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ABSTRACT 

The continuous Pennsylvanian shallow-marine, paralic, siliciclastic succession in 

the Donets Basin is pivotal for correlation of marine and continental strata in northern 

Pangaea with coeval shallow-marine mainly carbonate strata in the Moscow Basin, a 

historical type area of Moscovian Horizons. The details of the history of establishment, 

lithostratigraphy and current biostratigraphy of Podolskian and Myachkovian Horizons in 

the Moscow Basin that are not readily available in Western literature are reviewed.  

A model of cyclic recurrence (~0.6 —1myr) of three main fusulinid assemblages 

in the Pennsylvanian siliciclastic-carbonate succession in the Donets Basin is proposed. A 

Hemifusulina-association (A) indicates the onset of transgression (ETST: early 

transgressive system tract); maximum transgression (LTST-EHST: late transgressive – 

early high-stand system tract) is characterized by the Beedeina–Neostaffella–

Ozawainella–Taitzehoella (or Beedeina-dominated) assemblage (B), which is 

successively replaced by the most diverse Fusulinella-dominated association (C) in a 

progressively shallowing sea (LHST-ELST: late high stand – early low stand system 

tracts).   

Our proposed model offers refinement of the regional biostratigraphy and permits 

robust interbasinal correlation of Pennsylvanian-age Tethyan successions based on the 

Beedeina-dominated association, which marks maximum transgressions during the 

Pennsylvanian. Fusulinids, occurring in the regressive part of each cycle, are the most 
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provincial and are therefore the most useful for making paleogeographic reconstructions. 

Specifically, they can be used for recognition of originally contiguous regions that later 

may have been dispersed hundreds or thousands of kilometers. The model also provides a 

better understanding of an extinction event at the Moscovian – Kasimovian transition that 

involved many fusulinid genera inhabiting predominately deeper and colder water 

environments of transgressive seas. Various combinations of the proposed assemblages 

record ‘symmetrical’ and ‘asymmetrical’ distributional patterns and are capable of 

delineating the evolution of basins in different tectonic settings. 

Application of a proposed model in the Podolskian and Myachkovian 

biostratigraphy and correlation is tested. A new integrated biostratigraphic and sequence 

stratigraphic approach for a biozone definition in the Donets Basin is proposed. Fusulinid 

biozones are acme or assemblage zones in which an abundant occurrence of the index 

and associated species is related to relative sea-level change and therefore the bases and 

tops of proposed zones are bound with unconformities, erosional surfaces or soil 

formations.  

Three fusulinid cycles are recognized in the “M” Formation of the Donets Basin, 

Ukraine. One of the cycles includes limestone M7–M10
1. Fusulinids distribution reveals 

transgressive beds (limestones M7 – M8) and high stand – regressive beds (limestone M9 

– M10
1). A Hemifusulina subrhomboides – H. vozhgalica – Beedeina elshanica vaskensis 

Zone is proposed for the transgressive limestones. Within transgressive limestones two 

subzones are defined. The lower Hemifusulina vozhgalica – Hemifusulina subrhomboides 

Subzone (limestones M7 and M7
up) is coeval with the middle part of the Smedva 

Formation in the Moscow Basin, which currently belongs to the Upper Kashirian. The 
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Beedeina elshanica vaskensis Subzone (limestones M7
2 and M8) is correlated with the 

upper part of the Smedva Formation. High stand – regressive beds are subdivided into 

two zones. The Putrella donetziana – Fusulinella colanii Zone (limestone M9) is coeval 

with the Vaskino Formation (lower Podolskian). The Kamaina rossoshanica – 

Fusulinella tokmovensis longa Zone (limestone M10) is provisionally correlated with the 

Ulitino Formation (middle Podolskian). The analysis of cyclic distributional patterns of 

fusulinids suggests that the Kashirian-Podolskian boundary should be placed according to 

its historical position, at the base of the local Smedva Formation. The boundary between 

Podolskian and Myachkovian in the Donets Basin is unclear, additional material is 

needed to define the boundary in this region.  

A fusulinid taxonomic study of the Gurkovo and Kalinovo sections allows us to 

refine the biostratigraphy of the poorly studied Myachkovian (Upper Moscovian) strata 

of the “N” Formation in the Donets Basin. Three fusulinid biozones, Hemifusulina 

graciosa – Fusiella spatiosa, Fusulina cylindrica – Fusulinella pseudobocki, and 

Fusulinella (?) kumpani, are proposed in the interval from the top of Limestone M10 to 

the base of N3, and they are correlated with coeval strata in the historical type area of the 

Moscow Basin. A total of 33 fusulinid species and subspecies belonging to 8 genera are 

described, including three new species: Hemifusulina gurkovensis n. sp., Beedeina 

innaeformis n. sp., and Fusulina sosninae n. sp. The main evolutionary trend in fusulinid 

morphology in the late Moscovian is the appearance of massive secondary deposits in the 

limestone of the “N” Formation.  
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The similarity of fusulinid assemblages in the Moscow and Donets Basins and 

their cognate evolution trends reveal a connection between both regions at least during 

Podolskian – Myachkovian time.  
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CHAPTER ONE: CYCLIC RECURRENCE OF THE PENSYLVANIAN FUSULINID 

ASSEMBLAGES IN THE DONETS BASIN (UKRAINE) IN RESPONSE TO 

EUSTATIC SEA LEVEL FLUCTUATION 

A model of cyclic recurrence (~0.6 —1myr) of three main fusulinid assemblages 

in the Pennsylvanian siliciclastic-carbonate succession in the Donets Basin is proposed. A 

Hemifusulina-association (A) indicates the onset of transgression (ETST: early 

transgressive system tract); maximum transgression (LTST-EHST: late transgressive – 

early high-stand system tract) is characterized by the Beedeina–Neostaffella–

Ozawainella–Taitzehoella (or Beedeina-dominated) assemblage (B), which is 

successively replaced by the most diverse Fusulinella-dominated association (C) in a 

progressively shallowing sea (LHST-ELST: late high stand – early low stand system 

tracts). A proposed model offers refinement of the regional biostratigraphy as follows. It 

permits robust interbasinal correlation of Pennsylvanian-age Tethyan successions based 

on the Beedeina-dominated association, which marks maximum transgressions during the 

Pennsylvanian. Fusulinids, occurring in the regressive part of each cycle, are the most 

provincial and are therefore the most useful for making paleogeographic reconstructions. 

Specifically, they can be used for recognition of originally contiguous regions that later 

may have been dispersed hundreds or thousands of kilometers. The model also provides a 

better understanding of an extinction event at the Moscovian – Kasimovian transition that 

involved many fusulinid genera inhabiting predominately deeper and colder water 

environments of transgressive seas. Various combinations of the proposed assemblages 
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record ‘symmetrical’ and ‘asymmetrical’ distributional patterns and are capable of 

delineating the evolution of basins in different tectonic settings. 

Introduction: the Late Paleozoic Ice Age 

The Late Paleozoic was a dynamic time of Pangaea supercontinent assembly and 

pronounced continental glaciation of the Gondwanan continent in the Southern 

Hemisphere (Veevers and Powell, 1987; Stanley and Powell, 2003). In the far-field of the 

Northern Hemisphere this time is marked by an expansion of tropical moisture-like 

forests on the northern front of the Variscan-Hercinian mountain belt extending along the 

Late Paleozoic paleoequator and resulting in deposition of economically productive coal 

seams (Donets Basin, Western Europe, North America and Northern China). In shallow 

epicontinental seas surrounding Laurussia this event is documented in the accumulation 

of diverse cyclothems separated from each other by unconformities, erosional surfaces 

and soil formation (Heckel, 2008). 

Recent research (Isbell et al., 2003; Montanez et al., 2007; Fielding et al., 2008) 

reveals that the LPIA (Late Paleozoic Ice Age) was not a single event of Gondwanan 

glaciation, but that strongly glacial periods alternated with “interglacial” intervals of 

diminished ice volume and possibly ice free conditions (Montanez et al., 2007; Fielding 

et al., 2008; Montanez and Poulsen, in press). These discrete glacial episodes and their 

intervening warmer intervals of contracted ice volume are likely recorded by the cyclicity 

and stacking patterns of lithofacies in paleotropical successions through the linkage 

between changes in ice volume and sea-level response (Heckel, 2008; Bishop et al., 2010; 

Martin et al., 2012; Eros et al., 2012; Montanez and Poulsen, in press). If this hypothesis 

of a dynamic ice age is correct, then these discrete glacial episodes and their intervening 
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warmer intervals likely impacted marine benthic communities that flourished in shallow 

tropical epicontinental seas. Although the impact of sea-level fluctuations on biodiversity 

and extinction events on many groups of fossil organisms have been documented 

(Bretsky and Bretsky, 1975; Heckel and Baesemann, 1975; Hallam, 1981; Baird and 

Brett, 1983; McGhee, 1991; Magniez-Jannin, 1992; Brett et al., 1990, 2007), relatively 

little is known about the effects of sea level fluctuations on the distribution of fusulinids, 

the most diverse benthic microfauna in shallow epicontinental seas of the Late Paleozoic 

(Ross and Ross, 1988).  

One of the most remarkable Late Carboniferous events affecting both flora and fauna 

on a global scale, at least in the Northern Hemisphere, is at the Westphalian – Stephanian 

boundary. As the major floristic change happened simultaneously in the Donets Basin 

(Eastern Europe), Western Europe and Northern America, Meyen (1987) suggested the 

connection of this event with a short dry episode resulting from the Gondwanan 

glaciation. In marine successions this event is marked by a sudden simultaneous 

extinction of the fusulinid genus Beedeina both in North America and in the Eastern 

Europe at the Desmoinsenian – Missourian boundary. Besides Beedeina, several 

important genera, such as Hemifusulina, Neostaffella, Pseudostaffella, Taitzehoella, and 

Ozawainella became extinct or notably suffered at the Late Moscovian – Kasimovian 

transition in the Eastern European shallow marine seas.  

I studied a stratigraphic distribution of Moscovian fusulinids in tandem with 

composite sequences previously defined by Eros et al. (2012) in the Donets Basin 

(Ukraine). This basin during Late Paleozoic time was an epeiric platform (Eros et al., 

2012) with a relative high subsidence rate (Izart et al., 2003; Eros et al., 2012) and where 
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deposition was essentially continuous during the Carboniferous (Aisenverg et al., 1975). 

Therefore, the Donets Basin is a suitable site for recording all episodes of ‘global’ sea 

level fluctuations during the Late Paleozoic. High-precision radiometric ages (Davydov 

et al., 2010) also provide a sound chronostratigraphic framework for detailed 

lithostratigraphic, biostratigraphic, and cyclostratigraphic research.  

As the waxing and waning of Gondwanaland’s glaciers were global events, the 

common trends in fossil distribution might be developed in different globally distributed 

basins. The second part of our study tests the distribution of the Paleotethyan fusulinids 

as possible indicators of sea level fluctuations in Late Paleozoic successions in different 

basins of the world. We argue that such analysis is helpful for global correlation and 

recognition of the timing and duration of glacial episodes during the LPIA.  

Fusulinid paleoecology 

The rapid evolutionary rate among the fusulinids was noted in the last century by 

stratigraphers who successfully employed these fossils for detailed regional correlations. 

Groves and Lee (2008) pointed out that taxonomic expansion of fusulinids “coincides 

almost precisely with the beginning of LPIA”. Although most Late Paleozoic benthic 

foraminifera, including all larger foraminifera, such as fusulinids, went extinct by the end 

of the Permian, the fusulinid paleobiology and their environmental constraints are 

relatively well understood, being inferred from studies of recent benthic foraminifers 

(Leppig et al., 2005; Ross 1982, 1995; Stevens, 1966, 1969, 1971; Vachard et al., 2004).  

The fusulinids were confined to the tropical-subtropical belts from 30 - 40° south and 

north of the equator, and occupied shallow water basins with carbonate to mixed 

carbonate-siliciclastic sedimentation (Ross, 1995; Kobayashi and Ishii 2003). The 
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paleogeographic distribution of fusulinids, their sensitivity to paleoenvironments, and 

their high-resolution temporal framework provide the basis for the study presented here. 

Temperature is generally considered to be the major physical factor influencing the 

distribution of species or assemblages (BouDagher-Fadel, 2008; Hohenegger, 2004).  As 

the benthic foraminifers are poikilothermic organisms, i.e. their body temperature is very 

close to the temperature of the surrounding water, they probably responded very quickly 

to even small changes in the ambient water temperature (Beavington-Penney and Racey 

2004).  

Here we emphasize the most important observations of fusulinid spatial and temporal 

distribution, which have been made during the last century. The first paleoecological 

studies of Pennsylvanian fusulinids revealed a differentiation of fusulinid assemblages 

with respect to the type of substrate, hydrodynamic activity, water depth, and association 

with other benthic organisms (Rauser-Chernousova and Kulik, 1949; Ross, 1961, 1967, 

1969, 1971, 1972, 1982; Ginkel, 1973; Bensh, 1982). Ross (1969) first recognized that 

fusulinids occur in two different associations. One is represented by a monospecific 

population and associated with mixed carbonate-siliciclastic rocks. He suggested that this 

assemblage was deposited in situ and was associated either with muddy, clayed-

limestones or with fine calcareous sandstones (calcarenites). The second assemblage is 

represented by a diverse population of fusulinids, which together with other groups of 

fossils, such as calcareous algae, corals, gastropods, brachiopods, crinoids and bryozoans, 

accumulated as carbonate rocks, primarily biogenic packstones.  

Monospecific fusulinid occurrences have been noted in many studies (Bogush, 1963, 

Ginkel, 1973, Bensh, 1982, Villa and Bahamonde, 2001, Baranova and Kabanov, 2003). 
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In Middle and Late Carboniferous strata two genera, the Moscovian Hemifusulina and the 

Gzhelian Ferganites, commonly occur as monospecific assemblages. In the orogenic 

belts of the Cantabrian Mountains and Central Asia the Hemifusulina- and Ferganites-

assemblages are associated with calcareous sandstones and siltstones intercalated with 

conglomerates (Bogush, 1963, Villa and Bahamonde, 2001). In cratonic regions, such as 

the Moscow and Donets Basins, monospecific populations of Hemifusulina are associated 

with muddy limestones (Baranova and Kabanov, 2003, Khodjanyazova et al., 2011). 

Besides their similar associations, these genera (Hemifusulina and Ferganites) have a 

similar morphology: small proloculi, subcylindrical shape rounded at axial ends, 

symmetrically regularly developed septal folding, and a porous wall structure.   

Ross (1969), investigating the spatial distribution of the genus Triticites in the Late 

Pennsylvanian marine strata of Texas, proposed a relationship between test morphology 

and bathymetry. According to Ross, “some elongate species of Triticites are closely 

associated with sediment of impure silty limestone and fine to medium sandstone that 

may indicate shallow interdistributary bays and lagoons... Many large fusiform 

specimens of Triticites are associated with shallow water algal meadows and banks of 

crinoidal fragments... Small fusiform representatives of Triticites are most common in 

poorly sorted limestones that were probably deposited in slightly deeper water on the 

shelves that extended down to effective wave base”.  

Stevens (1969, 1971) studied diversity and distribution patterns of Middle 

Pennsylvanian fusulinids from McCoy, Colorado with respect to water depth and distance 

from the shore. He proposed a model in which the shallowest assemblage is represented 

by juvenile forms which “are found in small numbers in rocks deposited in water depth of 
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4 meters”. Farther from shore large, abundant mature fusulinids are found in “rocks 

deposited more than 3 km offshore in water with a minimum depth of 13 m”. He 

suggested the maximum depth for fusulinids is greater than 22 meters. The non-fusulinid, 

smaller foraminifers, (Bradyina and Palaeotextularia) occurred abundantly in rocks 

“deposited in water 15 meters deep, 3.5 km off-shore”.  

Dzhenchuraeva (1975) recognized three bathymetric associations among the late 

Bashkirian – early Moscovian fusulinids in Central Asia. She used algae as the main 

direct indicator for bathymetric reconstruction. The most shallow-water Schubertella–

Pseudostaffella-association occurs together with the green alga Beresella. The deeper 

predominatedly Profusulinella-assemblage is associated with a mixture of Beresella and 

red alga, Ungdarella. Finally, the deepest is the Neostaffella – Ozawainella assemblage, 

in which only the red alga Ungdarella occurs. Within the deepest assemblage besides the 

large spherical Neostaffella and large discoid and lenticular Ozawainella, the younger 

Kashirian limestones include subrhomboidal species of Beedeina and Taitzehoella 

(Dzhenchuraeva, 1975).  

The first mention of a cyclic distribution of different fusulinid assemblages was in the 

last century by Russian micropaleontologists (Rauser-Chernousova and Kulik, 1949, 

Rauser-Chernousova, 1953, Rauser-Chernousova and Reitlinger, 1962, Putrja, 1956). 

They, working on fusulinid biostratigraphy and regional correlation of carbonate 

successions in the epicontinental shallow-water seas occupying the Eastern-European 

Platform during Pennsylvanian time, recognized a repetition of fusulinid assemblages 

that they hypothesized were linked with depositional cycles (“cyclothems”). Rauser-

Chernousova and Reitlinger (1962) also noted that the cyclic occurrences of fusulinids 
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were not a simple repetition of facies-dependent faunal associations, but also 

demonstrated evolutionary trends through time, from cycle to cycle. They concluded that 

a cyclic alternation of fusulinid assemblages was the result of adaptation of different 

genera to specific environments corresponding to cyclic sedimentation within a basin 

(Rauser-Chernousova and Reitlinger, 1962). However, no specific examples were 

provided in their study.   

These previous, if scattered studies of the paleoecology of fusulinids, their facies-

dependent distribution, evolutionary rates, and differences in test shape depending on the 

bathymetry give us some hints as to the sensitivity of fusulinids to eustatic sea level 

fluctuations.  

Geologic, tectonic, and lithostratigraphic settings of the Donets Basin 

The Donets Basin is the southeastern segment of the Pripyat-Dniepr–Donets 

intracratonic rift structure. Approximately 200 km wide and 700 km long (Fig. 1), it is 

located on the southern rampart of the eastern European craton between the Voronezh 

crystalline massif to the northeast and the Ukrainian crystalline massif to the southwest, 

and extends from the Baltic Sea to the Caspian Sea across Belarus, Ukraine, and Russia 

(Aisenverg et al., 1975; Khain, 1985, 1994; Stovba et al., 1996, Stovba and Stephenson, 

1999). The thickness of a prerift and synrift volcano-siliciclastic succession of Silurian-

Devonian age and Carboniferous–Lower Permian postrift sedimentary strata increases 

from about 7 km in the central and westernmost Dniepr–Donets Depression to about 16 

km in the Donets Basin (Chekunov, 1994; Stovba et al., 1996, Ulmishek, 2001). The 

Donets Basin is generally considered to have been uplifted during the Early Permian in 

response to the buildup of stresses emanating from the Hercinian-Caucasus-Uralian 
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orogenies (Milanovsky, 1992) or to the activity of an asthenospheric mantle diapir 

(Chekunov, 1994; Gavrish, 1989).  

The Carboniferous–Lower Permian succession is represented by cyclic fluvio-deltaic 

and nearshore-marine mixed carbonate-siliciclastic sediments deposited on the Donets 

ramp, which steepened distally over several hundred kilometers into the Uralian seaway 

and Peri-Caspian Basin of the northern Tethys Ocean (Alekseev et al., 1996, Eros et al., 

2012). Essentially isochronous biostratigraphically dated limestones provide laterally 

extensive marker beds that underpinned a detailed chronostratigraphic framework 

specific to the Donets Basin by the end of the nineteenth century (Aisenverg et al., 1963). 

The Carboniferous cyclic sequences are divided into major cycles or suites designated by 

Latin letters (e.g., Aisenverg et al., 1975). Major marine limestones are designated by 

capital letters and numerals, which indicate the stratigraphic order (e.g., M1 indicates the 

first limestone of the “M” Formation).  Lower case letters indicate the coal seams of 

formations, also with numbers for the stratigraphic order (e.g., m3 is the third coal seam 

of the “M” Formation). The Moscovian Stage in the Donets Basin comprises the upper 

part of the “K” Formation, “L”, “M” Formations, and the lower part of the “N” 

Formation (Einor, 1996).  

Widespread distribution of deltaic-marine strata in the Donets Basin includes coals 

and marine limestones characterized by specific biotic communities. These beds, which 

can be traced across much of the Donets Basin, indicate the low depositional slope (<< 

1°) of the depositional ramp (Eros et al., 2012). Along with the Eastern European craton, 

this platform extended for thousands of kilometers along the western and northern edges 

of the warm tropical Tethyan Ocean. During transgression the Donets sea was connected 
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with the Eastern European sea and the Tethys. Therefore the marine fossils are uniform 

over a vast area. During regression more provincial fauna evolved in marine straits and 

seaways isolated by exposed uplands. The Donets Basin underwent relatively high and 

regionally uniform subsidence (Stovba et al., 1996; Izart et al., 2003; Eros et al., 2012) 

resulting in accumulation of the most complete Carboniferous succession in the world. 

The Donets Basin is therefore a unique site for studying sea level fluctuations using a 

paleoecological distributional model of fusulinids.  
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Figure 1. Location map of the Donets Basin modified from Aisenverg et al. (1975) with 

the position of the Gurkovo section.  
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Cyclic distributional patterns of fusulinid assemblages in response to eustatic sea 

level fluctuation: hypothesis  

Fusulinid biostratigraphy in the Donets Basin 

The fusulinids of the Donets Basin have been known since the nineteenth century 

because of their exceptional preservation and abundance in many limestones throughout 

Carboniferous strata. During the first half of the twentieth century fusulinids became 

important chronostratigraphic tools that were widely utilized in the Donets Basin. Putrja 

(1939, 1940, 1948, and 1956) and Kireeva (1951) developed the fusulinid taxonomy and 

biostratigraphy within the Moscovian – Kasimovian transition in the Donets Basin. They 

correlated the “L”, “M” Formations as Kashirian and Podolskian, respectively. The lower 

part of the “N” Formation from limestone N1 to the N4 or N5 limestone were correlated 

with Myachkovian strata in the Moscow Basin (Kireeva, 1951). Recently we have 

recognized inconsistency in the generally accepted biostratigraphy of the Donets Basin. 

The revised Upper Moscovian fusulinid biostratigraphy will be discussed in separate 

papers. A status of recent biostratigraphy is summarized in Figure 3. 

Cyclic distributional patterns of fusulinid assemblages in the Donets Basin 

In our initial studies of Moscovian fusulinid biostratigraphy in the Donets Basin 

we noticed repetition of similar fusulinid generic assemblages every   ~ 0.6–1 my. Ross 

and Ross (1988, 1995) also suggested that the typical late Paleozoic third-order 

depositional sequences for the North American Midcontinent characterized by fusulinid 

zonation have duration of about 1 my. Eros et al. (2012) also identified 0.8 to 1.2 my long 

cycles that are interpreted as possibly being the long-eccentricity modulation of obliquity.  
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The paleobiological signal that stratigraphically stacks systematically into 

packages or ‘biocycles’ we call “fusulinid cycles”. These fusulinid cycles are recognized 

in the Upper Moscovian - Lower Kasimovian succession, the “L”, “M”, and “N” 

Formations. Each cycle includes an interval of four to six successive fusulinid-bearing 

limestones. Each fusulinid cycle reveals a continuous increase in diversity from a 

monospecific and abundant population of Hemifusulina in the beginning of the cycle to a 

highly diverse Fusulinella association at the end of cycle, accompanied by a gradual 

appearance and disappearance of certain genera of fusulinids (Fig. 2). The following 

assemblages are recognized within a fusulinid cycle:  

1) A1 is a monospecific population of abundant Hemifusulina (M3
up, M7).  

2)  A2 is a mixture of abundant Hemifusulina and low-diverse Taitzehoella, Beedeina, 

Ozawainella, Neostaffella (L7
1, M7

up, and N1).  

3) B is a low-diverse community of mature subrhomboidal Beedeina and 

Taitzehoella, large discoid Ozawainella with highly compressed polar ends, and large 

spherical Neostaffella. At this level Hemifusulina disappears (L7, M1, M5, M8, and N1
6).  

4) C1 is a diverse population of abundant Fusulinella and Schubertella. Species of 

Taitzehoella and Beedeina are replaced by elongated fusiform species; Ozawainella is 

replaced by smaller subrhomboid species; Neostaffella evolves into new species (M2, M6, 

and M9).   

5) Each cycle is completed by diverse species of Fusulinella and Schubertella of C2 

association. Beedeina is replaced by elongated subcylindrical Fusulina, large Neostaffella 

is replaced by small species of Pseudostaffella, and Taitzehoella is replaced by 

elongated-fusiform Fusiella (M6
up, M10). 
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For simplicity we consider three assemblages A, B, and C. The first two associations 

we combine into the (A) Hemifusulina-dominated assemblage; the third is the Beedeina-

dominated assemblage (B); the fourth and fifth are combined into the Fusulinella-

Fusulina-dominated assemblage (C). From one biocycle to another all fusulinid genera 

reveal evolutionary changes at the species level that are very helpful for biozone 

definition and correlation with coeval strata from the Moscow Basin (Khodjanyazova and 

Davydov, in press; Khodjanyazova et al., submitted) and other basins of the Paleotethys.  

What was the reason for the cyclic occurrences of different fusulinid assemblages? 

Why do these generic groups also exhibit clear species replacement between cycles? Can 

this repetition be observed in other regions of Paleotethys, besides the Donets Basin? 

Why does Hemifusulina occur in some beds in abundance, but is represented by a 

monospecific populations? Why does Hemifusulina occur in abundance in the Donets and 

Moscow basins, while its abundance progressively decreases in the eastern direction 

toward the Uralian seaway? Why in some sections in Central Asia and in the Cantabrian 

Mountains Hemifusulina species occur in great abundance, whereas other successions are 

characterized by either Fusulinella and Beedeina or only Fusulinella-assemblages 

without Hemifusulina?   Why are other fusulinids, such as Fusulinella, or Fusulina, rarely 

associated with Hemifusulina, at least in the Donets Basin? What was the reason for the 

repetitive reoccurrences of fusulinid assemblages? Why finally, did Hemifusulina, 

Beedeina, Neostaffella and Taitzehoella become extinct across the Moscovian – 

Kasimovian boundary? 

We try to answer these numerous questions using the cyclic fusulinid distributional 

model proposed and discussed in this paper. In order to test a hypothesis that short-term 
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fusulinid biocycles were driven by paleoenvironmental changes in the shallow tropical 

epicontinental seas due to glacioeustatic sea-level fluctuations, we integrate study of 

fusulinid taxonomy, biostratigraphy, paleoecology, and biofacies, and analysis of 

lithofacies with sedimentological and sequence stratigraphic analysis of the Moscovian 

succession in the Donets Basin.  
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Figure 2. Gradual replacement of fusulinids within a cycle. Morphological changes of 

main genera with respect to depth/or temperature. 
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Data and observations 

Our research focuses on fusulinid distribution within the Kashirian, Podolskian, 

Myachkovian and Krevyakian Horizons in the Donets Basin, in which hiatuses are 

essentially lacking (Aisenverg et al., 1963, Davydov et al., 2010). Fusulinid assemblages 

from each cycle proposed in this paper for the Donets Basin have been correlated with 

coeval strata in the Moscow Basin and surrounding areas in the Eastern European 

platform, as well as Northern China, and the successions documented in the Variscan and 

Hercinian orogenic belts in the Cantabrian Mountains, Central Asia and Southern Urals. 

We consider fusulinid distribution in a paleoecological context, intending to define what 

kinds of fusulinids and other environmentally sensitive fossils are associated with 

different episodes of sea level fluctuation: transgression, high stand, or regression.  

Materials for study of fusulinid, smaller foraminifers and other fossil distribution in 

the Donets Basin were collected from 28 limestones of the “L”, “M” and “N” 

Formations. We also integrated data on fusulinid distributions published in previous 

studies (Brazhnikova, 1939a, 1939b, 1951; Putrja, 1940, 1956; Manukalova, 1950a, 

1950b; Pogrebnyak, 1975; Ueno in Fohrer et al., 2007; Davydov and Khodjanyazova, 

2009). We employed lithofacies analyses presented by previous authors (Aisenverg et al., 

1975, Izart et. al., 1996) and particularly more recent data (Davydov et al., 2010; Eros et 

al., 2012). Within the Carboniferous succession in the Donets Basin, Eros et al. (2012) 

proposed a sequence stratigraphic model for the Donets Basin and recognized predictable 

shorter-term, individual sequences (100 ky duration) which bundle into composite (~400 

ky duration) and longer-term ‘composite sequences’ – (0.8 to 1.2 my duration). The 

internal architecture of composite sequences preserves a genetically related set of strata 
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that collectively record a hierarchy of relative sea level changes. They defined seventy-

five ‘composite sequences’ in the Donets Carboniferous–Permian succession. ‘Composite 

sequence’ boundaries commonly coincide with widespread unconformities that extend to 

the seaward margin of the study area. In the upper part of the ”L” Formation and the “M” 

Formation they recognized six composite sequences (Fig. 3): 1) Mo VIII that includes the 

L7
1, L7

2, and L7
3; 2) Mo IX that includes M1, M1

1, M1
2, and M2; 3) Mo X that includes 

M3, M4, and M4
1; 4) Mo XI that includes M5, M6, and M6

1; 5) Mo XII that includes M7, 

M7
1, M7

2, M8 and M8
1; 6) Mo XIII that includes limestones M9, M10, M10

1 and M10
2 (Eros 

et al., 2012). In this interval we recognized three biocycles 1) L7
1 – M2; 2) M3 –M6

up; 3) 

M7 – M10
1 that each comprises two of the composite sequences defined by Eros et al. 

(2012).  

More than 500 thin sections were studied to provide a more detailed view of 

representative micro- and biofacies. The detailed illustrations of micro- and biofacies 

from the “L” and “M” Formation can be found in Supplementary Data (Suppl.), which 

includes two tables and five figures. Figures illustrate the microfacies of the limestones 

and associated with them different fusulinid assemblages. Table 1 documents the 

distribution of fossils within each cycle from the limestone L7
1 to M10. In table 2 we 

document all fusulinid species and smaller foraminifer genera in these limestones. 
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Figure 3. Three fusulinid cycles and their relation to the ‘composite cycles’ derived by 

Eros et al. (2012) within the upper “L” and “M” Formations, Donets Basin.  

There are repetitive occurrences of three fusulinid assemblages within each fusulinid 

cycle: (A, Hemifusulina-dominated, B, Beedeina-dominated, C, and Fusulinella-

dominated). Mo IX, Mo XI sequence boundaries coincide with the beginning of fusulinid 

cycles; Mo VIII, Mo X, Mo XII sequence boundaries separate strata with C assemblages 

from underlying beds characterized by B assemblage. 
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Micro- and biofacies description of the limestones from the “L” and “M” Formation 

Cycle 1 

Cycle 1 includes the interval between limestones L7
1 and M3 (Fig. 3) and is 

represented predominatedly by siliciclastic strata (Aisenverg et al., 1975, Fohrer et al., 

2007, Eros et al., 2012). This cycle consists of two ‘composite sequences’ Mo VIII and 

Mo IX proposed for the Donets Basin by Eros (2010). The thickness of this interval is 

about 150 m. Limestones L7
1, L7

2, L7
3, and M1 crop out near Izvarino railroad station, 

~50 km southwest of Lugansk. M1 and M2 limestones are studied in the Gurkovo section, 

5 km to the south of Pervomaysk, Donets oblast, Ukraine.  

Limestone L7
1    

Limestone L7
1 is a biogenic, poorly sorted mudstone 20 cm thick (Fig. 4A). The 

main biogenic components of this limestone are echinoids (E), echinoid spines (Es), 

crinoids (not shown in the illustrated thin-section), and shells of different invertebrate 

(Table 1). Among invertebrates a great number of brachiopods (B) and brachiopod spines 

(Bs) are found, while other invertebrates – bivalves (not shown in the illustrated thin-

section), gastropods (G) and ostracods (Os) are less abundant.  Small individuals of 

bivalves and ostracods are often represented by disarticulated valves. Bryozoans (not 

shown in the illustrated thin-section) are scarce and represented by fenestrate species. 

Algae are represented by abundant phylloid red alga Archaeolithophyllum sp. (AlA), less 

abundant crustaceous red alga Cuneiphycus sp. (not shown in this thin-section), and 
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scarce cyanobacterian oncoids (Cb) (Table 1). Small foraminifers (not shown in the 

illustrated thin-section) are represented by common Ammodiscus and scarce 

Endothyridae, attached Tuberitina and Ammovertella (Table 2). Fusulinid assemblage is 

low diverse (Fig. 5.14–5.18, Table 2) and represented by mature specimens of large 

subrhomboidal in shape Ozawainella paratingi Manukalova, large and compressed at 

their polar ends Neostaffella ozawai (Lee and Chen), large subcylindrical Hemifusulina 

pseudobocki (Putrja) (illustrated in the left side of the Fig.4A), small Hemifusulina 

moelleri Rauser with very thin porous walls, and Taitzehoella sp. cf. T. globulus 

(Manukalova).  
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Figure 4 A, B. Microphotographs of limestones of the “M” Formation. 

A - limestone L7
1; B - limestone M3

up. E – echinoids, Es – echinoid spines, Cr – 

crinoids, B – brachiopods, Bs – brachiopod spines, Os – ostracods, G – gastropods, Bz – 

bryozoans, Ss – sponge spicules. Algae: AlA – phylloid red alga Archaelithophyllum sp., 

Cb – cyanobacterian oncoids; ms – microstylolites, or –organic matter. 

Limestone L7
2 
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Limestone L7
2 is a 60-cm thick bedded wackestone with brachiopods and 

bivalves, and L7
3 is a 40-cm thick brachiopod-crinoid packstone with bryozoans (Fohrer 

et al., 2007). No fusulinid fauna are found in these limestones.  

Limestone M1 

Limestone M1 is 12 m thick. Samples for fusulinid, bio- and microfacies study 

were collected in the lower bioclastic-rich bedded part. Microscopically it is a 

foraminiferal wackestone (Fig. 4E). Bioclasts are represented by abundant red algae 

Ungdarella (AlU), and re-crystallized red  phylloid Archaelithophyllum sp. (AlA), 

disarticulated echinoid fragments (E), and brachiopod (B), bivalve, ostracod, bryozoan, 

and trilobite detritus (not shown in the illustrated thin-section) sized up to 1mm. This 

limestone contains diverse small foraminifers, the most abundant among which is large 

benthic Bradyina (FB) with a fragile porous “keriothecal” walls. Less abundantly occur 

benthic Palaeotextularia (FP) with agglutinated walls, Ammodiscus (not shown in the 

illustrated thin-section), Endothyra (FE), some problematic calcisphaeric forms (FC), 

attached foraminifers (not shown in the illustrated thin-section) Tuberitina and 

Ammovertella (Table 2). Large fusulinids are scarce but relatively diverse in this 

assemblage (Fig. 6.9 – 6.18). They are represented by mature forms of small 

subrhomboidal Beedeina schellwieni (Staff), B. elschanica (Putrja and Leontovitch) (this 

species is illustrated in the lower part of the thin-section in the Fig. 4E), B. pseudoelegans 

(Chernova), B. apokensis (Rauser), B. bona (Chernova and Rauser) large compressed at 

polar ends Neostaffella ozawai (Lee and Chen), N. compacta (Manukalova), large discoid 

highly compressed at polar regions Ozawainella stellae Manukalova, O. sp. O. cf. 

digitalis Manukalova, O. crassiformis Putrja, subrhomboidal in shape Taitzehoella 
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kashirica (Rauser), rare fusiform Putrella (?) primitiva Manukalova sp. and elongated 

fusiform Eofusulina sp. (Table 2).  

Organic matter is absent in the matrix, although some traces are observed in rare 

microstylolites (Fig. 4E, ms).  
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Figure 4 C, D. Microphotographs of limestones of the “M” Formation. 

C – limestone M7; D – limestone M7
up. E – echinoids, Es – echinoid spines, Cr – 

crinoids, B – brachiopods, Bs – brachiopod spines, Os – ostracods, G – gastropods, Bz – 

bryozoans, Tr – trilobites, Sr - serpulinids. Small foraminifers: FE – Endothyra sp. 
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Figure 4 E, F. Microphotographs of limestones of the “M” Formation. 

