MSE within the class of all linear estimators [8].

2.2.2 Kalman Filter

Let us assume we have T observations of y1, . . . yT on a dependent variable, and cor-

respondingly, observations Ai1, . . . AiT where i = 1, . . . , K. Assuming linear relation

between yt and Ait, we can write:

yt = β1tA1t + β2tA2t + · · ·+ βKtAKt + et (2.3)

or equivalently,

yt = α + Atβt + et (2.4)

βt − β = Φ(βt−1 − β) + at (2.5)

where At = (A1t . . . AKt)
′, We assume at and et are independent white noise and are

uncorrelated. Ait are either fixed observations or random variables, independent of

both at and et. The model described by (2.4) and (2.5) is a special case of a general

class of models called state-space models. This model has been extensively presented

in [3]. We will use this state-space model in Chapter 3 as a base model for analyzing

silver and gold prices. Specifically, the state-space model equations are rearranged to

obtain a random walk and random coefficient model.

In this work, we assume that the joint distribution of yt and βt for given y1, . . . , yt−1

is normal. Therefore, this distribution is multivariate normal. Thus, this distribution

can be expressed in terms of its mean and covariance matrix. The objective of the

Kalman filter algorithm is then to provide a convenient way of computing the ex-
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pected value and covariance matrix of the stochastic parameter βt, given information

available at time t. At this point, it would be useful to introduce some further

notation.

First, consider the distribution of βt, given information up to time t−1, y1, . . . , yt−1.

We will use β(t|n) to denote expected value (mean) of this distribution, and P (t|n)

to denote its K ×K covariance matrix. These can be written as

β(t|n) = E[βt|y1 . . . yn]; P (t|n) = V ar[βt|y1 . . . yn].

We also need to consider the distribution of yt, given information up to and

including time t− 1. The mean and variance of this distribution can be written as

y(t|n) = E[yt|y1 . . . yn]; ht = V ar[yt|y1 . . . yn].

We already assumed that βt and yt are normally distributed. Now it is necessary

to find the joint distribution of βt and yt given the observation y1, . . . , yt−1. As a

consequence of the normality assumption, it follows that this joint distribution will

be multivariate normal. Using the well-known results on the multivariate normal

distribution, we can find the mean and the covariance of this distribution. For further

details, see Appendix of [8] and [6].

Derivation of the expected value and covariance matrix of βt and yt given y1, . . . , yt−1,

can be found in [6] and [8]. These expected values and covariance matrices comprise

the Kalman algorithm. Here, we will only list the following pertinent equations of

the Kalman algorithm.

β(t|t− 1) = Φβ(t− 1|t− 1) + (I + Φ)β (2.6)

P (t|t− 1) = ΦP (t− 1|t− 1)Φ′ +Q (2.7)

ht = A′tP (t|t− 1)At +R (2.8)
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β(t|t) = Φβ(t− 1|t− 1) + (I − Φ)β + P (t|t− 1)Ath
−1
t [yt − A′tβ(t|t− 1)] (2.9)

P (t|t) = P (t|t− 1)− P (t|t− 1)Ath
−1
t A′tP (t|t− 1) (2.10)

To find expected values for βt and yt, given all the previous values of yt, we use

Kalman algorithm equations (2.6)-(2.10). Here β(t|t− 1) is the conditional expected

value of βt, P is the conditional covariance matrix of βt, and ht is the covariance of

yt.

The Kalman algorithm provides a computationally efficient framework to solve

the problem of estimating the fixed parameters (Φ, α, β,Q,R) of the regression model

and forecasting the future values of yt. These parameters will be estimated by the

maximum likelihood method (ML) utilizing Newton-Raphson method.

In order to utilize the Kalman filter algorithm, initial values, namely β(0|0)

and P (0|0), are needed. These are mean and covariance of β0 given no previous

observation. These starting values can be substituted into the Kalman filter equa-

tions (2.6)-(2.10) to compute recursively the means and the variances of the dependent

variables and stochastic parameters in any time period, given information available

in the previous period and the fixed coefficient of the model.

In actuality, this algorithm does not give us the fixed parameters, but provides us a

basis for the maximum likelihood estimation of the fixed parameters. Then, we could

estimate the stochastic parameters over the same period. The details of the maximum

likelihood estimation are not the main subject of this thesis. Shumway and Stoffer [8]

give a practical approach for calculating maximum likelihood estimates numerically

using Newton-Raphson method in detail in Chapter 6, along with a computational

algorithm in R. The estimation of the fixed parameters of the state-space model is

very involved. Here, we give a short summary of the maximum likelihood estimation
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in our model.

2.2.3 Estimation of Fixed Coefficients: Maximum Likelihood Estimation

Let Θ = (µ0,Σ0,Φ, α, β,Q,R) represent the vector of the unknown parameters in

model (2.1) and (2.2) containing the initial mean and covariance of β0, denoted by

µ0, Σ0, the transition matrix Φ, and Q and R are the state and space observation

covariance matrix, respectively. The likelihood function can be evaluated under the

initial assumption that the initial β0 is normal with mean µ0, and variance Σ0, and

errors a1, . . . , aT , and e1, . . . , eT are jointly normal and {at} and {et} are uncorrelated.

The likelihood is computed using the innovations ε1, . . . , εt defined as εt = yt −

Atβ(t|t − 1) − α. The innovation form of the likelihood is given in Shumway and

Stoffer [8], Newbold and Bos [6], and references therein.

