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ABSTRACT 

The Titanium-in-quartz (TitaniQ) thermobarometer was evaluated in ductilely 

sheared rocks (mylonites) from the Scandinavian Caledonides in comparison with several 

other thermometric methods, including: (1) TitaniQ thermometry in cross-cutting quartz 

veins, (2) garnet-biotite Fe-Mg exchange thermometry, (3) metamorphic phase equilibria, 

and (4) quartz microstructures as calibrated experimentally and empirically. In all 

instances, quartz vein temperatures mimic TitaniQ temperatures of the host rocks. 

Similarly, TitaniQ temperatures of dynamically recrystallized quartz, ranging from 

~210°C at the thrust front to 475°C at the deepest structural levels, reflect the best 

estimate of the final temperature of deformation. Higher temperatures are also preserved 

locally and more closely reflect peak metamorphic temperatures derived from 

metamorphic phase equilibria. Of the two samples analyzed for garnet-biotite Fe-Mg 

exchange thermometry, one gives results consistent with TitaniQ temperatures and the 

other gives a higher temperature. A larger sample size would be necessary for more 

confident comparisons. Lastly, TitaniQ temperatures are mostly consistent with 

temperatures expected from quartz microstructures. However, TitaniQ temperatures 

reveal grain boundary migration recrystallization (GBM) occurred at temperatures as low 

as 340°C, which is much lower than previously published temperatures for GBM (Hirth 

and Tullis, 1992; Stipp et al., 2002).  
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Two competing end-member models for the steady state thermal and kinematic 

evolution of orogens exist: The critical wedge model and the channel flow-extrusion 

model. Due to the unusual and consistent exposure of thrust surfaces for ~140 km across 

the orogen, the Caledonides provide insights into the down-dip behavior of thrusts not 

determinable in other collisional orogens. Using TitaniQ, in combination with other 

thermometers and barometers, to obtain precise and accurate pressure-temperature 

estimates of quartz recrystallization in the Northern Scandinavian Caledonides, we 

resolve a consistent down-dip thermal gradient along the basal thrust shear zone of 1.43 ± 

2°C/km. This low thermal gradient supports the critical wedge model for the evolution of 

the Caledonides.  We suggest that the Caledonides formed from critical wedge mechanics 

together with general non-coaxial flow and gravitational spreading of the nappes.  In 

addition to resolving a down-dip thermal gradient across the Caledonides basal shear 

zone, we calculated strain rates for quartz deformation ranging from 1.00E
-22

 to 1.00E
-13 

s
-1

. 
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CHAPTER ONE: DETERMINING TEMPERATURES OF DEFORMATION IN 

MYLONITES FROM THE SCANDINAVIAN CALEDONIDES 

Abstract 

The Titanium-in-quartz (TitaniQ) thermobarometer was evaluated in ductilely 

sheared rocks (mylonites) from the Scandinavian Caledonides in comparison with several 

other thermometric methods, including: (1) TitaniQ thermometry in cross-cutting quartz 

veins, (2) garnet-biotite Fe-Mg exchange thermometry, (3) metamorphic phase equilibria, 

and (4) quartz microstructures as calibrated experimentally and empirically. In all 

instances, quartz vein temperatures mimic TitaniQ temperatures of the host rocks. 

Similarly, TitaniQ temperatures of dynamically recrystallized quartz, ranging from 

~210°C at the thrust front to 475°C at the deepest structural levels, reflect the best 

estimate of the final temperature of deformation. Higher temperatures are also preserved 

locally and more closely reflect peak metamorphic temperatures derived from 

metamorphic phase equilibria. Of the two samples analyzed for garnet-biotite Fe-Mg 

exchange thermometry, one gives results consistent with TitaniQ temperatures and the 

other gives a higher temperature. A larger sample size would be necessary for more 

confident comparisons. Lastly, TitaniQ temperatures are mostly consistent with 

temperatures expected from quartz microstructures. However, TitaniQ temperatures 

reveal grain boundary migration recrystallization (GBM) occurred at temperatures as low 

as 340°C, which is much lower than previously published temperatures for GBM (Hirth 

and Tullis, 1992; Stipp et al., 2002).  
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1.1  Introduction 