E – limestone M1; F – limestone M5. E – echinoids, B – brachiopods, Os – 

ostracods. Algae: AlA – phylloid red alga Archaelithophyllum sp., AlU – red alga 

Ungdarella sp. Small foraminifers: FB – Bradyina sp., FE – Endothyra sp., FP – 

Palaeotextularia sp., FT – Tetrataxis sp., FTb – Tuberitina sp., FC – problematic 

Calcisphaera sp., Fs – attached Ammovertella; ms – microstylolites, sc – synsedimentary 

calcite. 
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Limestone M2 

Limestone M2 is 2.5 m thick. Samples for fusulinid, bio- and microfacies study 

were collected at the base of the bed. This limestone is a poorly sorted foraminiferal 

packstone (Fig. 4G).  

The main bioclastic components of this limestone are abundant smaller 

foraminifers: Palaeotectulariids (FP) with agglutinated walls, and Bradyina (FB) with 

porous walls, less abundant Tetrataxis (not shown in the illustrated thin-section), 

Tuberitina (FTu), Endothyra (FE) and attached Ammovertella (Fs) (Table 2). Large 

fusulinids (Fig. 7.17 – 7.24, Table 2) are represented by numerous elongated 

subcylindrical Fusulinella (Moellerites) schubertellinodes Putrja, F. (M.) plicata 

Manukalova, F. (M.) cylindricus Solovieva, F. (M.) lopasaniensis Solovieva, numerous 

schubertellids, short fusiform Taitzehoella librovitchi (Dutkevitch), T. pseudolibrovitchi 

(Rauser), small forms of globular Pseudostaffella: P. compressa donbassica Putrja, P. 

khotunensis Rauser, rare large fusiform Beedeina: B. pseudokonnoi (Sheng), and very 

small immature individuals of Beedeina, Fusulinella and Taitzehoella genera with two-

three volutions. Larger invertebrate (Table 1) are scarce and represented by scarce 

brachiopods (B), bivalves (not shown in the illustrated thin-section), ostracods (Os), often 

with disarticulated valves. Many serpulinid bended tubes (Sr) and a few bryozoan (not 

shown in the illustrated thin-section) fragments occur. Algae are represented by a mixture 

of red Ungdarella (AlU) and green Beresella (AlB).  
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Figure 4 G, H. Microphotographs of limestones of the “M” Formation. 

G – limestone M2; H – limestone M10. E – echinoids, B – brachiopods, G – 

gastropods, Bz – bryozoans, Os – ostracods, Sr - serpulinids. Algae: AlB – green alga 

Beresella sp. Small foraminifers: FB – Bradyina sp., FE – Endothyra sp., FP – 

Palaeotextilaria sp., FT – Tetrataxis sp., FTu – Tuberitina sp., FC – problematic 

Calcisphaera sp., Fs – attached Ammovertella; sc – synsedimentary calcite. 
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Limestone M3 

Limestone M3 3 m thick and samples for fusulinid and microfacies study were 

collected at the base of the bed. This limestone is a poorly sorted crinoid-brachiopod 

packstone (Fig. 4I) with rare bryozoans and foraminifers. Low diverse smaller 

foraminifers are represented by large broken tests of Bradyina (not shown in the 

illustrated thin-section) and Palaeotextularia (FP), abundant Tuberitina, rare Ammodiscus 

(not shown in the illustrated thin-section), Tetrataxis, endothyrids and attached 

Ammovertella (not shown in the illustrated thin-section) (Table 2). Solitary corals (not 

shown in the illustrated thin-section) and sponges (Sp) (Table 1) occur. Algae are 

represented by a mixture of red and green genera: Ungdarella and Beresella (not shown 

in the illustrated thin-section). Fusulinids (Fig. 7.8 – 7.16) are abundant and diverse 

Fusulinella (Moellerites) schubertellinoides Putrja, F. (M.) plicata Manukalova, F. (M.) 

cylindricus Solovieva, F. (M.) lopasaniensis Solovieva, F. (M.) paracolaniae Safonova, 

F. pseudocolaniae Putrja, Schubertelledae, elongated fusiform Beedeina: B. ozawai 

(Rauser et Belyaev), B. pronensis (Rauser), B. rauserae (Chernova), B. juncta 

(Chernova), B. pseudoelegans (Chernova), B. apokensis (Rauser), B. bona (Chernova et 

Rauser), large Neostaffella sp. cf. N. sphaeroidea cuboides Rauser, N. larionovae Rauser, 

small Pseudostaffella khotunensis Rauser, P. confusa (Lee et Chen) (Table 1).  
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Figure 4 I, J. Microphotographs of limestones of the “M” Formation. 

I – limestone M3; J – limestone M9. E – echinoids, Bs – brachiopod spines, G – 

gastropods, Sp – sponges. Algae: AlK – red alga Pseudokomia sp.  Small foraminifers: 

FB – Bradyina sp., FE – Endothyra sp., FP – Palaeotextilaria sp., ms – microstylolites, 

or –organic matter. 

 

Cycle 2 
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This cycle, beginning from the M3
up and completed by the M6

up Limestone (Fig. 

3), includes M3
up, M4, M5, M6, M6

up limestones in a predominantly by siliciclastic 

succession (Aisenverg et al., 1975). This cycle consists of two ‘composite sequences’ Mo 

X and Mo XI proposed for the Donets Basin by Eros (2010). The thickness of this 

interval is about 100 m. Limestones were studied from the Gurkovo section, 5 km to the 

south from the town of Pervomaisk, Donets oblast, Ukraine. 

Limestone M3
up 

Limestone M3
up

 is a bioclastic crinoid-bryozoan wackstone, 2.9 m thick (Fig. 

4B). Some highly degraded small tube-like remains, probably sponge spicules (Ss), occur 

sporadically in cement. Fossils remains (Table 1) are abundant echinoids (E), echinoid 

spines, bryozoans (Bz), scarce brachiopods, brachiopod spines (Bs), and ostracods (not 

shown in the illustrated thin-section), the valves of which are often undifferentiated. 

Foraminifers are scarce and comprise a low diversity population of large subcylindrical 

Hemifusulina kashirica Rauser (Fig. 5.13) and very rare Eostaffella and immature 

Taitzehoella. Algae are absent. Numerous microstylolites (ms) filled by brownish-colored 

organic matter (or) are recognized.   
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Figure 4 K, L. Microphotographs of limestones of the “M” Formation. 

K – limestone M6; L – solitary coral fragment in the limestone M6
up. E – 

echinoids, Es – echinoid spines, B – brachiopods, Os – ostracods. Algae: AlU – red alga 

Ungdarella sp. Small foraminifers: FP – Paleotextilaria sp., Fs – attached 

Ammovertella; Ftu – Tuberitina; ms – microstylolites, or – organic matter sc. 
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Limestone M5 

Limestone M5 is 12 m thick. Fusulinids were sampled from the lower part of this 

limestone, 1 m above the base. It is a foraminiferal wackestone (Fig. 4F). Bioclasts are 

represented by scarce invertebrates (Table 1): echinoids (E), brachiopod shells (B) and 

spines, bivalves, gastropods, trilobites and bryozoans (not shown in the illustrated thin-

section). Ostracod shells (Os) are abundant in matrix. Algae are red species of 

Ungdarella. Diverse foraminifers are: abundant large Bradyina, small endothyrids (FE), 

attached tuberitinids (FTu) and Ammovertella (Fs), and less abundant Ammodiscus, 

Palaeotextularia (FP) and Tetrataxis (FT) (Table 2). Fusulinids (Fig. 6.1 – 6.8) are scarce 

but relatively diverse. They are represented by represented predominately by mature short 

to elongate fusiform Beedeina species, which are quite diverse: B.rauserae (Chernova), 

B. juncta (Chernova), B. cotakarae (Ginkel), B. dunbari (Sosnina), B. bona (Rauser), B. 

pseudokonnoi (Sheng), B. absidata (Sheng), B. elegans longa (Rauser), elongate 

subcylindrical Kamaina (?) sp. cf. rossoshanica Putrja, large Neostaffella compacta 

(Manukalova), N. umbilicata (Putrja et Leontovitch), small Pseudostaffella khotunensis 

Rauser, P. confusa Lee et Chen, large, highly compressed at polar regions Ozawainella 

adducta Manukalova, large subrhomboidal O. leei (Putrja), small subrhomboidal O. 

umbonata (Brazhnikova et Potievska) and rhomboidal Taitzehoella librovitchi 

(Dutkevitch) (Table 2). 

Microstylolite surfaces are less prominent (ms) in contrast to the underlying 

limestone M3, M3
up.   
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Table 1. Distribution of fossils within low frequency cycles. r- rare, x- common, a- abundant. 

Blue – early transgressive limestones; grey – late transgressive limestones; yellow – regressive limestones.
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Hemifusulina moelleri x

H. pseudobocki x

H. subrhomboidalis x

H.cf.subrhomboidalis x

H. vozhgalica x

H. mucronata x

H. pulchella x x

H. elegantula x

H. communis acuta x

H. bocki x

H. sp. cf. H. splendida x

H. kashirica x

Beedeina schellwieni x

B. elshanica x

B. pseudoelegans x x

B.  keltmensis x x

B. apokensis x x

B. bona x x x x

B. sp. cf. B. vaskensis x x x x x

B. elegans elegans x

B. elegans longa x x

B. pseudokonnoi x x x x

B. ozawai x

B.  pronensis x

B. rauserae x x

B. sp. cf. B. rauserae x

B. juncta x x

B. cotakarae x

B. dunbari x x x

B. absidata x x

immature Beedeina x
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N. larionovae x x x x x

N.  polasnensis x

N. sphaeroidea x

N. sp. cf. N. sphaeroidea x

N. sphaeroidea cuboides x

N.cf.sphaeroidea cuboides x x x

N. syzranica x

N. sp. cf. N. rostovzevi x

N. sp. x x

Pseudostaffella confusa x

Ps. variabilis x x

Ps. khotunensis x x x x x x

Ps.compressa donbassica x x x

Ps. primaeva x

Ps. confusa x x x

Ozawainella paratingi x

O. stellae x

O. sp. O. cf. digitalis x

O. crassiformis x

O. minima x

O. krasnodonica x x

O. adducta x x x x

O. leei x

O. angulata x

O. rhomboidalis x

O. donbassensis x

O.umbonata x

O. mosquensis x

O. vozhgalica x

O. sp. cf. O. vozhgalica x

O. sp. cf. O. lorentheyi x

O. sp. x x x x

O. sp.1 x

O. sp.2 x

T. kashirica x x

T. sp. cf. T.  globulus x x x

T. librovitchi x x x

T. pseudolibrovitchi x

immature Taitzehoella a x

Fusiella pulchella x x

Fus. typica extensa x

Fus. praetypica x

Fus. praecursor x
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Fus. paraventricosa x

Fus. sp. 1 x

Fus. sp. 2 x

Schubertella lata x x

Sch. obscura procera x x

Sch. elliptica x

Sch. subkingi x

Sch.cf. myachkovensis x

Sch. sp.cf. Sch. galinae x

Sch. sp.cf. Sch. inflata x

Schubertellidae a a a a

Eostaffella sp. r r

Putrella brazhnikovae x

P. sp. cf. P. fusiformis x

P. donetziana x

P.(?) primitiva x

Fusulinella colanii x x x x

F.(Moellerites)cylindricus x x

F. (M.) lopasniensis x x

F. (M.)schubertellinoides x x

F. (M.) plicata x x

F. (M.) paracolaniae x x x

F. (M.) subconaliae x

F. (M.) plana x

F. (M.) decurta x

F. meridionalis x x x

F. borealis x

F. pseudocolaniae x x x x x

F.  devexa x

F. sp. F. cf. devexa x

F. tokmensis longa x

F. formosa tumida x

immature Fusulinella a a

Profusulinella rotundata x

Pr. sp.1 x

Pr. sp.2 x
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Eofusulina sp. x

Kamaina kamensis x

K. chernovi x

K. sp. cf. K. chernovi x

K. rossoshanica x

K.(?) sp. cf. K. rossoshanica x x

K. sp. cf.  K. kamerlingi x

Smaller foraminifers

Tuberitina sp. r x x a a a x

Ammodiscus sp. x x x a

Ammovertella sp. r x x x a x x

Bradyina sp. a a a a a a

Palaeotextularia sp. a a x a r x a a

Calcisphaera sp. x

Tetrataxis sp. x x x

Endothyra sp. x x x

Endothyridae r a r x x

 

 

Table 2. Fusulinid and smaller foraminifers distribution in the "M" Formation in the 
Donets Basin 
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Limestone M6 

Limestone M6 is a poorly sorted foraminiferal packstone, 0.3 m thick (Fig. 4K). 

A sample for fusulinid, bio- and microfacies studies was collected at 0.2 m above the 

base. Abundant microstylolites (ms) and pores are filled by brown organic matter (or). 

Quartz grains are common in the cement (Fig. 4M). Bioclasts include abundant and 

diverse invertebrates (Table 1): echinoids (E) and their spines, brachiopod (B) and 

bivalve shells, often with large and thick valves, less abundant gastropods (not shown in 

the illustrated thin-section). Small articulated valves of ostracods (Os) occur in this 

limestone. This limestone is also characterized by the presence of small curve tubes 

formed by worms – serpulinids (not shown in the illustrated thin-section). Bioclasts are in 

high degree crushed, biodegraded and covered by a “micritic envelope” and encrusted by 

attached foraminifers (Fs). Bryozoans (not shown in the illustrated thin-section) often are 

crushed into small fragments. Algae are represented by red genera Ungdarella (AlU), 

Pseudokomia, encrusted Euflugelia and green genus Beresella (not shown in the 

illustrated thin-section). Smaller foraminifers are abundant and diverse Tuberitina, 

Ammodiscus, Bradyina (not shown in the illustrated thin-section), and Palaeotextularia 

(FP) and attached Ammovertella (Fs) (Table 1). Fusulinids (Fig. 7.1 – 7.7) are abundant 

and diverse: fusiform to elongate-fusiform Beedeina, such as: B. dunbari (Sosnina), B. 

bona (Rauser), B. pseudokonnoi (Sheng), B. absidata (Sheng), B. keltmensis (Rauser), 

ovoid to fusiform Fusulinella: F. pseudocolaniae Putrja, F. colanii (Lee et Chen), F. 

meridionalis Rauser, F.(M.) paracolaniae Safonova, numerous Schubertellinidae, large 

compressed at polar ends Ozawainella, O. adducta Manukalova, large Neostaffella sp. cf. 

N.  sphaeroidea (Ehrenberg) and Taitzehoella sp. cf. T. globulus (Manukalova) (Table 2).  
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Limestone M6
up 

Limestone M6
up is 2.5 m thick. Samples for fusulinid, bio- microfacies research 

were collected at 0.2 and 0.8 m above the base. The main fossil components are similar to 

those in the M6. This limestone is also characterized by the presence of quartz grains. In 

this limestone, besides invertebrates recognized in the limestone M6, rare rugose corals 

occur (Fig. 4L). Among algae red crustal Eflugelia become more abundant, while red 

alga Pseudokomia and Ungdarella become less abundant. Some green phylloid algae 

Anchicodium sp. also appeared in the M6
up limestone, as well as oncoids of 

Cyanobacteria. The number of attached foraminifers and endothyrids increases in the 

limestone M6
up compare with the limestone M6. Fusulinids (Fig. 8.20 – 8.28) are 

represented by very large elongate-fusiform Beedeina species: B. dunbari (Sosnina), B. 

pseudokonnoi (Sheng), B. keltmensis (Rauser), B. sp. cf. B. rauserae (Chernova), B. 

elegans longa (Rauser), ovoid and fusiform Fusulinella, F. pseudocolaniae Putrja, F. 

colanii (Lee et Chen), F. meridionalis Rauser, F. (M.) paracolaniae Safonova, abundant 

immature specimens of Beedeina and Fusulinella with one-two volutions, numerous 

Schubertellidae, rare, large compressed at polar ends Ozawainella adducta Manukalova,  

small species of Ozawainella, large Neostaffella larionovae (Rauser and Safonova), N. 

sp. cf. N. compacta (Manukalova), small Pseudostaffella khotunensis Rauser, Ps. confusa 

(Lee et Chen), and Taitzehoella librovitchi (Dutkevitch).  
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Figure 4 M, N. Microphotographs of limestones of the “M” Formation. 

M – quartz grains in the limestone M9; N – phosphoritization of bioclasts, large sponge 

fragment in the right corner. 
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Cycle 3 

This cycle (Fig. 3) is represented by siliciclastics and includes the limestones M7, 

M7
up, M7

2, M8, M9, and M10 (Aisenverg et al., 1975). This cycle comprises of three 

fusulinid zones: Hemifusulina subrhomboides – H.vozhgalica – Beedeina vaskensis, 

Putrella donetziana – Fusulinella colanii, and Kamaina rossoshanica – Fusulinella 

tokmovensis longa Zones (Khodjanyazova et al., submitted). The thickness of this cycle 

is about 180 m. This cycle consists of two ‘composite sequences’ Mo XII and Mo XIII 

proposed for the Donets Basin by Eros (2010).The limestones of this interval studied 

from the Gurkovo section, 5 km to the south from the town Pervomaisk, Donets oblast, 

Ukraine.  

Limestone M7 

Limestone M7 is a crinoids-brachiopod wackstone (Fig. 4C), 0.5 m thick. 

Invertebrates are brachiopods (B) and their spines (Bs), crinoid ossicles, gastropods, 

trilobites (Tr), and large fenestrate bryozoans (Bz). Small foraminifers (Table 2) are 

scarce and represented by endothyrids, Palaeotextularia. Fusulinids (Fig. 5.10 – 5.12) are 

scarce: Eostaffella sp., Hemifusulina subrhomboidalis Rauser, H. vozhgalica Safonova, 

H. mucronata Rumjantzeva, H. pulchella Rauser, and H. elegantula Rauser. Rarely 

Beedeina sp. cf. B. vaskensis (Rauser), Ozawainella minima Putrja, O. sp.1, Neostaffella 

sp. occur (Table 2). 
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Figure 5. Fusulinids in the Hemifusulina-dominated assemblage: 1 – 9 (limestone M7
up), 

10 – 12 (M7), 13 (M3
up), 14 – 18 (L7

1). 

1 – Hemifusulina communis acuta Rauser; x 20; 2 – Hemifusulina sp. cf. H. splendida 

Safonova, x 20; 3 – Ozawainella krasnodonica Manukalova, x 40; 4, 16 – Taitzehoella 

sp. cf. T. globulus (Manukalova), x 35; 5, 8 – Neostaffella larionovae Rauser and 

Safonova, x 35; 6 – Ozawainella sp. 2, x 45; 7 – Pseudostaffella variabilis Reitlinger, x 

45; 9 – Ozawainella angulata (Colani), x 40; 10 – Beedeina sp. cf. B. vaskensis (Rauser), 

x 20; 11 – N. sp., x 35; 12 – Hemifusulina pulchella Rauser, x 20; 13 – Hemifusulina 

kashirica Rauser, x 20; 14 – Ozawainella paratingi Manukalova, x 40;  15 – Neostaffella 

ozawai (Lee et Chen), x 35; 17 – Hemifuuslina moelleri Rauser, x 20; 18 - Hemifusulina 

pseudobocki Putrja, x 20. 
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Figure 6. Fusulinids in the Beedeina-dominated assemblage: 1 – 8 (limestone M5), 9 – 18 

(M1). 

1 – Beedeina bona (Rauser-Chernousova), x 20; 2 – B. dunbari (Sosnina), x 20; 3 – B. 

pseudokonnoi (Sheng), x 20;  4, 5 – Ozawainella adducta Manukalova, x 40; 6 – 

Taitzehoella librovitchi (Dutkevitch), x 35; 7 – Neostaffella umbilicata (Putrja et 

Leontovitch), x 35; 8, 12 – N. compacta (Manukalova), x 35; 9 – B. schellwieni (Staff), x 

20; 10 - B. pseudoelegans (Chernova), x 20; 11 – B. elshanica (Putrja and Leontovich), x 

20; 13 – N. ozawai (Lee et Chen), x 35; 14 – O. sp. cf. O. digitalis Manukalova, x 40; 15 

– O. stellae Manukalova, x 40; 16 – O. crassiformis Putrja, x 40; 17 – T. kashirica 

(Rauser-Chernousova), x 35; 18 – Eofusulina sp. x 15. 
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Limestone M7
up 

Limestone M7
up

 is a biogenic packstone to wackestone (Fig. 4D), 0.1 m thick. 

Some large intraclasts consisted of large detritus. Few traces of phosphoritization are 

observed in bioclasts (Fig. 4N). Microstylolites rarely occur. Bioclasts unevenly 

distributed in this limestone and are represented by diverse invertebrates (Table 1): thick-

shelled brachiopods (B), echinoids (E), echinoid spines (Es), gastropods (G), crinoid 

occicles, bryozoans, ostracods, trilobites, sponges and serpulinids (not shown in the 

illustrated thin-section). Smaller foraminifers (Table 2): endothyrids (FE), 

paleotextulariids, attached Ammovertella (not shown in the illustrated thin-section). 

Fusulinids (Fig. 5.1 – 5.9) are scarce and low diverse: Hemifusulina sp. cf. H. 

subrhomboidalis Rauser, H. communis acuta Rauser, H. pulchella Rauser, H. sp. cf. H. 

splendida Safonova, Neostaffella larionovae (Rauser and Safonova), N. polasnensis 

(Rauser and Safonova), N. sp. cf. N. sphaeroidea cuboides (Rauser), Pseudostaffella 

confusa (Lee et Chen), Ps. variabilis Reitlinger, Beedeina sp. cf. B. vaskensis (Rauser), 

Ozawainella krasnodonica Manukalova, O. angulata (Colani), O. rhomboidalis Putrja, 

O. donbassensis Sosnina, O. sp. cf. O. lorentheyi Sosnina, O. sp. 1, O. sp. 2, Taitzehoella 

sp. cf. T. globulus (Manukalova) (Table 2). 

Limestone M8 

Limestone M8 is 1.8 m thick, and contains no fusulinids in the Gurkovo section. 

Putrja (1956) studied fusulinids from the Eastern part of the Donets Basin and recognized 
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Fusulina “distenta” Roth and Skinner that is the most similar to Beedeina sp. cf. B.  

vaskensis (Rauser) in the limestone M8.   
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Figure 7. Fusulinids of the Fusulinella-dominated assemblage: 1 – 7 (limestone M6), 8– 

16 (limestone M3), 17 – 24 (limestone M2). 

1 – Beedeina keltmensis (Rauser-Chernousova), x 20; 2 Taitzehoella sp. cf. T. 

globulus (Manukalova), x 35; 3 – Fusulinella colanii (Lee et Chen), x 20;  4, 5, 16, 22, 24 

– Schubertellidae x 40; 6 – Ozawainella adducta Manukalova, x 40; 7 – Neostaffella sp. 

cf. N. sphaeroidea (Ehrenberg), x 30; 8 – Beedeina pronensis (Rauser-Chernousova), x 

20;  9 – Beedeina bona (Chernova and Rauser-Chernousova), x 20; 10, 21 – Fusulinella 

(Moellerites) cylindricus Solovieva, x 20; 11 – Taitzehoella kashirica (Rauser), x 35;  12 

– N. sp., x 30; 13 – Fusulinella (Moellerites) paracolaniae Safonova, x 20; 14, 23 – 

Pseudostaffella confusa (Lee and Chen),  x 40; 16, 17 – Fusulinella (Moellerites) 

schubertellinoides Putrja, x 20;  18 – Taitzehoella pseudolibrovitchi Rauser-

Chernousova, x 35;  19 – Pseudostaffella khotunensis Rauser-Chernousova, x 40; 20 - 

Beedeina sp., immature specimen, x 20. 
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Limestone M9 

Limestone M9 is a foraminiferal wackestone to packstone (Fig. 4J), 2 m thick. 

Sample was collected at the base. Microstylolite cracks occur within the matrix, filled by 

brown organic matter. Quartz grains are common in the cement (Fig. 4M). Invertebrates 

are scarce (Table 1): echinoids (E), bryozoans, brachiopods, gastropods, ostracods and 

trilobites (not shown in the illustrated thin-section). Algae include abundant red 

Pseudokomia (AlK) and green Beresella; encrusting Cyanobacteria (not shown in the 

illustrated thin-section) also occurs. Smaller foraminifers (Table 2) are abundant: 

Bradyina (FB), Palaeotextularia, Tuberitina, several genera of endothyrids (not shown in 

the illustrated thin-section). Fusulinids (Fig. 8.11 – 8.19) are numerous and diverse: 

Putrella brazhnikovae (Putrja), P. sp. cf. P. fusiformis (Putrja), P. donetziana (Lee), 

Neostaffella sp. cf.  N. rostovzevi (Rauser), N. sphaeroidea cuboides (Rauser), N. sp. cf. 

N. sphaeroidea cuboides (Rauser), N. syzranica (Rauser and Safonova), N. larionovae 

(Rauser and Safonova), Fusulinella colanii Lee et Chen, F. borealis Rauser, F. 

pseudocolaniae Putrja, F. sp. F. cf. devexa Rauser, many immature specimens of 

Fusulinella. Schubertella species are abundant and very diverse: Sch. sp. cf. Sch. 

myachkovensis Rauser, Sch. sp. cf. Sch. galinae Safonova, Sch. sp. cf. Sch. inflata 

Rauser, Sch. lata Lee and Chen, and Sch. obscura procera Rauser. Ozawainella species 

are less abundant; they are represented by large and slightly compressed at axial ends O. 

mosquensis Rauser, O. vozhgalica Safonova, and O. sp. Small Pseudostaffella also occur: 

Ps. khotunensis (Rauser), Ps. compressa donbassica (Putrja), and Ps. primaeva Putrja. 

The following species are scarce: Fusiella pulchella Safonova, Hemifusulina bocki 

Moeller, Kamaina sp. cf. K. chernovi (Rauser), and Beedeina sp. cf. B. vaskensis (Putrja) 
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(Table 2). Numerous immature specimens with one-two volutions are typical for this 

microfacies.  

Limestone M10 

Limestone M10 is a foraminiferal packstone (Fig. 4H), 2 m thick. Smaller 

foraminifers are abundant Palaeotextularia (not shown in the illustrated thin-section), 

less abundant Bradyina (FB), Tetrataxis (FT), Endothyra, and attached forms Tuberitina 

(not shown in the illustrated thin-section) and Ammovertella (Fs) (Table 2). Fusulinids 

(Fig. 8.1 – 8.10) are Fusulinella colanii Lee et Chen, F. meridionalis Rauser, F. devexa 

Rauser, and F. pseudocolaniae Putrja. Several inflated species appear F. tokmovensis 

longa Reitlinger and F. formosa tumida Reitlinger. Among Fusulinella some older 

species are recognized F. (Moellerites) subcolaniae Reitlinger, F. (M.) plana Reitlinger, 

and F. (M.) decurta Reitlinger with weakly developed diaphanotheca. An older 

Profusulinella without diaphanotheca P. sp. 1, P. sp. 2, and P. rotundata Putrja also 

occur. Schubertella species are numerous and include Shubertella lata Lee et Chen, Sch. 

procera Rauser, Sch. elliptica Putrja, and Sch. subkingi Putrja. Large Neostaffella are 

common and include N. sphaeroidea (Ehrenberg) and N. larionovae (Rauser and 

Safonova). Small Pseudostaffella include Ps. khotunensis Rauser, Ps. compressa 

donbassica Putrja, and Ps. variabilis Reitlinger. Ozawainella species are similar to those 

in the limestone M9 and include Ozawainella sp., O. adducta Manukalova, O. 

krasnodonica Manukalova, and O. sp. cf. O. vozhgalica Safonova. In contrast to the 

limestone M9, abundant and diverse Fusiella occur in M10 including F. typica extensa 

Rauser, F. praetypica Safonova, F. praecursor Rauser, F. paraventricosa Rauser, F. 

pulchella Safonova, F. sp. 1, and F. sp. 2. Kamaina, which is scarce in M9, is abundant 
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and diverse in M10 limestone: Kamaina kamensis (Safonova), K. chernovi (Rauser), K. 

rossoshanica (Putrja), K. sp. cf. K. kamerlingi (Ginkel), and K. sp. Beedeina is scarce and 

include B. elegans (Rauser et Belyaev) (Table 2).  

Invertebrate (Table 1) are scarce echinoids (E), bryozoans (Bz), brachiopods and 

spines, bivalves (not shown in the illustrated thin-section), ostracods (Os) with 

unseparated valves. Rugose corals (not shown in the illustrated thin-section), and 

serpulinid tubes (Sr) also occur. Algae are represented by green phylloid forms 

Anchicodium (not shown in the illustrated thin-section), well preserved Beresella and 

Dvinella with long thallia (AlB), and Cyanobacteria. This limestone is characterized by 

an absence of microstylolites and remains of organic matter, excellent preservation of 

bioclasts and presence of numerous encrusting organisms. 
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Figure 8. Fusulinids of the Fusulinella-dominated assemblage: 1 – 10 (limestone M10), 

11– 19 (limestone M9), 20 – 28 (limestone M6
up). 

1, 16 – Neostaffella sphaeroidea (Ehrenberg), x 30; 2 - Schubertella lata Lee and 

Chen, x 40; 3 – Fusulinella tokmovensis longa Reitlinger, x 20; 4 – F. (M.) plana 

Reitlinger, x 20; 5, 17, 26 - Pseudostaffella khotunensis Rauser, x 40; 6 – Pseudostaffella 

variabilis Reitlinger x 40; 7 – Schubertella subkingi Putrja, x 40; 8 – Fusiella praetypica 

Safonova, 9 – Kamaina rossoshanica (Putrja), x 15; 10, 19 - Ozawainella sp. cf. O. 

vozhgalica Safonova, x 35; 11 - Fusulinella sp. cf. vozhgalensis devexa Rauser, x 20;  12 

– Putrella donetziana (Lee), x 20; 13, 14 - Schubertella sp. cf. galinae Safonova, x 40; 15 

– Kamaina chernovi (Rauser-Chernousova), x 20; 18 -  Pseudostaffella compressa 

donbassica Putrja , x 40; 20 – Kamaina (?) sp. cf. K. rossoshanica (Putrja),  x 15; 21 – 

Fusulinella colanii (Lee and Chen), x 20; 22, 23 – Schubertellidae, x 40; 24 – 

Taitzehoella librovitchi (Dutkevitch), x 35; 25- Neostaffella larionovae Rauser and 

Safonova, x 35; 27 - Ozawainella adducta Manukalova, x 35; 28 - Ozawainella sp. x 40. 
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A model of cyclic recurrences of the Moscovian fusulinids: Interpretation 

In a reconstruction of the bathymetry within each cycle, we use the distribution of 

algae that can photosynthesize different spectra of sunlight. Abundant green algae usually 

inhabit waters of very shallow depths, 5–10 m, within the zone of penetration of the red 

spectrum of sunlight. Deeper and colder water (more than 30 m) is favorable for red 

algae, which utilize the blue spectrum of sunlight for photosynthesis. Of course such 

bathymetric reconstructions are not ideal and have many restrictions. For instance, the 

depth of penetration of sunlight depends on many factors, including geographic position 

of the sea, temperature of the water, and presence of insoluble organic and inorganic 

particles and/or ions in the marine water (Vella, 1962; Antoine and Morel, 1996; Conde 

et al., 2000). In spite of the limitations mentioned above, however, the algae seem to be 

the only biological markers which provide direct evidence about water depth of 

habitation, especially when the succession of a single stable basin is considered (Fig. 4).  

We recognize an upward stratigraphic succession from a Beedeina-dominated (B) 

community (LTST-EHST) characterized by red algae documented in the limestones L7, 

M1, M5, M8 to a  Fusulinella-Fusulina-dominated (C) assemblage (LHST-ELST) 

characterized by green algae M2, M3, M6, M6
up, M9, M10 (Fig. 5). This presumably 

represents a change from deeper to shallower water. The greatest difficulty is in 

determination of the position of the limestones L6, L7
1, M3

up, M7, M7
up, N1, which contain 

the Hemifusulina-dominated association. This assemblage rarely contains algae and is 

associated with heterozoan fauna. In the Donets Basin this assemblage appears 

immediately above the sequence boundaries proposed by Eros et al. (2012), therefore we 

suggest that the Hemifusulina-assemblage indicates a beginning of transgression. 
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Recent sedimentological and paleoecological research in the Donets Basin 

(Fohrer et al., 2007), has focused on detailed microfacies study of the “L” Formation and 

conodont and ostracod distributional patterns, and revealed that the maximum 

transgression was in the bottom of limestones L6 and L7
1, where Hemifusulina species 

were recognized. In these limestones, Nemyrovska in Fohrer et al. (2007) recognized 

conodonts of genus Idiognathodus which reveal their maximal abundance in the off-shore 

environment in the Pennsylvanian strata of the US Midcontinent (Sweet, 1988). In the 

same limestones, Fohrer in Fohrer et al. (2007) recognized some ostracod genera, 

particularly, Cavellina, which is considered as an indicator of an unstable near-shore 

marine environment with high terrigenous input that is associated with a transgressive 

event.  

We suggest that the fusulinid cyclicity marks low-frequency (0.6-1.2 my) sea-

level fluctuations (Fig. 4). Each cycle starts with (A) Hemifusulina-dominated 

assemblage indicating beginning of transgression (ETST), followed by (B) Beedeina-

dominated assemblage indicating late transgression (LTST), and completed by (C) 

Fusulinella-Fusulina-dominated assemblage indicating high and early low stand (HST-

ELST). This interpretation is also consistent with lithofacies data (Eros et al., 2012). 

 



59 
 

 

  

 

 

 

 

Figure 9. Time – depth relations of fusulinid distributional patterns within a full fusulinid 

cycle of sea level change from transgression through high stand to low stand (~ 600,000 

~1,000,000 yrs.).  

 
A – Hemifusulina-dominated association, B) – Beedeina-dominated assemblage, C) – 

Fusulinella-Fusulina-dominated assemblage. 
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Hemifusulina-dominated community: beginning of transgression (ETST) 

The Hemifusulina-dominated assemblage (A, Figs. 2, 3, 4, and 5) occurs in the 

limestones L6, L7
1, M3

up, M7, M7
up, and N1. This assemblage (Suppl., Fig. 2.1–2.18) is 

represented by either a monospecific Hemifusulina population or a low diverse 

community composed mostly of Hemifusulina (1, Fig. 5; Suppl., Fig. 2.1, 2.2, 2.12, 2.13, 

2.17, 2.18) with scarce mature species of small subrhomboidal and short fusiform species 

of Beedeina (2, Fig. 5; Suppl., Fig. 2.10) and Taitzehoella (3, Fig. 5; Suppl., Fig. 2.4, 

2.16), large Neostaffella ( 4, Fig. 5; Suppl., Fig. 2.5, 2.8, 2.11, 2.15), and large 

Ozawainella (5, fig. 5; Suppl., Fig. 2.3, 2.9, 2.14).  Species of Hemifusulina are variable 

in shape from elongated subcylindrical (most common) and ovoid with rounded polar 

ends, to short fusiform with pointed polar ends. Hemifusulina differs from many other 

large fusulinids in having a very small proloculus, regular shape, regularly folded septa, 

and regular small rounded chomata symmetrically arranged around a regularly widening 

tunnel. This shape of Hemifusulina and its usually monospecific occurrence allowed Villa 

and Bahamonde (2001) to draw an analogy between Hemifusulina and the Gzhelian 

Ferganites. The Permian Eoparafusulina described by Skinner and Wilde (1966) from 

the Pacific Northwest and Alaska also has a similar shape to Hemifusulina and 

Ferganites and occurs in similar lithofacies.  

Villa and Bahamonde (2001) studied monospecific occurrences of Ferganites in 

the upper Kasimovian and lower Gzelian Lower Member of the Puentelles Formation of 

the Cantabrian Mountains. This unit comprises “bedded alternations of calcareous 

breccias and conglomerates, pebbly sandstones, graded and laminated silty and sandy 

limestones, skeletal grainstones, and bioturbated marly limestones and marls. Ferganites 
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occurs at numerous levels.” (Villa and Bahamonde, 2001, p. 174, fig. 2 herein). These 

strata are cyclic; they recognized three fining upward sequences. Using the facies model 

proposed by Mutti et al. (1996), Villa and Bahamonde (2001) interpreted the unit “as 

flood-dominated fan-delta and river-delta systems, which generated alluvial to shelfal 

lobes of hinterland-derived sediment supplied by episodic river discharges”. Such 

deposits occur in tectonically-controlled basins characterized by small and medium sized 

fluvial systems with high-elevation drainage basins and high-gradient transfer zones 

located close to marine basins (Villa and Bahamonde, 2001 and references therein). Villa 

and Bahamonde (2001) noted the abundance of Ferganites and absence of other 

contemporaneous genera such as Rauserites, Triticites and Quasifusulina. They linked 

the monospecific monospecific concentration of Ferganites to an adaptation of this genus 

either to hydrodynamic activity of near-shore environments or to relative low salinity of 

proximal areas located near the rivers’ mouths due to fresh water discharge.  