Given observations taken over t time points, we want to obtain estimates of the

fixed parameters. In doing so, we need to derive the likelihood function which is the

joint distribution of y1, . . . , yt as a function of fixed parameters of our model. The

joint probability density function of y1, . . . , yt can be expressed as the product of the

conditional density of yt given y1, . . . , yt−1, that is f(y1, . . . , yt) = f(y1) · f(y2|y1) ·

f(y3|y1, y2) . . . f(yt|y1, . . . , yt−1). We also know that the distribution of yt given all

the observations y1, . . . , yt−1 is normal with expected value given by y(t|t − 1) =

α+A′tβ(t|t− 1) and covariance ht given as ht = A′tP (t|t− 1)At +σ2. The conditional

probability density function, then, can be written as:

f(yt|y1, y2, . . . , yt−1) =
1√

2πht
e−(yt−A′

tβ(t|t−1))2/2ht (2.11)

Following the conditional distribution function of yt, we can express the likelihood
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function, that is the joint distribution function, as

L = (2π)−n/2
n∏
t=1

h
−1/2
t e−

∑n

t=1
(yt−A′

tβ(t|t−1))2/(2ht) (2.12)

Taking the natural logarithms yields the log-likelihood function, which is actually

easier to work with than the likelihood function, as follows:

lnL =
n

2
ln(2π) +

1

2

n∑
t=1

lnht +
n∑
t=1

(
yt − A′tβ(t|t− 1))2

ht

)
(2.13)

The log-likelihood equation (2.13) provides the function that must be maximized to

obtain maximum likelihood estimates of the fixed parameters. In reality, it is taken

as −lnL, and it must be minimized. The equation (2.13) includes the observation yt

and At, along with conditional variance ht of the dependent variable and conditional

expectation of stochastic parameter β(t|t − 1). The conditional variance ht and the

expectation β(t|t−1) are functions of the fixed parameters defined in the Kalman filter

algorithm. We use the Kalman algorithm to calculate them recursively for the given

fixed parameters. To find the fixed parameters, we need to solve the log-likelihood

function.

Because ht and β(t|t−1) are complicated functions, it is not possible to solve this

log-likelihood function analytically. Therefore, numerical optimization algorithms

must be employed with respect to fixed parameters of the state-space model. Today,

most statistical softwares include optimization packages. In this thesis, we used

optim() function, which comes standard with R-package. The only thing this function

requires is a definition of the functions to be optimized, which are given in the Kalman

filter algorithm. The numerical algorithm used in the optim() is Newton-Raphson
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method. This method requires only the derivatives of the function to be minimized.

Then, the derivatives are evaluated numerically.

Another advantage of the numerical maximization of the likelihood function is that

it provides the standard errors associated with estimators along with point estimates

of the fixed parameters. This is accomplished through the information matrix. Let

Θ be the vector of all the fixed parameters and L be the likelihood function, then the

information matrix is the expectation of the second derivatives of lnL with respect

to each parameters:

I(Θ) =
∂2 lnL

∂Θ∂Θ′
(2.14)

It can be assumed that this approximation is valid for large sample sizes. Then, the

covariance matrix V (Θ) of the maximum likelihood estimators of Θ is V (Θ) = I(Θ)−1.

Newton-Raphson Estimation Procedure

The steps involved in performing a Newton-Raphson estimation procedure are as

follows.

1. Choose: Initial values of mean and variance of βt: µ0,Σ0, and initial fixed

parameters of state-space model:

Θ(0) = (Φ, α, β,Q,R)

2. Run the Kalman filter algorithm (2.6)-(2.10) to obtain a set of error values

ε
(0)
t = yt − α− At · βt and covariance Σ

(0)
t ; t = 1, . . . , n.

3. Run Newton-Raphson algorithm with −lnLY (Θ) as the criterion function to

obtain a new set of Θ(1).
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4. At the iteration j, repeat Step 2 to obtain new set of ε
(j)
t = yt− α−At · βt and

Σ
(j)
t . Then, repeat Step 3 to obtain a new set of Θ(j), stop when MLE stabilize;

for example, stop when the values of Θ(j+1) differ from Θ(j), or when LY (Θ(j+1))

differs from LY (Θ(j)), by some pre-determined small amount [8].

The only time inputs in this procedure are for the initial values for Θ = (µ0,Σ0,Φ, α, β,Q,R).

This is a trial and error process, and one can only make educated guesses for these

inputs. However, this can be a very arduous process. In this study, we assumed linear

relation between yt and At, in that the intercept and slope provided initial values for

α and µ0. We also assumed initial β is to be equal to µ0. For the rest of the fixed

parameters, we made educated guess. The algorithm we used in this study can be

found in A.

2.2.4 Prediction of Future Values

We start with set of observed data, namely yt and Ait. Both data set cover the

same period in time. From these data, we find the fixed parameters of the state-space

model and stochastic regression coefficients. Then, we would be able to describe the

relationship between these two variables.

The primary aim of the state-space model approach is to produce estimators for

the underlying unobserved signal βt. Then, we will assumed that yt are generated by

this stochastic regression model. We will further assume that this model continues

to hold true in the future.

The problem we encounter here is that, to predict future values of y, we have to

have the foreknowledge of Ai due to the fact that Ai is the independent variable and

y is the dependent variable of the stochastic regression model. Thus, the predictions

of future values of y will be a conditional forecast, that is, we derive prediction of
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the values that the dependent variable will take, given specific future values of the

independent variable Ait.

The stochastic parameter model only allows us to predict the future values of

non-observable βt. The best forecast for βn+l, given information for time period n, is

the conditional expectation of βn+l. We can also compute the covariance matrix of

βn+l and yt+l as follows

β(n+ l|n) = Φβ(n+ l − 1|n) + (I − Φ)β (2.15)

P (n+ l|n) = ΦP (n+ l − 1|n)Φ′ +Q (2.16)

h(n+ l|n) = V ar(yn+l|y1, . . . yn) (2.17)

Assuming normal distribution, the 95% prediction interval for yn+l is given by

y(n+ l|n)± 1.96
√
h(n+ l|n) (2.18)

where y(n + l|n) = α + An+1β(n + l|n). We will use this y(n + l|n) to calculate

12-month ahead prediction of gold price and compare these conditional predictions

with the real gold prices of 2001 in Section 3.5.