Presently, only a few methods are available to determine temperatures of 

deformation in ductilely sheared rocks (mylonites) because typical temperatures of 

mylonitization (<500°C to ~250°C) are not readily estimated by cation-exchange 

thermometers or mineral equilibria (Kohn and Northrup, 2009). Most temperatures of 

mylonitization are based empirically on deformation microstructures in quartz and 

feldspar, and the uncertainties remain large (at least ± 50°C; and strain rate dependent). 

To address this problem, we have evaluated the Ti-in-Qtz thermobarometer (TitaniQ) as a 

possible new way of determining temperatures of deformation in mylonites. Kohn and 

Northrup (2009) have shown that Ti contents of quartz change during mylonitization, 

which may allow for precise and accurate temperature estimates of dynamic 

recrystallization. 

TitaniQ was evaluated in mylonites from the well exposed main basal thrust zone 

(MBT) of the Scandinavian Caledonides (Figure 1.1) in comparison with several other 

thermometric methods, including: (1) TitaniQ thermometry in cross-cutting quartz veins, 

(2) garnet-biotite Fe-Mg exchange thermometry, (3) metamorphic phase equilibria, and 

(4) quartz microstructures as calibrated experimentally and empirically.   

In principle, recrystallized quartz might record temperatures attained prior to, 

during, or after the peak of metamorphism, or even relict temperatures inherited from the 

igneous protolith. However, mylonites texturally postdate the peak of metamorphism 

(Northrup, 1996b), so quartz grains that recrystallized during mylonitization should 

record lower temperatures than either the metamorphic peak or igneous cooling.   



3 

 

We analyzed TitaniQ temperatures in cross-cutting quartz veins (Tqv) in addition 

to host-rock mylonites (Thm) for two reasons. First, if temperatures were decreasing 

during deformation, then quartz veins that postdate deformation should yield Tqv ≤ Thm. 

Second, quartz veins should have precipitated directly from a fluid, so should not contain 

relict grains that were inherited from the protolith or that are reflective of earlier 

conditions. Therefore, neoblastic quartz veins allowed us to independently check that we 

were sampling recrystallized quartz and not relict igneous and metamorphic grains 

(Figure 1.2).   

We expected garnet-biotite (peak metamorphic)/Fe-Mg temperatures to exceed 

TitaniQ temperatures as deformation texturally post-dates metamorphism. Since the MBT 

of the Scandinavian Caledonides formed at conditions ranging from the mid-amphibolite 

facies in the west to the brittle-ductile transition at the east, we expected TitaniQ 

temperatures to fall within this range in temperatures (~600°C - ~280°C) across the 

orogen.  Lastly, we expected that TitaniQ temperatures and quartz microstructures would 

coincide with the dynamic recrystallization regimes and associated temperatures defined 

by Hirth and Tullis (1992) and Stipp et al. (2002).  

1.2 Background 

1.2.1 The Scandinavian Caledonides 

The Scandinavian Caledonides represent an ancient orogenic system that reflects 

the dynamic interaction between contractional and extensional processes (Northrup, 

1996a).  In the early Paleozoic, closure of the Iapetus Ocean and the subduction of the 

western margin of Baltica beneath Laurentia formed a crustal scale composite allochthon 
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that was thrust eastward onto the Baltic craton (Griffin and Brueckner, 1980). Erosion 

and extension have removed or displaced much of the original allochthon and have 

exposed deep crustal levels of the Caledonian Orogen. Now, the Scandinavian 

Caledonides consist of a relatively thin, but regionally extensive remnant of the original 

nappe stack, which lies structurally above autochthonous or parautochthonous rocks of 

the Baltic craton and its pre-Caledonian sedimentary cover (Roberts and Gee, 1985). The 

basal shear zone, or the MBT, separates rocks of the composite Caledonian allochthon 

from parautochthonous structural basement (Northrup, 1996a). The present day erosional 

surface closely follows the structure level at the base of the nappe stack, so progressively 

greater depths are exposed westward, down-dip. Mylonites in the basal shear zone 

contain well-developed L-S deformational fabrics, and the foliation is parallel to the 

structural contact at the base of the allochthon (Northrup, 1996a).  The stretching 

lineation and inferred transport direction in the basal shear zone trends to the ESE.  