The Hemifusulina assemblage, sometimes represented by a monospecific 

population, is the only paleocommunity in Moscovian time which occurs predominantly 

in carbonate rocks with high siliciclastic content. Hemifusulina-bearing beds are 

restricted to only a few regions; it is documented in sandy limestones alternating with 

coarse-grained conglomerates, sandstones and siltstones in the Cantabrian Mountains 

(Ginkel, 1973), in Central Asia (Bogush, 1963), and in the silty-micritic mudstones in the 

Donets and Moscow Basins (Reitlinger and Balashova, 1954; Baranova and Kabanov, 

2003). The abundance of Hemifusulina populations in the Eastern European Platform 

decreases gradually in an eastward (seaward) direction (Dalmatskaya, 1961); e.g. the 

further from the land, the less abundant this genus becomes. Hemifusulina, in contrast to 
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Ferganites, occurs both in high-energy environments (Central Asia and the Cantabrian 

Mountains) and in low-energy environments (the Moscow and Donets Basins). In the 

Donets Basin Ih the Donets Basin the limestones with Hemifusulina are documented right 

above composite sequence boundaries, independently inferred by Eros et al. (2012) and 

which are recorded by trough-cross-bedded sandstone. Limestones with Hemifusulina are 

documented within fine siliciclastics with numerous plant remains intercalated with 

numerous coal seams. Eros et al. (2012), based on lithology, sedimentary structure, 

abiotic and biotic components, analyzed lithologic facies and interpreted such facies as 

deposited in near-shore marine environments: fluvial channel bars, abandoned channels, 

backbay marsh, tidal mudflats, tidal bars and channels, marine to estuarine. Therefore we 

suggest that this community was adapted to a near-shore environment with slightly 

reduced salinity caused by the input of fresh water.  

The species of genera in transgressive colder water (e.g. ETST, LTST-EHST) - 

Hemifusulina, Taitzehoella, Neostaffella, Beedeina and Ozawainella - possess relatively 

small proloculi, a greater number of volutions (six – eight), and generally more regularly 

folded septa. In contrast fusulinids from regressive episodes (e.g. LHST-ELST) – 

Fusulinella, Fusulina, Fusiella, Neostaffella, Pseudostaffella, Ozawainella - preferred 

shallower and warmer water, and have relatively larger proloculi, and less volutions (five 

– six). Advanced fusulinids, such as Fusulinella and Fusulina have irregularly folded 

septa. Such differentiation among fusulinids is supported by ecological research on 

modern foraminifers (Dodd and Stanton, 1981) that reveals an increase of volution 

number in mature specimens in colder water probably because of higher nutrient input 

from the upwelling oceanic currents.  
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Baranova and Kabanov (2003), studying fusulinid paleoecology, suggested that 

Hemifusulina appears during early “forced” regression, associated with an increase of 

siliciclastic input into the basin. It is generally accepted that during regression, when the 

area of exposed surfaces is maximal, clastic input increases, while during transgression 

the input of siliciclastics is considerably reduced. We conversely suggest that this 

assemblage represents the beginning of a transgression.  

The presence of the Hemifusulina community, especially its monospecific 

concentration in mixed carbonate-siliciclastic rocks in the Donets and Moscow Basins, 

indicates the proximity of exposed land and underlines the western limits of large 

epicontinental seas. The abundance of Hemifusulina gradually decreases in a seaward 

direction, from the Donets and Moscow Basins toward the Uralian seaway in the east.  

We interpret that the beginning of transgression is driven by the decay of large 

glaciers and consequent rise of sea level. This event was accompanied by a disturbance of 

the shallow clear water marine environments of the previous coral-algal (photozoan) 

meadow association which persisted during regression and is associated with the (C) 

Fusulinella-Fusulina assemblage. In the beginning of transgression, this photozoan 

association was replaced by a cool-water heterozoan assemblage. Although the remains 

of heterozoans are found in almost all limestones (Fig. 2), their abundance declines 

considerably from the beginning of transgression (colder water with a Hemifusulina-

association) to the low sea level stand (shallower and warmer water with a Fusulinella-

Fusulina association (C). Such biotic change in the benthic fauna, from the (C) to (A) 

fusulinid assemblages probably could be associated with a decrease of sea bottom 

temperature due to the continuous deepening of a basin during transgression, and an 
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increasing connection with the open ocean that enhances water circulation and upwelling 

of colder oceanic water onto the epicontinental basins.  

Another explanation for the abrupt change in shallow marine biota is a change in 

salinity. Normal marine conditions are characterized by salinity in the range of 32 to 

38o/oo, average35o/oo
 (Flugel, 2004). We hypothesize here that salinity in a shallow sea 

can be slightly increased during regression probably up to ~38o/oo, firstly because fresh 

water became is sequestered in glaciers, and secondly because the shallower water, the 

more enhanced the evaporation will be as a response to warming and drying conditions. 

Transgression brings more water from the continent into epeiric basins, possibly reducing 

salinity. The beginning of transgression may be accompanied by enhanced runoff from 

the land, as a result of increasing precipitation or probably accelerated decay of near-field 

high-mountain glaciers in the adjacent Western Europe (Becq-Giraudon et al., 1996). 

High input of fresh water into the epicontinental basins would reduce the salinity of near-

shore water and increase the input of terrigenous particles and nutrients into seawater 

resulting in a reduction in transparency of the water, a factor harmful for coral and 

calcareous algae, but favorable for a heterozoan fauna.  
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Figure 10. Repetitive reoccurrences of three fusulinid assemblages. 

A) Hemifusulina-dominated, B) Beedeina-dominated, C) Fusulinella-dominated in the 

“M” Formation, Donets Basin. 1 - Hemifusulina, 2 – Beedeina, 3 – Taitzehoella and 

Fusiella, 4 – Neostaffella and Pseudostaffella, 5 – Ozawainella, 6 – Fusulinella, 7 – 

Schubertella, 8 – Fusulina. Red algae: 9– red phylloid Archaelithophyllum (?), 10– 

Ungdarella, 11– Parachaetetes (?), 12– Pseudokomia. Green algae: 13– Beresella, 14– 

green phylloid, Anchicodium. 
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Beedeina-dominated community: Late transgression – Early high sea level stand (LTST-
EHST) 

A second fusulinid assemblage (B, Figs. 2, 3, 4, 5), which occurs in the 

limestones L7, M1, M5, M8, N1
6, N4, and successively replaces the Hemifusulina-

association, is the Beedeina–Neostaffella–Ozawainella–Taitzehoella community, or as 

we simplify here, Beedeina-dominated assemblage. In our model this community 

preferred optimal depths of 30-40 m, at which the fusulinids could survive during 

deposition the LTST–EHST. Smaller foraminifers characterized by a globular shape, 

Bradyina, Endothyra, rare textulariid, and attached foraminifers are present (see Suppl., 

Table 2). This is in agreement with Stevens (1971) who suggested these types of fossils 

inhabited the deepest part of the sea, deeper than 20 m. Macrofossils are represented by 

scarce heterozoan. The presence of the red alga Ungdarella (Suppl., Fig.1A, AlU) also 

suggests relatively deeper water, probably more than 30-35 meters.  

An important feature for this association is the maturity of the fusulinid 

specimens. The absence of immature specimens and terrigenous intraclasts also indicates 

a quiet off-shore environment (see discussion above). The species of Beedeina (2, Fig. 5, 

Suppl., Fig. 3.1–3.3, 3.9–3.11) and Taitzehoella (3, Fig. 5, Suppl., Fig. 3.6, 3.17) in the 

late transgressive – high stand episodes (LTST-EHST) are smaller than their relatives 

from regression episodes (LHST-ELST), and they are subtriangular in shape, and possess 

a greater number of volutions (six – eight), than their descendants from lower sea level 

stand, which have only five, or rarely six volutions. Beedeina in this assemblage is 

distinct in having regularly folding septa and small proloculi. Neostaffella is represented 

by large species, and has seven–eight volutions (4, Fig. 5; Suppl., Fig. 3.7, 3.8, 3.12, 
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3.13) similar to that of their closest ancestors from the Hemifusulina-assemblage and 

descendants from the Fusulinella-association. Large discoid species of Ozawainella are 

highly compressed at their polar ends (5, Fig. 5; Suppl., Fig. 3.4, 3.5, 3.14–3.16) and 

replaced by smaller subrhomboidal species in the successive Fusulinella-association. A 

very important feature for this association is the absence of genera Fusulinella (6, Fig. 5), 

Schubertella (7, Fig. 5) and Hemifusulina (1, Fig. 5). 

We suppose that the subrhomboidal to shortly fusiform test outline of species of 

Beedeina and Taitzehoella, the globular shape of the large Neostaffella, and discoid shape 

of the large Ozawainella evidence their adaptation to deeper depth under increased 

pressure at the bottom substrate where the fusulinids lived.  

  The limestones containing this community are usually thin-bedded, and 

formed when the sea level reached maximum stability. Species of Beedeina show the 

same evolutionary trend in the many regions of the Paleotethys and are recognized in the 

Moscow Basin (Rauser-Chernousova et al., 1951), Central Asia (Bogush, 1963), 

Northern China (Sheng, 1958), Southern Urals (Ivanova, 2008), and Cantabrian 

Mountains (Ginkel, 1965) and therefore are  important for biostratigraphic correlation. 

This is because they inhabited seas close to the maximum sea level rise when a 

connection among basins of the Tethyan realm was considerably increased.  

Fusulinella-dominated association: Regressive episode (ELST) 

The most diverse association of fusulinids (C, Figs. 2, 3, 4, 5) with abundant 

Fusulinellids (Fusulinella, Protriticites, Obsoletes) replaces the Beedeina-dominated 

association in the limestones L5, M2, M3, M6, M6
up, M9, M10, N2, N3, N5, N5

1, O1, which 

were deposited in progressively shallowing seas from high stand to low stand. This 
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diverse community of fusulinids includes abundant small species of Schubertella (7, Fig. 

5; Suppl., Fig. 4.4, 4.5, 4.15, 4.16, 4.22–4.24, 5.2, 5.7, 5.13, 5.14, 5.22, 5.23) and 

Fusulinella (6, Fig. 5; Suppl., Fig. 4.3, 4.10, 4.13, 4.17, 4.21, 4.3, 4.4, 4.11, 4.21) and 

immature individuals of Fusulinella and Beedeina (Suppl., Fig. 4.20) with two-three 

volutions.  

Beedeina is usually represented by elongated fusiform species, with irregularly folded 

septa (Suppl., Fig. 4.1, 4.8, 4.9). Large species of Beedeina in the Fusulinella-association 

possess fewer volutions (maximum five) and are almost three to four times longer than 

species from previous assemblages, and often have very large proloculi. Species of 

Taitzehoella (3, Fig. 5; Suppl., Fig. 4.2, 4.18, 5.24) also become elongate fusiform. In the 

Podolskian, species of Fusiella (3a, Fig. 5; Suppl., Fig. 5.8) derived from Taitzehoella 

become an important element of the ELST assemblage. Large species of Neostaffella are 

replaced by small individuals of Pseudostaffella (4a, Fig.5; Suppl., Fig.4.14, 4.19, 5.5, 

5.6, 5.17, 5.18, 5.26). The Fusulinella-dominated assemblage is usually characterized by 

an absence of the Hemifusulina. Single specimens are recognized in the Podolskian, M9 

limestone. Large elongate-subcylindrical Fusulina (8, Fig. 5; Suppl., Fig. 5.9, 5.20) 

appear at the end of each cycle.  Within the Moscovian – Kasimovian transition 

subcylindrical Fusulina evolved into Quasifusulinoides and Quasifusulina. 

A distinctive feature of this assemblage is a mixture of mature and immature fusulinid 

specimens, as well as an increased abundance of photozoan. We suggest that the slow 

accumulation of ice at polar region led to slow sea level falls during regression and that 

very shallow depth persisted relatively longer, resulting in the explosion of a diverse and 

abundant fauna and algal flora. The algal associations reveal shallowing upward 
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successions: the lower limestones in the regression series of three described cycles M2, 

M6, M9 contain both red and green algae (Figs. 4, 5), that we suppose could have been 

deposited at a depth ~10–20 m, whereas the upper limestones M3, M6
up, M10 containing 

mainly green algae, and may indicate a shallower depth up to10 m. The presence of 

abundant immature fusulinids and large numbers of broken shells of diverse macrofauna 

indicate active hydrodynamics at shallow depths.  

The diverse species of Fusulinella and Fusulina reveal a higher degree of 

provinciality during regression episodes, when the marine connection between provinces 

was reduced by exposed land. The further from the Donets Basin the more difficult it was 

to correlate the proposed zone using Fusulinella and Fusulina species.  

Summarizing we propose here a model of fusulinid distribution in the shallow 

epicontinental sea in the Donets Basin with respect to different sea level stands (Fig. 4) 

which resulted from the waxing and waning of far-field glacial Gondwanan ice caps and 

probably near-field high mountain glaciers. The beginning of a transgression is 

characterized by a monospecific population of Hemifusulina, or a low-diverse community 

composed of Hemifusulina small subrhomboidal species of Beedeina and inflated 

Taitzehoella, large Neostaffella and Ozawainella. During the maximum sea level stand 

with depths greater than 35 m was marked by disappearance of Hemifusulina, while other 

genera experience little morphological change: Species of Taitzehoella and Beedeina 

became subrhomboidal in outline, while those of Neostaffella became larger, 

Ozawainella is represented by large species which have highly compressed in polar ends. 

Regression episodes are marked by an increase of diversification in the fusulinid 

populations.  
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Applications of the fusulinid distributional model 

Extinction event at the Moscovian – Kasimovian boundary 

In the first half of the last century Carboniferous stratigraphy in the former Soviet 

Union was developed based upon fusulinid evolution, and divided into three subsystems: 

Lower (=Mississippian), Middle (=Lower and Middle Pennsylvanian) and Upper 

(=Upper Pennsylvanian) Carboniferous. The boundary between the Middle and Upper 

Carboniferous (Moscovian/Kasimovian) was established by extinction of many Middle 

Carboniferous fusulinid genera. The prolonged extinction event (Fig. 6) starts at the N1
1 

and ends at the N4 limestones. This event occurred between two transgressions marked by 

the limestones N1
6 and N4. From the fusulinid distributional pattern within a cycle (Fig. 

2) two groups can be recognized; the first includes fusulinids that inhabited a deepening 

colder sea during transgressive episode (TST, LTST); the second is composed of 

fusulinid which preferred a shallowing warmer sea during regression (HST, ELST).  The 

great extinction event at the Moscovian – Kasimovian boundary mainly affected fusulinid 

genera associated with transgressive episodes including Hemifusulina, Neostaffella, 

Ozawainella, Beedeina, and Taitzehoella. This can be explained by a global regression 

resulting in a profound ecological disturbance of their habitat, specifically the 

pronounced expansion of shallow water environments that were ecologically unfavorable 

for these genera.  
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Figure 11. Extinction of fusulinid genera across Moscovian – Kasimovian boundary. 
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Biostratigraphy and global correlation  

Trends in evolution, biogeography and biodiversity that are recognized within the 

established biocycles possess valuable application in biostratigraphy. The species 

recognized in all three assemblages distinguished within a cycle have a very narrow 

temporal range (0.3 – 0.4 my). The deepest ‘transgressive’ Beedeina-dominated 

assemblage (LTST–EHST), recognized in the limestones L7, M1, M5, M8, N1
6, and N4 

from the eastern deeper to the western shallower part of the Donets Basin (Putrja, 1939, 

1956), are absent in some limestones, for example M8 and N4, in the shallower water in 

the western part in the Gurkrovo and Kalinovo sections. As we consider Fusulinella-

association as a proxy of shallower depth, its appearance might be expected closer to the 

shore, however neither Beedeina, nor Fusulinella occur in the limestones M8 and N4. 

Therefore the ‘transgressive ’and ‘regressive’ fusulinids are not only depth-related forms 

but occur at particular time intervals, or depth-time-related assemblages. In other words 

the fusulinid assemblages we have defined for different sea level stands are not only 

associated with depth, but with some other specific environmental conditions, such as 

temperature or salinity that existed during short time intervals, either transgression or 

regression. This differentiation is useful for interbasinal correlation, especially with the 

historical type region, the Moscow Basin. A usage of this model in correlation of late 

Kashirian – Podolskian strata of the Donets and Moscow Basins, that allows us almost 

bed-to-bed correlation of successions with different lithology, we present in a separate 

paper. 

As the ‘transgressive’ fusulinids from LTST–EHST inhabited seas during periods 

close to maximum sea level rise, they are the most important and potentially useful for 
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global correlation. Ross and Ross (2009) in the proposed sea level curve documented an 

evolution in the Beedeina that probably reveals similar trends in the Pennsylvanian 

succession of the North America and the Donets Basin (Ukraine). For example, before 

the last occurrence of Beedeina in North America during the Lost Branch (Nuyaka 

Creek) transgression, the latest Desmoinesian, there was a long episode when factors 

were unfavorable for this genus. We also recognize a long interval between N1
6 and N4, 

which is characterized by the absence of Beedeina. Some similarities in Beedeina 

distribution also likely link the Kashirian –Podolskian strata in the Donets Basin with the 

early Desmonsenian of the USA. However more detailed work needs to be conducted in a 

correlation of Beedeina evolutionary trends to the distal regions.  

By contrast, fusulinids of the Hemifusulina-dominated community which occur in 

the ETST limestones are provincial and therefore have low biostratigraphic and 

correlation potential. Only correlations of the closest basins, such as the Donets and 

Moscow Basins, are reliable. Similarly, the most diverse fusulinids occur in limestones 

deposited during regression (LHST–ELST). Lowering of sea level in epicontinental seas 

led to creation of geographical barriers that in turn increased isolation of fusulinid 

populations and development of endemic and provincial species. The Hemifusulina-

dominated ‘transgressive’ assemblage, the Fusulinella-dominated ‘regressive’ 

populations allow correlation between proximal basins, such as the Donets and Moscow 

basins.  

Paleogeography 

When we tried to correlate different groups of fusulinids from the Donets Basin with 

contemporaneous strata in the other regions of the Tethyan province, we recognized that 
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the fusulinids from the HST reveal higher degrees of similarity than the fusulinids from 

LST. Among Fusulinella we found some species in common with those in the Moscow 

Basin, but farther from the Donets Basin, fewer species are similar.  Fusulinella is one of 

the more diverse genera among the late Paleozoic larger foraminifers and as it is the most 

provincial, it can be used for recognition of originally contiguous regions which later may 

have been dispersed hundreds or thousands of kilometers. 

Sequence stratigraphy definition of TST, HST, LST 

The proposed model is a useful tool for the definition of third-order glacio-

eustatic sea level stands in areas of shallow marine sedimentation during the Late 

Paleozoic. Sequence boundaries can be drawn at the base of the beds with Hemifusulina 

(TST). The maximum flooding is marked by the Beedeina-dominated assemblage 

(LTST–EHST) and regression (LHST–ELST) is defined by an abundant Fusulinella-

Schubertella-community. 

The fusulinid cyclic model developed for the Donets Basin represents a stratigraphic 

‘symmetrical pattern’ in the terminology proposed by Brett (1998). He noted that “Within 

a single stratigraphic section, habitat tracking may produce a predictable vertical stacking 

pattern of biofacies that appear in a nearly symmetrical cycle. Such ‘symmetrical 

tracking’ patterns represent simple lateral shifting of bathymetrically-zoned biofacies, 

perpendicular to facies strike (shoreline), in response to relative rise or fall of sea level ” 

(Brett, 1998, p. 249, see figs. 3–5 herein). Brett also proposed ‘asymmetrical patterns’, 

which are “observed in some sedimentary cycles and may be attributed to incomplete 

preservation of intermediate facies” (Brett, 1998, p. 249).   
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In this paper we consider fusulinid distribution in the Donets Basin to represent a 

“symmetrical pattern”, where all three assemblages are represented and record all sea 

level stands from transgression to regression (ETST, LTST–EHST, LHST–ELST). 

However, in correlating the Donets Basin succession with other regions of the Tethyan 

realm we found different combinations of the proposed three associations – 

‘asymmetrical patterns’- which also reveal cyclic temporal distributional patterns, but 

with the omission of one or another assemblages.  

In intracratonic basins, depending upon subsidence and sedimentation rates and 

distance from the land, there are three types of succession (Fig. 7).  In the Donets Basin, 

with a subsidence rate of ~0.09 mm/y (Izart et al., 2003, Eros et al., 2012), all three 

fusulinid assemblages (Hemifusulina-dominated (ETST), Beedeina-dominated (LTST–

EHST), Fusulinella-dominated (LHST–ELST) develop in a symmetrical distributional 

patterns recognized in the mixed siliciclastic-carbonate succession. By contrast, in the 

predominantly carbonate succession of the Moscow Basin, the recorded asymmetrical 

pattern, includes early transgression beds (ETST), whereas fusulinids from the late 

transgression (LTST–EHST ) either occur as a mixture together with fusulinids from the 

regression episodes (LHST–ELST), or are absent depending on the magnitude of the 

transgression. Because of the low subsidence rate in the Moscow Basin (0.04 mm/y) 

(Izart et al., 2003) the reduced accommodation space was sometimes too shallow for the 

Beedeina-dominated assemblage. Farther to the east, in the deeper marine Uralian 

Foredeep, the early transgressive strata (ETST) disappear, whereas the beds with late 

transgressive (LTST–EHST) and regressive assemblages (LHST–ELST) are well 

separated rather than mixed. The occurrence of Beedeina-dominated assemblages reveals 
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a deepening of the basin in the eastern part of the Eastern European Platform. The 

presence of both the Beedeina-dominated and Fusulinella-dominated assemblages in 

thick beds was mentioned in previous studies (Ivanova, 2008) and can be explained by an 

increased subsidence rate and associated accommodation space. Subsidence rates in this 

part of the Eastern European Platform are not known, but the occurrences of the 

Beedeina-dominated and Fusulinella-dominated assemblages suggest a subsidence rate in 

Urals similar to that in the Donets Basin ~0.1mm/y (see discussion below).  

A repetition of fusulinid assemblages from (LTST–EHST) and (LHST–ELST) 

and correspondently low subsidence rates (see discussion below) are recognized in other 

basins: in Central Asia, within predominantly carbonate strata of the southwestern 

Darvaz, Pamir (Leven, 1998) (Fig. 8), and within oceanic carbonate mounds of the 

Akyoshi Limestone, Japan (Sano al., 2004; Sano 2006). The absence of Hemifusulina 

(ETST) indicates a deposition setting in the distal parts of basins where input of 

siliciclastic sediments is absent or considerably reduced.  

Different modifications to the ‘asymmetric fusulinid assemblage pattern’ are found in 

areas of tectonic uplift. Cyclic, predominantly coarse-grained, fining upward siliciclastic 

successions with intercalated sandy limestones underlain by conglomerates are 

characterized mainly by the Hemifusulina-dominated assemblage (ETST), and illustrate 

an asymmetric pattern (Fig. 8) in which the deeper (LTST–EHST) and (LHST–ELST) 

regressive assemblages are absent or rare (Bogush, 1963). Such successions are 

documented in orogenic belts of the Cantabrian Mountains and Central Asia. The Mesao 

Limestone Member of the Pando Formation (400 m thick) in northeast Leon, Northern 

Palencia of the Cantabrian Mountains (Ginkel, 1965), which contains Hemifusulina, is 
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unconformably overlain by conglomerates of the Cea Formation. A similar succession is 

recognized on the eastern and northern slopes of the Alaysky Ridge and in the southern 

slope of the Dzhungarsky Alatau Ridge in Central Asia. Such different sequences of 

fusulinids assemblages can be explained by various tectonic settings for the basins and 

differential paleo-topography of the near-shore areas, which were submerged during 

transgressive and exposed during regressive episodes.  

As Pennsylvanian fusulinids and other shallow-water fauna and algal flora 

demonstrate a steady repetition approximately every 0.6–1 my in large areas of 

Paleotethys, we suggest that this cyclicity was governed by global glacial eustasy. 

Considering the Donets Basin succession, in which subsidence rate is 0.09 mm/y (Izart et 

al., 2003) and the depth of the basin was varied from 0 to 50 meter, we estimate an 

approximate eustatic sea level rise and fall for a long-term cycle duration in 0.6–1 my as 

varying from 0.1 to 0.5 mm/y. Observations in the modern basins documented subsidence 

rates from 0.1 to 17 mm/y (Schwab, 1976, Dokka, 2006), while uplift in modern 

mountains, for example calculated for the Coastal Range, Taiwan, is as 0.2-18.5 mm/y 

(Lundberg and Dorsey, 1990; Ching et al., 2011). Thus, because the values of the large 

scale glacial eustasy and tectonic rates are commensurate and fusulinid assemblages are 

indicators of shallow water in different transgressive-regressive episodes, it enables the 

interpretation of the tectonic evolution of different sedimentary basins. 

Relative sea level (RSL) rise during transgression in the intracratonic (Fig.7) and 

foreland basins (Fig. 8) is a sum of subsidence rate of a basin (red arrow) and global 

glacial sea level rise (blue arrow). RSL fall during regression is a subtraction between 

subsidence rate (red arrow) and global sea level fall (blue arrow). Because foreland 
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basins (Fig. 8) and deeper intracratonic basins (Fig. 7) are fusulinid-rich successions, we 

suggest that the subsidence rate of such basins was not much greater than that in the 

reference Donets Basin. With greater subsidence rates these basins would be drowned to 

depth unfavorable for fusulinids.  

Nelson (2007) pointed out that Quaternary relative sea level (RSL) change as well as 

tectonic processes is recorded mainly along shorelines. “One-third to one-half of the 

Earth’s marine coasts lie along or near tectonically an active plate boundary...Much of 

our understanding of tectonic processes over hundreds to hundreds of thousands of years 

has come from study of displacements obtained through mapping and dating sequences of 

strandlines along tectonically active coasts” (Nelson, 2007, p. 3072). RSL changes in 

such areas are a composite of eustatic seal level changes, which include vertical 

movements of the ocean’s surface, and vertical land-level changes along coasts (Nelson, 

2007 and references herein). 

In orogenic belts (Fig. 8) of the Cantabrian Mountains and Central Asia, RSL during 

transgression is a subtraction between glacial-eustatic sea level rise and the rate of 

tectonic uplift. RSL during regression is a sum of glacial-eustatic sea level fall and rate of 

tectonic uplift. Due to an uplift of strandlines in tectonically active areas, relative sea 

level changes thus are less than RSL changes in intracratonic basins. At the same time the 

rate of tectonic uplift must be less than glacial-eustatic sea level rise so that 

accommodation space is available for accumulation of at least transgressive beds with 

Hemifusulina. If accommodation space for sediment accumulation is formed only during 

a transgression, as soon as sea level begins falling during regression, the accommodation 
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space is rapidly reduced to zero and no sediment will accumulate, and the area will be 

exposed and eroded resulting in development of hiatuses. 
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Figure 12. Asymmetrical cycles in intracratonic settings. 

 

 A) – Hemifusulina-dominated association, B) – Beedeina-dominated assemblage, C) – 

Fusulinella-Fusulina-dominated assemblage. Red arrow is tectonic effect to RSL 

(relative sea level); blue arrow is eustatic effect to RSL. *) Subsidence rates from Izart et 

al. (2003). The rates of subsidence in the Moscow and Donets Basins reveal discrepancy 

with thickness of strata. Such inconsistency can be explained by numerous non-

depositional events in the Moscow Basin that resulted in deposition of condenced 

succession. 
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Figure 13. Asymmetric cycles in orogenic belts of Central Asia and Cantabrian 
Mountains. 

 

A) – Hemifusulina-dominated association, B) – Beedeina-dominated assemblage, C) – 

Fusulinella-assemblage. Red arrow is tectonic contribution to RSL (relative sea 

level); blue arrow is eustatic contribution to RSL. 
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Conclusions 

i. A new paleoecological model is proposed for the cyclic reoccurrence of 

Pennsylvanian fusulinid assemblages in the shallow epicontinental sea of the 

Donets Basin and linked to glacio-eustatic sea level fluctuations resulting 

from the waxing and waning of far-field Gondwanan ice caps. New 

radiometric data obtained from volcanic ashes in the Donets Basin allow 

estimation of the duration of each fusulinid cycle of ~ 0.6 to 1 my.  

ii. Three types of fusulinid assemblages accompanied by specific microfacies 

and biofacies, and interpreted different sea level stands are recognized. The 

Hemifusulina-dominated assemblage (A) indicates the depth of ~10-20 m at 

the beginning of transgression (TST), the late transgression – high sea level 

stand is marked by the Beedeina-dominated assemblage (B) which occupied 

depths up to 30-50 m (LTST–EHST). This assemblage is successively 

replaced by the most diverse Fusulinella-dominated association (C) in a 

progressively shallowing sea with a depth of 10–30 m (LHST–ELST).  

iii. Periodic maximum submergence in the Donets Basin epicontinental sea prior 

to the Moscovian – Kasimovian transition is recorded by deposition of the 

limestones M1, M5, M8, N1
6, N4, which are characterized by the Beedeina-

dominated association. This was the time of the decay of the Gondwanan ice 

caps and the maximum interglacial episodes, events that are recognizable 

globally and therefore are potentially useful for global correlations.  

iv. An extinction event at the Moscovian – Kasimovian boundary, which mainly 

affected fusulinid genera associated with transgressive episodes 
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(Hemifusulina, Neostaffella, Ozawainella, Beedeina, Taitzehoella), can be 

explained by a global long-lasting glacial event and global regression, 

resulting in ecological disturbances of their habitat.  

v.  ‘Symmetrical’ and ‘asymmetrical’ fusulinid distributional patterns are helpful 

tools in interpretation of basin evolution in different tectonic settings and in 

reconstruction of the paleo-topography near-shore strandlines during the 

Pennsylvanian along the eastern margin of “Proto-Pangaea”.  
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CHAPTER TWO: CYCLIC DISTRIBUTIONAL PATTERNS AND CORRELATION 

OF THE LATE KASHIRIAN – PODOLSKIAN FUSULINIDS IN THE DONETS 

BASIN, UKRAINE 

Russian Stages (Serpukhovian, Bashkirian, Moscovian, Kasimovian, and 

Gzhelian) are the international units in the global Carboniferous stratigraphic chart 

(Heckel, 2004; Gradstein et al., 2004; Goreva et al., 2009). However, GSSPs (Global 

Boundary Stratotype Sections and Points) for these stages are not yet ratified, because of 

high provincialism of the fauna in shallow epicontinental seas. Regional 

chronostratigraphic subunits of the Moscovian Stage in the Moscow Basin include the 

Vereian, Kashirian, Podolskian and Myachkovian Horizons. Despite the detailed bio- and 

lithostratigraphic study of this region for more than a century (Makhlina et al., 2001 a, b 

and references therein), many problems, particularly with Stages and Horizons boundary 

definitions, remain unresolved. Definition of the boundaries between Horizons, originally 

based on lithostratigraphic studies, have been repeatedly revised and redefined as new 

bio- and lithostratigraphic data became available for chronostratigraphic interpretation. 

This information, however, is not readily available in the western literature and thus the 

logic behind the definition of the Horizons remains hidden for the international 

community.  

Even the recent comprehensive synthesis of the Moscovian stratigraphy 

(Makhlina et al., 2001a, b) did not resolve problems with boundary definitions. 
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Especially problematic is a boundary between the Podolskian and the Myachkovian, first 

proposed by Ivanov (1926). Makhlina et al. (2001a, p.149) pointed out that this boundary 

is one of the most unclear boundaries in the Moscow Basin because it was defined within 

a single depositional rhythm. Such a vague and therefore ineffectual position of this 

boundary is the main cause of discordant correlation of the local upper Podolskian 

Shchurovo Formation and the lower Myachkovian Korobcheevo Formation even within 

the Moscow Basin. The fusulinid fauna in both of the Formations is represented by very 

similar assemblages from the group Fusulinella bocki. Further from the type area this 

boundary becomes more vague resulting in misinterpretation and miscorrelation of the 

late Moscovian in other regions, for example in the nearest Donets Basin.    

The difficulty correlating between the Moscow and Donets basins is further 

hindered by the fact that fusulinid biostratigraphy in the Donets Basin was not refined or 

improved for more than 60 years. Many biostratigraphers (Kireeva, 1951; Makhlina et 

al., 2001a; Ueno and Villa, 1998) therefore believed that difficulties in correlation of the 

Moscow and Donets basins were linked with high provincialism of the fusulinid 

assemblages occurring in both regions.  

On the contrary, we suppose that many species in the Donets Basin and Moscow 

Basin are similar and they provide reliable correlation between these important basins. 

The fusulinid assemblages in both regions have similar cyclic distributional patterns, 

which are expressed by repetitive occurrence of specific communities in stratigraphic 

succession. Recent research on Myachkovian fusulinid biostratigraphy in the Donets 

Basins reveals similar evolutionary trends of the main fusulinid groups in both regions 

(Khodjanyazova and Davydov, in press).  



87 
 

 

  

 A refined correlation of these basins is an important step in global correlation 

because a continuous succession of the Donets Basin is considered pivotal for relating 

shallow-marine strata of Eastern Europe with terrestrial, coal-bearing deposits of Western 

Europe and North America. High-precision radiometric ages recently obtained from the 

Donets Basin (Davydov et al., 2010) provide a numeric calibration of Moscovian Stage 

and its subunits originally distinguished in the Moscow Basin.  

This paper reviews the litho- and biostratigraphy of the Podolskian Horizon in the 

type area Moscow Basin and presents a fusulinid biostratigraphy from the middle and 

upper part of suite “M” of the Donets Basin. We recognize the particular cyclic 

distribution of fusulinid assemblages, which in general is the same in the Moscow Basin 

at the late Kashirian – Podolskian time. These fusulinid cyclicity patterns significantly 

refine the regional biostratigraphy and are useful in the interregional correlation in 

northern Pangaea.  

Podolskian Horizon: Historical preview 

The Podolskian Horizon in the Moscow Basin was recognized by Ivanov (1926). 

As conglomerate reveals a new stage in the depositional history of a basin, Ivanov (1926) 

placed a boundary between the Kashirian and Podolskian at the base of the Rostislav 

Beds represented by thick (3 m) reddish clays and sandstones with conglomerate at the 

base (Table 3). Ivanov (1926) did not designate a type section for the Podolskian, but 

later stratigraphers supposed that it was described in a quarry, near Podolsk, on the north 

bank of the Pakhra River (Figure 4). The upper boundary of Podolskian was placed at a 

base of gray bedded marly limestone and clays (2–3 m thick), below the foraminifer-coral 

limestone (5–7 m in thickness), the latter of which is widely distributed and recognized in 
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the Moscow Basin (Ivanov, 1926). The original thickness of the Podolskian was about 40 

m.  

Later it was recognized that the Rostislav Beds are discontinuous in their 

occurrence. Rostislav Beds are overlain by dolomites of the Smedva Formation (Table 3) 

that was also first distinguished by Ivanov (1926). The characteristics of this formation 

came from the outcrops in the Valley of the Smedva River, a tributary of the Oka River, 

to the south of Moscow city (Fig. 14). Due to the lack of these outcrops in present time, 

Makhlina et al. 2001a proposed an interval of 12.4–25.4 m in well 4k, near Kiyasovo 

village (Fig.14) as a type section of the Smedva Formation.  

The most comprehensive strata for interbasinal correlation in terms of fusulinid 

fauna and lithostratigraphic characteristics, in our opinion, is a succession of the Smedva 

Formation from Tver Oblast, the Rzhev area, near the town of Staritsa, on the bank of the 

Kholokholnya River (Fig. 14, 15B; see Reitlinger and Balashova, 1954, section 37, figure 

3, 4). In the Kholokholnya section the upper Kashirian strata of the Smedva Formation 

were subdivided by Makhlina et al. (2001a) into three units: the lower Member (C2sm1, 

beds 25–30, unit VIII; Fig. 15B; Table 3); the middle Member (C2sm2, beds 31–32, unit 

IX; Fig. 15B; Table 3); and the upper Member (C2sm3, bed 33, unit X and beds 1-5, units 

XI; Fig. 15B; Table 3).  Beds 1-5 originally were considered as lower Podolskian 

described from the section 37, therefore the bed’s number is changed (Reitlinger and 

Balashova, 1954, p. 142–146, 151-153).  