2.2.5 Estimation of the Sample Period Stochastic Parameter

Before we use the model parameters estimated with the Kalman filter for forecast-

ing, we would like to know how well these estimates can trace the real observed data.

Later on, for example, it may be of interest to economic historians to know how the

gold and silver price relationship has evolved over time. Because we assume causality,

that is, past values are future independent, we need to find the estimates of βt, over
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the period t = 1 . . . n. These estimates should be based on all the available data.

At the end of Kalman algorithm, we will have β(n|n) and P (n|n), the mean and

covariance of βt at the last point in time. As Shumway and Stoffer [8] nicely stated,

the purpose of the state-space model is to produce estimators for the underlying

unobserved signal βt, given the data y1, . . . , ys. When s < t, the problem is called

forecasting, when s > t, the problem is called smoothing.

If we believe that a stochastic parameter regression model might provide a good

description of the data set, then it is natural to expect the estimates could trace the

observations as closely as possible, through the time period given. In terms of space

or measurement equation (2.2), we can estimate the varying parameters βt over the

time period t = 1, . . . , n. These estimates should be based on all available data, so

that the optimal estimation of βt is its conditional expectation given the entire data,

namely β(t|n) = E[βt|y1, . . . , yn]. In order to find the standard errors associated with

these estimators, so that we could derive interval estimates, we need the conditional

covariance matrices P (t|n) = V ar(βt|y1, . . . , yn).

Here, the Kalman filter algorithm does not provide these estimates we require. It

only generates, the mean and the covariance of the stochastic regression coefficients

βt, given only information available up to time t. Thus, the only estimates we have

that utilize all the observed data are β(n|n) and P (n|n). These are the mean and the

covariance matrix of the stochastic parameter vector at the last point in the sampling

period. In our work, we used the Kalman smoother given by Shumway and Stoffer [8]

to apply the fixed interval smoother. For the state-space model specified in (2.4)

through (2.5), β(n|n) and P (n|n) were obtain through the Kalman filter algorithm

(2.6)-(2.10), for t = n, . . . , 1,
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β(t− 1|n) = β(t− 1|t− 1) + Jt−1(β(t|n)− β(t|t− 1)) (2.19)

P (t− 1|n) = P (t− 1|t− 1) + Jt−1(P (t|n)− P (t|t− 1))J ′t−1 (2.20)

where Jt−1 = P (t − 1|t − 1)Φ′[P (t − 1|t)]−1. The proof of (2.19) and (2.20) can be

found in Shumway and Stoffer [8].

The Kalman smoothing algorithm starts by setting t = n− 1 in (2.19) and (2.20),

recursively producing the mean and covariance matrix of the conditional distribution

for βn−1. This process only requires information generated by the Kalman filter

algorithm. The equations (2.19) and (2.20) are reapplied by setting t = n−2, n−3, . . .

to obtain point estimates of β(t|n) of all the stochastic parameters over the sample

period along with the associated covariance matrices P (t|n).

2.2.6 Summary

In this chapter, we have presented the mathematical background of estimation and

prediction in a regression model with stochastic parameters. The Equations (2.4) and

(2.5), which we adapted for our study, require that all the regression coefficients be

stochastic, obeying a vector first-order autoregressive process, AR(1). In the next

chapter, we will apply this model to analyze the historical gold and silver prices as a

stochastic regression process setting the silver prices as independent variable and the

gold prices as dependent variable. We also extend our study in to three other models

that assume stochastic parameters to be other than AR(1). In these models, we will

assume the regression coefficients can be random, random walk with drift or random

walk process.
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CHAPTER 3

STOCHASTIC PARAMETER MODEL FOR GOLD AND

SILVER

In this chapter, we are analyzing time-varying relationships between gold and silver

from a stochastic regression point of view. The gold price yt is modeled by using the

silver price zt as co-variate with a time-varying coefficient βt in Equation (2.4). The

resulting model sets p = 1 and K = 1 in the state-space model expressions (2.4) and

(2.5), simplifying to:

yt = α + βtzt + et (3.1)

where α is a fixed intercept constant, βt is time-varying regression coefficient, and et is

white noise with mean zero and variance σ2
e . We consider the time-varying regression

coefficient βt to be a first-order autoregression (AR):

βt − β = Φ(βt−1 − β) + at (3.2)

where β is the constant mean of βt and at is white noise with mean zero and variance

σ2
a. We assumed that the noise processes {at} and {et} are uncorrelated. The AR

parameter Φ is assumed to be constant |Φ| < 1 for causality. The AR(1) stochastic

parameter model (3.2) can be reexpressed as



23

βt = Φβt−1 + (1− Φ)β + at. (3.3)

The fixed parameter vector in the state-space model (3.1) and (3.2) is Θ = (Φ, α, β, σa, σe)
′.

We use Kfilter2 and Ksmooth2, given by Shumway and Stoffer [8], for the Kalman

filter and Kalman Smoothing algorithms. We fitted four different model: random

coefficient, first-order autoregression coefficient, random walk with drift, and random

walk models.

The models were fitted with the data displayed in Figure 3.1. This figure shows the

monthly average of London Fix gold prices denoted by yt, and the monthly average

of London Fix silver prices, denoted zt from January of 1969 through December of

2000, for a total of n = 384 observations. The data set is taken from The Pert Mint

web site [9]. This web site provides all up to date prices for gold and silver in monthly

average and daily average forms.
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Figure 3.1: London Fix monthly average gold (black) and silver (blue) prices between
January 1969 and December 2000.
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3.1 Random Coefficient Model

When we set Φ = 0 in (3.3), the state equation takes the following form:

βt = β + at (3.4)

and this implies that if Φ = 0, then the stochastic parameter model in (3.3) becomes

a random coefficient model (3.4) with mean β and variance σ2
a. Additionally, if

σa is small relative to β, the state system becomes nearly deterministic, (βt ≈ β),

simplifying to a classical linear model.

The Newton-Raphson estimation procedures were applied to the gold and silver

price data as described in Section 2.2.3. Table 3.1 summarizes the estimates of

the fixed parameters vector Θ and the standard errors (SE) associated with each

fixed parameter. The results summarized in Table 3.1 indicate that the gold-silver

relationship is definitely not deterministic. The time-varying coefficient {βt} in this

model is white noise with constant mean β.

Table 3.1: Fixed Parameters of Random Coefficient Model

α β σa σe
Estimate -43.417 62.315 19.185 17.805
SE 8.833 2.186 0.812 10.358

On the other hand, smoothed βt are not white noise. The Kalman smoothing

procedure allows us to find the estimates of βt for given observations of the silver

and gold prices, {(z1, y1), . . . , (zn, yn)}, so that we can trace back the smoothed {βt}.

These {βt} actually represent the gold silver price ratio for this model. Figure 3.2

displays the estimated trace of βt based on all the available data used.
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Another result of this model is that the mean of the residual error of prediction is

-28.5. We assumed that the prediction error is normally distributed with mean zero.

Figure 3.3 shows that the random coefficient model does not support this assumption,

therefore, we can conclude that the random coefficient model works poorly and we

need to consider another models. It can also be seen from the residuals of this model

in Figure 3.3 that the impact of 1980’s silver bubble is very pronounced in this model.

The random coefficient model could not handle this unusual occurrence in silver price

speculation, which given in Section 2.1.1.

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20

40

60

80

100

β t

Figure 3.2: Random coefficient model’s estimates for one step-ahead prediction
coefficients βt is black, estimates for smoothed βt is blue. These parameters represents
the gold/silver ratio.
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3.2 First-Order Autoregression Coefficient Model

When we don’t set Φ = 0, the state equation (2.5) represents a first-order autore-

gressive process, AR(1). The model becomes a stochastic parameter regression model,

and the fixed parameter vector for this model is Θ = (Φ, α, β, σ2
a, σ

2
e)
′, where σ2

a is

variance of at and σ2
e is variance of et. The Newton-Raphson estimates of the fixed

parameters are listed in Table 3.2, along with the standard errors (SE) corresponding
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to each fixed parameter, Section 2.2.3. The ML estimate of φ is very close to 1. This

indicates possible violation of causality assumption of AR(1) process. In Figure 3.4,

we see that βt is closer to a path of a random walk process than AR(1) [8].

Figure 3.5 shows gold prices (black), model fit (red), and the corresponding

residuals. Due to the fact that the model followed the real gold prices very closely

and the difference between the price of gold in January of 1696 and December of 2000

was so large, this makes it very difficult to separate gold prices from model fit. This

is only a scaling issue. The famous silver bubble of 1980 is clearly shown in residuals.

This model could not account for this drastic change in silver prices caused by only

a few people; refer to Section 2.1.1.

Figure 3.6 shows that the βt for prediction and for smoothed are very close. If

we use the smoothed estimates of βt as our stochastic regression coefficient, what

we obtain is a representation of historic gold-silver price ratio, while estimates of

prediction βt are giving us one step-ahead predictions. There is one interesting

feature here about the gold silver ratio. Contrary to some earlier suggestions that

the gold silver ratio should be between 16 and 20, we can see that before 1990 this

ratio was much higher than that and has an upward trend. After 1990, the ratio

started decreasing and has a downward trend. Both βt for prediction and smoothing

closely follow the gold silver ratio. Further discussion on this subject will be given in

Section 3.5 along with economic implications.

Table 3.2: Fixed parameters of first-order autoregression Coefficient model

Φ α β σa σe
Estimate 0.991 33.6444 50.572 2.467 1.115
SE 0.0054 4.381 14.048 0.091 0.554
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prediction coefficient βt and its ACF and PACF.
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31

3.3 random walk with Drift Model

The previous model showed us that the time varying parameters of the stochastic

regression model was actually closer to the random walk process than the AR(1)

process. This is the reason we investigated the random walk with drift model.

In state equation (3.3), if we set Φ = 1 and keep a constant d on the right side

of the equation as a drift constant, the first-order autoregression coefficient model

becomes a random walk with drift model,

βt = βt−1 + d+ at (3.5)

The fixed parameter vector for this model is Θ = (α, d, σa, σe)
′. These parameters

are estimated by the Newton-Raphson algorithm procedure and these estimates are

listed in Table 3.3. The standard error corresponding to each fixed parameter is also

included in the table. In the previous model, we had (1 − Φ)β term in (3.2) and its

value is 0.45 even though β is 50.575. This is due to Φ ≈ 1; see Table 3.2. In this

model, instead of (1− Φ)β, we have drift constant d, which is 0.186. In the limiting

case when Φ→ 1, (1− Φ)β can be considered as a drift constant. Therefore, we can

say that previous model had larger drift influence on the model.

Table 3.3: Fixed Parameters of random walk with Drift Model

α d σa σe
Estimate 50.108 0.186 2.323 0.861
SE 4.286 0.117 0.084 0.481

The Kalman filter algorithm was utilized to find the estimate for one step-ahead

prediction βt and the Kalman smoothing algorithm for smoothed βt. Both are shown
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in Figure 3.7 and closely follow each other. Figure 3.8 shows the estimates of one
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Figure 3.7: Random walk with drift model’s estimates for one step-ahead prediction
coefficients βt is black and smoothed βt is blue.

step-ahead predictions, βt, along with its ACF and PACF. This clearly shows that

βt’s path is a typical random walk with drift model. When we compare this with

Figure 3.4, it can be seen that the stochastic parameter βt is more like a random walk

than an AR(1) process.