In the lower Member of the Smedva Formation (C2sm1) numerous fossils are 

documented in a thin-bedded clayed crinoid packstone with echimodermata, ostracods 

and brachiopods. Small foraminifers are represented by Endothyra, Hyperammina, 



89 
 

 

  

Ammodiscus, Ammovertella, Tolipammina, and Haplophragmina species. Fusulinids 

Fusiella and Schubertella species occur in beds 27 and 30; Taitzehoella and Hemifusulina 

occur only in bed 30 (Reitlinger and Balashova, 1954, p. 143, Makhlina et al., 2001a, p. 

108). Generic names here and in the entire paper are given in our interpretation that is 

often different from the original references. Makhlina et al. (2001a) believed that beds 

25–29 belong to C2sm1, while bed 30 was included to the middle Smedva (C2sm2). The 

thickness of the lower Member, beds 27–30 in this section is 3.5 m and varies from 2 to 8 

m in the Moscow Basin.  

The middle Member of the Smedva Formation (C2sm2) is characterized by an 

assemblage of frequent and diverse Hemifusulina with subordinate Fusiella and 

Schubertella species (Reitlinger and Balashova, 1954, p. 144-145, Makhlina et al. 2001a, 

p. 108-109). The fusulinid assemblage in bed 31 is represented mainly by Hemifusulina 

species: H. pulchella Rauser, H. paraelliptica Rauser, H. communis Rauser, H. 

elegantula Rauser, H. praelegantula Rauser, H. aff. kashirica, H. aff. subrhomboides 

Rauser, H. natalinae Rauser, and H. moelleri Rauser. Fusulinids in bed 32 are more 

diverse and include Hemifusulina, Fusiella, Taitzehoella and Schubertella species. 

Makhlina et al. (2001a) considered the middle unit (beds 30–32, unit IX) as the middle 

Member of the Smedva Formation (C2sm2). The thickness of the unit IX (beds 30–32) in 

this section is 1.05 m and varies from 3 to 10 m in the Moscow Basin. 

 The upper Member of the Smedva Formation (C2sm3, in Makhlina et al., 2001a, 

p. 121) is represented by limestones with chert nodules and includes an interval of the 

units X (bed 33, 1.20 m thick) and XI (beds 1–5, 3.5 m thick). The thickness of this unit 
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(beds 33–5) in the Kholokholnya section is 4.7 m and varies from 2 to 9 m in the entire 

Moscow Basin.  

Reitlinger and Balashova (1954, p. 159-160) analyzing fusulinids in this interval, 

which are represented by abundant Hemifusulina and large Neostaffella species, pointed 

out that this assemblage is transitional from Kashirian to Podolskian and considered the 

unit XI as Podolskian. Makhlina et al. (2001a) followed by Ivanova and Khvorova (1955) 

included the unit XI into the Smedva Formation, which is the late Kashirian. They 

defined a boundary between Kashirian and Podolskian Stages at a base of the unit XII 

(with Putrella, typical Neostaffella sphaeroidea cuboides, Fusulinella ex gr. colanii) 

because of widely distributed in the Moscow Basin unconformity marked by the 

limestone conglomerate at the base of bed 6.  

Because the Smedva Formation was excluded from the Podolskian (Rauser-

Chernousova and Reitlinger, 1954; Reitlinger and Balashova, 1954; Ivanova and 

Khvorova, 1955), the total thickness of the Podolskian strata is reduced from about 40 m 

(Ivanov, 1926) to about 20 m (Makhlina et al., 2001a).  

Rauser-Chernousova and Reitlinger (1954) stated an ambivalent position to the 

lower boundary of the Podolskian. On one hand, they accepted litho-biostratigraphic 

units proposed by Ivanov (1926) and noted the usefulness of his stratigraphic charts for 

regional correlation. The established fusulinid zone Hemifusulina subrhomboides – 

Beedeina elegans included Smedva dolomites and the Vaskino Formation (Table 3). On 

the other hand, they pointed out that the lower boundary proposed by Ivanov (1926) is 

difficult to recognized in distant provinces because of restricted occurrence of 

Hemifusulina. Thus, Rauser-Chernousova and Reitlinger (1954) placed the lower 
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boundary of the Podolskian at the top of Smedva dolomite and within the Hemifusulina 

subrhomboides – Beedeina elegans fusulinid zone. This boundary then became 

commonly accepted (Ivanova and Khvorova, 1955; Makhlina et al., 2001a). 

 Solovieva (1986) believed that fusulinids occurred in Smedva Formation are 

Podolskian in age and defined a Kashirian – Podolskian boundary at the base of the 

Smedva dolomites. She proposed a zone Fusulinella colanii– Beedeina elegans, which 

includes strata of the Smedva and Vaskino Formations (Table 3).  

 Conodont studies (Gerelztezteg, 1996, Alekseev in Makhlina et al., 2001b) reveal 

similar conodont species in the Smedva and Vaskino Formations. Gerelztezteg (1996) 

defined a Streptognathodus consinnus–Idiognathodus robustus Zone, the base of which 

coincides with the first occurrence of Streptognathodus consinnus at the base of the 

Smedva dolomites. In the upper part of this formation the first Idiognathodus 

podolskensis and Idiognathodus delicatus occur, which became common in the 

Podolskian (Alekseev in Makhlina et al., 2001b). Thereby Alekseev (Alekseev in 

Makhlina et al., 2001b) made a suggestion that it would be reasonable to include the 

Smedva Formation into the Podolskian Stage, and the original definition of this stage first 

proposed by Ivanov (1926). 

Currently, the lower boundary of the Podolskian Horizon is defined above the 

Smedva Formation, at the base of limestone conglomerates of the Vaskino Formation 

(Makhlina et al., 2001a). The Podolskian in the Moscow Basin includes the Vaskino, 

Ulitino and Shchurovo Formations, which were first proposed by Khvorova (1951, 1953) 

and described in detail by Ivanova and Khvorova (1955). Strata of the Vaskino Formation 

outcrop near the villages of Obraztsovo and Vaskino on the Lyutorka River, a tributary of 
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the Lopasnya River (Figs. 14, 15C; see Ivanova and Khvorova, 1955, figure 20). In the 

bed 2 (the Vaskino Formation) abundant fusulinids occurred: Neostaffella sphaeroidea 

(Moeller), N. sphaeroidea cuboides Rauser), N. cf. rostovzhevi Rauser, N. cf. larionovae 

mosquensis (Rauser), Ozawainella angulata (Colani), O. mosquensis Rauser, O. ex gr. 

stellae Manukalova, Hemifusulina bocki Moeller, H. cf. rjasanensis Rauser, H. stabilis 

Rauser and Safonova, H. subrhomboides Rauser,  Fusulinella ex gr. colanii Lee and 

Chen, Beedeina elegans (Rauser and Belyaev), B. elegans decurta Rauser, B. elegans 

devexa Rauser, B. elshanica vaskensis Rauser, and B. cf . samarica (Rauser and 

Belyaev). Reitlinger and Balashova (1954) recognized a similar assemblage is in Tver 

Oblast, section 37, near the village of Kholokholnya, beds 6-7, unit XII (Figure 15B, 

Table 3). 

The type section of the Ulitino Formation described by Reitlinger and Balashova 

(1954) outcrops near the village of Ulitino in Tver Oblast, on the east bank of the Volga 

River, to the north of the town of Staritsa (Fig. 14, 15B). This formation is characterized 

by the presence of biostromes with green phylloid algae, Ivanovia tenuissima Khvorova 

and green algae Dvinella chomata Khvorova. Reitlinger and Balashova (1954, p. 153–

154) recognized units XIV and XV in section 31, near Ulitino and in section 30, near the 

village of Svistunovo (Fig. 14; Table 3), with abundant fusulinids in biogenic packstones, 

which are overlying the algal biostromes (Fig. 15B). Fusulinids of this formation are 

represented by Neostaffella sphaeroidea cuboides Rauser, Ozawainella angulata 

(Collani), O. angulata angusta Rauser, Fusulinella praebocki Rauser, F. mosquensis 

Rauser, F. vozhgalensis Safonova, F. pseudobocki Lee and Chen, F. ex gr. bocki Moeller, 

F. paracolaniae Safonova, F. colanii Lee and Chen, Hemifusulina dutkevitchi (Putrja), H. 
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ex gr. bocki Moeller, Fusiella typica Lee et Chen, F. typica ventricosa Rauser, Beedeina 

schellwieni (Staff), B. nytvica callosa (Safonova), P. elegans devexa (Rauser), Fusulina 

innae Rosovskaya, and F. ulitinensis (Rauser). Solovieva (1986) restudied this interval 

and defined a local Fusulinella vozhgalensis – Fusulina ulitinensis Zone.  

The Shchurovo Formation consists of predominantly coral and foraminiferal-

crinoid packstones with subordinate beds of dolomites, marls and clay (Khvorova, 1951, 

1953). Fossiliferous limestones often include chert nodules. The Shchurovo Formation 

studied in detail by Ivanova and Khvorova (see Ivanova and Khvorova, 1955, figure 20-

29) is near the town of Shchurovo (Figure 14, 15C, Table 3). Makhlina et al. (2001a, p. 

141) summarizing previous studies, pointed out that fusulinid assemblage of the 

Shchurovo Formation became less diverse. They recognized considerable reduction of 

Neostaffella and Hemifusulina species. The typical fusulinids in this formation are 

Beedeina elshanica (?) (Putrja and Leontovich) and Kamaina chernovi (Rauser). Other 

fusulinids, such as Ozawainella angulata (Colani), O. tingi (Lee), Taitzehoella librovitchi 

(Dutkevich), Fusulinella helenae Rauser, and Parawedekindellina pechorica Rauser, 

occur in this formation. Solovieva (1986) defined Ozawainella mosquensis Rauser, 

Fusulinella bocki timanica Rauser, F. vozhgalensis Safonova, Kamaina kamensis 

(Safonova), Beedeina schellwieni (Staff), B. elshanica (Putrja), B.elegans (Rauser and 

Belyaev), and Putrella brazhnikovae (Putrja). 

The upper boundary of the Podolskian proposed by Ivanov (1926) at a base of the 

gray bedded marly limestone and clays 2-3 m below the “foraminifer-coral” packstone 

and grainstone was changed by Ivanova (1947) and placed at the base of the latter unit, as 

these strata unconformably overlay the older Podolskian beds and are traceable laterally 
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within the Moscow Basin. However, fusulinid assemblages of the upper Podolskian and 

Lower Myachkovian are similar and precise position of this boundary is difficult to 

recognize outside of the Moscow Basin. The definition of this boundary is complicated 

because of continuous regressive sedimentation within the Podolskian – Myachkovian 

transition and development of highly endemic foraminiferal fauna. 

 

 

 

 

 

 

 



95 
 

 

  

 

 

Figure 14.  Location map of the Moscow Basin with a position of the main typical 

sections for the upper Kashirian - Podolskian strata. Modified from Makhlina et al. 

(2001a). 
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Figure 15.  Correlation of the Upper Kashirian – Podolskian strata of the Donets and 

Moscow Basins.  

A) – the Gurkovo section of the upper part of the “M” Formation, redrawn from Eros 

J. M. (2010), bed numbers from a section described by Makarov (1985). 

Composite succession of the Upper Kashirian – Podolskian strata in the Moscow 

Basin: B) – Tver Oblast (Reitlinger and Balashova, 1954). C) – Southern part of 

the Moscow Syneclise (Ivanova and Khvorova, 1955).  
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History of Moscovian fusulinid and conodont zonations in the Donets Basin and 

their correlation with the Moscow Basin 

Because of the completeness of the Donets Basin succession and the occurrence 

of rich marine and continental fossils, this region becomes an important standard in 

northern Pangaea (Rotai, 1979; Wagner et al., 1996). Many biostratigraphic studies were 

conducted in the Donets Basin during the 1930s-1960s thanks to extensive exploration of 

coal deposits. The middle-upper Pennsylvanian fusulinid taxonomy and biostratigraphy 

were first developed in this region by Putrja (1939, 1940, 1956) and Kireeva (1951) and 

have been successfully utilized in regional correlation. 

Kireeva (1951) first analyzed the biostratigraphic distribution of fusulinids in the 

Donets Basin and proposed the following correlation of the Moscovian with the coeval 

strata of the Moscow Basin. Suite K (C2
5) in the Donets Basin she correlated with the 

Vereian Stage of the Moscow Basin, and Suite L (C2
6) and Suite M (C2

7) with Kashirian 

and Podolskian respectively. Based on the occurrence of fusulinids Fusulinella colanii 

Lee and Chen, Ozawainella stellae Manukalova, Putrella brazhnikovae (Putrja and 

Leontovich) in the lower part of the “M” Formation, Kireeva (1951) assigned the age of 

this formation as Podolskian (Table 4). Putrja (1956) divided the “M” Formation into two 

biostratigraphic zones. The first zone included limestones L7–M7 and was considered to 

be Podolskian, whereas the upper part of the “M” and the lower part of the “N” 

Formations (M8 – N1
2), he suggested belong to the Myachkovian (Table 4). Aisenverg et 

al. (1963, 1975) also defined five biozones within the Moscovian (Table 4). Aisenverg et 

al. (1975) first proposed that lower boundary of the Moscovian at the base of the 

limestone K3. In the “M” Formation they delineated two subzones: C2
m

c included the 
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group of limestones (L7–M5) and C2
m

d encompassed the limestones M6–M10. Aisenverg 

et al. (1975) considered the lower zone as Podolskian, whereas the upper C2
m

d zone 

together with a C2
m

e zone in the lower part of the “N” Formation (M10
1–N2) as 

Myachkovian in age (Table 4; Fusulina cylindrica, Fusulinella bocki, Fusulinella 

pseudobocki Zone). The most recent fusulinid studies (Vachard and Maslo in Izart et al., 

1996, Ueno in Fohrer et al., 2007) also suggested that the lower boundary of the 

Podolskian in the Donets Basin coincides with the base of M1 or L7 limestone, whereas 

the upper boundary coincides with the base of the N3 limestone.  

The first conodont studies in the Donets Basin (Kosenko, 1975; Kozitskaya et al., 

1978) contributed a new alternative correlation and designated a Moscovian age for the 

strata between the limestone L3 and N3
3. On basis of conodont biostratigraphy, Barskov 

et al. (1984) were the first to recognize the inconsistence in correlation between Moscow 

and Donets Basins. They proposed that an interval of the limestones K3–K9 is coeval to 

the Vereian Horizon, Suite “L” as an analogue of the Tzna Formation (lower Kashirian) 

of the Moscow Basin. The interval of the limestones M1–M8 they correlated with the 

Kashirian Horizon “sensu stricto = upper Kashirian”, whereas the Podolskian Horizon 

was correlated with the limestones M9–M10. The Myachkovian Horizon was correlated 

with the interval of the limestones of M10
1–N3 (Table 4). Using conodont phylogenies, 

Gereltzetzeg (1996) attempted to correlate Moscow Basin Horizons with the limestones 

of the Donets Basin. She suggested that the K2–K6 limestones correspond to the Shatska 

and Aljutovo Formations, and that the K7–K8 limestones correspond to the Ordynska 

Formation of the Vereian Horizon. The Kashirian Horizon (Nara, Lopasnya, and Smedva 

Formations) included strata between L1 and M10 limestones; the Nara Formation 
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corresponds to the interval between the limestones L1–M1, the Lopasnya Formation is 

characterized by the strata starting from the M2 limestone, whereas the base of the 

Smedva Formation is correlated with the base of M9 limestone in the Donets Basin 

(Gereltzetzeg, 1996). Nemyrovska et al. (1999) described several new species, including 

index species Declinognathodus donetzianus and proposed a Declinognathodus 

donetzianus Zone within the K3 – K6
2 limestones, which were correlated with the 

Vereian. The Kashirian was correlated with K6
3 – M1, the Podolskian with M1 – N1, and 

the Myachkovian with N2 – N4 intervals. 

Makhlina et al. (2001a, 2001b) revised all previous studies in the Moscow Basin 

and proposed a new version of the correlation of the Pennsylvanian strata with the Donets 

Basin. The base of the Moscovian was correlated with the limestone K2 that coincides 

with the base of the Declinognathodus donetzianus conodont Zone distinguished at the 

lower part of the Aljutovo Formation of the Vereian Horizon in the Moscow Basin. The 

Ordynska Formation is correlated with the interval of the limestones K6–K8 (Nemyrovska 

et al., 1999). Makhlina et al. (2001a) pointed out that the interval of the Kashirian and 

Podolskian strata is poorly correlated even by conodonts and placed the Kashirian–

Podolskian boundary within the interval of the limestones M6–M7. The upper part of 

Podolskian and lower part of Myachkovian are also poorly correlated. Makhlina et al. 

(2001a) defined a boundary between these Horizons within a poorly exposed interval of 

several thin-bedded limestones grouped in the N1. The top of the Moscovian Stage in the 

Moscow Basin is traditionally placed the base of the Suvorovo Formation that is 

correlated with the interval between the limestones N2 and N3 (Makhlina et al., 2001a, p. 

218-220).  
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Recent conodont research (Nemyrovska, 2011) designated the Kashirian–

Podolskian boundary at the base of the limestone M10, where a Schwadelina sp.1 Zone is 

proposed. This zone is correlated with the Neognathodus medexultimus – Neognathodus 

podolskensis Zone distinguished in the Moscow Basin (Makhlina et al., 2001a; 

Nemyrovska, 2011) and is coeval to the Vaskino and lower Ulitino Formation (Table 4).
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Table 3. History of establishing and definition of the Kashirian - Podolskian boundary in 

the Moscow Basin based on litho- and biostratigraphy 

Fusulinid Zones: 1-Ozawainella ex gr. digitalis; 2-Hemifusulina kashirica - H. moelleri; 

3-H. subrhomboides - Fusulina elegans; 4-F. ulitinensis - F. pancouensis; 5- Fusulinella 

bocki; 6- F. cylindrica; 7-Profusulinella cavis -Aljutovella aljutovica - A. artificalis; 8- A. 

priscoidea - A. znensis - H. vozhgalica; 9-H. kashirica - H.moelleri – Beedeina 

pseudoelegans; 10- Moellerites lopasniensis- B. ozawai, Fus. subpulchra; 11-Fus. 

colaniae – B. elagans; 12-Fus. vozhgalensis- F. ulitinensis; 13- B. kamensis - Putrella 

brazhnikovae; 14-Fus. bocki- Fus. rara – B. samarica; 15-Fus. podolskensis – F. 

cylindrica; 16-A. aljutovica; 17-Ovatella arta; 18-Priscoidella priscoidea; 19-H. moelleri 

- B. pseudoelegans; 20- Moellerites praecolaniae – Fus. subpulchra; 21-H. vozhgalica; 

22-P. brazhnikovae; 23-Fus. colaniae - B. ulitinensis; 24-F. chernovi; 25-Fus. bocki; 26-

F. cylindrica; 27-Protriticites ovatus. 

 

Conodont Zones: 28 - Declinognathodus donetzianus; 29 - Idiognathodus. ouachitensis; 

30 - Streptognathodus transivitus; 31 - Neognathodus bothrops; 32 - N. medadumtimus; 

33 - S. consinnus - Id. robustus; 34-Id. podolskensis - N. medexultimus; 35-N. inaequalis; 

36-N. roundyi.
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Table 4. Correlation of Moscovian Stage in the Donets and Moscow Basins 
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Integrated biostratigraphic and sequence stratigraphic (cyclic) zonation for the 

Podolskian in the Donets Basin 

Material 

Material for this study was collected from the type section of the “M” Formation 

in the Donets Basin, in Gurkovo ravine, which is incised in the western riverside of the 

Lugan River and extends in the southern direction from the town of Pervomaisk, Donetsk 

Oblast, Ukraine (Fig. 1). In this paper we focus on fusulinids of the upper Kashirian – 

Podolskian in the interval between Limestones M7 and M10 (Fig. 15A).  Unfortunately no 

material from limestone beds (M10
1, M10

2) is available for this study, therefore the 

biostratigraphy of the Podolskian – Myachkovian boundary is not provided in this paper.  

Fusulinid biozonation and its correlation with the Moscow Basin 

A new integrated biostratigraphic and sequence stratigraphic approach for a 

biozone definition in the Donets Basin is proposed. Fusulinid biozones defined in this 

paper are acme or assemblage zones in which an abundant occurrence of the index and 

associated species is probably related to relative sea-level change and therefore the bases 

and tops of proposed zones we bound with unconformities, erosional surfaces or soil 

formations.  

Stratigraphic distribution of Pennsylvanian fusulinids in the Donets Basin reveals 

predictive repetitive patterns, which seem to be related with sea level transgressive-

regressive cycles. A model of a cyclic recurrence of the fusulinid assemblages in the 

Pennsylvanian siliciclastic-carbonate succession in the Donets Basin (Khodjanyazova et 

al., 2011) is discussed in detail in CHAPTER ONE.   
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A Hemifusulina-dominant assemblage (A) characterizes the beginning of 

transgression (ETST) and marks a new step in basin evolution (Figs. 2, 3, 9, 10).  This 

assemblage is mainly associated with muddy thin-bedded limestones (silty packstone and 

wackstone), interbedded with siltstone, siliciclastic mudstone and coals (L7
1, M3

up, M7). 

As a basin became deeper during transgression, the assemblage of fusulinids is 

diversified; species of Beedeina, Taitzehoella, Neostaffella, and Ozawainella appeared 

along with the continuous existence of Hemifusulina species in the late stages of 

transgression (L7
1, M7

up, Fig. 3). This stage can be defined as a Hemifusulina zone (or 

subzone).  

I suggest that some species of Beedeina, Taitzehoella, Neostaffella, Ozawainella 

(B) with specific morphology could survive at deeper water during maximal 

transgression (LTST, Figs. 2, 3, 9, 10); this assemblage excludes Hemifusulina species. 

Thus, I propose to assign acme zones, which mark episodes of maximal transgression, 

associated with limestone (wackstone) usually greatest in thickness, and are characterized 

by an abundance of Beedeina, Taitzehoella, Neostaffella, and Ozawainella species. This 

part of the succession is characterized by an absence of coal beds and plant remains in 

fine siliciclastic strata (M1, M5, M8; Fig. 3, 10). The interval characterized by this 

assemblage has usually wide geographic expansion. Therefore I suggest defining this 

episode as a separate zone/subzone with index-species represented by Beedeina, 

Neostaffella, or Ozawainella.  

A Fusulinella–Fusulina assemblage (C) occurs in a shoaling upward succession 

deposited during sea regression (Figs. 2, 3, 9, 10). Limestones deposited during 

regression are usually fusulinid-rich packstone and grainstone (M2, M6, M6
up, M9, M10) 
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associated with more coarse siliciclastics, although coal seams also occurred in this part 

of a cycle. As regressive episodes in eustatic sea level fluctuation are slower than 

transgressive events that confirmed by fusulinid evolution, two or more acme zones can 

be distinguished in the regressive strata within each transgressive-regressive cycle. The 

first is associated with late high sea level stand (LHST, Figs 2, 3, 9, 10) and characterized 

by an abundance of Fusulinella species. The second is associated with early low sea level 

stand (ELST, Figs. 2, 3, 9, 10) and characterized by very elongated subcylindrical 

Fusulina species, which in the proposed model mark the shallowest depth at which 

fusulinids could survive.   

In biozone definition I also use a general evolution trends within cycle (Fig. 2) 

documented in morphological changes of four genera (Beedeina, Taitzehoella, 

Neostaffella and Ozawainella).  

The approach proposed in this paper is a useful tool in correlation of different 

basins. I used these successively replaced patterns to refine regional biostratigraphy and 

recognize similar trends in the Moscow Basin and other basins of the Tethyan realm. I 

analyze the correlative potentiality of all three proposed assemblages and recognize that 

early transgressive Hemifusulina-beds (A) have high correlative capability between the 

Donets and Moscow Basin. Late transgressive beds (B) in the Donets Basin are 

characterized mainly by four genera: large Neostaffella; discoid, highly compressed at the 

axial ends Ozawainella; and relatively small for their genera, subrhomboidal by shape 

Beedeina and Taitzehoella species. In the Moscow Basin that we suppose was shallower 

than the Donets Basin, late transgressive beds do not always contain the Beedeina 

species, whereas the presence of large Neostaffella and discoid Ozawainella make the 
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recognition of coeval beds in the Moscow Basin possible. At the same time the late 

transgressive beds, characterized by Beedeina, which we suggest is a deeper-water genus, 

and other accompanying genera, have high correlative capability between the Donets 

Basin and other regions of Tethyan realm, such as Central Asia, the Cantabrian 

Mountains, the Southern Urals, and Northern China, which underwent higher subsidence 

rates. The hypothesis that Beedeina and Neostaffella preferentially occupied deeper 

subtidal environments, whereas Fusulinella, and Quasifusulinoides (Fusulina’s 

descendant) preferred shallower mid- to inner shelf environments, is also confirmed by 

Forke et al. (2010) for the Moscovian–Kasimovian of the Svalbard shallow marine 

platform, Norway. 

The regressive fusulinid assemblage (C) is characterized by diverse Fusulinella, 

Schubertella, Fusulina, elongated fusiform Beedeina and Taitzehoella, smaller species of 

Neostaffella (or Pseudostaffella) and Ozawainella. The regressive associations defined in 

the Donets Basin are usually represented by two or sometimes three limestones and are 

also recognized in the Moscow Basin; however their correlative potential is gradually 

decreased (temporally) to the end of each cycle. At the same time the correlation 

becomes difficult for the far-field basins, such as Central Asia and the Cantabrian 

Mountains, because of high endemism developed at the ends of cycles during maximum 

drop in sea level. 

In the “M” Formation of the Donets Basin, Ukraine, we recognize three full 

transgressive-regressive cycles of low-frequency glacial-eustatic sea level fluctuations 

(Khodjanyazova et al., 2011). The first cycle includes the interval between limestones L7
1 

and M3, with maximum transgression in M1; the second includes limestones M3
up–M6

up, 
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with maximum transgression in the M5; and finally the interval between the limestones 

M7 and M10
1 belongs to the third cycle with maximum transgression in the limestone M7

2 

or M8 (Figure 2).  

The first two cycles are probably coeval with the Kashirian, Nara and Lopasnya 

Formations. The third transgressive-regressive cycle in the interval between the M7 and 

M10
1 limestones corresponds to the upper Kashirian (Smedva Formation) and Podolskian 

(Vaskino, Ulitino, Shchurovo Formations) Horizons (Makhlina et al., 2001a), or to the 

most Podolskian stage ‘sensu stricto’ (Tables 1, 2) proposed by Ivanov (1926). A 

reduction of volume of Podolskian strata in the Moscow Basin due to the removal of the 

Smedva dolomites causes a considerable shortening of duration of the Podolskian since 

its first definition.  

Hemifusulina subrhomboides – H. vozhgalensis – Beedeina elshanica vaskensis Zone  

This zone includes beds 38–55 in the Gurkovo section (Appendix A, Figure 15A), 

and is 123.21 m in thickness. This zone comprises of two subzones. The lower 

Hemifusulina vozhgalica – Hemifusulina subrhomboides Subzone marks the beginning of 

a transgression and is recognized in the proximal part of the large Eastern European 

Craton, Moscow Basin and in the Donets Basin. The upper Beedeina elshanica vaskensis 

Subzone, as we suggest, indicates the maximal transgression and is traceable in the 

deeper distal parts of the Tethyan realm. It is impossible to distinguish a Hemifusulina 

vozhgalica – Hemifusulina subrhomboides Subzone in distal parts of the Tethyan realm 

because of restricted occurrence of Hemifusulina. Thus, one zone that combines the two 

subzones is proposed here. A transgression is a relatively rapid geological event, 

therefore the time span for the Hemifusulina vozhgalica – Hemifusulina subrhomboides 
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subzone can be neglected and the combined zone Hemifusulina subrhomboides – H. 

vozhgalica – Beedeina elshanica vaskensis may be considered as coeval the Beedeina 

elshanica vaskensis Zone of the deeper basins of Tethyan realm. 
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Figure 16. Fusulinids from the M7 limestone of the upper Kashirian, Donets Basin, 

Ukraine. 

 Hemifusulina and Beedeina species, x 20; Neostaffella species, x 35, Ozawainella 

species, x 45. 1, 3, 5, 7, 8 – Hemifusulina mucronata Rumjantzeva: GM7-13/1, GM7-2/1, 

GM7-5/1, GM7-3/1, GM7-9/1; 2, 6 – Hemifusulina vozhgalica Safonova: GM7-14/1, 

GM7-1/1; 4 –Hemifusulina subrhomboides Rauser: GM7-10/1; 9 – Ozawainella sp.: 

GM7-5/2; 10 – Hemifusulina pulchella Rauser: GM7-6/1; 11, 13 –H.elegantula Rauser: 

GM7-11/1, GM7-7/1; 12–Ozawainella minima Putrja: GM7-2/2; 14–Neostaffella sp.: 

GM7-8/1; 15–Beedeina sp. cf. B. elshanica vaskensis Rauser: GM7-4/1. 
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Hemifusulina subrhomboides – H. vozhgalica Subzone 

The Hemifusulina subrhomboides – H. vozhgalica Subzone includes beds 38–48 

in the Gurkovo section (Appendix A, Figure 15A) and consists of siltstone and 

siliciclastic mudstones with abundant plant remains. Three coal beds and two clayed 

limestones occur. The lower boundary is proposed at the base of the sandstone (Fig. 3), 

where a sequence boundary of composite sequence Mo XII is proposed by Eros (2010). 

The thickness of this subzone is 70.21 m. 

Limestone M7 contains mainly Hemifusulina species with abundant Hemifusulina 

subrhomboidalis Rauser, H. vozhgalica Safonova, H. mucronata Rumjantzeva, H. 

pulchella Rauser, and H.elegantula Rauser. Rarely Beedeina sp. cf. elshanica vaskensis 

Rauser, Ozawainella minima Putrja, O. sp., Neostaffella sp. occur (Fig. 16, Table 5A).  

Limestone M7
U is characterized by an increase in abundance of Neostaffella 

species; even so Hemifusulina is very common in this assemblage as well. The following 

species occur: Hemifusulina sp. aff. subrhomboidalis Rauser, H. communis acuta Rauser, 

H. pulchella Rauser, H. sp. aff. splendida Safonova, Neostaffella larionovae (Rauser and 

Safonova), N. larionovae polasnensis (Rauser and Safonova), N. sp. cf. N. sphaeroidea 

cuboides (Rauser), Pseudostaffella confusa (Lee et Chen), Ps. variabilis Reitlinger, 

Beedeina sp. cf. elshanica vaskensis (Rauser), Ozawainella krasnodonica Manukalova, 

O. angulata (Colani), O. rhomboidalis Putrja, O. donbassensis Sosnina, O. aff. lorentheyi 

Sosnina, O. sp. 1, O. sp. 2, Taitzehoella aff. librovitchi globulus (Manukalova) (Fig. 17, 

Table 5A).  

The limestones M7 and M7
up

 contain Hemifusulina species indicating the 

beginning of transgression and therefore a new episode in sedimentary and evolutionary 
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history of the basin. The M7 assemblage contains predominantly Hemifusulina species, 

whereas the M7
up comprises of more diverse population that includes large Neostaffella 

species and scarce Beedeina, indicating a deeper water condition.  

In the Moscow Basin (Smedva Formation) we also recognized two limestones in 

many sections and wells documented in Makhlina et al. (2001a), which are characterized 

by Hemifusulina assemblages. The lower Hemifusulina-bearing limestone that can be 

correlated with the limestone M7 from the Donets Basin is represented by predominately 

Hemifusulina species; beds 31 and 32 in section 37 (Reitlinger and Balashova, 1954, p. 

143-145; Makhlina et al., 2001a, p. 109), beds 13, 14 in the Kiyasovo well, 4k (Makhlina 

et al., 2001a, p. 99), beds 45, 46a in well 56, north part of Moscow-city (Makhlina et al., 

2001a, p. 107), and bed 25 in well 17, near the town of Istra (Makhlina et al., 2001a, 

p.123). The upper Hemifusulina-bearing limestone that can be correlated with the 

limestone M7
up, besides Hemifusulina, contains large Neostaffella and subrhomboidal 

Beedeina elshanica vaskensis. This assemblage is documented in bed 12 in Kiyasovo 

well, 4k (Makhlina et al., 2001a, p. 99), and bed 2 in section 37 (see Reitlinger and 

Balashova, 1954, p.151, figure 8). 

 However, Makhlina et.al (2001a), focusing on lithological data, ignored the 

fusulinid characteristics, which were the main proxies in the boundary definition 

proposed by Rauser-Chernousova and Reitlinger (1954), Reitlinger and Balashova 

(1954), and Ivanova and Khvorova (1955). As we recognized recently (Khodjanyazova et 

al., 2011), the fusulinid characteristics are related to global sea level fluctuation and 

therefore have concurrent occurrence in a vast area of Northern Pangaea. Such unilateral 

approach, only based on lithostratigraphy, resulted in intrabasinal miscorrelation and 
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misinterpretation of very important Horizons, which are the main chronostratigraphic 

units of internationally accepted Stages. As a result the Hemifusulina-bearing beds in 

section 37 near the Kholokholnya River, Tver Oblast, described by Reitlinger and 

Balashova (1954) are designated as the middle part of Smedva Formation (C2 sm2), 

whereas Hemifusulina-Neostaffella-bearing beds are designated as C2 sm3. The 

limestones with the Hemifusulina-bearing and Hemifusulina-Neostaffella-bearing 

fusulinid assemblages are documented in the well near the village of Kiyasovo as the 

upper part of Lopasnya Formation (C2lp3) that is older than the Rostislav Beds. In well 

56, at the northwest of Moscow-city Hemifusulina-bearing limestones are documented as 

the lower part of the Smedva Formation (C2sm1). Hemifusulina-bearing beds in Istra well 

17 are correlated with the lower part of Vaskino Formation (C2vs1).  
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Figure 17. Fusulinids from the M7
up limestone of the upper Kashirian, Donets Basin, 

Ukraine. 

 Hemifusulina and Beedeina species, x 20; Neostaffella species, x 35; 

Ozawainella and Pseudostaffella species, x 45.1, 2, 7, 12, 13 – Neostaffella larionovae 

Rauser and Safonova: GM7U-7/1, GM7U-5/1, GM7U-8/2, GM7U-8/1, GM7U-14/1; 3, 

6, 8 – Neostaffella sp. cf. N. sphaeroidea cuboides (Rauser): GM7U-2/1, GM7U-3/1, 

GM7U-11/1; 4 – Pseudostaffella variabilis Reitlinger: GM7U-9/4; 5 – Pseudostaffella 

confusa (Lee and Chen): GM7U-9/3; 9 – Neostaffella larionovae polasnensis Rauser and 

Safonova: GM7U-11/2; 10 –Taitzehoella aff. T. librovichi globulus (Manukalova): 

GM7U-4/3; 11, 15, 16, 19 –Hemifusulina sp. aff. H. splendida Safonova: GM7U-10/1, 

GM7U-9/1, GM7U-12/1, GM7U-3/2; 14 – H. pulchella Rauser: GM7U-13/1; 17 – H. 

communis acuta Rauser, GM7U-6/1; 18 – H. sp. aff. H. subrhomboidalis Rauser: GM7U-

1/1; 20 – Beedeina cf. elshanica vaskensis (Rauser): GM7U-4/1; 21, 22 – Ozawainella 

donbassensis Sosnina: GM7U-5/3, GM7U-8/5; 23-25 – Ozawainella rhomboidalis 

Putrja: GM7U-12/3, GM7U-7/3, GM7U-14/2; 26 – Ozawainella angulata (Colani): 

GM7U-5/2; 27 – Ozawainella krasnodonica Manukalova: GM7U-10/2; 28 – 

Ozawainella aff. O. lorenteyi Sosnina: GM7U-14/3; 29-32 – Ozawainella sp. N.1: 

GM7U-11/3, GM7U-8/8, GM7U-1/2, GM7U-5/4; 33-36 – Ozawainella sp. N.2: GM7U-

9/2, GM7U-2/2, GM7U-12/2, GM7U-7/2. 
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Beedeina elshanica vaskensis Subzone 

The Beedeina elshanica vaskensis Subzone includes beds 49–55 in the Gurkovo 

section (Appendix A, Figure 15A) and is represented by marine sandstone, siltstone and 

siliciclastic mudstones without plant remains. Two limestones M7
2 and M8 belong to this 

zone. The lower boundary is proposed at the base of a thick unit of marine sandstone (bed 

49). The thickness of this subzone is 53.00 m. 