Close inspection of Figure 3.9 indicates that this model also traces the real gold

prices very closely. Similar to the stochastic parameter regression model residuals,

1980’s silver bubble is very pronounce in this model’s residuals as well.
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Figure 3.8: Random walk with drift model’s estimates of one step-ahead prediction
coefficients βt and its ACF and PACF.
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3.4 random walk without Drift Model

When we set φ = 1, in (3.3), this model becomes a random walk without drift,

βt = βt−1 + at. When the stochastic regression model’s fixed coefficient estimates for

Φ is nearly 1, this models turns into a random walk model, limΦ→1(Φ − 1) ≈ 0. .

It is no surprise that Figure (3.10) of the first-Order autoregression coefficient model

and Figure (3.6) of the random walk model are almost identical. The fixed parameter

vector for this model is Θ = (α, σa, σe)
′. These parameters are estimated by the

Newton-Raphson algorithm procedure and are are listed in Table 3.4. The standard

error corresponding each fixed parameter is also included in the table. The difference

between these parameters and those of the random walk with drift model are not

significant. It appears that the major difference is the drift constant. The standard

Table 3.4: Fixed Parameters of random walk Model

α σa σe
Estimate 46.526 2.262 0.874
SE 3.968 0.077 0.503

error corresponding each fixed parameter is also included in the table. The difference

between these parameters and those of the random walk with drift model are not

significant. It appears that the major difference is the drift constant. Figure 3.11

shows the estimates of one step-ahead predictions, βt, along with its ACF and PACF.

This clearly shows that βt’s path is a typical random walk model. When we compare

this with Figure 3.4, it can be seen that the stochastic parameter βt is more like a

random walk than an AR(1) process.
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Figure 3.10: Random walk without drift model’s estimates for one step-ahead pre-
diction’s βt is black, estimates for smoothed βt is blue.
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Figure 3.11: random walk Without Drift model’s estimates of one step-ahead predic-
tion coefficients βt and its ACF and PACF.
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3.5 Prediction

Figure 3.13 compares one-step ahead gold price predictions from the four models

(random coefficient, first-order autoregression, random walk with drift, and random

walk without drift) described in Sections 3.1-3.4, along with gold and silver prices

between January of 1969 and December of 2000. Excluding the random coefficient

model, all three models closely trace the gold prices. Figure 3.14 displays all four

models’ one-step ahead prediction for βt. After the first five years, all three models’

(except the random coefficient model) βt are close to each other.

We compared all four models’ forecastability, as described in Section 2.2.4. Fig-

ure 3.15 shows all four models’ prediction of 12 months into the future. We see that all

four models under predicted gold prices for 2001; the random walk with drift gave the

best predictions, and the random coefficient model produced the worst predictions.

While silver closely followed gold trends most of the years between 1969 and 2000,

after 2001 this is not true. It appears that silver lost some of its appeal for a short

period of time, although there were yet known reasons for this. However, in the

political side, a new administration took over the presidential office around 2001.

During this time of the political change, gold prices started to rise; silver, on the

other hand, was not so quick to respond to this change. We do not know what caused

the discrepancy between the gold price forecasts and actual gold prices. However,

because the forecasts were close to actual gold prices up to 2000, we conjecture that

the predicted values of the gold prices obtained from the random walk with drift model

would have been closer to gold prices, if such a change in the political environment

was not made.

Table 3.5 lists the sum of squares and sum of absolute values of for prediction
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Figure 3.13: Gold, silver prices and model fit of gold for four models: AR(1) coefficient
model (ARR), random walk with drift (RWD), random walk (RD), and random
coefficient (RC)

errors (SSPE and SAPE) of all four models. It is clear from these error values that

random walk with drift is the best model compared to others even though all four

models under estimate future gold price with given silver price.
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Figure 3.14: βt of one step ahead predictions of four models between January of 1969
and December of 2000

Table 3.5: (SSPE) and (SAPE) of four models’ 2001, 12 months predictions

RC ARC RWD RW
SSE 23327 6524 3094 6183
SAE 505 243 164 236
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CHAPTER 4

CONCLUSIONS

In Section 2.1.1, we listed each historical decisions or events between 1969 and

2000 that caused similar effects in gold and silver prices. During these effects, if there

was a spike in the gold prices, there was a spike in the silver prices as well. Based

on this historical data, we assumed gold and silver prices were dictated by the same

fundamentals (i.e., what affected gold affected silver as well). This lead us to examine

the dynamic relationship between gold and silver prices between 1969 and 2000.

The relationship between gold and silver was assumed to follow a stochastic pa-

rameter regression model and stochastic parameters were assumed to be a first-order

autoregression process, AR(1). We formulated this relationship into a state-space

form, and we used the Kalman filter and smoother algorithms to estimate both the

fixed parameters and the stochastic regression coefficients. We determined that the

stochastic parameters were closer to a random walk process than the AR(1) process.

Therefore, we applied random walk process with a drift, random walk without a drift,

and random coefficient models. When it comes to forecastability of the four models,

the random walk with drift model seems to be the best model even though all four

models under estimated gold prices with given silver prices.

In the 1980s there was a huge increase in silver prices due to famous silver bubble

caused by the Hunt brothers of Texas [5]. Around the same time IMF sold 1/3 of
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its gold reserve and the U.S. sold around 16 million troy ounces of gold [12]. These

last two events caused a bubble-like increase in gold price. Even though the reasons

for the increase in gold and silver prices were not related, it appeared that gold and

silver followed the same trend.

In addition, all four models showed large residuals with the largest occurring in the

random coefficient model. It appears that those events around 1980 are outlier. This

kind of outlier are future unpredictable events that are hard to predict. Therefore, it

is our opinion that this kind of analysis is best to study historical relationship between

gold and silver and is less useful for long term investment purposes. With this being

said, however, our stochastic parameter regression approach allows others to predict

future gold prices with only one variable, silver price, with grate accuracy for the

short term. This approach might be powerful for future predictions if no extreme

events occur for the period of interest.



45

REFERENCES

[1] Akgiray, V., Booth, G.G., Hutem, J.J., and Mustafa, C., 1991. “Conditional
dependence in precious medal price”. The financial Review, vol. 26, pp. 367–386.

[2] Chan, M.L., and Mountain, D.C. 1988. ”The interactive and causal relationship
involving precious metal price movement.” Journal of Business and Economic
Statistics, vol.6, pp.69–77.

[3] Durbin, J., and Koopman, S.J., Time Series Analysis by State Space Methods.
Oxford University Press, Oxford, 2001.

[4] Escribano, A., and Granger, C. W. J., 1998., ”Investigating the relationship
between gold and silver price.” Journal of Forcasting vol.17, pp. 81–107.

[5] Fay, S., Beyond Greed. The Viking, New York, 1982.

[6] Newbold, P. and Bos, T., 1985, T. Stochastic Parameter Regression Models, Sage,
Beverly Hills, 1985

[7] Lee, W., and Lin, H., 2010, ”The dynamic relationship between gold and silver
futures markets based on Copula-AR-GJR-GARCH model.” Middle Eastern
Finance and Econometrics vol. 7, pp. 118–129.

[8] Shumway, R. H. and Stoffer, D. S., Time Series Analysis and It’s Application
with R examples, 3rd edition. Springer, New York, 2011.

[9] The Pert Mint. Monthly Data (all).
http://www.perthmint.com.au/investment

invest in gold precious metal prices.aspx

[10] Silver Institute. 2012, Silver In History.
http://www.silverinstitute.org/site/

silver-essentials/silver-in-history/

[11] Silver Institute., 2012, Silver in Technology .
http://www.silverinstitute.org/site/silver-in-technology/

[12] Geology.com. 2012. Gold History.
http://www.nma.org/pdf/gold/gold history.pdf



46

[13] Geology.com. 2012. The Many Uses of Gold.
http://geology.com/minerals/gold/uses-of-gold.shtml





48

APPENDIX A

R-PROGRAMS

This program calculates the fixed parameters of the state space model and the

time varying coefficients of the stochastic regression model. It is a modification of

the example 6.13 from Shumway and Stoffer [8], and uses tsa3.rda which can be

downloaded from the web site provided in [8]. This program can be adapted to other

three models by only changing the initial parameters and fixed parameter vector.

# Stochastic Regression Model with

# AR(1) Stochastic parameter Model

# Kfilter2 and Ksmoother2 given Shumway and Stoffer

load("tsa3.rda")

GoldSilverTBill<-read.csv(

file="GoldSilverLondonfix.csv",

head=TRUE,sep=",")

n<-nrow(GoldSilverTBill)

m<-ncol(GoldSilverTBill)

acf2=function(series,max.lag=NULL){

num=length(series)
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if (is.null(max.lag)) max.lag=ceiling(10+sqrt(num))

if (max.lag > (num-1)) stop("Number of lags

exceeds number of observations")

ACF=acf(series, max.lag, plot=FALSE)$acf[-1]

PACF=pacf(series, max.lag, plot=FALSE)$acf

LAG=1:max.lag/frequency(series)

minA=min(ACF)

minP=min(PACF)

U=2/sqrt(num)

L=-U

minu=min(minA,minP,L)-.01

ACF<-round(ACF,2); PACF<-round(PACF,2)

return(cbind(LAG, ACF, PACF) )

}

gold<-ts(as.numeric(data.matrix(GoldSilverTBill$GoldLondonFixAMAverage)),

start=c(1968,4),end=c(2012,1),frequency=12) # Gold prices Bid Average

silver<-ts(as.numeric(data.matrix(GoldSilverTBill$SilverLondonFixAverage)),

start=c(1968,4),end=c(2012,1),frequency=12) # Silver Prices Bid Average

#TBill<-ts(as.numeric(data.matrix(GoldSilverTBill$TBilRatio_3month)),

start=c(1968,4),end=c(2012,1),frequency=12)

# Here we change the window max-min values

#cbind(gold,silver)

#dev.new()

#plot(cbind(lgold,lsilver))
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#dev.new()

#plot(cbind(as.numeric(lgold),as.numeric(lsilver)))

yearMin=1969

yearMax=2000

monthMin=1

monthMax=12

y<-window(gold,c(yearMin,monthMin),c(yearMax,monthMax))

z<-window(silver,c(yearMin,monthMin),c(yearMax,monthMax))

# summary(lm(lgold~lsilver))

mu0=16; Sigma0=0.004; phi=0.991860026; alpha=33.644412

b=50.57212; cQ=2.46836910; cR=1.123121

init.par<-c(phi,alpha,b,cQ,cR) # initial parameters

num<-length(y)

A<-array(z,dim=c(1,1,num))

input<-matrix(1,num,1)

# Function to calculate likelihood

Linn<-function(para) {

phi<-para[1]

alpha<-para[2]

b<-para[3]

Ups<-(1-phi)*b

cQ<-para[4]

cR<-para[5]