No material was collected from the limestones M7
2 and M8 in the Gurkovo 

section, due to a lack of fusulinids. Putrja (Putrja, 1956) described a Beedeina species, 

which is similar to B. elshanica vaskensis (Rauser), as B “distenta” (Roth and Skinner) in 

the eastern Donets Basin in the interval, which he questionably considered as M8 

limestone (Fig. 18, Table 5A). In the Moscow Basin B. elshanica vaskensis (Rauser) 

occur in the upper part of Smedva Formation (Hemifusulina-assemblage) and in the lower 

part of Vaskino Formation (Fusulinella-assemblage).   

We define the interval of the M7
2 and M8 limestones as a separate subzone 

because we suppose that this interval indicate late transgression and potentially will be 

useful for correlation of the deeper water basins of the Tethyan realm. However the 

magnitude of this transgression was small, leading to unfavorable environmental 

conditions for the Beedeina – Taitzehoella – Neostaffella – Ozawainella community. 

Therefore some additional study of the deeper-water sections in the Donets Basin and 

taxonomy of smaller foraminifers in this interval would be helpful for correlation with 

the Moscow Basin. 
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The stratigraphic position of the interval of the M7
2 and M8 limestones, which is 

above the Hemifusulina-bearing limestone, M7 and M7
up and below the fusulinid-diverse 

limestone M9 with abundant Putrella donetziana, Fusulinella collanii, Neostaffella 

sphaeroidea cuboides, and many other species (Table 5A, Figs. 19, 20) suggests its 

correlation with beds between the Hemifusulina-Neostaffella-bearing limestones of the 

Smedva Formation and fusulinid-diverse limestone of the Vaskino Formation. The lower 

part of this interval, beds 3–5 in the Kholokholnya section, Podolskian strata, in 

Reitlinger and Balashova (1954) is documented as the upper part of Smedva Formation, 

C2sm3 in Makhlina et al., (2001a). In the Kiyasovo well this interval is correlated with the 

entire Smedva Formation (12 m), which is represented by alternation of dolomites and 

limestones and is poorly characterized by fusulinids. 
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Figure 18. Fusulinids from the M7
2 or M8 (?) limestone of the upper Kashirian, Donets 

Basin, Ukraine. 

Illustrations from Putrja (1956), x 20.1-3 – Fusulina distenta Roth and Skinner = 

Beedeina aff. elshanica vaskensis (Rauser): Putrja, 1956, pl.12, figure 3, 4, 5. 
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Putrella donetziana – Fusulinella colanii Zone 

The Putrella donetziana – Fusulinella colanii Zone includes beds 56–60 in the 

Gurkovo section (Appendix A, Figure 15A) and is comprised of siltstone and siliciclastic 

mudstones with plants remains. One limestone M9 and one coal seam m8 occur. The 

lower boundary is provisionally proposed at the base of a thick unit (64 m) of sandstone, 

which is the sequence boundary of composite sequence Mo XIII (Eros et al., 2012). The 

thickness of this subzone is 70.04 m. 

Limestone M9 is characterized by abundant and diverse Putrella species: P. 

brazhnikovae brazhnikovae (Putrja), P. sp. cf. brazhnikovae fusiformis (Putrja), and P. 

donetziana (Lee), large abundant and diverse Neostaffella: N. sp. cf.  N. rostovzevi 

(Rauser), N. sphaeroidea cuboides (Rauser), N. sp. cf. N. sphaeroidea cuboides (Rauser), 

N. syzranica (Rauser and Safonova), and N. larionovae larionovae (Rauser and 

Safonova), large fusiform thick-walled Fusulinella species with massive chomata: F. 

colanii Lee et Chen, F. colaniae borealis Rauser, F. pseudocolaniae Putrja, F. sp. F. cf. 

vozhgalensis devexa Rauser, F. sp., and F. sp. (immature specimens). Schubertella 

species are abundant and very diverse: Sch. sp. cf. Sch. myachkovensis Rauser, Sch. sp. 

cf. galinae Safonova, Sch. sp. cf. inflata Rauser, Sch. lata Lee and Chen, and Sch. 

obscura procera Rauser. Ozawainella species are less abundant; they are represented by 

large and slightly compressed at axial ends O. mosquensis Rauser, O. vozhgalica 

Safonova, and O. sp. Small Pseudostaffella also occur: Ps. khotunensis (Rauser), Ps. 

compressa donbassica (Putrja), and Ps. primaeva Putrja. The following species are 

scarce: Fusiella pulchella Safonova, Hemifusulina bocki Moeller, Kamaina sp. cf. K. 
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chernovi (Rauser), and Beedeina sp. cf. B. elshanica vaskensis (Putrja) (Figs 19, 20, 

Table 5A). 

This zone we correlate with the Vaskino Formation in the Moscow Basin that  is 

characterized by the occurrences of abundant fusulinids of Neostaffella, Fusulinella, and 

Putrella genera common with those in the Donets Basin and documented near the village 

of Obrasztovo, bed 2 (Ivanova and Khvorova, 1955); near the Kholokholnya river, Tver 

Oblast, section 37, bed 7 (Reitlinger and Balashova, 1954); in quarry Maly Studenets, 

Tzna river, Ryazan Oblast, beds 15-17 (Makhlina et al., 2001a, p.122).  

Abundant large advanced Neostaffella sphaeroidea sphaeroidea (Moeller) and N. 

sphaeroidea cuboides (Rauser) first occur in the M9 limestone in the Donets Basin and in 

the Vaskino Formation, which differ from their Kashirian ancestors N.ozawai, N. ozawai 

compacta, N. umbilicata and others by a planispiral coiling of volutions and larger test 

size. 

In agreement with our cyclic fusulinid distributional model (Figs. 2, 3, 9, 10) 

limestone M9 indicates a high sea level stand and the beginning of gradual regression in 

epicontinental seas. The assemblage is characterized by an increased diversity of 

fusulinids, and the appearance of Fusulinella species, which are absent both in the 

underlying Smedva Formation in the Moscow Basin and in the interval of the limestones 

M7–M8 in the Donets Basin. Fusulinids from Subfamily Fusulinellinae in the Kashirian 

limestone are represented by Fusulinella (Moellerites) with undeveloped diaphanotheca. 

In the limestone M9 Fusulinella (Fusulinella) with well-developed diaphanotheca in two 

outer volutions occurs: F. colanii, F. colaniae borealis, F. pseudocolaniae, and F. sp. F. 

cf. vozhgalensis devexa, which are also recognized in the Vaskino Formation.  
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This interval in both regions is marked by an abundant occurrence of Putrella 

brazhnikovae (Putrja). Rauser-Chernousova et al., 1996 followed by Isakova in Makhlina 

et al., 2001b, Isakova, 2002 erroneously suggested that Putrella is a biostratigraphic 

marker for the base of Podolskian by its first occurrence in the local Vaskino Formation 

in the Moscow Basin. This suggestion resulted in miscorrelation with the Donets Basin, 

where Putrella occur in several intervals and its first occurrence is documented in the L7 

and M1 limestones, consequently the lower boundary of Podolskian in the Donets Basin 

was proposed by previous fusulinid studies at the base of the limestone L7 (Putrja, 1956) 

or M1 (Kireeva, 1951; Maslo and Vachard in Izart et al., 1996; Ueno in Fohrer, 2007). 

We compare Putrella gurovi Putrja and P. licharevi (Putrja) from the L7 and M1 

limestones and P. donetziana (Lee) and P. brazhnikovae (Putrja) from the M9 limestone 

and recognize that younger species have thicker walls and larger size than those in their 

ancestors. 

The base of Vaskino Formation is associated with the underlying unconformity 

that is well documented and recognizable in different stratigraphic section in the Moscow 

Basin. Respectively, the base of Putrella donetziana – Fusulinella colanii Zone proposed 

in the Donets Basin is associated with sequence boundary which coincides with 

widespread regional unconformity in the Donets Basin (Eros et al., 2012), indicating a 

new step in the basin evolution. 

Although the Vaskino Formation is well documented by fauna, we also recognize 

some miscorrelation and therefore misinterpretation of the Vaskino Formation 

summarized in Makhlina et al. (2001a). In well 17 near the town of Istra, beds 18 and 19 

with Fusulinella paracollaniae, Neostaffella sphaeroidea cuboides, Beedeina samarica, 
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which we suppose more typical for Vaskino Formation, are documented as Ulitino 

Formation (C2ul1, Makhlina et al., 2001a, and p.133). 
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Figure 19. Fusulinids from the M9 limestone of the lower Podolskian, Donets Basin, 

Ukraine. 

Putrella species, x 20; Neostaffella and Ozawainella species, x 35; 

Pseudostaffella species, x 45. 1-3–Ozawainella vozhgalica Safonova: GM9-22/1, GM9-

25/1, GM9-10/1; 4, 5– Ozawainella mosquensis Rauser: GM9-16/6, GM9-33/1; 6– 

Ozawainella sp.: GM9-5/5; 7–Neostaffella larionovae (Rauser and Safonova): GM9-

30/4; 8, 12– Neostaffella sphaeroidea cuboides (Rauser): GM9-2/1, GM9-3/1; 9–

Neostaffella sp. cf. N. rostovzevi (Rauser): GM9-8/1; 10, 11–Neostaffella syzranica 

(Rauser and Safonova), 13-15– Pseudostaffella compressa donbassica Putrja: GM9-30/5, 

GM9-10/3, GM9-16/3; 16-18, 21-23– Pseudostaffella khotunensis Rauser: GM9-7/2, 

GM9-33/3, GM9-30/2, GM9-25/2, GM9-16/4, GM9-8/3; 19, 20– Pseudostaffella 

primaeva Putrja: GM9-19/4, GM9-31/1; 24–Neostaffella sp. cf. N. sphaeroidea cuboides 

(Rauser): GM9-6/2; 25-27, 29–Putrella sp. cf. P. brazhnikovae fusiformis (Putrja): GM9-

4/1, GM9-35/1, GM9-20/1, GM9-35/1; 28, 30, 32– Putrella brazhnikovae (Putrja): GM9-

18/1, GM9-11/1, GM9-23/1; 31, 33-35– Putrella donetziana (Lee): GM9-31/1, GM9-

21/1, GM9-26/1, GM9-16/1.   
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Figure 20. Fusulinids from the M9 limestone of the lower Podolskian, Donets Basin, 

Ukraine. 

Fusulinella, Beedeina, Fusulina, Hemifusulina species, x 20; Fusiella, 

Schubertella species, x 45. 1–Fusulinella colanii Lee and Chen: GM9-28/1, 2, 6– 

Fusulinella pseudocolaniae Putrja: GM9-29/1, GM9-6/1(immature specimen); 3, 8,12– 

Fusulinella sp.: GM9-17/1; GM9-15/1, GM9-16/2; 4– Fusulinella sp. cf. F. vozhgalensis 

devexa Rauser, 5, 7, 10-11, 13, 14–Fusulinella colaniae borealis Rauser: GM9-32/2, 

GM9-19/1, GM9-5/1, GM9-7/1, GM9-14/1, GM9-31/4; 16-23– Fusulinella sp. 

(immature specimens): GM9-9/5, GM9-22/2, GM9-6/3, GM9-22/3, GM9-11/6, GM9-

2/2, GM9-1/3, GM9-30/6, GM9-20/3, GM9-9/6; 15, 24– Schubertella sp. cf. Sch. 

myachkovensis Rauser: GM9-9/5, GM9-9/6; 25 – Fusiella pulchella Safonova: GM9-

10/2, 26-28–Schubertella lata Lee and Chen: GM9-1/6, GM9-1/5, GM9-5/4; 29, 30, 36– 

Schubertella sp. cf. Sch. galinae Safonova: GM9-11/5, GM9-27/2, GM9-9/2; 31, 32– 

Sch.obscura procera Rauser: GM9-12/2, GM9-22/7; 33, 34– Schubertella sp. cf. Sch. 

inflata Rauser: GM9-18/3, GM9-4/3; 35, 37-40– Schubertella sp.: GM9-4/2, GM9-20/2, 

GM9-14/2, GM9-33/4, GM9-11/8; 41-43–Kamaina sp. cf. K. chernovi (Rauser): GM9-

27/1, GM9-1/1, GM9-9/1; 44– Beedeina sp. cf. B. elshanica vaskensis (Rauser): GM9-

32/1; 45– Hemifusulina bocki Moeller: GM9-24/1.  

 

 

 

 

 

 

 

 

 

 



127 
 

 

  

Kamaina rossoshanica – Fusulinella tokmovensis longa Zone 

The Kamaina rossoshanica – Fusulinella tokmovensis longa Zone includes beds 

61–65? (Appendix A, Figure 15A) and is represented by siltstones, siliciclastic 

mudstones, and sandstones without plant remains. We propose to place a base of this 

zone at the top of bed 60, coal m8, where Eros (2010) recognized a paleosol horizon. The 

thickness of this zone is 28 m. It is characterized by the fusulinids from the limestone 

M10. We suppose an early low sea level stand resulting in an increase of fusulinid 

provinciality in the Moscow and Donets Basins. 

Limestone M10 is characterized by abundant and diverse Fusulinella species, 

mainly fusiform, ovoid, subcylindrical in shape Fusulinella colanii Lee et Chen, F. 

colaniae meridionalis Rauser, F. vozhgalensis devexa Rauser, and F. pseudocolaniae 

Putrja. Several inflated species appear F. tokmovensis longa Reitlinger and F. formosa 

tumida Reitlinger. Among Fusulinella some older species are recognized F. (Moellerites) 

subcolaniae subcolaniae Reitlinger, F. (M.) subcolaniae plana Reitlinger, and F. (M.) 

subcolaniae decurta Reitlinger with weakly developed diaphanotheca. An older 

Profusulinella without diaphanotheca P. sp. 1, P. sp. 2, and P. rotundata Putrja also 

occur. Schubertella species are numerous and include Shubertella lata Lee et Chen, Sch. 

procera Rauser, Sch. elliptica Putrja, and Sch. subkingi Putrja. Large Neostaffella are 

common and include N. sphaeroidea (Ehrenberg) and N. larionovae (Rauser and 

Safonova). Small Pseudostaffella include Ps. khotunensis Rauser, Ps. compressa 

donbassica Putrja, and Ps. variabilis Reitlinger. Ozawainella species are similar to those 

in the limestone M9 and include Ozawainella sp., O. adducta Manukalova, O. 

krasnodonica Manukalova, and O. sp. cf. O. vozhgalica Safonova. 
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In contrast to the limestone M9, abundant and diverse Fusiella occur in M10 

including F. typica extensa Rauser, F. praetypica Safonova, F. praecursor Rauser, F. 

praecursor paraventricosa Rauser, F. pulchella Safonova, F. sp. 1, and F. sp. 2. 

Kamaina, which is scarce in M9, is abundant and diverse in M10 limestone: Kamaina 

kamensis (Safonova), K. chernovi (Rauser), K. rossoshanica rossoshanica (Putrja), K. sp. 

K. cf. rossoshanica kamerlingi (Ginkel), and K. sp. Beedeina is scarce and include B. 

elegans (Rauser et Belyaev) (Figs. 21, 22, Table 5A).  

We correlated this zone with the Ulitino Formation of the Moscow Basin. 

Although both assemblage from the M10 limestone and the fusulinids from the coeval 

Ulitino Formation in the Moscow Basin are very provincial, there are some common or 

very similar species that occurred in both basins. The common species are Neostaffella 

sphaeroidea cuboides (Rauser), Fusiella typica Lee and Chen, F. ventricosa Rauser. Also 

we believe that “Fusulina ulitinensis” Rauser (in Makhlina et al., 2001b, pl. 7, figure 11) 

from the Moscow Basin is misidentified and in our opinion is identical to the Donets 

Basin specimen of Beedeina elegans (Rauser and Belyaev), (this paper, Figure 11–35). 

Among diverse Fusulinella species the first occurrence of inflated specimens is recorded. 

Fusulinella praebocki Rauser, F. pseudobocki Lee and Chen, F. ex gr. bocki Moeller 

occur in the Moscow Basin, whereas inflated F. tokmensis longa Reitlinger, and F. 

formosa tumida Reitlinger are documented in the M10 limestone.  

Besides, the Ulitino Formation in the Moscow Basin is marked by an abundance 

of green algae Ivanovia tenuissima Khvorova and Dvinella chomata Khvorova. In the 

Donets Basin abundant algae, particularly Dvinella chomata, are documented in the 

limestone M10.  
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Figure 21. Fusulinids from the M10 limestone of the middle Podolskian, Donets Basin, 

Ukraine. 

 Beedeina, species, x 20; Neostaffella, Pseudostaffella, Fusiella, Ozawainella species, x 

35. 1-5–Neostaffella sphaeroidea (Moeller): GM10-28/1, GM10-18/2, GM10-44/1, 

GM10-7/3, GM10-31/1; 6– Neostaffella larionovae (Rauser and Safonova): GM10-6/3; 

7, 11, 12– Pseudostaffella compressa donbassica Putrja: GM10-37/2, GM10-20/2, 

GM10-20/6; 8-10– Pseudostaffella khotunensis Rauser: GM10-46/4, GM10-31/3, GM10-

35/2; 13-14–Pseudostaffella variabilis Reitlinger: GM10-27/2, GM10-2/3; 15, 21– 

Fusiella typica extensa Rauser: GM10-8/2, GM10-11/2; 16– Ozawainella sp.: GM10-

31/1; 17-18– Ozawainella sp. cf. O. vozhgalica Safonova: GM10-22/3, GM10-22/2; 19– 

Ozawainella krasnodonica Manukalova: GM10-46/5; 20– Ozawainella adducta 

Manukalova: GM10-29/3; 22, 26, 28, 29, 31– Fusiella praecursor Rauser: GM10-11/3, 

GM10-42/6, GM10-40/2, GM10-12/4, GM10-2/2; 25– Fusiella praetypica Safonova: 

GM10-45/1; 23– Fusiella sp.1: GM10-6/1; 24, 32– Fusiella pulchella Safonova: GM10-

51/1, GM10-37/3; 27– Fusiella praecursor paraventricosa Rauser: GM10-3/5; 30 –

Fusiella sp. 2: GM10-23/1; 33-35– Beedeina elegans (Rauser and Belyaev): GM10-35/1, 

GM10-8/1, GM10-16/1.       
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Figure 22. Fusulinids from the M10 limestone of the middle Podolskian, Donets Basin, 

Ukraine. 

Kamaina species, x 10; Fusulinella and Profusulinella species, x 20; Schubertella 

species, x 40. 1, 3– Kamaina rossoshanica (Putrja): GM10-41/1, GM10-7/2; 4, 8– 

Kamaina chernovi (Rauser): GM10-3/2, GM10-25/2, GM10-17/1; 5, 7– Kamaina 

kamensis (Rauser): GM10-7/1, GM10-19/1; 6, 12 –Kamaina sp.: GM10-40/1, GM10-

15/1; 9-11–Kamaina sp. K. cf. rossoshanica kamerlingi (Ginkel): GM10-1/1, GM10-

34/1, GM10-27/1; 13– Fusulinella colanii Lee and Chen: GM10-37/1; 14, 16– 

Fusulinella pseudocolaniae Putrja: GM10-32/1, GM10-14/1; 15–Fusulinella formosa 

tumida Reitlinger: GM10-50/1; 17, 19– Fusulinella (Moellerites) subcolaniae decurta 

Reitlinger: GM10-14/5, GM10-4/1; 18, 21– Fusulinella (M.) subcolaniae Reitlinger: 

GM10-29/1, GM10-39/1; 20– Fusulinella tokmovensis longa Reitlinger: GM10-25/1; 22, 

25– Fusulinella (M.) subcolaniae plana Reitlinger: GM10-30/1, GM10-22/1; 23, 26– 

Fusulinella colaniae meridionalis Rauser: GM10-20/1, GM10-18/1; 24– Fusulinella 

vozhgalensis devexa Rauser: GM10-38/1; 27– Profusulinella sp.1: GM10-9/3; 28, 29– 

Profusulinella rotundata Putrja: GM10-20/5, GM10-9/2; 30-31– Profusulinella sp. 2: 

GM10-23/2, GM10-22/4; 32-34– Schubertella subkingi Putrja: 35– Schubertella elliptica 

Putrja: GM10-11/3; 36-39– Schubertella lata Lee and Chen: GM10-9/9, GM10-42/4; 40, 

41– Schubertella obscura procera Rauser: GM10-37/6, GM10-23/2. 
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Uppermost Podolskian – Lowermost Myachkovian strata 

A cyclic distributional model of fusulinids reveals that strata of the Shchurovo 

Formation were deposited in the shallowest marine conditions accompanied by 

considerable reduction of Neostaffella species (Makhlina et al., 2001a) and the 

appearance of elongate Fusulina and Fusiella species. The interval starting from the 

limestones M10 to the N1 coincides with a regressive episode, a gradual falling of sea 

level and development of highly endemic fusulinids. Unfortunately, material from the 

limestone M10
1 and M10

2 were not available for this study. Therefore, more research 

needs to be conducted at the Podolskian –Myachkovian boundary to define its exact 

position in the Donets Basin. 

Discussion 

A refined biostratigraphic zonation of predominantly siliciclastic Podolskian 

strata in the Donets Basin and its correlation with the coeval, mainly carbonate, 

succession of the historical type area, Moscow Basin, where the regional Podolskian 

Stage was distinguished, reveals common trends in fusulinid evolution. Based on 

previous detailed biostratigraphic studies of fusulinids in the Moscow Basin conducted 

by Rauser-Chernousova and Reitlinger (1954), Reitlinger and Balashova (1954), Ivanova 

and Khvorova (1955), and Solovieva (1986), we are able to trace a successive 

replacement of Moscow Basin assemblages that is similar to the cyclic distribution of 

fusulinids in the Donets Basin. The distribution of fusulinids in the upper Kashirian 

(Smedva Formation) – Podolskian strata in the Moscow Basin is roughly as follows 1) 

Hemifusulina assemblage (lower part of Smedva Formation); 2) the interval characterized 
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by small foraminifers because of absence of fusulinids (upper part of Smedva 

Formation); 3) assemblage with diverse Fusulinella, Neostaffella, Putrella, Beedeina and 

others (Vaskino Formation); and 4) assemblage with diverse but highly endemic fusulinid 

species (Ulitino Formation). This successive replacement of fusulinid assemblages 

mirrors cyclic distributional patterns we recognized in the Donets Basin, and probably 

represents a response to global sea level fluctuations. 

Recent study in the Moscow Basin (Solovieva, 1986; Alekseev in Makhlina et al., 

2001b) revealed that the main faunal change in both conodonts and fusulinids proceeded 

at the base of the Smedva Formation (see discussion above). Our study of fusulinid 

evolution also confirms this opinion.  We suggest that the main change in faunal 

evolution over a short time scale can happen at the beginning of transgression because of 

abrupt environmental disruption in shallow seas and is marked by abundant monospecific 

populations of Hemifusulina, which took place at the base of C2sm2, bed 30 in 

Kholokholnya section (Reitlinger and Balashova, 1954) in Rzhev area, near the town of 

Staritza, on the bank of the Kholokholnya River. Fusulinids described from bed 27 of the 

lower Member (C2sm1) are mainly represented by elongated Fusiella, which usually 

characterize late stages of regressive succession and probably belong to the Lopasnya 

Formation (Kashirian Stage).  

Since the  interval in the Donets Basin between the limestone M7 and M10
2 that is 

correlated with the upper Kashirian and Podolskian strata in the Moscow Basin contains 

one full transgressive-regressive cycle, it would make sense to place the lower boundary 

of the Podolskian at the base of the Smedva Formation, which needs to be revised using 

fusulinid biostratigraphy.  
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Fusulinid cyclicity in the Moscow Basin reveals an association of the 

Hemifusulina assemblage with the thick dolomite units represented by an alternation of 

the dolomites, limestones and clays. The Smedva dolomites contain Hemifusulina 

subrhomboides assemblage; dolomites at the Podolskian – Myachkovian boundary in the 

Moscow Basin contain Hemifusulina stabilis, H. bocki that can be correlated with the 

intermediate beds of the N1 limestone in the Donets Basin. A last occurrence of 

Hemifusulina, represented by H. bocki mosquensis beds, is documented in the Peski 

Formation. We suppose that these beds are associated with the Turaevo dolomites and 

can be correlated with the Hemifusulina-bearing beds recognized by Putrja (1940) in the 

eastern part of the Donets Basin right below the N3 limestone. Unfortunately the material 

from the Eastern Donets Basin was not available for our study; therefore we are unable to 

outline fusulinid cyclicity in the middle part of the “N” Formation.   

By analogy to the lower Podolskian, the lower Myachkovian boundary, which 

could be marked by a new transgression, should be documented by the occurrence of 

Hemifusulina species. Such change in fusulinid assemblages we recognized in the 

Ordynskaya well (Moscow city) at a depth of 66.54-77.49 m (Rauser-Chernousova and 

Reitlinger, 1954, p. 69), which these authors defined as the latest Podolskian (C2
2 pd-c, the 

Shchurovo Formation?). The base of this lithostratigraphic unit, represented by 

alternating dolomites and limestones, is marked by an unconformity with limestone 

conglomerates. Rauser-Chernousova and Reitlinger (1954, p. 70) pointed out that the 

fusulinid assemblage sharply changes. They documented Hemifusulina bocki which 

sometimes is abundant in different beds of this unit. For this unit Fusiella typica, 

Neostaffella sphaeroidea, and Ozawainella angulata are common. Rauser-Chernousova 
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and Reitlinger (1954) documented Fusulinella bocki and F. pseudobocki, which only 

occur in the upper part of this unit. They also recognized Beedeina lanceolata and 

Fusulina ex gr. cylindrica. In the Donets Basin (Putrja, 1940; Pogrebnyak, 1975, 

Khodjanyazova and Davydov, in press) such fusulinids are documented in the lower part 

of N Formation (N1, N1
2, and N1

6) and considered as the Myachkovian.  

Conclusions 

1. Three new fusulinid biozones are proposed for the upper Kashirian – 

Podolskian strata, interval of the M7–M10 limestone in the Donets Basin. 

These are Hemifusulina subrhomboides – H. vozhgalica – Beedeina elshanica 

vaskensis, Putrella donetziana – Fusulinella colanii, and Kamaina 

rossoshanica – Fusulinella tokmovensis longa Zones. 

2. Hemifusulina subrhomboides – H. vozhgalica – Beedeina elshanica vaskensis 

Zone embodies an interval of the limestones M7 – M8 that we consider as 

transgressive beds and correlate with the most of Smedva Formation of the 

Moscow Basin. 

3. Putrella donetziana –Fusulinella colanii Zone includes an interval with the 

limestone M9. This interval characterizes a high sea level stand and the 

beginning of regression. This Zone is correlated with the Vaskino Formation 

of the Moscow Basin. 

4. We propose to place the base of the Kamaina rossoshanica – Fusulinella 

tokmovensis longa Zone at the paleosol horizon above the top of coal m9. This 

zone is characterized by fusulinids from the limestone M10. We suppose this 

assemblage was associated with an early low sea level stand resulting in an 
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increase of fusulinid provinciality in the Moscow and Donets Basins. Few 

common species allow correlating this zone with the Ulitino Formation of the 

Moscow Basin.  

5. A definition of the Podolskian – Myachkovian boundary in the Donets Basin 

remains unclear because of poor sampling in the interval between the M10 and 

N1 limestones. Additional sampling could be helpful in resolving the problem 

of correlating the Podolskian – Myachkovian boundary in the Donets Basin.  

6. A cyclic distribution of fusulinids is recognized in the Kashirian–Podolskian 

strata in the Moscow Basin and is represented by successive replacement of 

fusulinids: 1) Hemifusulina; 2) smaller foraminifers; 3) Neostaffella 

sphaeroidea cuboides, Putrella brazhnikovae, Fusulinella colanii, Beedeina 

elshanica vaskensis; 4) Kamaina kamensis, Fusulinella ex gr. bocki, Fusulina 

ulitinensis.  

7. We suggest reestablishing the original definition of the Podolskian Stage 

proposed by Ivanov (1926) and include the Smedva Formation in the 

Podolskian. 

8. We propose to define the lower boundaries of the Podolskian and 

Myachkovian by the occurrence of Hemifusulina-bearing beds. 
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CHAPTER THREE: LATE MOSCOVIAN FUSULINIDS FROM THE “N” 

FORMATION (DONETS BASIN, UKRAINE) 

Introduction 

One of the main problems in modern biostratigraphy is global correlation among 

biotically distinct paleogeographic provinces, such as the Pennsylvanian shallow-marine 

sedimentary strata of the North American Midcontinent, Eastern European Craton and 

terrestrial coal-bearing deposits of Western Europe. Three distinct biostratigraphic 

schemes were developed and applied in these areas (Hills et al., 2002). Until recently it 

has been difficult to establish relationships among them. 

In the last decade biostratigraphers (Menning et al., 2006; Heckel, 2008; Heckel  

et al., 2007) using conodonts have  made great progress in correlating Pennsylvanian 

(Late Moscovian – Kasimovian) shallow-marine strata of the North American 

Midcontinent with equivalents in the Eastern European Craton (EEC), particularly the 

carbonate succession in the Moscow Basin (Russia) and paralic, heterolithic deposits in 

the Donets Basin (Ukraine). The Donets Basin succession is considered pivotal for 

relating shallow-marine strata of Eastern Europe with terrestrial, coal-bearing deposits of 

Western Europe. Wagner (1969) first distinguished the Cantabrian flora between the 

upper Westphalian and lower Stephanian strata of Spain. Later this floral assemblage was 

defined as the Odontopteris cantabrica Zone (Cleal, 2008). Fisunenko [2000] recognized 

common species of this zone in the Donets Basin, within the interval of the limestones 

N2–N4, in latest Moscovian time.  
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Cantabrian flora was extent during a gradual extinction of many fusulinid genera 

(Hemifusulina, Taitzehoella, Neostaffella, and Beedeina) in shallow-marine environments 

during the latest Moscovian time (N1–N4). Establishing precise temporal relationships 

between terrestrial and marine events requires detailed biostratigraphic correlation of 

Late Moscovian coal-bearing deposits of Western Europe with shallow-marine 

successions in the Moscow Basin, the historical type area of the Moscovian Stage. 

However, predominately carbonate cyclic sedimentation during Moscovian time in the 

Moscow Basin was discontinuous and these discontinuities are documented in numerous 

erosional surfaces and paleosols (Kabanov et al., 2006, 2010). Kabanov et al. (2010) 

conducted research on the late Moscovian paleosols in the EEC that revealed the 

palygorskitic composition of Podolskian topsols, interpreted ”to reflect hot, well drained 

semidesert conditions with precipitation less than 300mm/yr.” They also documented the 

smectitic-illitic composition of Myachkovian paleosols that likely formed in wetter 

conditions. 

The Donets Basin is close to the Moscow Basin and is unique for many reasons. 

First, continuous tectonic subsidence during Pennsylvanian time (Stephenson et al., 1993, 

2001; Stovba and Stephenson, 1999; van Wees et al., 1996; Izart et al., 2003) has resulted 

in accumulation of a nearly continuous sequence of sedimentary deposits. Second, high 

frequency glacial-eustatic sea-level fluctuations led to multiple switching between marine 

and terrestrial sedimentary regimes. Marine beds with diverse, well preserved marine 

invertebrate alternating with terrigenous beds characterized by rich floral assemblages 

facilitate the correlation of marine EEC sedimentary strata with continental deposits in 

Western Europe (Aisenverg et al., 1975; Fisunenko, 2000; Eros et al., 2012). Third, 
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recent ID-TIMS U-Pb zircon tuff ages from twelve stratigraphic levels (Davydov et al., 

2010) provide a precise time framework for the Donets Basin. And finally, new research 

on fusulinid paleoecology in this region reveals cyclic patterns in the distribution of 

specific assemblages throughout the Pennsylvanian (Khodjanyazova et al., 2011). The 

cyclically occurring associations can be linked with glacioeustatic sea level fluctuations 

to reveal paleobathymetries and paleoenvironments characteristic of early transgression, 

late transgression and long lasting regression episodes.  

Repetitive patterns of fusulinid distribution in carbonate successions of the 

epicontinental seas of the EEC were noted by Russian micropaleontologists (Rauser-

Chernousova and Kulik, 1949; Rauser-Chernousova, 1953; Rauser-Chernousova and 

Reitlinger, 1962). As first recognized by Rauser-Chernousova and Reitlinger (1962), the 

beginning of every depositional cycle is marked by abundant and diverse foraminiferal 

populations. The number of species and their abundance are considerably reduced at the 

end of each rhythm. Rauser-Chernousova and Reitlinger (1962) inferred that the cyclic 

occurrence of specific fusulinid assemblages was not a simple repetition of facies-

dependent faunal associations, but represented specific and generic evolutionary trends 

throughout time, from cycle to cycle. They concluded that a repetitive alternation of 

fusulinid assemblages resulting in adaptation of different genera to changing 

environments corresponded to cyclic sedimentation within a basin. However they did not 

give any examples of their model. From their research it is difficult to recognize what 

kind of fusulinids lived during transgressive or regressive episodes.  

Although Donets Basin fusulinids are well studied, Moscovian fusulinid 

biostratigraphy in the Donets Basin is still poorly developed, especially that of the poorly 
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exposed “N” Formation. Further, many collections with stratigraphically important 

holotypes were lost during World War II. All early papers are in Russian or Ukrainian 

and thus are not widely read by Western paleontologists.  

The main focus of this paper is to document the taxonomy and stratigraphic 

distribution of fusulinid faunas in the Moscovian – Kasimovian transition in the Donets 

Basin and correlate the faunas with the equivalents in the Moscow Basin. Our detailed 

taxonomic and stratigraphic study of Pennsylvanian fusulinids in the Donets Basin should 

allow improved global correlations among biotically distinct regions, and it forms the 

basis of a newly proposed model of fusulinid cyclicity, which we intend to discuss in a 

separate paper. 

Biostratigraphy of “N” Formation: Previous study 

The “N” Formation is composed of predominant fine-grained marine and 

lacustrine terrigenous rocks: siltstone and claystone, with rare thin beds of fine-grained 

sandstone in the lower part of the unit. The upper part is represented mostly by fluvial 

coarse-grained sandstone (Aisenverg et al., 1975; Eros et al., 2012). Fifteen limestone 

beds have been recognized in the eastern and northeastern regions of the Donets Basin, 

and only half of this number in the western and southwestern on the basis of mine logs 

from the Artemovsk Geological Survey (Makarov, 1985; Izart et al., 1996; Eros et al., 

2012).  

Fusulinids in the Donets Basin have been known since the nineteenth century 

thanks to their exceptional preservation and abundance in many limestones throughout 

the Carboniferous. Since the first half of the twentieth century, fusulinids have become 

important biostratigraphic tools widely utilized in the Donets Basin. Putrja (1940, 1948, 
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1956), Kireeva (1950), and Pogrebnyak (1975) developed fusulinid taxonomy and 

biostratigraphy for the Moscovian – Kasimovian transition in the Donets Basin.   

Although foraminifers are well studied in the Donets Basin, the existing record 

for the Moscovian is controversial, especially for the poorly exposed “N” Formation, 

which includes the traditional Moscovian – Kasimovian boundary. Indices for the 

Protriticites pseudomontiparus – Obsoletes obsoletus Zone, once used for identifying the 

Moscovian – Kasimovian boundary definition, were first recognized and described in the 

Donets Basin (Putrja, 1948; Kireeva, 1950). In 1965 the Interregional Committee on 

Carboniferous Stratigraphy of the USSR ratified the Moscovian – Kasimovian boundary 

at the base of the Suvorovo Formation in Moscow Basin. This level has been correlated 

with Limestone N3 in the Donets Basin. Nevertheless, Aisenverg et al. (1975) placed the 

boundary at the base of the N2 Limestone, and Solovieva (1986) and Kagarmanov and 

Donakova (1990) placed it significantly higher, at the base of the N4 Limestone. Recent 

work (Vachard and Maslo in Izart et. al., 1996; Davydov and Khodjanyazova, 2009; 

Davydov et al., 2010) reveals dramatic changes in fusulinid faunas in limestone N3. 