#kf<-Kfilter2(num,y,A,mu0,Sigma0,phi,Ups,alpha,theta,cQ,cR,0,input)

kf<-Kfilter2(num,y,A,mu0,Sigma0,phi,Ups,alpha,1,cQ,cR,0,input)
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return(kf$like)

}

tol<-0.0001

est<-optim(init.par,Linn,NULL,method="BFGS",hessian=TRUE,

control=list(trace=1,REPORT=1,reltol=tol))

SE<-sqrt(diag(solve(est$hessian)))

phi<-est$par[1]

alpha<-est$par[2]

b<-est$par[3]

Ups<-(1-phi)*b

cQ<-est$par[4]

cR<-est$par[5]

u<-rbind(estimate=est$par,SE)

colnames(u)<-c("phi","alpha","b","sig_w","sig_v")

u

#ks=Ksmooth2(num,y,A,mu0,Sigma0,phi,Ups,alpha,tetha,cQ,cR,0,input)

ks=Ksmooth2(num,y,A,mu0,Sigma0,phi,Ups,alpha,1,cQ,cR,0,input)

SE_bsmooth<-(ks$Ps)

SE_bprediction<-(ks$Pp)

SE_bfilter<-(ks$Pf)

################################################################

#log(gold)~log(silver) Model

################################################################

Bsmooth <-ts(as.vector(ks$xs),start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)



52

Bprediction<-ts(as.vector(ks$xp),start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

Bfilter<-ts(as.vector(ks$xf),start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

sil <-ts(as.vector(z), start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

gol<-ts(as.vector(y), start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

SE_bs<-ts(as.vector(SE_bsmooth),start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

SE_bp<-ts(as.vector(SE_bprediction),start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

SE_bf<-ts(as.vector(SE_bfilter),start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

Bp<-window(Bprediction,c(yearMin,monthMin),c(yearMax,monthMax))

Bs<-window(Bsmooth,c(yearMin,monthMin),c(yearMax,monthMax))

Bf<-window(Bfilter,c(yearMin,monthMin),c(yearMax,monthMax))

postscript(file="FullStochasticBeta.eps",

paper="special",

width=10,

height=7,

horizontal=FALSE)

par(mfrow=c(1,1), mex=0.8)

par(mar=c(4,4,2,2),mfrow=c(1,1), mex=0.8,cex=1.4,lwd=2)

plot(Bp, col="black",ann=FALSE,lwd=2,las=2)
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mtext(bquote(beta[t]),line=2,side=2, cex=1.5)

lines(Bs, col="blue",lwd=2)

#lines(Bf, col="red",lwd=2)

dev.off()

gol_hat <- sil*Bp+alpha

res_gold<- gol-gol_hat

postscript(file="FullStochCoefModel.eps",

paper="special",

width=10,

height=10,

horizontal=FALSE)

par(mfrow=c(2,1), mex=0.8,cex=1.4,lwd=3)

plot(gol, xlab="year", ylab="Gold Prices",col="blue",cex=1.4,lwd=3)

lines(gol_hat, col="red",lwd=3)

plot(res_gold, xlab="year", ylab="Residuals",col="blue",cex=1.4,lwd=3)

dev.off()

x11()

par(mfrow=c(2,1), mex=0.8,cex=1.4,lwd=3)

plot(gol, xlab="year", ylab="Gold Prices",col="blue",cex=1.4,lwd=3)

lines(gol_hat, col="red",lwd=3)

plot(res_gold, xlab="year", ylab="Residuals",col="blue",cex=1.4,lwd=3)

postscript(file="FSacfBp.eps",

paper="special",

width=10,

height=10,
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horizontal=FALSE)

ACFPCAF<-acf2(Bp)

xx<-dim(ACFPCAF)

LAG<-ACFPCAF[,1]

ACF<-ACFPCAF[,2]

PACF<-ACFPCAF[,3]

minA=min(ACF)

minP=min(PACF)

U=2/sqrt(num)

L=-U

minu=min(minA, minP, L)-0.1

par(mfrow=c(3,1), mex=0.8,cex=1.4, lwd=3)

par(mar = c(4,6,2,0.8)) #, oma = c(1,1.2,1,1), mgp = c(1.5,0.6,0))

plot.ts(Bp,ann=FALSE,las=2)

mtext(bquote(beta[p]), side=2, line=3,cex=1.5)

plot(LAG, ACF, type="h",ylim=c(minu,1),ann=FALSE,las=2,yaxt="n")

mtext("ACF", side=2, line=3,cex=1.5)

axis(side=2, at=c(-0.2, 0.2, 0.6, 1),las=2)

abline(h=c(0,L,U), lty=c(1,2,2), col=c(1,4,4),yaxt="n")

plot(LAG, PACF, type="h",ylim=c(minu,1),ann=FALSE,las=2,yaxt="n")

mtext("PACF", side=2, line=3,cex=1.5)

axis(side=2, at=c(-0.2, 0.2, 0.6, 1),las=2)

abline(h=c(0,L,U), lty=c(1,2,2), col=c(1,4,4))

dev.off()
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postscript(file="FSacfBs.eps",

paper="special",

width=10,

height=10,

horizontal=FALSE)

ACFPCAF<-acf2(Bs)

xx<-dim(ACFPCAF)

LAG<-ACFPCAF[,1]

ACF<-ACFPCAF[,2]

PACF<-ACFPCAF[,3]

minA=min(ACF)

minP=min(PACF)

U=2/sqrt(num)

L=-U

minu=min(minA, minP, L)-0.1

par(mfrow=c(3,1), mex=0.8,cex=1.4, lwd=3)

par(mar = c(4,6,2,0.8)) #, oma = c(1,1.2,1,1), mgp = c(1.5,0.6,0))

plot.ts(Bs,ann=FALSE,las=2)

mtext(bquote(beta[s]), side=2, line=3,cex=1.5)

plot(LAG, ACF, type="h",ylim=c(minu,1),ann=FALSE,las=2,yaxt="n")

mtext("ACF", side=2, line=3,cex=1.5)

axis(side=2, at=c(-0.2, 0.2, 0.6, 1),las=2)

abline(h=c(0,L,U), lty=c(1,2,2), col=c(1,4,4),yaxt="n")

plot(LAG, PACF, type="h",ylim=c(minu,1),ann=FALSE,las=2,yaxt="n")
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mtext("PACF", side=2, line=3,cex=1.5)

axis(side=2, at=c(-0.2, 0.2, 0.6, 1),las=2)

abline(h=c(0,L,U), lty=c(1,2,2), col=c(1,4,4))

dev.off()

postscript(file="FSacfBf.eps",

paper="special",

width=10,

height=10,

horizontal=FALSE)

ACFPCAF<-acf2(Bf)

xx<-dim(ACFPCAF)

LAG<-ACFPCAF[,1]

ACF<-ACFPCAF[,2]

PACF<-ACFPCAF[,3]

minA=min(ACF)

minP=min(PACF)

U=2/sqrt(num)

L=-U

minu=min(minA, minP, L)-0.1

par(mfrow=c(3,1), mex=0.8,cex=1.4, lwd=3)

par(mar = c(4,6,2,0.8)) #, oma = c(1,1.2,1,1), mgp = c(1.5,0.6,0))

plot.ts(Bf,ann=FALSE,las=2)

mtext(bquote(beta[f]), side=2, line=3,cex=1.5)

plot(LAG, ACF, type="h",ylim=c(minu,1),ann=FALSE,las=2,yaxt="n")
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mtext("ACF", side=2, line=3,cex=1.5)

axis(side=2, at=c(-0.2, 0.2, 0.6, 1),las=2)

abline(h=c(0,L,U), lty=c(1,2,2), col=c(1,4,4),yaxt="n")

plot(LAG, PACF, type="h",ylim=c(minu,1),ann=FALSE,las=2,yaxt="n")

mtext("PACF", side=2, line=3,cex=1.5)

axis(side=2, at=c(-0.2, 0.2, 0.6, 1),las=2)

abline(h=c(0,L,U), lty=c(1,2,2), col=c(1,4,4))

dev.off()

# This part for data file

sil <-ts(as.vector(z), start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

gol<-ts(as.vector(y), start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

SE_bs<-ts(as.vector(SE_bsmooth),start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

SE_bp<-ts(as.vector(SE_bprediction),start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

SE_bf<-ts(as.vector(SE_bfilter),start=c(yearMin,monthMin),

end=c(yearMax,monthMax), frequency=12)

Bp<-window(Bprediction,c(yearMin,monthMin),c(yearMax,monthMax))

Bs<-window(Bsmooth,c(yearMin,monthMin),c(yearMax,monthMax))

Bf<-window(Bfilter,c(yearMin,monthMin),c(yearMax,monthMax))

NEW_Data<-cbind(sil, gol, gol_hat, res_gold, Bsmooth,

SE_bs,Bprediction,SE_bp,Bfilter, SE_bf);

write.csv(NEW_Data, file="GoldSilverKalman_FS.csv",na="NA")
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# Silver and Gold between 2001-January and 2001-December

y2001<-window(gold,c(2001,1),c(2001,12))

z2001<-window(silver,c(2001,1),c(2001,12))

y2001<-as.vector(as.numeric(y2001))

z2001<-as.vector(as.numeric(z2001))

betaT<-rep(0,12)

y_hat<-rep(0,12)

xp=length(Bp)

xs=length(Bs)

xf=length(Bf)

xpsf<-cbind(Bp, Bs,Bf)

beta<-as.vector(as.numeric(Bp))

# phi, alpha, b, cQ, cR Fixed parameters

betaT0=beta[xp]

betaT[1]=b+phi*(betaT0-b) #+rnorm(1,0, cQ)

y_hat[1]=alpha+betaT[1]*z2001[1] #+rnorm(1,0, cR)

for (i in 2:12){

betaT[i]=b+phi*(betaT[i-1]-b) #+rnorm(1,0, cQ)

y_hat[i]=alpha+betaT[i]*z2001[i] #+rnorm(1,0, cR)

}

SSE=sum( (y_hat-y2001)^2)

SE=sum(abs(y_hat-y2001))

y2001<-ts(as.numeric(y2001),start=c(2001,1),end=c(2001,12),frequency=12)

y_hat<-ts(as.numeric(y_hat),start=c(2001,1),end=c(2001,12),frequency=12)

FS_prediction<-y_hat
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write.csv(FS_prediction, file="Prediction_FS.csv",na="NA")

postscript(file="FSPrediction.eps",

paper="special",

width=10,

height=7,

horizontal=FALSE)

par(mar = c(5,6,2,0.8), mfrow=c(1,1), mex=0.8,cex=1.2,lwd=3)

plot(y2001,xlab="Year 2001", ylim=c(min(y2001, y_hat),

max(y2001, y_hat)),ylab="Gold Prices ($)",

col="blue",lwd=3)

lines(y_hat,col="red",lwd=3)

dev.off()

gol_1<-append(gol, y2001,after=length(gol))

gol_hat_1<-append(gol_hat, y_hat, after=length(gol_hat))

gol_1<-ts(gol_1,start=c(1969,2),end=c(2001,12),frequency=12)

gol_hat_1<-ts(gol_hat_1,start=c(1969,2),end=c(2001,12),frequency=12)

res_gold_1<- gol_1-gol_hat_1

colnames(u)<-c("phi","alpha","b","sig_w","sig_v")

u

SSE

SE