Importantly, the traditional Lower Kasimovian Streptognathodus subexelsus conodont 

zone (Alekseev and Goreva, 2006) has been found in the lower part of the Suvorovo 

Formation (Moscow Basin) and in Limestone N3 (Nemyrovska et al., 1999). As 

Streptognathodus subexelsus has restricted occurrence and does not occur globally, a new 

Moscovian–Kasimovian boundary has been proposed as the first occurrence of conodonts 

Idiognathodus sagittalis or I. turbatus (Villa and Task Group, 2008). In the historical 

type area, Moscow Basin, these conodonts first occur at the base of Middle Neverovo 

Formation, which is correlated with the limestone O1 or O1
1.  
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The Myachkovian Horizon in the Donets Basin before this study was 

characterized by a single fusulinid zone Fusulina cylindrica (Vachard and Maslo in Izart 

et. al., 1996), which extends from the Limestone M10
1 to the base of the N3 Limestone. 

Davydov and Leven (2003) recognized two zones: Fusulinella bocki in the interval M10 – 

N2, and Praeobsoletes burkemensis, Quasifusulinoides quasifusulinoides, Protriticites 

ovatus in the N2 – N5
1 Limestones. 

A comprehensive litho- and biostratigraphic synthesis of Carboniferous 

stratigraphy in the Moscow Basin was published recently by Makhlina et al. (2001), 

including a description of numerous sections with detailed lithologies and faunal 

occurrences for each Formation in the stratotype area. This work allows the recognition 

of all fusulinid biozones in the Moscow Basin and facilitates correlation with 

contemporaneous strata in the adjacent Donets Basin, one of the few regions in the world 

where the entire Pennsylvanian sedimentary succession is documented (Fohrer et al., 

2007).  

Material 

Material for this study was collected from two sections, Gurkovo and Kalinovo, in 

the interval of the Moscovian – Kasimovian transition (Podolskian, Myachkovian and 

Krevyakian horizons). In this paper we focus on fusulinid study of the Myachkovian 

horizon in the interval between Limestones M10 and N3.  Samples from the lower portion 

(N1 Limestone) were collected in the Gurkovo ravine, and samples from the upper 

portion of the Myachkovian succession (N1
1, N1

2, N2, and N2
1) were collected in the 

Kalinovo ravine, both of which are incised in the western riverside of the Lugan’ River 

and extend in the southern direction from the town of Pervomaysky, Donetsk Oblast, 
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Ukraine (Fig. 1). Unfortunately here is no material from many limestone beds (M10
1, 

M10
2, several intermediate limestone beds between N1

2 and N2, as well as the upper 

portion below Limestone N3) because of poor exposures.   

Systematic paleontology 

Systematic descriptions are given for stratigraphically important taxa. The 

measurements of all studied specimens are given in the Appendix.  All illustrated and 

measured specimens are housed in the University of Iowa Paleontology Repository, 

Department of Geosciences (SUI). 

Family OZAWAINELLIDAE Thompson and Foster, 1937 

Genus OZAWAINELLA Thompson, 1935 

 Type species.—Fusulinella angulata Colani, 1924. 

OZAWAINELLA KRASNOKAMSKI KIROVI Dalmatskaya, 1961 

Figures 23.1–23.2 

Ozawainella krasnokamski kirovi DALMATSKAYA, 1961, p. 26–27, pl. 1, figs. 3–

5. 

Material studied.—Axial sections SUI 130697–130699, samples GN1-7/1, KN2-

10/3, KA3/4-11/2; tangential section SUI 130700, sample GN1-3/2; one immature 

specimen SUI 130701, sample GN1-3/4.  

Occurrence.—Limestone N1, Gurkovo section; limestone N2, Kalinovo section; 

Donets Basin, Ukraine. 

 Discussion.—The studied specimens of Ozawainella krasnokamski kirovi 

occupy a somewhat intermediate position between O. rhomboidalis Putrja, 1940 and O. 
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krasnokamski krasnokamski Safonova in Rauser-Chernousova et al., 1951. Like both 

species, the studied specimens possess straight to slightly concave lateral sides, tightly 

coiled and regularly expanded volutions, as well as low and broad symmetrical chomata. 

The studied specimens are close to O. rhomboidalis Putrja in length but differ from the 

latter in slightly rounded umbilical regions that make them similar to O. krasnokamski 

krasnokamski Safonova. From both comparable species the studied specimens differ in 

smaller form ratio; hence they look more compressed in axial view. One more important 

distinction of Ozawainella krasnokamski kirovi Dalmatskaya from O. rhomboidalis 

Putrja and O. krasnokamski krasnokamski Safonova is better developed chomata, which 

are approximately one-half of the chamber’s heights. The Donets specimens of O. 

krasnokamski kirovi are slightly smaller than the typical specimens described from 

Myachkovian strata in the Samara and Saratov regions of the East European Platform. 

Diameter in the Donets forms with six volutions varies from 0.48 to 0.80 mm, and length 

varies from 0.22 to 0.34 mm, whereas the typical specimens are 0.71–1.15 mm in 

diameter and 0.29–0.49 mm in length. The diameter of proloculus is 15 mintheDonets 

specimensand 35 min the types.  

OZAWAINELLA VOZHGALICA Safonova in Rauser-Chernousova et al., 1951 

Figures 23.3–23.5 

Ozawainella vozhgalica SAFONOVA in RAUSER-CHERNOUSOVA et.al., 1951, p. 138–139, 

Pl. 11, figs. 3, 4; RUMJANZEVA, 1974, p. 73, pl. 5, figs. 3, 4; LEVEN, 1998, p.15, 

pl. 1, fig. 8; LEVEN, DAVYDOV AND GORGIJ, 2006, figs. 10.5, 10.6.  
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Material studied.—Tangential sections SUI 130702–130705, samples KN2-4/1, 

KN2-14/1, KN2-15/1, KN2-17/1; immature specimens SUI 130706–130708, samples 

KN2-3/2, KN2-5/2, KN2-6/2. 

Occurrence.—Limestone N2, Kalinovo section; Donets Basin, Ukraine. 

 Discussion.—The studied specimens with pointed periphery, concave 

lateral sides, distinctly depressed but narrow umbilical regions and massive and broad 

chomata resemble typical Ozawainella vozhgalica Safonova. The test’s size of the 

studied specimens is slightly smaller than the types; the length of the mature specimens 

with five and a half to six volutions varies from 0.28 to 0.35 mm, the diameter varies 

from 0.72 to 1.12 mm, whereas the typical specimens from the East European Platform 

are 0.36–0.58 mm in length and 0.71–1.37 mm in diameter.  

Family SCHUBERTELLIDAE Skinner, 1931 

Genus FUSIELLA Lee and Chen in Lee, Chen, and Chu, 1930 

 Type species.—Fusiella typica Lee and Chen in Lee, Chen, and Chu, 

1930. 

FUSIELLA SPATIOSA Sheng, 1958 

Figures 23.13, 23.15, 23.16 

Fusiella spatiosa SHENG, 1958, p. 82, pl. 3, fig. 14. 

Fusiella lancetiformis Putrja. RAUSER-CHERNOUSOVA in RAUSER-CHERNOUSOVA et al., 

1951, (part), pl. 5, figs. 2, 3 (only).  

Material studied.—Tangential sections SUI 130709–130714, samples GN1-2/1, 

GN1-6/1, GN1-10/1, GN1-19/1, GN1-22/1, KN2-9/1.    
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Occurrence.—Limestone N1, Gurkovo section; limestone N2, Kalinovo section; 

Donets Basin, Ukraine. 

Discussion.—The studied specimens are similar to the type specimens in their 

subcylindrical tightly coiled tests that are slightly inflated in median area and bluntly 

pointed in polar ends with slightly developed axial fillings and small chomata. They 

differ from the typical ones in their smaller diameter and greater form ratio. Form ratio in 

the Donets specimens varies from 4.0 to 5.3, whereas the holotype possesses a form ratio 

of 3.48. Rauser-Chernousova (in Rauser-Chernousova et al., 1951, pl. 5, fig. 2, 3) 

erroneously considered late Myachkovian elongated Fusiella with weakly developed and 

discontinuous axial fillings as F. lancetiformis Putrja, 1939. The latter, which first 

appeared in the Donets Basin in the Limestone N5, is almost as twice larger as 

Myachkovian specimens and possesses seven or eight volutions, as opposed to specimens 

with five volutions illustrated by Rauser-Chernousova in Rauser-Chernousova et al., 

1951, pl. 5, fig. 2, 3. Further, F. lancetiformis differs from F. spatiosa by having strongly 

developed, continuous axial fillings.  

FUSIELLA PRAELANCETIFORMIS Safonova in Rauser-Chernousova et al., 1951 

Figures 23.12, 23.14, 23.17 

Fusiella praelancetiformis SAFONOVA in RAUSER-CHERNOUSOVA et al., 1951, p. 91–92, 

pl. 5, fig. 1; RUMJANZEVA, 1974, p. 98–99, pl. 8, figs. 12, 13; VAN GINKEL, 1965, 

p. 104–105, pl. 28, figs. 21, 22. 

Fusiella eolancetiformis GROZDILOVA AND LEBEDEVA in BOGUSH, 1963, p. 66–67, pl. 

3, fig. 3. 
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Material studied.—Axial sections SUI 130715–130720, samples GN1-2/3, GN1-

7/4, GN1-13/4, KA3/1-13a, KN2-8/1, KN2-12/1; slightly oblique sections SUI 130721–

130724, samples GN1-2/1, GN1-14/3, KN2-10/2, KN2-23/11.  

Occurrence.—Limestones N1, Gurkovo section; limestone N2, Kalinovo section; 

Donets Basin, Ukraine. 

Discussion.—Small tightly coiled fusiform specimens with small chomata and 

discontinuous axial fillings resemble Fusiella praelancetiformis Safonova from the 

Moscow Basin. Donets specimens are almost identical to the holotype, but differ from the 

latter in bigger size. Specimens from the Moscow Basin possess four or four and a half 

volutions, whereas the Donets ones have five volutions. The present specimens with five 

volutions are 1.00-1.25 mm in length and 0.30-0.40 mm in diameter. 

Genus TAITZEHOELLA Sheng, 1951 

 Type species.—Taitzehoella taitzehoensis Sheng, 1951. 

TAITZEHOELLA SIMPLICATA (Lee, 1937) 

Figures 23.19–23.21 

? Wedekindellina simplicata LEE, 1937, p. 78–79, pl. 2, fig. 5. 

Fusulinella (Pseudofusulinella) simplicata (Lee). POGREBNYAK, (part), 1975, p. 57–58, 

pl. 3, fig. 5 (only). 

Material studied.—Axial sections SUI 130725–130727, samples KN2-10/1, 

KA3/4-12, KA3/11-2; slightly oblique sections SUI 130728, sample KA3/4-9; immature 

specimen SUI 130729, sample KN2-20/2. 

Occurrence.—Limestones N2, N2
1, Kalinovo section; Donets Basin, Ukraine. 
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Discussion.—Mature specimens with six or seven volutions are 1.36–1.58 mm in 

length and 0.77–0.95 mm in diameter and possess small proloculus, which is 35–45 m 

in diameter. The present specimens are identical to the types of Taitzehoella simplicata, 

which were originally described by Lee (1937) from the limestone N2 in the Donets 

Basin. Characteristic features includes fusiform test outline, highly inflated medial area, 

straight lateral slopes and pointed polar ends, tightly coiled inner volutions, well 

developed rounded chomata that underlie a gradually widening tunnel, and more weakly 

developed, discontinuous axial fillings.  

TAITZEHOELLA EXTENSA Sheng, 1958 

Figures 23.18, 23.22, 23.23 

Taitzehoella taitzehoensis extensa SHENG, 1958, p. 84, pl. 5, figs. 10, 11. 

Fusulinella (Pseudofusulinella) simplicata (Lee). POGREBNYAK, (part), 1975, p. 57–58, 

pl. 3, figs. 4, 6 (only).  

Material studied.—Axial section SUI 130730, sample KA3/11-3; tangential 

sections SUI 130731–130733, sample KN2-13/1, KA3/4-10, KA3/4-11/1.  

Occurrence.—Limestones N2, N2
1, Kalinovo section; Donets Basin, Ukraine. 

Discussion.—Large, mature specimens with seven volutions are tightly coiled 

initially, with well-developed rounded chomata and small proloculus (0.30 m in 

diameterhey differ from T. simplicata in their elongated test outline, concave lateral 

slopes, and bluntly pointed polar ends. The studied specimens are 1.9–2.25 mm in length 

and 0.90–1.16 mm in diameter and closely resemble to the holotype from China.  

TAITZEHOELLA PERSEVERATA (Safonova in Rauser-Chernousova et al., 1951)  

Figures 23.24–23.26  
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Profusulinella librovitchi (DUTKEVICH) var. perseverata SAFONOVA in RAUSER-

CHERNOUSOVA et al., 1951, p. 174, pl. 17, figs. 8, 9. 

 Fusulinella (Pseudofusulinella) simplicata (Lee).  POGREBNYAK, (part), 1975, p. 57–58, 

pl. 3, fig. 3. 

Material studied.—Axial sections SUI 130734–130736, samples KN2-1/1, KN2-

2/2, KN2-18/1; tangential sections SUI 130737–130739, samples KN2-7/1, KN2-16/1, 

KA3/4-6/1.  

Occurrence.—Limestones N2, N2
1, Kalinovo section; Donets Basin, Ukraine. 

Discussion.—The studied specimens with seven or eight volutions are 2.18–2.70 

mm in length and 0.98–1.06 mm in diameter and possess a small proloculus (40–50 

min diameter). The Donets specimens are slightly longer than those from Moscow 

Basin and have a smaller diameter, and greater form ratio. This species differs from 

Taitzehoella simplicata (Lee, 1937) in its larger size and greater number of volutions, in 

stronger fluted septa at polar ends, weaker developed chomata and higher tunnel. The 

studied specimens differ from Taitzehoella compacta Leven, 1998 in shape, particularly 

in strongly concave lateral slopes as opposed to straight and slightly concave ones in T. 

compacta.  

Family FUSULINIDAE Moeller, 1878 

Subfamily PSEUDOSTAFFELLINAE Putrja, 1956 

Genus NEOSTAFFELLA Miklukho-Maklay, 1959 

Type species.—Neostaffella sphaeroidea Miklukho-Maklay, 1959, designated in 

Groves (1988). 

NEOSTAFFELLA SPHAEROIDEA (Moeller, 1878)  
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Figures 23.6, 23.7 

Melonia (Borelis) sphaeroidea EHRENBERG, 1842, p. 274. 

Fusulinella sphaeroidea (Ehrenberg). MOELLER, 1878, p. 107–111, pl. 15, fig. 1a. 

Staffella sphaeroidea (Moeller). LEE AND CHEN in LEE, CHEN AND CHU, 1930, p. 114–

115, pl. 6, fig. 26; LEE, 1937, p. 84, p. 2, fig, 13; BRAZHNIKOVA, 1939, p. 256–

257, pl. 1, figs. 7–8. 

Pseudostaffella sphaeroidea (Moeller). RAUSER-CHERNOUSOVA in RAUSER-

CHERNOUSOVA et al., 1951, p. 128, pl. 9, figs. 3–5; GROZDILOVA AND 

LEBEDEVA, 1950, p. 35–36, pl. 5, fig. 4; SHENG, 1958, p. 75, pl. 3, figs. 16–22. 

Neostaffella sphaeroidea (Moeller). ISAKOVA in MAKHLINA et al., 2001, pl. 7, figs. 2–4. 

Material studied.—Axial sections SUI 130740–130744, samples GN1-4/1, GN1-

5/1, GN1-13/1, GN1-19/2, KA3-1/14; tangential sections SUI 130745–130749, samples 

GN1-7/2, GN1-7/3, KA3-1/3, KA3-1/5, KA3-1/6. 

Occurrence.—Limestones N1, Gurkovo section, limestone N1
1, Kalinovo section; 

Donets Basin, Ukraine.     

 Discussion.—Our material contains an abundant population of tightly coiled 

Neostaffella sphaeroidea specimens with nearly spherical to subquadratic outline, which 

possess massive, broad and high chomata. The mature specimens of six to eight volutions 

are 1.00–1.56 mm in length, 1.03–1.59 mm in diameter. These forms closely resemble 

typical forms from the Moscow Basin (Moeller, 1878). Specimens described by Rauser-

Chernousova (in Rauser-Chernousova et al., 1951) differ from the Donets forms in 

slightly larger proloculus (109 m versus 55–90 m)and smaller form ratio (0.85 to 0.91 

versus 0.89–0.98).  
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NEOSTAFFELLA KHOTUNENSIS (Rauser-Chernousova, in Rauser-Chernousova et 

al., 1951)  

Figure 23.8–23.9, 23.11 

Pseudostaffella khotunensis RAUSER-CHERNOUSOVA in RAUSER-CHERNOUSOVA et al., 

1951, p. 119, pl. 7, figs. 13, 14; SHENG, 1958, p. 76–77, pl. 4, figs. 19–23. 

Neostaffella khotunensis (Rauser-Chernousova). UENO in FOHRER et al., 2007, p. 39, 

figs. 20.31–20.47. 

Material studied.—Axial sections SUI 130750–130753, samples GN1-2/2, GN1-

2/4, GN1-3/3, GN1-9/2.  

Occurrence.—Limestone N1, Gurkovo section; Donets Basin, Ukraine. 

 Discussion.—Minute sub-globular tests with slightly depressed umbilical 

regions, well developed massive chomata possess five volutions. The mature specimens 

are 0.32–0.50 mm in length and 0.38–0.60 mm in diameter. Proloculus diameter ranges 

from 40 to 55 mThe studied specimens differ from the types in distinctly depressed 

umbilical regions.  

NEOSTAFFELLA DISTORTA (Pogrebnyak, 1975) 

Figure 23.10 

Pseudostaffella distorta POGREBNYAK, 1975, p. 52, pl. 2, figs. 2–4. 

Material studied.—Axial section SUI 130754, sample KN2-6/4; tangential section 

SUI 130755, sample KN2-17/1.  

Occurrence.—Limestones N2, Kalinovo section; Donets Basin, Ukraine.   

Discussion.—Small asymmetric tests with four or five volutions are 0.42–0.45 

mm in length and 0.50–0.60 mm in diameter with slightly depressed umbilical regions 



153 
 

 

  

and skewed first two initial volutions. They resemble the holotype in shell shape, overall 

size and asymmetric, well developed chomata. The studied specimens differ from the 

holotype in slightly smaller width and greater form ratio.  

Subfamily HEMIFUSULININAE Putrja, 1956 

Genus HEMIFUSULINA Moeller, 1878 

 Type species.—Hemifusulina bocki Moeller, 1878. 

HEMIFUSULINA BOCKI Moeller, 1878 

Figures 24.1–24.2 

Hemifusulina bocki MOELLER, 1878, p. 117–120, pl. 11, figs. 1–3; RAUSER-

CHERNOUSOVA in RAUSER-CHERNOUSOVA et al., 1951, p. 266, pl. 42, figs. 6–8. 

Material studied.—Axial sections SUI 130756–130757, samples GN1-9/1, GN1-

15/1; slightly oblique section SUI 130758, sample KA3/1-1. 

Occurrence.—Limestone N1, Gurkovo section; limestone N1
1, Kalinovo section; 

Donets Basin, Ukraine. 

Discussion.—Shortly ovoid tests with bluntly rounded polar ends resemble H. 

bocki Moeller in their uniformly expanding volutions, moderately and regularly fluted 

septa, small proloculus, well developed subsquare chomata and poorly developed axial 

fillings. The Donets specimens are slightly larger, 3.10–3.20 mm in length, 1.50–1.60 

mm in diameter, with seven or eight volutions, whereas Moscow Basin specimens with 

six or seven volutions are 2.60 mm long and 1.20 mm wide. The diameter of proloculus 

in our material varies from 60 to 70  

HEMIFUSULINA STABILIS Rauser-Chernousova and Safonova in Rauser-

Chernousova et al., 1951 
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Figures 24.3, 24.6, 24.9 

Hemifusulina stabilis RAUSER-CHERNOUSOVA AND SAFONOVA in RAUSER-

CHERNOUSOVA et al., 1951 p. 267, pl. 42, figs.11, 12. 

Material studied.—Axial sections SUI 130770–130772, sample GN1-18/1, 

KA3/1-9, KA3/1-13; tangential section SUI 130773, sample KA3/1-12; slightly oblique 

section SUI 130774, sample GN1-16/2. 

Occurrence.—Limestone N1, Gurkovo section; limestone N1
1, Kalinovo section; 

Donets Basin, Ukraine. 

Discussion.—Small compactly coiled specimens with regular septal folding and 

small distinct chomata are similar to the types of H. stabilis Rauser-Chernousova and 

Safonova in Rauser-Chernousova et al., 1951 described from the Moscow Basin, but 

differ slightly in test outline. The studied specimens are shortly fusiform with pointed 

polar ends, while Moscovian forms are more subcylindrical in shape. The mature 

specimens with six and seven volutions are 1.88–2.25 mm in length, and 0.84–0.95 mm 

in diameter. The diameter of proloculus varies from 50 to 65 m 

HEMIFUSULINA GURKOVENSIS, new species 

Figures 24.4, 24.5, 24.7 

Diagnosis.—Large, elongated, subcylindrical Hemifusulina with seven or eight 

volutions possess bluntly and widely rounded polar ends, regularly folded septa, well 

developed chomata in inner volutions that are replaced by pseudochomata in outer 

volutions, and weakly developed axial fillings. Porous, two-layered wall consists of 

tectum and diaphanotheca.  
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Description.—Test is shortly subcylindrical with a flat medial area and bluntly 

and widely rounded polar ends.  It consists of seven or eight volutions, and it ranges from 

3.25 to 3.50 mm in length and 1.20 to 1.37 mm in diameter. Volutions increase gradually 

in height and length. The wall consists of two layers, a dark thin tectum and a porous, 

faint, thick diaphanotheca. Thick septa are regularly and moderately folded throughout 

the shell, forming low- to medium-height rounded and subsquared arcs. Septa are weakly 

folded in the medial area of the two outermost volutions. Proloculus is small, 40–70 m. 

Chomata are well developed, small and round in inner volutions; in the two outermost 

volutions they are replaced by pseudochomata. The tunnel is narrow in inner volutions 

and rapidly widening in two outermost volutions. Axial fillings are weakly developed.  

Etymology.—Species named after the Gurkovo ravine, where new species has 

been found. 

Types.— Holotype: axial section SUI 130759, sample GN1-16/1 (Fig. 4.7); 

paratypes: axial section SUI 130760, sample GN1-21/1; tangential section SUI 130761, 

sample GN1-14/1 (Fig. 4.4, 4.5); type locality: Gurkovo section, 5 km to the south from 

town Pervomaysky, Donetsk oblast, Ukraine; type stratum: limestone N1 of the Gurkovo 

section, Myachkovian Horizon, Upper Moscovian. 

Measurements.—See Appendix. 

Occurrence.—Limestone N1, Gurkovo section; Donets Basin, Ukraine. 

Discussion.—This species closely resembles Hemifusulina mosquensis Rauser-

Chernousova in Rauser-Chernousova et. al., 1951 in regular septal folding, the shape of 

the chomata and tunnel, as well as in the development of weak axial fillings. It differs 

from H. mosquensis in larger size and cylindrical shell outline. The new species differs 
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from H. truncatula Rauser-Chernousova in Rauser-Chernousova et al., 1951 in more 

intensive septal folding, larger chomata and tighter coiled volutions.  

HEMIFUSULINA GRACIOSA (Lee, 1937) 

Figures 24.8, 24.10 

Triticites graciosa LEE, 1937, p. 93–95, pl. 2, fig. 22. 

Hemifusulina graciosa (Lee), PUTRJA, 1956, p. 466–467, pl. 17, figs. 4–5. 

Material studied.—Axial section SUI 130762, sample KA3/1-10; tangential 

sections SUI 130763–130765, samples GN1-13/2, GN1-17/1, KA3/1-8; slightly oblique 

sections SUI 130766–130769, samples KA3/1-3, KA3/1-4, KA3/1-7, KA3/1-11. 

Occurrence.—Limestone N1, Gurkovo section; limestone N1
1, Kalinovo section; 

Donets Basin, Ukraine. 

Discussion.—The studied specimens collected from the type area resemble 

specimens described by Lee (1937) in their elongate fusiform to subcylindrical test 

outline, rounded pointed polar ends, and the inner structure.  The mature specimens are 

2.30–3.05 mm in length and 1.02–1.21 mm in diameter and possess a small proloculus 

that is 50–70 m in diameter. The studied specimens are slightly bigger than the 

holotype, because the former possess 6–7 volutions, while the latter consists of 5.5 

volutions.  

Subfamily FUSULININAE Moeller, 1878 

Genus BEEDENA Galloway, 1933 

BEEDEINA INNAEFORMIS, new species  

Figures 24.11–24.15, 24.20 
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Diagnosis.—Test is elongated fusiform, slightly inflated in median portion and 

pointed at the polar ends. The inner volutions are subrhomboidal in shape. The septa are 

thick and regularly folded, axial fillings are strongly developed. Chomata are developed 

only on the proloculus and first volution. 

Description.—The test of this species with four to five volutions is intermediate 

in size, elongated fusiform, slightly inflated in medial portion, with pointed polar ends. 

The length of the studied specimens varies from 3.14 to 5.86 mm; the diameter varies 

from 0.86 to 1.28 mm. The rate of coil expansion is uniform and moderately rapid in the 

outer volutions. Inner volutions are subrhomboidal in shape. The wall is thin, three- and 

four-layered with tectum, faint diaphanotheca, and outer and inner tectoria. The inner 

tectorium is discontinuous and weakly developed. Continuous outer tectorium is the same 

color as diaphanotheca (Fig. 8.2a). Thick septa are regularly folded starting from the 

inner volutions. The folds decrease in amplitude from the poles to the middle part of the 

shell. Proloculus is spherical and intermediate in size. Its diameter averages 180 

mvarying from 140 to 220 mRounded chomata are developed on the proloculus and 

the first volution, and then they are replaced by pseudochomata on successive volutions, 

outlining a narrow tunnel. Secondary axial deposits are strongly developed and fill almost 

the whole test. 

Etymology. —The name is derived from the Myachkovian species (Late 

Moscovian) Fusulina innae Rosovskaya, 1941, which exhibits similarly well-developed 

secondary deposits in the axial region of the test. 

Types.–– Holotype: axial section SUI 130775, sample KN2-3/1 (Fig. 4.15); 

paratypes: axial sections SUI 130776–130782, samples KN2-5/1, KN2-11/1, KN2-19/1, 
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KA3/3-22, KA3/4-4, KA3/4-5, KA3/4-7, type locality: Kalinovo section, 5 km to the 

south from town Pervomaysky, Donetsk oblast, Ukraine; type stratum: limestone N2 of 

the Kalinovo section, Myachkovian Horizon, Upper Moscovian. 

Measurements.––See Appendix. 

Occurrence.––Limestones N2, Kalinovo section; Donets Basin, Ukraine. 

Discussion.––This species seems to be morphologically intermediate between the 

genera Beedeina and Fusulina. Test outline, shape of inner volutions and chomata 

resemble those in Beedeina species. Septal folding and axial fillings are similar to those 

in Fusulina species. Thick septa, massive axial fillings and large proloculus of studied 

specimens are similar to those in Fusulina innae Rosovskaya, 1941. However, the length 

of the Donets new species is twice that of F. innae from the Moscow Basin. The new 

species differs from Fusulina cylindrica Moeller, 1878 in its fusiform shell outline and 

tightly coiled inner volutions, which are subrhomboidal with pointed polar ends. 

 BEEDEINA sp. cf. B. PARADONETZICA (Putrja, 1939) 

Figures 24.16–24.18 

Material studied.—Axial sections SUI 130783–130784, samples GN1-1/1, GN1-

8/1; slightly oblique section SUI 130785, sample GN1-11/1.   

Occurrence.—Limestone N1, Gurkovo section; Donets Basin, Ukraine. 

Discussion.—Small mature specimens with five volutions are 2.00–2.20 mm in 

length and 1.10–1.15 mm in diameter. They resemble Beedeina paradonetzica in their 

shortly fusiform test outline, highly inflated medial area and pointed polar ends, relatively 

large proloculus, distinct chomata and thin septa. However, the type of septal folding is 

slightly different. In the studied species the folds are very tight and irregular at the polar 
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ends, become looser and decrease in amplitude along lateral slopes and are absent across 

the mid plane, whereas Putrja’s holotype possesses regular and weakly folded septa 

throughout the length. In shape, size and septal folding, the studied specimens are very 

similar to specimens assigned to Fusulina transcatulina Thompson, 1936 by Rauser-

Chernousova (in Rauser-Chernousova et al., 1951, pl. 48, fig. 5, 6) from the 

Myachkovian limestone at Polazna, Eastern European Platform. The present specimens 

possess larger proloculi than Rauser-Chernousova’s F. truncatulina (120–150 m vs. 85–

110 m).   

BEEDEINA sp. cf. B. TRUNCATULINA (Thompson, 1936) 

Figure 24.19 

Material studied.––Axial section SUI 130787, sample GN1-20/3.   

Occurrence.––Limestones N1, Gurkovo section; Donets Basin, Ukraine. 

Discussion.––The shortly fusiform, minute (0.86 mm in length and 0.45 mm in 

diameter) probably immature specimen possesses four and a half tightly coiled volutions, 

a very small proloculus (90 m, distinctly rounded chomata and regularly folded septa. 

This specimen differs from typical B. truncatulina Thompson, 1936 in its smaller size 

and type of septal folding. In Thompson’s specimens, septa are broadly fluted in the polar 

ends and unfluted near the tunnel, whereas the present specimen exhibits regular septal 

folding throughout its axial length. 

BEEDEINA sp. cf. B. SIVINIENSIS (Rauser-Chernousova in Rauser-Chernousova et 

al., 1951) 

Figure 24.21 

Material studied.––Slightly oblique section SUI 130786, sample KN2-20/1.   
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Occurrence.––Limestones N1, Gurkovo section; Donets Basin, Ukraine. 

Discussion.––The present specimen is a slightly oblique section, large (more than 

5 mm in length and 1.36 mm in diameter), with tightly coiled subrhomboidal inner 

volutions and loosely coiled outer ones. It has regularly folded septa, distinct chomata, 

discontinuous axial fillings in the inner four volutions, and a proloculus diameter of (160 

m). It is similar in all these features to B. siviniensis, but its precise shape of a test is 

unknown, because it is an oblique section.   

Genus FUSULINA Fischer de Waldheim, 1829 

FUSULINA CYLINDRICA Moeller, 1878 

Figures 25.1, 25.3 

Fusulina cylindrica FISCHER DE WALDHEIM, 1829, p. 330;  MOELLER, 1878, p. 51–54, 

pl. 7, fig. 1, a–c; SCHELLWIEN (part), 1908, p. 161–163, pl. 13, figs. 1–15, not  

3. 

Fusulina cylindrica Moeller.  PUTRJA, 1939, p. 118–119, pl. 1, figs. 13–15; RAUSER-

CHERNOUSOVA in RAUSER-CHERNOUSOVA et al., 1951, p. 303–304, pl. 

51, figs. 5a, b. 

Girtyina cylindrica (Fischer de Waldheim). LEE (part), 1927, p. 32–35, pl. 4, figs. 

4, 7, 9, not 1, 2, 5, 6, 8.  

Material studied.––Axial sections SUI 130788–130789, samples KA3/3-7, KN2-

22/1; slightly oblique section SUI 130790–SUI 130791, samples KA3/3-15, KA3/3-17.  

Occurrence.––Limestones N1
1, N2, Kalinovo section; Donets Basin, Ukraine. 

Discussion.–– Mature subcylindrical specimens with four or five volutions are 

4.00–6.10 mm in length and 1.00–1.42 mm in diameter. The studied specimens closely 
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resemble the types from Moscow Basin in test outline, very large proloculus (220 to 280 

m, rapidly expanding coil with rounded polar ends, thick irregularly folded septa and 

discontinuous axial fillings.  

FUSULINA DOMODEDOVI Rauser-Chernousova in Rauser-Chernousova et al., 

1951 

Figures 25.2, 25.5–25.6 

Fusulina cylindrica domodedovi RAUSER-CHERNOUSOVA in RAUSER-

CHERNOUSOVA et al., 1951, p. 304, pl. 51, figs. 6, 7. 

Material studied.––Axial sections SUI 130792–130794, samples KN2-26/1, 

KA3/11-4, KA3-11/6.   

Occurrence.––Limestones N2, N2
1, Kalinovo section; Donets Basin, Ukraine. 

Discussion.––Three long subcylindrical specimens with five volutions are 5.58–

6.90 mm in length and 1.00 to 1.28 mm in diameter. They closely resemble the types of 

F. cylindrica domodedovi Rauser-Chernousova in their rapidly expanding inner volutions 

and regularly folded septa that are thickened near the axial plane. The Donets specimens 

differ from the types in their slightly bent coiling axis.  

FUSULINA QUASICYLINDRICA (Lee, 1927) 

Figure 25.4 

Girtyina cylindrica Fischer de Waldheim.  LEE, 1927 (part), pl. 4, figs. 1, 2, 5, 6, 

8.  

Girtyina quasicylindrica LEE, 1927 (part), p.35–39, pl. 4, figs. 10–19, not. 11. 

[not] Fusulina quasicylindrica (Lee). RAUSER-CHERNOUSOVA in RAUSER-

CHERNOUSOVA et al., 1951, p. 305–306, pl. 52, figs. 2–4.  
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Material studied.––Axial sections SUI 130795–130797, samples KA3/3-9, 

KA3/3-14, KA3/4-3/2; slightly oblique sections SUI 130798–130799, samples KA3/3-4, 

KN2-25/1.  

Occurrence.––Limestones N1
1, N1

2, N2, Kalinovo section; Donets Basin, Ukraine. 

Discussion.––In the original description Lee (1927) illustrated rather large 

subcylindrical specimens with lengths varying from 5.46 to and 8.26 mm and diameters 

varying from 1.33 mm to 1.60 mm (Lee, 1927, pl. 4, figs. 14, 15). Short specimens (Lee, 

1927, pl. 4, figs. 11, 12) are obviously immature individuals. Our material from the 

Donets Basin includes quite variable specimens. The mature specimens with five or five-

and-a-half volutions are 4.30–6.00 mm in length and 1.07–1.30 mm in diameter. They 

closely resemble the types from China in their large size, subcylindrical to slightly 

inflated test, inner volutions that are tightly coiled, elongated and bluntly pointed, and 

strong axial fillings. They are similar in shape and type of septal folding to F. cylindrica, 

but differ from the latter in smaller proloculus size, tightly coiled inner volutions with 

pointed polar ends, and slightly inflated medial portion of the test. Therefore some of 

specimens with small proloculus and tightly coiled volutions illustrated by Lee (1927) as 

F. cylindrica we consider in this paper as F. quasicylindrica. 

FUSULINA QUASIFUSULINOIDES Rauser-Chernousova in Rauser-Chernousova et 

al., 1951 

Figures 25.7, 25.7a, 25.8  

Fusulina quasifusulinoides RAUSER-CHERNOUSOVA in RAUSER-

CHERNOUSOVA et al., 1951, p. 312, pl. 54, fig. 6, pl. 55, figs. 1, 2.  
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Material studied.––Axial sections SUI 130802–130803, samples KA3/3-5, 

KA3/3-20. 

Occurrence.––Limestone N1
2, Kalinovo section; Donets Basin, Ukraine. 

Discussion.––Large specimens with five volutions are 5.30–7.10 mm in length 

and 1.57–1.70 mm in diameter.  The specimens resemble the types from the Moscow 

Basin in their slightly bent coiling axis, regularly expanding inner volutions with rounded 

polar ends, large proloculus (230–320 m, highly developed axial fillings and irregular 

septal folding. Wall structure is four-layered in the inner three volutions (thickness 20–40 

m), with a discontinuously developed light gray outer tectorium, dark tectum, thin faint 

diaphanotheca and poorly developed dark inner tectorium. In the two outermost volutions 

the spirotheca becomes three-layered because of the disappearance of the outer tectorium. 

The diaphanotheca and dark inner tectorium became thicker in the outer volutions. The 

thickness of spirotheca in the outer volutions can reach 50 m because of the unevenly 

developed inner tectorium. Starting from the third or fourth volution, the spirotheca is 

penetrated by thin pores.  

FUSULINA SOSNINAE new species  

Figures 25.9, 25.9a, 25.10, 25.10a 

Fusulina quasicylindrica (Lee). RAUSER-CHERNOUSOVA in RAUSER-

CHERNOUSOVA et al., 1951, p. 305–306, pl. 52, figs. 2–4. 

Diagnosis.—Subcylindrical test outline, small proloculus, irregularly folded 

septa, small but prominent chomata developed up to the fourth volution, discontinuous 

axial fillings, thin three-layered wall structure in outer volutions. 



164 
 

 

  

Description.––Relatively small specimens with five volutions possess a 

subcylindrical test outline. Length varies from 3.43 to 3.90 mm and diameter varies from 

0.86 to 0.93 mm.  Tests of this species are tightly coiled in the inner, elongated 

subrhomboidal volutions. A small proloculus is ovoid in shape. The diameter of the 

proloculus varies from 130 to 150  Thick septa are irregularly folded, especially in the 

inner volutions and along the coiling axis. Small rounded chomata are well developed up 

to the fourth volution and form a tunnel that irregularly widens in the outer volutions. 

Axial fillings are well developed. The wall is thin, up to 10 m, and is weakly 

differentiated in inner volutions. In the outer volutions it is three-layered, up to 25 min 

thickness, and consists of dark tectum, faint gray diaphanotheca, and outer tectorium that 

possess the same color as the diaphanotheca. In some small portions of the wall, the 

diaphanotheca is clear. The wall in the final half-volution is two-layered and consists of 

tectum and gray diaphanotheca. Pores are very tiny, but visible, especially in the lighter 

portion of the diaphanotheca. 

Etymology.––The species is named for Dr. M. I. Sosnina, a fusulinid 

micropaleonologist, who contributed greatly to the understanding of the Carboniferous 

stratigraphy of the Donets Basin. 

Types.–– Holotype: axial section SUI 130800, sample KA3/11-7 (Fig. 5.9, 5.9a); 

paratype: axial section SUI 130801, sample KA3/11-5 (Figs. 5.10, 5.10a), type locality: 

Kalinovo section; type stratum: limestone N2
1 of the Kalinovo section, Myachkovian 

Horizon, Upper Moscovian. 

Measurements.––See Appendix. 

Occurrence.––Limestone N2
1, Kalinovo section; Donets Basin, Ukraine. 
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Discussion.––Rauser-Chernousova in Rauser-Chernousova et al., (1951) 

described medium sized specimens with walls typical for the latest Peskovian 

representatives of the genus Fusulina as F. quasicylindrica (Lee). She designated the 

specimen illustrated on Pl. 4, fig. 10 in Lee (1927) as a lectotype of F. quasicylindrica; 

however the lectotype is remarkably different from specimens from the Russian Platform, 

indentified by Rauser-Chernousova as F. quasicylindrica. The lectotype from China 

(Lee, 1927) is considerably larger, with more intensively fluted septa, strongly developed 

axial fillings and less prominent chomata. The new species is erected to accommodate 

our material from the Donets Basin as well as Russian Platform specimens incorrectly 

referred to F. quasicylindrica.  

FUSULINA sp. cf. F. PANCOUENSIS (Lee, 1927) 

Figure 25.11 

Material studied.––Axial section SUI 130804, sample KA3/3-1. 

Occurrence.––Limestones N1
2, Kalinovo section; Donets Basin, Ukraine. 

Discussion.––One tightly coiled, subcylindrical, microsphaerical specimen with 

eight volutions is 6.43 mm long and 1.58 mm in diameter. The proloculus is very small, 

and thick septa are irregularly folded. Small chomata are well developed in inner 

volutions. Axial fillings are strongly developed from the second volution and occupy 

two-thirds of the test. The wall is thin and poorly preserved in the inner volutions. It is 

four-layered with a diaphanotheca in the outer volutions. The present specimen resembles 

to F. pancouensis (Lee) in size, well developed secondary deposits and wall structure, but 

differs in greater volution numbers and smaller proloculi size. F. pancouensis (Lee) from 

China possesses six volutions, whereas the present specimen has eight volutions with 
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skewed first initial one. It has large (0.3 mm in diameter) round to ovoid proloculus, 

whereas proloculus in the Donets specimen is small (less than 0.1 mm).  

Family FUSULINELLINAE Staff and Wedekind, 1910 

Genus FUSULINELLA Moeller, 1878 

FUSULINELLA PSEUDOBOCKI Lee and Chen in Lee, Chen, and Chu, 1930 

Figures 26.1, 26.1a 

Fusulinella (Neofusulinella) pseudobocki LEE AND CHEN in LEE, CHEN AND CHU, 

1930, p. 122–123, pl. 9, figs. 10–15 (not 13); pl. 10, figs. 1–6 (not 7). 

Fusulinella pseudobocki Lee and Chen. RAUSER-CHERNOUSOVA in  RAUSER-

CHERNOUSOVA et al., 1951, p. 227–228, pl. 32, figs. 8, 9. 

Material studied.––Axial section SUI 130805, sample KA3/3-6. 

Occurrence.––Limestone N1
2, Kalinovo section; Donets Basin, Ukraine. 

Discussion.––One large, shortly fusiform specimen with six volutions is 3.58 mm 

in length and 1.47 mm in diameter. It possesses a highly inflated median part and rapidly 

elongated polar ends in the two outer volutions. This specimen closely resembles a 

specimen illustrated by Lee and Chen (in Lee et. al., 1930, pl. 9, fig. 14), which we are 

formally designating as a lectotype of Fusulinella pseudobocki. This species differs from 

very similar Fusulinella bocki Moeller, 1878 in its test outline and intense septal folding 

along coiling axis. The two species are similar in their high and massive subsquared 

chomata. The wall structure in the outer volutions changes from being four-layered with 

translucent diaphanotheca (typical for the genus), into three-layered with faint 

diaphanotheca. Some thickening of the wall can be observed in the fourth volution 
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between the chomata because an increase in the thickness of the dark inner tectorium 

(Figs. 6.1a).  

FUSULINELLA sp. cf. F. BOCKI INTERMEDIA Rauser-Chernousova in Rauser-

Chernousova et al., 1951 

Figures 26.2–26.5  

Material studied.––Axial section SUI 130806, sample KA3/3-8; slightly oblique 

sections SUI 130807–130809, samples KA3/3-10, KA3/3-16, KA3/3-19. 

Occurrence.––Limestone N1
2, Kalinovo section; Donets Basin, Ukraine.  

Discussion.––The present ovoid tests, with almost globular inner volutions, 

bluntly polar ends and massive chomata resemble Fusulinella bocki intermedia but differ 

from the latter in their smaller size. The mature specimens with five volutions are 2.32–

2.44 mm in length and 0.94–1.21 mm in diameter.  

FUSULINELLA RARA Schlykova, 1948 

Figures 26.6, 26.8, 26.8a, 26.11  

Fusulinella pseudobocki var. rara SCHLYKOVA, 1948, p. 134–135, pl. 7, fig. 3–

5.   

Fusulinella rara Schlykova. RAUSER-CHERNOUSOVA in  RAUSER-

CHERNOUSOVA et al., 1951, p. 231–232, pl. 34, figs. 3, 4. 

Material studied.––Axial sections SUI 130810–130812, samples KA3/3-2, 

KA3/3-12, KA3/3-23. 

Occurrence.––Limestone N1
2, Kalinovo section; Donets Basin, Ukraine. 

Discussion.––Large fusiform specimens with five volutions are 3.10–3.72 mm in 

length and 1.05–1.20 mm in diameter. The studied specimens resemble the types 
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described from the Samara region (East European Platform, Russia) in having ovoid 

tightly coiled inner volutions, small proloculi, massive subsquared chomata and 

intensively folded thin septa at the polar ends in the outer volutions. The four-layered 

wall with diaphanotheca thickens gradually from the inner (10–15 m) to the outer 

volutions (55–60 m). Such changes in wall thickness seem to be typical for the 

Fusulinella species that occur in the Fusulina cylindrica – Fusulinella pseudobocki Zone.  

FUSULINELLA sp. cf. F. PAUCISEPTATA Rauser-Chernousova and Belyaev in 

Rauser-Chernousova, Belyaev, and Reitlinger, 1936 

Figures 26.7, 26.9, 26.10, 26.12, 26.13 

Material studied.––Axial sections SUI 130813–130817, samples KA3/3-3, 

KA3/3-5a, KA3/3-11/2, KA3/3-13, KA3/3-21.  

Occurrence.––Limestone N1
2, Kalinovo section; Donets Basin, Ukraine. 

Discussion.––The present specimens resemble Fusulinella pauciseptata, 

described from the East European Platform in their fusiform test outline, which is inflated 

in the medial part, and elongated, bluntly pointed polar ends. However, they differ in 

their inner structure. The studied specimens possess tightly coiled, ovoid inner volutions 

and a rapidly expanding outer volution. In F. pauciseptata sensu stricto the inner 

volutions expand gradually and are fusiform with pointed polar ends. Chomata are 

massive and subsquared in the Donets material and prominent rounded to subtriangular in 

F. pauciseptata. The studied specimens resemble F. pseudobocki in their inner structure, 

but differ from the latter by having fusiform test outline, and smaller size. The studied 

mature specimens with five volutions are 2.88–3.25 mm in length and 1.06–1.33 mm in 

diameter and possess small proloculus 80–100 m The wall is four-layered with 
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diaphanotheca that gradually transforms from clear into faint gray. The wall is slightly 

thicker than in Podolskian species of Fusulinella.  

FUSULINELLA (?) sp. cf. F. KUMPANI Putrja, 1939 

Figures 26.18, 26.19, 26.19a 

Material studied.––Axial section SUI 130823, sample KA3/11-1. 

Occurrence.––Limestone N2
1, Kalinovo section; Donets Basin, Ukraine.  

Discussion.––The elongated subcylindrical specimen is 4.00 mm in length and 

1.22 mm in diameter, and possesses two or three globular inner volutions and thin septa 

that are intensely folded at the polar ends. Chomata in the inner volutions are small and 

subtriangular. They become massive and subsquared in the outer volutions where they 

border an irregular tunnel. These features closely resemble those in Fusulinella kumpani 

described by Putrja (1939) from the Donets Basin. This species is characterized by a 

unique wall structure, different from that in Fusulinella, which is four-layered with a thin 

diaphanotheca, and from that in Protriticites, which is four-layered with thick and faintly 

porous diaphanotheca.  In this specimen, the thin diaphanotheca present as a 

discontinuous layer and only in outer volutions. In inner volutions the wall is three-

layered, consisting of a tectum bracketed by inner and outer tectoria.  

FUSULINELLA (?) sp.  

Figures 26.14, 26.14a, 26.15–26.18  

Protriticites ex gr. P. pseudomontiparus Putrja. RAUSER-CHERNOUSOVA in  

RAUSER-CHERNOUSOVA et al., 1951, p. 317, pl. 57, fig.1. 

Material studied.––Axial section SUI 130818, sample KA3/4-1; paraxial sections 

SUI 130819–130822, samples KA3/4-2, KN2-21/1, KN2-24/1, KN2-6/3.  
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Occurrence.––Limestone N2, Kalinovo section; Donets Basin, Ukraine. 

Discussion.––Medium sized specimens with four volutions are 1.68–2.50 mm in 

length and 0.89–1.12 mm in diameter. The massive chomata and shortly fusiform test 

outlines in the studied specimens are similar to those in Fusulinella bocki Moeller, 1878, 

a very abundant species in the Korobcheevo Formation in the Moscow Basin. The main 

and important difference between these comparable species is the wall structure; in the 

studied species a clear diaphanotheca becomes faint and present, only as discontinuous 

layer. Specimens of Fusulinella bocki from the Latest Podolskian (Limestone M10) 

possess typical four-layered walls with a continuously developed diaphanotheca in all 

volutions.  Forms from the Early Myachkovian (Limestone N1
2) possess three- and four-

layered walls, with a faint diaphanotheca in the inner volutions that becomes better 

developed beginning in the fourth volution. In specimens from the limestone N2, the wall 

is almost completely transformed into a three-layered structure; however some patches of 

thin, clear diaphanotheca are still preserved in the polar ends. The studied specimens are 

similar in wall structure to Fusulinella (?) kumpani Putrja, 1939, F. (?) podolskensis 

Rauser-Chernousova in Rauser-Chernousova et al., 1951, although the wall is thinner in 

the latter. The chomata are also more massive in the studied specimens as opposed to 

those in F. (?) kumpani and F. (?) podolskensis.  
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Figure 23. Myachkovian fusulinids. Taitzehoella,  Neostaffella, Pseudostaffella, Fusiella, 

Ozawainella species.  

Taitzehoella,  Neostaffella, Pseudostaffella, Fusiella, Ozawainella species, x 35.1-

2- Ozawainella krasnokamski kirovi Dalmatskaya, 1961, axial sections: 1– SUI 130697, 

sample GN1-7/1, limestone N1, Gurkovo section, 2– SUI 130698, sample KN2-10/3, 

limestone N2, Kalinovo section; 3–5 - Ozawainella vozhgalica Safonova, 1951, axial 

sections: 3– SUI 130703, sample KN2-14/1, 4– SUI 130704, sample KN2-15/1, 5–SUI 

130702, sample KN2-4/1, limestone N2, Kalinovo section; 6–7- Neostaffella sphaeroidea 

(Moeller, 1978), axial sections: 6– SUI 130743, sample GN1-19/2, 7– SUI 130741, 

sample GN1-5/1, limestone N1, Gurkovo section; 8–9, 11- Neostaffella khotunensis 

(Rauser-Chernousova, 1951), axial sections:  8– SUI 130751, sample GN1-2/4, 9– SUI 

130752, sample GN1-3/3, 11– SUI 130750, sample GN1-2/2, limestone N1, Gurkovo 

section; 10 - Neostaffella distorta Pogrebnyak, 1975, axial section SUI 130754, sample 

KN2-6/4, limestone N2, Kalinovo section; 12, 14, 17 - Fusiella praelancetiformis 

Safonova, 1951, axial sections: 12–SUI 130716, sample GN1-7/4, limestone N1, Gurkovo 

section, 14–SUI 130720, sample KN2-12/1, limestone N2, Kalinovo section, 17 –SUI 

130718, sample KA3/1-13a, limestone N1, Kalinovo section; 13, 15–16-  Fusiella 

spatiosa Sheng, 1958, axial sections: 13– SUI 130711, sample GN1-10/1, 15– SUI 

130709, sample GN1-2/1, 16– SUI 130713, sample GN1-22/1, limestone N1, Gurkovo 

section;  18, 22–23- Taitzehoella extensa Sheng, 1958, paraxial sections: 18–SUI 130731, 

sample KN2-13/1, 22–SUI 130733, sample KA3/4-11/1, limestone N2, Kalinovo section, 

axial section 23– SUI 130730, sample KA3/11-3, limestone N2
1, Kalinovo section; 19–

21-Taitzehoella simplicata (Lee, 1937), axial sections: 19–SUI 130725, sample KN2-

10/1, limestone N2, 21–SUI 130727, sample KA3/11-2, limestone N2
1, immature 

specimen 20–SUI 130729, sample KN2-20/2, limestone N2, Kalinovo section; 24–26 -

Taitzehoella perseverata Safonova, 1951, axial sections: 24– SUI 130738, sample KN2-

16/1, 25– SUI 130736, sample KN2-18/1, 26– SUI 130734, sample KN2-1/1, limestone 

N2, Kalinovo section.   
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Figure 24. Myachkovian fusulinids. Beedeina and Hemifusulina species. 

Beedeina, Hemifusulina, x 20. 1–2- Hemifusulina bocki Moeller, 1878, axial sections: 1– 

SUI 130756, sample GN1-9/1, 2– SUI 130757, sample GN1-15/1, limestone N1, Gurkovo 

section; 3, 6, 9 - Hemifusulina stabilis Rauser-Chernousova and Safonova, 1951, axial 

sections: 3– SUI 130770, sample GN1-18/1, limestone N1, Gurkovo section, 6–SUI 

130771, sample  KA3/1-9, 9 –SUI 130772, sample KA3/1-13, limestone N1, Kalinovo 

section; 4–5, 7 - Hemifusulina gurkovensis n. sp., axial sections: 4–SUI 130760, sample 

GN1-21/1, 5– SUI 130761, sample GN1-14/1, 7 –SUI 130759, axial section of holotype 

GN1-16/1, limestone N1, Gurkovo section; 8, 10 - Hemifusulina graciosa Lee, 1937, 

axial sections: 8–SUI 130765, sample KA3/1-8, 10 – SUI 130762, sample KA3/1-10, 

limestone N1, Kalinovo section; 11–15, 20- Beedeina innaeformis n. sp., axial section of 

holotype 15–SUI 130775, sample KN2-3/1, axial sections: 11– SUI 130781, sample 

KA3/4-5, 12– SUI 130776, sample KN2-5/1, 13–SUI 130778, sample KN2-19/1, 14– 

SUI 130777, sample KN2-11/1, 20– SUI 130780, sample KA3/4-4, limestone N2, 

Kalinovo section; 16–18-Beedeina sp. cf. B. paradonetzica (Putrja, 1939), axial sections: 

16– SUI 130783, sample GN1-1/1, 17– SUI 130785, sample GN1-11/1, 18–SUI 130784, 

sample GN1-8/1, limestone N1, Gurkovo section; 19– Beedeina sp. cf. B. trunscatulina 

(Thompson, 1936), axial section SUI 130787, sample GN1-20/3, limestone N1, Gurkovo 

section; 21– Beedeina sp. cf. B. siviniensis (Rauser-Chernousova, 1951), slightly oblique 

section SUI 130786, sample KN2-20/1, limestone N2, Kalinovo section. 
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Figure 25. Myachkovian fusulinids. Fusulina species. 

 Fusulina, x20. 1, 3- Fusulina cylindrica Moeller, 1878, axial sections: 1– SUI 130788, 

sample KA3/3-7, limestone N1
1, 3– SUI 130789, sample KN2-22/1, limestone N2, 

Kalinovo section;  2,.5, 6 - Fusulina domodedovi Rauser-Chernousova, 1951, axial 

sections: 2– SUI 130793, sample KA3/11-4, limestone N2
1, 5–SUI 130792, sample KN2-

26/1, limestone N2, paraxial section.6– SUI 130794, sample KA3/11-6, limestone N2
1, 

Kalinovo section; 4 - Fusulina quasicylindrica (Lee, 1927), axial section SUI 130795, 

sample KA3/3-9, limestone N1
1, Kalinovo section; 7–8 - Fusulina quasifusulinoides 

Rauser-Chernousova, 1951, axial sections: 7– SUI 130802, sample KA3/3-5, 8– SUI 

130803, sample KA3/3-20, limestone N1
1, Kalinovo section, 7a, wall structure of the 

specimen SUI 130802,   100; 9–10 - Fusulina sosninae n. sp., 9– SUI 130800, sample 

KA3/11-7, axial section of holotype, limestone N2
1, Kalinovo section, 9a, wall structure 

and coiling expansion in inner volutions of this specimen,   80, 10 – SUI 130801, sample 

KA3/11-5, axial section of paratype, limestone N2
1, Kalinovo section, 10a, wall structure 

of this specimen,   80; 11 - Fusulina sp. cf. F. pancouensis (Lee, 1927), axial section of 

microsphaeric specimen SUI 130804, sample KA3/3-1, limestone N1
1, Kalinovo section. 
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Figure 26. Myachkovian fusulinids. Fusulinella species. 

Fusulinella, x 20; wall, x 100. 1 - Fusulinella pseudobocki (Lee and Chen, 1930), 

axial section SUI 130805, sample KA3/3-6, limestone N1
1, Kalinovo section, 1a, wall 

structure of this specimen; 2–5 - Fusulinella sp. cf. F. bocki intermedia, Rauser-

Chernousova, 1951, slightly oblique sections: 2– SUI 130808, sample KA3/3-16, 3– SUI 

130809, sample KA3/3-19, 4– SUI 130807, sample KA3/3-10, 5– SUI 130806, sample 

KA3/3-8, limestone N1
1, Kalinovo section; 6, 8, 11 - Fusulinella rara Schlykova, 1948, 

slightly oblique section 6– SUI 130810, sample KA3/3-2 and axial sections: 8– SUI 

130811, sample A3/3-12, 11 – SUI 130812, sample A3/3-23, limestone N1
1, Kalinovo 

section, 8a, wall structure of the specimen SUI 130811; 7, 9, 10, 12, 13 - Fusulinella sp. 

cf . F. pauciseptata Rauser-Chernousova and Beljaev, 1936, axial sections: 9– SUI 

130815, sample KA3/3-11/2, 10– SUI 130817, sample KA3/3-21, 12– SUI 130814, 

sample KA3/3-5a, 13 – SUI 130813, sample KA3/3-3; slightly oblique section 7– SUI 

130816, sample KA3/3-13, limestone N1
1, Kalinovo section; 14–18 - Fusulinella (?) sp., 

paraxial sections: 14– SUI 130821, sample KN2-24/1, 15– SUI 130822, sample KN2-6/3, 

18– SUI 130820, sample KN2-21/1, limestone N2, Kalinovo section, 14a, wall structure 

of the specimen SUI 130821; 16– SUI 130818, sample KA3/4-1, limestone N1
2, Kalinovo 

section, slightly oblique section 17– SUI 130819, sample KA3/4-2, limestone N1
2, 

Kalinovo section; 19 - Fusulinella (?) cf. F. kumpani Putrja, 1939, paraxial section 18– 

SUI 130823, sample KA3/11-1, limestone N2
1, Kalinovo section. 
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Myachkovian fusulinid biostratigraphy 

The distribution of 62 species from the upper part of the “M” Formation and the 

lower part of the “N” Formation is presented in Appendix, Table 6B. Although strata of 

the “N” Formation are poorly exposed and therefore not well characterized by fusulinid 

faunas, we propose four fusulinid biozones in the Podolskian – Myachkovian transition, 

each of which is fairly well correlated with fusulinid assemblages in the Moscow Basin 

(Isakova in Makhlina et al., 2001).  

A cyclic distributional model of fusulinids in the Donets Basin reveals two full 

transgressive-regressive cycles. The first approximately coincides with the duration of 

Podolskian Horizon, the second with the Myachkovian Horizon. The beginning of each 

cycle starts with the Hemifusulina association interpreted as the beginning of 

transgression. The M7 and M7
up limestones contain Hemifusulina species that are similar 

to those of the Hemifusulina vozhgalica Zone of the Smedva Formation, the upper part of 

the Kashirian strata in the Moscow Basin. A detailed discussion of the Kashirian – 

Podolskian fusulinid biostratiography in the Donets Basin and its correlation with the 

Moscow Basin using a proposed cyclic distributional model is intended for a separate 

paper. Late transgressive limestone,M8 and sea level high stand limestone M9 contain 

fusulinids that allow correlation of this interval with the Vaskino Formation of the 

Moscow Basin. A proposed Putrella donetziana – Kamaina rossoshanica Zone 

corresponds to the interval of M9 – M10 and is correlated with Podolskian strata, the 

Vaskino (M9) and probably Ulitino or Shchurovo Formations (M10) in the Moscow Basin.  

According to the cyclic model the interval extending from limestone M10 to N1 

coincides with a regressive episode, a gradual falling of sea level and development of 
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highly endemic fusulinids. As a result, a correlation of the upper Podolskian and lower 

Myachkovian strata with coeval strata in the Moscow Basin (Ulitino, Shchurovo and 

lower part of Korobcheevo Formations) is difficult. 

 New transgression is marked by the limestone N1. In the studied sections 

transgressive beds are represented by a single limestone N1, whereas in the Eastern 

Donets Basin (Putrja, 1940) the thickness increases and this bed is represented by several 

thin clayed limestones intercalated with shales. Fusulinids are represented by mainly 

Hemifusulina species. In the Moscow Basin the coeval strata are documented in the upper 

part of the Korobcheevo Formation, Myachkovian Horizon (Makhlina et al., 2001). As 

transgression is a very rapid event, the beds with abundant Hemifusulina in both regions 

can be considered as coeval strata. Therefore a proposed Hemifusulina graciosa – 

Fusiella spatiosa Zone (Fig. 27) is fairly well correlated with the upper part of the 

Korobcheevo Formation in the Moscow Basin. Maximum transgression is marked by the 

Beedeina-dominant assemblage occurring in the N1
6 limestone from the northern part of 

the Donets Basin, Kharkovskaya Oblast, in which Pogrebnyak (1975) described Beedeina 

lanceolata (Lee and Chen in Lee, Chen and Chu, 1930) and B. siviniensis (Rauser-

Chernousova in Rauser-Chernousova et al., 1951). The interval of this limestone is 

poorly exposed in the studied sections. Available material allows definition of two zones: 

the Fusulina cylindrica – Fusulinella pseudobocki Zone corresponds to the interval of the 

N1
1 – N2 limestones (Fig. 27) and is correlated with the Fusulina cylindrica Zone of the 

Domodedovo Formation and probably the lower part of the Peski Formation of the 

Moscow Basin; the upper Fusulinella (?) kumpani Zone extending from the base of N2 to 
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the base of N3 (Fig. 27) is related to the Protriticites ovatus Zone in the upper part of 

Peski Formation in the Moscow Basin. 
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Figure 27. The Gurkovo and Kalinovo sections of the “M” and “N” Formations, redrawn 

from Eros J. M. et al. 2012.  
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Hemifusulina graciosa – Fusiella spatiosa Zone 

The interval between the M10 limestone with Podolskian fusulinids, and the N1 

limestone where first typical Myachkovian forms are recognized, is not characterized by 

fusulinids. Material from Limestones M10
1 and M10

2 were not available for this study, 

therefore future work needs to be conducted to clarify the exact position of the 

Podolskian – Myachkovian boundary. 

The main feature of the proposed zone is the disappearance of Putrella 

brazhnikovae (Putrja) and Fusulina rossoshanica Putrja, which were abundant in the 

upper Podolskian Limestones. Predominantly short, fusiform species of Fusiella are 

replaced by large, elongated fusiform F. spatiosa Sheng and small sized F. 

prealancetiformis Safonova in the limestone N1. The latter two are distinguished from 

their ancestors by their strongly developed axial fillings. An important feature for this 

zone, in contrast to the upper Podolskian, is the presence of abundant and diverse 

Hemifusulina with a two-layered porous wall structure. The relatively small ovoid 

Hemifusulina aff. H. bocki Moeller, which is rare in the M9 limestone, gave rise to large 

subcylindrical H. graciosa and H. gurkovensis n. sp. with prominent axial fillings, which 

are absent in the late Podolskian form. Besides the large subcylindrical species, the 

Hemifusulina assemblage includes small tightly coiled species similar to H. stabilis from 

the Moscow Basin, which also possesses discontinuous axial fillings. Large Neostaffella 

sphaeroidea are also abundant in this zone and slightly differ from the older late 

Podolskian specimens in their larger size, more volutions and more massive chomata. 

Small species of this genus occur in association with the large forms. Ozawainella are 

often in this zone and are represented by small subrhomboidal species O. krasnokamski 
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kirovi Dalmatskaya. Small Beedeina are represented by rare subrhomboidal species, 

whereas Fusulinella species are absent in Limestone N1. 

The Upper Member of the Korobcheevo Formation, Rozhay cyclothem in the 

Moscow Basin (Kabanov, 2003, Makhlina et al., 2001) contains a similar assemblage of 

fusulinids, such as Hemifusulina stabilis Rauser-Chernousova, H. aff. H. bocki Moeller 

and Neostaffella sphaeroidea (Moeller), and could be approximately correlative with 

Limestone N1 in the Donets Basin.  

Fusulina cylindrica – Fusulinella pseudobocki Zone 

In contrast to the underlying beds, the limestones N1
1and N1

2 contain the index 

form Fusulina cylindrica, as well as diverse and abundant populations of F. cylindrica 

domodedovi, F. quasifusulinoides, F. quasicylindrica, and F. pancouensis, which are 

distinguished mainly by their large fusiform to subcylindrical shape. The main features of 

these species and contemporaneous Beedeina innaeformis n. sp., are their thick septa and 

massive axial fillings.  

The walls of these genera have evolved from four-layered to three-layered 

because of the disappearance of the inner tectorium, and the transformation of clear 

diaphanotheca into a faint thick one. In the limestone N1
1 these changes are only 

incipiently developed (Fusulina quasifusulinoides, Fig. 25.7a), whereas in the limestone 

N1
2 the wall of Beedeina species (Fig. 28.2) is mainly three-layered with a tectum, faint 

diaphanotheca, and continuous outer tectorium, which is the same color as the 

diaphanotheca with some residual clear portions in the thicker parts of the wall (Fig. 

28.2a). The discontinuous inner tectorium is weakly developed as a very thin dark gray 

line underlining the diaphanotheca. The thickness of the wall in the species of these 
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genera does not significantly change from the M10 limestone to the N1
2 limestone and 

remains almost constant at approximately 25–35m 

A parallel evolution in the wall structure is observed in the Fusulinella species, 

represented by F. bocki pauciseptata, F. pseudobocki, and F. rara, which are 

distinguished from the Podolskian species by their thicker and intensely fluted septa and 

more massive chomata. The wall structure is the same as that described for the Fusulina 

and Beedeina species. In the limestone N1
1 the diaphanotheca has advanced into a fainter, 

gray one which has the same color as the outer tectorium (Fusulinella pseudobocki, Fig. 

26.1a), but occasionally the residual clear diaphanotheca could be seen in the polar 

regions of the tests (Fusulinella rara, Fig. 26.8a). In contrast to the wall structure of 

Fusulina and Beedeina, which possesses weakly developed outer tectorium and rather 

distinct dark inner tectorium, Fusulinella exhibits a well-developed outer tectorium, 

while the inner tectorium often remains undeveloped (Figs. 26.1a, 28.1a). The wall 

thickness of Fusulinella species progressively increases but does not exceed 50 m 

Other important characteristics for the association of this zone are the 

disappearance of large Neostaffella sphaeroidea, and the frequent occurrence of large 

Taitzehoella species.  

The Fusulina cylindrica – Fusulinella pseudobocki Zone proposed here for the 

interval N1
1 – N1

2 corresponds to the Fusulina cylindrica Zone of the Moscow Basin 

(Makhlina et al., 2001). The absence of material from the interval between N1
2 and N2 

complicates the accurate correlation of the Donets fusulinid succession with the typical 

one in the Moscow Basin. 
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Figure 28. Evolution of wall structure in Fusulinella and Beedeina. 

Fusulinella, Beedeina, x 20; wall, x 100. 1- Fusulinella (?) sp., slightly oblique 

section SUI 130819, sample KA3/4-2, limestone N1
2, Kalinovo section; 1a, three-layered 

wall structure of the outer and inner volutions consists of dark tectum, faint, light gray 

diaphanotheca, and light gray outer tectorium; 1b, remnants of light thin diaphanotheca 

near polar ends of the test; 2 - Beedeina innaeformis n. sp., axial section SUI 130781, 

sample KA3/4-5, limestone N1
2, Kalinovo section; 2a, three-layered wall structure of the 

inner and outer volutions consists of dark tectum, faint, light gray diaphanotheca, and 

light gray outer tectorium; 3 - Beedeina sp. cf. B. siviniensis (Rauser-Chernousova), 

slightly oblique section SUI 130786, sample KN2-20/1, Kalinovo section; 3a, three-

layered wall structure of the inner volutions comprises of dark tectorium, thick faint gray 

diaphanotheca, and dark gray inner tectorium; 3b, three- to two-layered wall structure of 

the outer volutions because of discontinuity of inner tectorium; 3c, remnants of light 

diaphanotheca near polar ends of the test.     
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Fusulinella (?) kumpani Zone 

The upper Myachkovian (limestones N2, N2
1) in the Donets Basin is characterized 

by a fusulinid association comprising several species of the genera Fusulinella (?), 

Fusulina, Beedeina and Taitzehoella. The appearance of the elongated species Fusulina 

cylindrica domodedovi Rauser-Chernousova, Beedeina sp. cf. B. siviniensis (Rauser-

Chernousova), and diverse Taitzehoella, T. taitzehoensis extensa Sheng and T. 

perseverata Safonova, characterizes this zone. This interval contains the last occurrence 

of the genera Taitzehoella and Hemifusulina.   

In the limestone N2 a development of a three-layered wall structure in large 

species of Fusulina (Fig. 29.3) and Beedeina (Fig. 28.3) has the same trend: 

diaphanotheca continues its transformation into faint light gray color (Figs. 28.3a, 29.3a). 

The lightest portion of diaphanotheca is better preserved in the lateral sides of the tests 

(Figs. 28.3c, 29.3b). A final volution is two-layered and consists of tectum and porous 

diaphanotheca (Fig. 28.3b, 29.3c). In the limestone N2
1 the wall structure of Fusulina 

species (Fig. 29.2) is similar to that in Beedeina innaeformis n.sp. from the limestones 

N1
1 and N1

2. It is three-layered with dark tectum, and gray outer tectorium and 

diaphanotheca (Fig. 29.2a).  

The wall structure of Fusulinella species in this zone continuously transforms 

from four-layered in the limestone N1
1 to three-layered in N2 (Figs. 28.1, 28.1a), but the 

diaphanotheca is still present in the polar ends of the specimens (Fig. 28.1b). Thickness 

of the wall increases in the outer volutions (Fig. 26.14a) making them very similar to 

Protriticites. However, remnants of light diaphanotheca (Fig. 28.1b) show their affinity 
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to the genus Fusulinella. These species are transitional between these two genera and 

have been referred to as primitive Protriticites (Davydov, 1997).  

Representatives of Fusulinella (?) kumpani (Fig. 29.1) appear in the limestone 

N2
1. The main distinctions of this species from its ancestors in the group of Fusulinella 

pseudobocki (fusiform) are less developed secondary deposits (especially in the inner 

volutions), and a thinner wall. In F. (?) kumpani, the thickness of the wall is reduced to 

25–30 min the outer volutions, and 10 m in the inner volutions. The three-layered 

wall structure remains unchanged and comprises a faint diaphanotheca and outer 

tectorium separated by dark thin tectum (Fig. 29.1a, 29.1b).  

The proposed Fusulinella (?) kumpani Zone that embodies the interval between 

the limestones N2 and N3 on the basis of stratigraphic position could be correlated with a 

zone Praeobsoletes burkemensis – Protriticites ovatus of the Peski Formation, the 

uppermost Myachkovian of the Moscow Basin (Davydov, 1997, Goreva et. al., 2009). 
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Figure 29. Evolution of wall structure in Fusulinella and Fusulina. 

Fusulinella, Fusulina, x 20; wall, x100. 1- Fusulinella (?) sp. cf. F. kumpani Putrja, 

paraxial section 18– SUI 130823, sample KA3/11-1, limestone N2
1, Kalinovo section, 

20; 1a, 1b, three-layered wall structure of the outer and inner volutions, comprises of 

dark gray tectum, gray both diaphanotheca and outer tectorium; 2 - Fusulina sosninae n. 

sp., SUI 130801, sample KA3/11-5, axial section, limestone N2
1, Kalinovo section; 2a, 

three-layered wall structure of the outer and inner volutions, comprises of dark gray 

tectum, gray both diaphanotheca and outer tectorium; 3- Fusulina domodedovi Rauser-

Chernousova,  axial section SUI 130792, sample KN2-26/1, limestone N2, Kalinovo 

section; 3a, 3b, 3c, three-layered wall structure of the outer and inner volutions, 

comprises of dark gray tectum, light gray diaphanotheca and dark gray inner tectorium.   
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Fusulinid evolution trends in the Late Moscovian 

The traditional Moscovian – Kasimovian boundary was first established on the 

basis of fusulinid evolution. This boundary was critical for many genera, some of them 

gradually becoming extinct (Hemifusulina, Taitzehoella, Neostaffella, Beedeina), while 

others such as Protriticites, Obsoletes, and Quasifusulinoides progressively evolved from 

Fusulinella and Fusulina. Limestone N2
1 is characterized by the last occurrences of 

Taitzehoella and Hemifusulina species. Only a few small and primitive Neostaffella 

species such as N. distorta, N. khotunensis persisted into the limestone N3. Larger species 

such as N. sphaeroidea and N. larionovae last occurred at the base of the Myachkovian, 

in the limestone N1. Beedeina species were the last to go extinct at the latest Moscovian; 

their last occurrence is marked in the limestone N5.  

By analyzing fusulinids at the Podolskian – Myachkovian boundary, we have 

recognized that the main change is the appearance of massive secondary deposits in the 

limestone N1 that could be correlated with the upper Member of the Korobcheevo 

Formation, Rozhay cyclothem (Kabanov, 2003). All species in the genera Fusulina, 

Fusiella, Beedeina, and Hemifusulina started to precipitate axial fillings, whereas 

Neostaffella and Fusulinella deposited massive chomata. Further in the limestone N3 

secondary fillings appeared in the wall structure in the genera Fusulina 

(Quasifusulinoides) and Fusulinella (Protriticites). Later in the limestone N5 and O1 the 

secondary deposits on the test wall and massiveness of the axial fillings and the chomata 

were gradually reduced. Such trends in the transformation of fusulinid morphology were 

also documented in the Moscow Basin, Middle Asia, China, Southern Urals, and the 
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Cantabrian Mountains (Lee, 1927, Rauser-Chernousova et al., 1951, Sheng, 1958, van 

Ginkel, 1965, Rumjanzeva, 1974).  

Probably the appearance of massive secondary deposits in specimens of all genera 

accross the Podolskian – Myachkovian boundary, coinciding with a continuous extinction 

of Hemifusulina, Beedeina, Neostaffella, Taitzehoella, was a result of some global or 

regional events. The floristic zone Odontopteris cantabrica which is correlated with the 

“N” Formation in the Donets Basin [Fisunenko, 2000] also suggests some events 

happened on the Laurussia continent. These events might be linked either with some 

paleogeographic and tectonic events on continents resulting in climate change and global 

glaciation accompanied by reduction and environmental disturbance of epicontinental 

seas. A global glaciations episode in Myachkovian time is supported by extinction of 

Hemifusulina, Beedeina, Neostaffella, Taitzehoella, which preferentially occur in 

transgressive deposits, and therefore colder water.    

Conclusions 

1. Four fusulinid biozones have been proposed in the interval from the base of the 

Limestone M9 to the base of limestone N3: Putrella donetziana – Kamaina rossoshanica, 

Hemifusulina graciosa – Fusiella spatiosa, Fusulina cylindrica – Fusulinella 

pseudobocki, and Fusulinella (?) kumpani. These zones are fairly well correlated with the 

upper Podolskian – Myachkovian interval (Upper Moscovian strata), in the Moscow 

Basin. The similarity of fusulinid assemblages in the Moscow and Donets basins and 

their cognate evolution trends reveal a close connection between those regions at least 

during Myachkovian time.   
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2. Similar trends in wall structure evolution have been recognized in Fusulinella, 

Fusulina and Beedeina genera. Successive stages in the wall transformation are a 

principal basis for the fusulinid biozonation. 

3. The Myachkovian was a critical time for many fusulinids in epicontinental 

seas. The genera Hemifusulina, Neostaffella, Beedeina, gradually became extinct at the 

end of Moscovian, while Fusulinella and Fusulina gave rise to Protriticites and 

Quasifusulinoides.  
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APPENDIX  

Here I attach Supplementary Data for the CHAPTER TWO. This Supplementary 

Data includes description of “M” Formation in the Gurkovo section, outcropped in the 

southern suburb of the town of Pervomaysky. The “M” formation is represented mainly 

by siliciclastic deposits: sandstone, siltstone, clays, with subordinate limestone beds and 

coal seams. A total of 20 limestone beds and 28 coal seams are documented in this 

formation. This section was described by Makarov (1985). Lithology is adapted to the 

western terminology. 

Appendix A 

Gurkovo section 

1. Limestone M1 is comprised of two units. The lower unit is a thin-bedded gray 

wackstone with abundant sponge spicules and fossil remains: crinoid ossicles, 

holothurians, bryozoans, ostracods, brachiopods (Camarophia sp., Urustenia 

dubia, Martinia sp., Phricodothyris ex gr. mosquensis), and foraminifers. The 

first occurrence of fusulinids Ozawainella stellae Manukalova, and 

Fusulinella colanii (?) Lee and Chen are documented in the lower unit 

(Aisenverg et al., 1975, p. 85).  

The upper unit is massive, yellow, partly dolomitized silty wackstone 

with abundant low diverse small brachiopods (Chonetes aff. carboniferous 

Keys., Schizophoria sp., Martinia cf. minima, Avonia cf. karpinskiana, 

Carcrinella cf. obscuroundatus Lich., bivalves (Pecten sp.) and corals. 

Thickness is 1.2 m. 
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2. Siltstone is dark-grey and micaceous with discontinuous ripple laminated 

cross-bedding. Rare plant remains occur. Thickness is 9.64 m. 

3. Sandstone: in the lower and middle parts the sandstone is light-grey, 

micaceous, from fine- to medium-grained, with ripple cross laminae; in the 

upper part the sandstone is dark-grey and calcareous. This bed has a sharp 

boundary with the underlying bed. Thickness 24.82 m. 

4. Siliciclastic mudstone is grey, micaceous, and thin-bedded with parallel 

horizontal laminae. This mudstone contains siderite nodules. This bed has a 

sharp boundary with the underlying bed. Thickness is 1.68 m. 

5. Sandstone is greenish-grey, fine-grained, with flaser bedding. Thickness is 

3.75 m. 

6. Limestone M2 is light-grey, crinoid-rich or foraminiferal packstone to 

grainstone, with abundant ostracods, brachiopods, bryozoans, and corals. 

Brachiopods are Choristites cf. eudoxiae, Martinia sp.; corals are Chaetetes 

sp., Petalaxis mohicana Fom. Fusulinids are Ozawainella adducta 

Manukalova, abundant Schubertella and Fusulinella “F. colanii Lee and 

Chen” (= Moellerites lopasniensis Solovieva)* and. (*test’s wall in abundant 

Fusulinella species in this limestone contains poorly developed discontinuous 

diaphanotheca in the fourth volution, therefore the species defined as F. 

colanii Lee and Chen, belong to older genus “Moellerites” Solovieva. 

Khodjanyazova and Davydov). Thickness is 2.24 m. 

7. Siliciclastic mudstone. In the lower part it is patchy, greenish-grey. In the 

upper part it is dark-grey and massive with siderite nodules. Rare bivalves 

occur. Thickness is 3.91 m. 

8. Sandstone is grey, fine-grained and micaceous with flaser bedding. Plant 

remains occur. Thickness is 7.83 m. 

9. Coal m2. Thickness is 0.45 m. 

10. Siltstone is dark-grey and micaceous with discontinuous ripple laminated 

cross-bedding. Rare plant remains and siderite nodules occur. This bed has a 

sharp boundary with the underlying bed. Thickness is 3.86 m. 
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11. Limestone M3 in the lower part is gray and in the upper unit is grey-tan. This 

limestone is crinoid-rich or foraminiferal packstone to grainstone with 

abundant brachiopods, bryozoans, and corals. In the lower parts coral 

Petalaxis mohicana Fom. occurs. Abundant fusulinids are represented by 

Ozawainella stellae Manukalova, Neostaffella ozawai (Lee and Chen), 

Beedeina schellwieni (Staff), B. pseudoelegans (Chernova). Brachiopods are 

Rhipidomella cf. michelini, Meekella sp., Orthotetes sp., Chonetes sp., Avonia 

cf. krutojensis, Buxtonia sp., Dictyoclostus sp., Magnifera sp., Choristites sp., 

Phricodothyris cf. mosquensis. Thickness is 3.63 m. 

12. Siltstone is grey, micaceous and calcareous with discontinuous ripple 

laminated cross-bedding. Thickness is 3.63 m. 

13. Sandstone is grey, micaceous and fine-grained with ripple laminated cross-

bedding. Thickness is 1.12 m. 

14. Siltstone is grey and micaceous with discontinuous ripple laminated cross-

bedding. Rare plant remains occur. Thickness is 2.80 m. 

15. Coal m3
low. Thickness is 0.14 m. 

16. Sandstone is grey, micaceous and fine-grained with discontinuous ripple 

laminated cross-bedding. Rare plant detritus occurs. Thickness is 3.69 m. 

17. Siltstone is grey and micaceous with discontinuous parallel laminated cross-

bedding. Rare plant remains and siderite nodules occur. Thickness is 13.08 m. 

18. Coal m3
up. Thickness is 0.23 m. 

19. Interbeded grey, fine-grained sandstone and siltstone with parallel laminae. 

Plant remains in the upper part include abundant Stigmaria. Thickness is 4.65 

m. 

20. Coal m3
1. Thickness is 0.22 m. 

21. Limestone M4 in the lower part is gray tan and in the upper unit is grey. This 

limestone is crinoid-rich or foraminiferal packstone with abundant 

brachiopods, ostracods, and bryozoans. Brachiopods are Dictyoclostus sp., 

Choristites sp. Fusulinids are mainly Neostaffella and Beedeina species. 

Thickness is 2.50–4.70 m. 
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22. Siltstone is grey and micaceous with ripple laminated cross-bedding in the 

upper part of the bed. This siltstone contains calcareous nodules. Thickness is 

2.97 m. 

23. Coal m4. Thickness is 0.45 m. 

24. Siliciclastic mudstone is dark-grey and massive. Rare plant remains occur. 

Thickness is 5.05 m. 

25. Limestone M4
1 is dark-gray, organic-rich packstone to grainstone with 

abundant crinoids, brachiopods, ostracods, bryozoans, and fusulinids. 

Thickness is 0.74 m. 

26. Siliciclastic mudstone is dark-grey and massive. Thickness is 5.20 m. 

27. Siltstone is grey and micaceous with ripple laminated cross-bedding and 

parallel lenticular laminae. Plant imprints occur. This bed has a sharp 

boundary with the underlying bed. Thickness is 4.98 m. 

28. Sandstone is grey to tan, micaceous, and fine-grained with parallel laminae, 

trough and planar tabular cross bedding. Thickness is 5.79 m. 

29. Siliciclastic mudstone is grey and rich in organic matter with abundant 

Stigmaria and calcareous nodules. Thickness is 3.86 m. 

30. Coal m4
1. Thickness is 0.19 m. 

31. Interbedded grey, fine- to medium-grained siltstone is micaceous with ripple 

laminated cross-bedding and parallel lenticular laminae. Plant imprints and 

siderite nodules occur. Thickness is 7.33 m. 

32. Siliciclastic mudstone is grey and massive. Thickness is 3.22 m. In the upper 

part of this bed coal m4
2 is documented and is 0.17 m thick. 

33. Siltstone is grey, fine-grained and micaceous with ripple laminated cross-

bedding and parallel lenticular laminae. In the upper part Stigmaria plant 

imprints occur in situ. Thickness is 3.86 m. 

34. Limestone M5 is represented by alternation of grey thick-bedded wackstone 

and dark-grey and grey tan, organic-rich, muddy packstone to grainstone. In 

the lower part abundant, irregular shaped chert nodules, 0.2 m in diameter 

occur. Abundant foraminifers, crinoids, brachiopods, bryozoans, ostracods, 

gastropods occur. Brachiopods are Spirifer (Choristites) priscus, Sp. 
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(Choristites) trautscholdi. Fusulinids are represented by Neostaffella, 

Ozawainella and Beedeina species. Thickness varies from 11 to 17 m.  

35.  Siltstone is grey-tan and coarse-grained with ripple laminated cross-bedding. 

Thickness is 11.0 m. 

36.  Sandstone is grey to tan and fine-grained with trough and planar tabular cross 

bedding. In the upper part plant imprints, Stigmaria occur in situ. Thickness is 

2.20 m. 

37. Limestone M6: grey wackstone to packstone in lower part and grey to tan 

clayed packstone and grainstone with abundant fossils: crinoids, brachiopods, 

ostracods, bryozoans, and foraminifers in the upper part. Brachiopods are 

abundant Spirifer (Choristites) priscus, bryozoans are Stenodiscus beralicus, 

Fenestella medvedhensis, F. bifurcata. Fusulinids are represented by 

Neostaffella aff. sphaeroidea (Moeller), small Pseudostaffella gorskyi, 

Ozawainella adducta Manukalova, O. stellae Manukalova, Beedeina rauserae 

(Chernova), B. cf. schellwieni (Staff). Thickness 4 m. 

38. Sandstone is grey-tan arkose with abundant mica, from fine- to medium-

grained with ripple cross laminae. Large logs of Calamites sp., Artisia sp. and 

scarce large plant remains Sigilaria ex gr. rhytidolepis occur. Thickness is 

21.48 m. 

39. Siltstone is grey to green, fine-grained and micaceous, with horizontal parallel 

laminae. In the upper part Stigmaria imprints occur in situ. Thickness is 7.20 

m. 

40. Siliciclastic mudstone is dark-grey with plant remains. Thickness is 1.30 m. In 

the lower part of this bed coal m5
2 is documented and is 0.19 m thick. 

41. Limestone M7 is dark-grey, clayed and organic-rich micritic wackstone. Small 

abundant brachiopods Chonetes aff. carboniferous, bivalves Solenomorpha 

solenoids and bryozoans Stenodiscus beralicus occur. Fusulinids are 

represented by abundant Hemifusulina species. Thickness 0.6–0.9 m. 

42. Siliciclastic mudstone is dark-grey, with horizontal parallel laminae and 

siderite nodules, up to 4 cm in diameter. Thickness is 19 m. 

43. Coal m6. Thickness is 0.2 m. 
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44. Limestone M7
1 is grey, sometimes grey-tan, organic-rich packstone. Bioclasts 

are represented by crinoids, bryozoans, brachiopods, and foraminifers. Fish 

remains and scarce trilobites occur. Abundant fusulinids are Neostaffella, 

Beedeina, and Ozawainella species. Thickness is 0.30–0.65 m. 

45. Siliciclastic mudstone is dark-grey, massive, and micaceous with fossil 

remains. This bed has a sharp boundary with the underlying bed. Thickness is 

9.0 m. 

46. Siltstone is grey, massive and micaceous, with ripple laminated cross-bedding, 

sometimes replaced by parallel lenticular laminae. Stigmaria Plant imprints 

occur in situ. Thickness is 5.14 m. 

47. Coal m6
0. Thickness is 0.20 m. 

48.  Siltstone is grey-tan and fine-grained with horizontal and ripple laminated 

cross-bedding. This bed is poorly outcropped. Thickness is 5.14 m. 

49. Sandstone fine-grained, grey tan, with planar tubular and trough cross-

stratification. In the middle part sandstone is coarse-grained with herringbone 

cross stratification. Thickness is 20.0 m. 

50. Limestone M7
2 is a light-grey to tan crinoids-rich wackstone to packstone. 

Thickness is 1.54 m. 

51. Sandstone in the upper part is grey and fine-grained with discontinuous ripple 

laminated cross-bedding.  In the lower and middle parts sandstone is medium-

grained with unclear parallel laminae. This sandstone is underlain by 

siliciclastic mudstone, grey to green, 0.64 m thick. Thickness of sandstone is 

20.0 m. 

52. Interbedded grey-tan siltstone and fine-grained micaceous sandstone with 

horizontal and ripple laminated cross-bedding. Thickness is 7 m. 

53. Sandstone is fine-grained, and grey-tan with herringbone cross-stratification. 

Thickness is 1 m. 

54. Siltstone is grey-tan and fine-grained with ripple laminated cross-bedding. 

Thickness is 1.40 m. 
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55. Limestone M8 is dark-grey, sometimes dark-brown wackstone, with rare 

crinoids, ostracods, sponge spicules, brachiopods and bivalves. Bryozoans 

Penniretepora inconstans, Septora luterkensis. Thickness is 0.65–2.06 m. 

56. Sandstone is thick-bedded, coarse-grained, grey-tan, and is sometimes 

replaced by conglomerate with planar tubular and trough cross-stratification. 

Some organic-rich inclusions occur. Within individual beds the size of sand 

grains fine upward.  Large logs of Lepidodendron sp., Calamites sp., Artisia 

sp. Sigilaria sp. and large plant detritus occur. Thickness is 64.0 m. 

57. Siliciclastic mudstone is grey to green and massive. Thickness is 3.54 m. 

58. Limestone M9 is tan, biogenic packstone, with abundant crinoids, ostracod, 

brachiopod, foraminifer and algae remains. Thickness is 0.64 m. 

59. Siliciclastic mudstone is grey with organic texture and bioturbation formed by 

roots of plants. Thickness is 1.67 m. 

60. Coal m8. Thickness is 0.19 m. 

61. Siltstone is grey, fine-grained and micaceous with ripple laminated cross-

bedding. Plant imprints occur. In the lower part siltstone is replaced by grey to 

green and micaceous siliciclastic mudstone with siderite nodules. Thickness is 

7.72 m. 

62. Siliciclastic mudstone is dark-grey and massive. Thickness is 6.43 m. 

63. Siltstone is grey, fine-grained, micaceous and massive with unclear flaser 

bedding. Thickness is 3.22 m. 

64. Limestone M10 is grey-tan, foraminiferal and crinoid-rich packstone to 

grainstone with brachiopods, ostracods, bryozoans, sponges, and solitary 

corals. Brachiopods are Dictyoclostus sp., Magnifera cf. pulcher, 

Echinoconchus cf. elegans, and Choristites sophiae. Thickness is 2.90 m. 

65. Sandstone is grey to greenish-grey, fine-grained and micaceous with unclear 

ripple laminated cross-bedding. In the lower part underlying siliciclastic 

mudstone is dark-grey and massive with scarce fossils. Thickness is 7.72 m. 

66. Coal m9. Thickness is 0.28 m. 

67.  Siliciclastic mudstone is grey to greenish-grey, mottled and massive. 

Thickness is 26.56 m. 
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68. Coal m9
0. Thickness is 0.28 m. 

69.  Siliciclastic mudstone is grey, uniform and micaceous. Thickness 1.93 m. At 

this interval, limestone M10
1 is documented in the well. This limestone is a 

grey tan, micritic crinoid-rich wackstone. Thickness is 0.26 m. 

70. Siltstone is grey, fine-grained, micaceous, massive, with horizontal and ripple 

laminated cross-bedding. Calcareous nodules occur. Thickness is 30.22 m. 

71. Siliciclastic mudstone is grey, uniform and massive with siderite nodules. 

Thickness is 7.07 m. 

72. Sandstone grey, fine-grained, calcareous and massive. Thickness is 1.29 m. 

73. Siliciclastic mudstone is grey and uniform with trace fossils in the upper part. 

Thickness 2.57 m.  

74. Siltstone is grey and coarse-grained with cross-bedding. Thickness is 0.64 m. 

75. Limestone N1. Thickness is 3.5 m.   

 

 



221 
 

 

  

Pu
tre

lla
 d

on
et

zi
an

a-
 

Fu
su

lin
el

la
 co

la
ni

i

K.
 ro

ss
os

ha
ni

ca
 - 

F.
to

km
ov

en
sis

 lo
ng

a

Fusulinids M7 M7
up M7

2 M8 M9 M10

Hemifusulina subrhomboidalis x

H. aff. subrhomboidalis x

H. vozhgalica x

H. mucronata x

H. pulchella x x

H. elegantula x

H. communis acuta x

H. bocki x

H.  aff. splendida x

Beedeina elegans x

B.  cf. elshanica vaskensis x x x x x

N. sphaeroidea x

N. larionovae larionovae x x x

N. larionovae polasnensis x

N. sphaeroidea cuboides x

N. syzranica x

N. cf.sphaeroidea cuboides x x

N.  cf. rostovzevi x

N.  sp. x

Pseudostaffella confusa x

Ps. variabilis x x

Ps. khotunensis x x

Ps. compressa donbassica x x

Ps. primaeva x

Ozawainella minima x

O. krasnodonica x x

O. adducta x

O. angulata x

O. rhomboidalis x

O. donbassensis x

O. mosquensis x

O. vozhgalica x

O. cf. vozhgalica x

O. aff. lorentheyi x

O. sp. x x x

O. sp.1 x
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Taitzehoella c f.  librovitchi globulus x

Fusiella pulchella x x

Fus. typica extensa x

Fus. praetypica x

Fus. praecursor x

Fus. praecursor paraventricosa x

Fus.  sp. 1 x

Fus.  sp. 2 x

Schubertella lata x x

Sch. obscura procera x x

Sch. elliptica x

Sch. subkingi x

Sch. cf.myachkovensis x

Sch. cf. galinae x

Sch. cf. inflata x

Putrella  brazhnikovae x

P. cf. fusiformis x

P. donetziana x

Fusulinella colanii x x

Fusulinella colaniae meridionalis x

F. colaniae borealis x

F. pseudocolaniae x x

F.  vozhgalensis devexa x

F .cf. vozhgalensis devexa x

F.(Moellerites)subconaliae x

F.(M.)subconaliae plana x

F.(M.)subconaliae decurta x

F. tokmensis longa x

F. formosa tumida x

F. sp. x

F.  sp. immature species x

Profusulinella rotundata x

Pr.  sp.1 x

Pr.  sp.2 x

Kamaina kamensis x

K.chernovi x

K.  cf. K. chernovi x

K. rossoshanica rossoshanica x

K.   cf. rossoshanica kamerlingi x

Algae
Dvinella chomata x  

Table 5A. Fusulinid distribution in the upper Kashirian - Podolskian strata in the 

Donets Basin 
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Ozawainella adducta x
O. magna x
O. krasnokamski kirovi x x x x
O. vozhgalica x x x
Fusiella sp. x x
F. typica x
F. pulchella x
F. praecursor 

F. mui x
F. subtilis x x
F. spatiosa x
F. praelancetiformis x x x
Taitzehoella simplicata x x x
T. extensa x x x
T. perseverata x x
Neostaffella umbilicata x x
N. sphaeroidea x x x
N. sphaeroidea cuboides x x
N. larionovae mosquensis x
N. khotunensis x x x
N. distorta x
Hemifusulina bocki x
H. aff. bocki x
H. stabilis x
H. gurkovensis, new species x
H. graciosa x
Beedeina innaeformis , new species x x x
B. elegans x
B. sp. cf. B. paradonetzica x
B. sp. cf. B. truncatulina x
B. sp. cf. B. siviniensis x
B. aff. B.  elshanica vaskensis x
Fusulina cylindrica x x
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F. domodedovi x x
F. quasicylindrica x x x
F. quasifusulinoides x x
F. sosninae, new species x
F. sp. cf. pancouensis x
Kamaina rossoshanica x
K. rossoshanica grandis x
K. rossoshanica kamerlingi x
K. chernovi x x
Putrella donetziana x
P.brazhnikovae x
P. brazhnikovae fusiformis x
Fusulinella colanii x x
F. colanii meridionalis x x
F. pseudocolaniae x x
F. subcolaniae x
F. subcolaniae plana x
F. subcolaniae decurta x
F. vozhgalensis vozhgalensis x x
F. vozhgalensis molokovensis x x
F. pseudocolaniae x x
F. paracolaniae x x
F. aff. F. paracolaniae crassa x
F. pseudobocki x
F. sp. cf. F . bocki intermedia x
F. rara Schlykova x
F. sp. cf. F.  pauciseptata x
F.  (?) sp. x x
F.  (?) sp.cf. F.  kumpani x  

 

 

Table 6B. Stratigraphic distribution of the Late Moscovian fusulinids in the Donets Basin 
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Collection # Samples # No. Vol. P() L(mm) D (mm) L/D Sp.()

Ozawainella krasnokamski kirovi  Dalmatskaya, 1961
SUI 130697 GN1-7/1                 6 15 0.34 0.80 0.43 5-10
SUI 130698 KN2-10/3 5 15 0.26 0.67 0.39 5-10
SUI 130699 KA3/4-11/2 5 - 0.27 0.77 0.35 5-10
SUI 130700 GN1-3/2 5 - 0.24 0.60 0.40 5-10
SUI 130701 GN1-3/4 4 - 0.22 0.48 0.46 5-10
Ozawainella vozhgalica   Safonova in  Rauser-Chernousova et al., 1951
SUI 130702 KN2-4/1                 6 - 0.34 1.12 0.30 5-10
SUI 130703 KN2-14/1 5.5 30 0.35 0.87 0.40 5-10
SUI 130704 KN2-15/1 5 10 0.25 0.91 0.27 5-10
SUI 130705 KN2-17/1 5.5 - 0.28 0.72 0.39 5-10
SUI 130706 KN2-3/2 3 - 0.12 0.41 0.29 5-10
SUI 130707 KN2-5/2 3 - 0.14 0.40 0.35 5-10
SUI 130708 KN2-6/2 3 - 0.20 0.56 0.36 5-10

Genus Fusiella  Lee and Chen in Lee, Chen, and Chu, 1930

SUI 130709 GN1-2/1 5 - 1.60 0.32 5.00 10-15
SUI 130710 GN1-6/1 5 - 1.54 0.29 5.30 5-10
SUI 130711 GN1-10/1 5 - 1.56 0.32 4.85 10-15
SUI 130712 GN1-19/1 5 - 1.52 0.40 3.80 10-15
SUI 130713 GN1-22/1 5 - 1.84 0.46 4.00 10-15
SUI 130714 KN2-9/1 4 - 1.25 0.38 3.25 5-15

SUI 130715 GN1-2/3 4 20 0.91 0.29 3.14 5-10
SUI 130716 GN1-7/4 5 20 1.00 0.30 3.30 10-15
SUI 130717 GN1-13/4 4 20 0.80 0.24 3.30 5-10
SUI 130718 KA3/1-13a 4 20 0.76 0.24 3.17 5-10
SUI 130719 KN2-8/1 5 15 1.14 0.40 2.90 5-10
SUI 130720 KN2-12/1 5 20 1.14 0.36 3.15 5-10
SUI 130721 GN1-2/1 4 - 0.95 0.30 3.16 5-10
SUI 130722 GN1-14/3 4 - 1.05 0.28 3.75 5-10
SUI 130723 KN2-10/2 4 15 0.80 0.31 2.58 5-10
SUI 130724 KN2-23/11 5 - 0.95 0.35 2.71 5-10

Genus Ozawainella  Thompson, 1935

Fusiella spatiosa Sheng, 1958

Fusiella praelancetiformis  Safonova in  Rauser-Chernousova et al., 1951
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Taitzehoella simplicata  (Lee, 1937)
SUI 130725 KN2-10/1 7 - 1.58 0.76 2.08 10-20
SUI 130726 KA3/4-12 6 - 1.36 0.77 1.76 10-20
SUI 130727 KA3/11-2 7 35 1.42 0.85 1.65 10-15
SUI 130728 KA3/4-9 6 - 1.52 0.95 1.60 10-20
SUI 130729 KN2-20/2 4.5 45 0.78 0.40 1.95 5-10

SUI 130730 KA3/11-3 7 30 1.94 0.90 2.16 5-10
SUI 130731 KN2-13/1 7 - 2.25 1.16 1.94 10-15
SUI 130732 KA3/4-10 7 - 1.93 1.15 1.68 10-20
SUI 130733 KA3/4-11/1 7 - 1.94 0.91 2.13 10-20

SUI 130734 KN2-1/1 8 40 2.20 0.95 2.32 10-20
SUI 130735 KN2-2/2 7 40 2.18 1.00 2.18 10-15
SUI 130736 KN2-18/1 8 50 2.60 1.00 2.60 10-25
SUI 130737 KN2-7/1 6 - 1.70 0.65 2.64 10-20
SUI 130738 KN2-16/1 7 - 2.50 0.98 2.55 15-25
SUI 130739 KA3/4-6/1 7 - 2.70 1.06 2.54 10-25

SUI 130740 GN1-4/1 6 60 1.17 1.22 0.95 30-45
SUI 130741 GN1-5/1 7 55 1.19 1.25 0.95 10-50
SUI 130742 GN1-13/1 6 75 1.06 1.08 0.98 30-50
SUI 130743 GN1-19/2 8 90 1.56 1.59 0.98 30-40
SUI 130744 KA3-1/14 7 60 1.23 1.33 0.92 30-45
SUI 130745 GN1-7/2 5 - 0.53 0.66 0.80 20-45
SUI 130746 GN1-7/3 7 - 1.18 1.32 0.89 30-45
SUI 130747 KA3-1/3 4.5 - 0.90 0.95 0.94 20-50
SUI 130748 KA3-1/5 6 - 1.00 1.03 0.97 30-50
SUI 130749 KA3-1/6 6 - 1.00 1.15 0.87 20-30

SUI 130750 GN1-2/2 5 48 0.50 0.52 0.96 20-30
SUI 130751 GN1-2/4 5 40 0.50 0.60 0.83 20-30
SUI 130752 GN1-3/3 4 50 0.32 0.38 0.84 15-20
SUI 130753 GN1-9/2 5 55 0.43 0.55 0.78 20-30

SUI 130754 KN2-6/4 5 - 0.42 0.60 0.70 35-40
SUI 130755 KN2-17/1 4 - 0.45 0.50 0.90 10-25

Neostaffella distorta  (Pogrebnyak, 1975)

Genus Taitzehoella Sheng, 1951

Taitzehoella extensa  Sheng, 1958

Taitzehoella perseverata  Safonova in  Rauser-Chernousova et al., 1951

Genus Neostaffella  Miclukho-Maclay, 1959
Neostaffella sphaeroidea  (Ehrenberg emend. Moeller, 1978)

Neostaffella khotunensis (Rauser-Chernousova in  Rauser-Chernousova et al., 1951)
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SUI 130756 GN1-9/1 8 70 3.10 1.50 2.07 10-40
SUI 130757 GN1-15/1 8 70 3.14 1.52 2.07 10-40
SUI 130758 KA3-1/1 8 60 3.20 1.60 2.00 20-30

SUI 130759 GN1-16/1(holotype)8 60 3.50 1.25 2.80 10-35
SUI 130760 GN1-21/1 8 60 3.42 1.37 2.50 10-40
SUI 130761 GN1-14/1 8 - 3.25 1.20 2.70 10-35

SUI 130762 KA3/1-10 6 60 3.05 1.16 2.64 10-25
SUI 130763 GN1-13/2 6 - 2.50 1.10 2.27 10-30
SUI 130764 GN1-17/1 6 - 2.74 1.05 2.70 10-25
SUI 130765 KA3/1-8 6 - 2.78 1.21 2.29 10-25
SUI 130766 KA3/1-3 7 50 2.90 1.17 2.47 10-30
SUI 130767 KA3/1-4 6 60 2.60 1.15 2.26 10-35
SUI 130768 KA3/1-7 6 - 2.52 1.05 2.40 10-30
SUI 130769 KA3/1-11 6 70 2.30 1.02 2.27 10-25

SUI 130770 GN1-18/1 6 60 2.10 0.95 2.20 10-25
SUI 130771 KA3/1-9 5 65 1.89 0.90 2.10 10-35
SUI 130772 KA3/1-13 5 50 2.05 0.90 2.28 10-30
SUI 130773 KA3/1-12 5 - 1.88 0.84 2.23 10-25
SUI 130774 GN1-16/2 7 65 2.25 0.90 2.50 10-30

SUI 130775 KN2-3/1(holotype) 5 150 4.95 1.26 3.92 15-20
SUI 130776 KN2-5/1 4 200 4.30 0.90 4.77 10-20
SUI 130777 KN2-11/1 5 180 4.32 1.28 3.37 15-25
SUI 130778 KN2-19/1 5 170 3.79 1.05 3.60 15-20
SUI 130779 KA3/3-22 5 150 3.14 1.04 3.02 20-30
SUI 130780 KA3/4-4 4.5 190 4.10 0.86 4.76 10-30
SUI 130781 KA3/4-5 5 200 4.95 1.15 4.30 10-40
SUI 130782 KA3/4-7 5 140 5.86 1.28 4.50 20-40

SUI 130783 GN1-1/1 5 120 2.20 1.10 2.00 10-20
SUI 130784 GN1-8/1 5 150 2.10 1.10 1.90 15-30
SUI 130785 GN1-11/1 5 120 2.00 1.15 1.75 20-30

Beedeina innaeformis,  new species 

Beedeina  sp. cf. paradonetzica (Putrja, 1939)

Genus Hemifusulina Moeller, 1878
Hemifusulina bocki  Moeller, 1878

Hemifusulina gurkovensis , new species

Hemifusulina graciosa  (Lee, 1937)

Hemifusulina stabilis  Rauser-Chernousova and Safonova in  Rauser-Chernousova et al., 1951

Genus Beedeina Galloway, 1933
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SUI 130786 KN/2-20/1 6 160 - 1,36 - 10-30

SUI 130787 GN1-20/3 4.5 90 0.86 0.45 1.91 10-20

SUI 130788 KA3/3-7 4 230 4.00 1.00 4.00 20-40
SUI 130789 KN2-22/1 5 220 4.10 1.10 4.00 20-40
SUI 130790 KA3/3-15 4 280 5.28 1.20 4.40 20-30
SUI 130791 KA3/3-17 5 270 6.10 1.42 4.30 20-45

SUI 130792 KN2-26/1 5 - 6.90 1.05 6.30 20-30
SUI 130793 KA3/11-4 5 220 5.58 1.28 4.02 10-30
SUI 130794 KA3/11-6 5 - 6.08 1.05 5.79 20-30

SUI 130795 KA3/3-9 5.5 180 6.00 1.14 5.26 20-45
SUI 130796 KA3/3-14 5.5 230 5.14 1.30 3.95 10-30
SUI 130797 KA3/4-3/2 5 170 4.85 1.14 4.25 10-30
SUI 130798 KA3/3-4 5 220 4.30 1.28 3.36 10-30
SUI 130799 KN2-25/1 5 210 4.60 1.07 4.30 20-40

SUI 130800 KA3/11-7(holotype)5 130 3.43 0.93 3.68 10-25
SUI 130801 KA3/11-5 5 150 3.90 0.86 4.53 10-25

SUI 130802 KA3/3-5 5 250 7.10 1.70 4.18 20-35 
SUI 130803 KA3/3-20 5 320 5.30 1.57 3.38 20-30

SUI 130804 KA3/3-1 8 - 6.43 1.58 4.10 10-35

SUI 130805 KA3/3-6 6 70 3.58 1.47 2.44 10-50

SUI 130806 KA3/3-8 5 60 2.32 1.21 1.92 10-45
SUI 130807 KA3/3-10 4 - 1.67 0.64 2.60 20-50
SUI 130808 KA3/3-16 5 70 2.44 0.94 2.60 20-50
SUI 130809 KA3/3-19 4 - 2.11 0.95 2.22 10-40

Fusulina quasicylindrica  (Lee, 1927)

Beedeina   sp. cf. siviniensis  (Rauser-Chernousova in  Rauser-Chernousova et al., 1951)

Beedeina  sp.cf. truncatulina  (Thompson, 1936)

Genus Fusulina Fischer de Waldheim, 1829
Fusulina cylindrica  Fischer emend. Moeller, 1878

Fusulina domodedovi  Rauser-Chernousova in  Rauser-Chernousova et al., 1951

Fusulina sosninae, new species 

Fusulina quasifusulinoides Rauser-Chernousova in Rauser-Chernousova et al., 1951

Fusulina  sp. cf. pancouensis  (Lee, 1927)

Genus  Fusulinella  Moeller, 1878
Fusulinella pseudobocki  (Lee and Chen, 1930)

Fusulinella  sp. cf. bocki intermedia Rauser-Chernousova in  Rauser-Chernousova et al., 1951
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SUI 130810 KA3/3-2 4 110 - 1.05 - 20-50
SUI 130811 KA3/3-12 5 85 3.72 1.20 3.10 10-40
SUI 130812 KA3/3-23 5 80 3.10 1.05 2.95 20-60

SUI 130813 KA3/3-3 5 95 3.25 1.28 2.53 15-50
SUI 130814 KA3/3-5a 5 - 2.95 1.26 2.34 25-50
SUI 130815 KA3/3-11/2 5 100 2.88 1.06 2.74 20-50
SUI 130816 KA3/3-13 5 80 2.94 1.20 2.45 15-50
SUI 130817 KA3/3-21 5 100 3.22 1.33 2.42 10-40

SUI 130818 KA3/4-1 4.5 40 1.68 0.89 1.89 20-50
SUI 130819 KA3/4-2 4 200 2.50 0.95 2.63 20-50
SUI 130820 KN/2-21/1 3 - 2.30 0.95 2.40 20-60
SUI 130821 KN/2-24/1 4 - 2.22 1.12 1.98 20-50
SUI 130822 KN/2-6/3 3 - 1.40 0.80 1.75 20-50

SUI 130823 KA3/11-1 5 50 4.00 1.22 3.28 10-40

Fusulinella rara  Schlykova, 1948

Fusulinella  sp. cf. pauciseptata  Rauser-Chernousova and Belyaev, 1936

Fusulinella (?) sp. 

Fusulinella (?) sp. cf. kumpani  Putrja, 1939

 

Table 7B. Dimensions of fusulinids from the "N" Formation of the Donets Basin 