Today, remnants of the original nappe stack are found in Norway, Sweden, 

Greenland, the British Isles, and north-central Europe. The Baltic craton can be followed 

from the thrust front in Sweden, via antiformal windows, to the west coast of Norway 

(Gee et al., 2010). Although several different orogenic events occurred in the lower 

Paleozoic, the Scandian, at c. 400 Ma, was the only one to affect the craton and its 

immediate parautochthonous cover (Roberts and Gee, 1985). 

1.2.2 The Titanium in Quartz Thermobarometer (TitaniQ) 

Both Silicon (Si) and Titanium (Ti) are tetravalent cations so Ti
4+

 substitutes for 

Si
4+

, without having to be charge balanced by coupled substitution of another element 

(Wark and Watson, 2006). The equilibrium concentration of Ti
4+

 at a particular 
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temperature is governed by partitioning. For Ti-in-qtz, higher temperatures stabilize 

higher Ti contents.  

Wark and Watson (2006) synthesized quartz in the presence of rutile at 600 to 

1000°C at 10 kbar and showed dependence of the Ti content in quartz on temperature:  

T(K) = -3765/[log(XTi,qtz/aTiO2)] – 5.69 where the Ti content is in ppm (by weight), and 

aTiO2 is the activity of TiO2 relative to that required for rutile saturation (aTiO2 =1; 

Wark and Watson, 2006).  Thomas et al. (2010) synthesized quartz in the presence of 

rutile at 600 to 1000°C at 0.5-2.0 GPa and showed the dependence of the Ti content in 

quartz on both temperature and pressure: RTlnXqtz,TiOx = -60952 + 1.520*T(K)-

1741*P(kbar)+RTlnaTiO2, where R is the ideal gas constant (8.3145 J/K), X is the mole 

fraction of TiO2 in quartz, and aTiO2 is the activity of TiO2 in the system (Thomas et al., 

2010).  

The resulting titanium-in-quartz thermobarometer (TitaniQ) has several 

advantages over other existing thermobarometers; most importantly, it can be applied 

over a wide range of rock types because quartz, the only phase that requires analysis, is 

stable over a wide range of temperatures and pressures (Cherniak et al., 2006; Wark and 

Watson, 2006). Also, as long as there is measureable Ti in the system, the system does 

not have to be saturated with respect to rutile (Wark and Watson, 2006). Another 

advantage is that domains with different Ti-content can be targeted for analysis since 

cathodoluminescence (CL) intensity correlates with trace element content (Rusk et al., 

2008; Spear and Wark, 2009; Kohn and Northrup, 2009). Lastly, TitaniQ is unusually 

precise (±3°C at a specified pressure; Wark and Watson, 2006).   
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TitaniQ’s main disadvantage is its moderate pressure-dependence. The original 

TitaniQ calibration (Wark and Watson, 2006) can be used to accurately determine quartz 

crystallization temperature for pressures near 10 kbar (Thomas et al., 2010). However, 

with increasing pressures, Ti-in-quartz solubility becomes unfavorable because Ti
4+

 is 

~38 % larger than the tetrahedrally coordinated Si
4+

 in the quartz structure, and because 

quartz is anomalously compressible (Levien et al., 1980). Therefore, accurately assigning 

temperatures requires simultaneous application of another thermobarometer. We make a 

pressure correction by assuming a pressure at each location, in part based on conventional 

thermobarometry, to determine temperatures of deformation.   

1.2.3 Ti diffusion in Quartz 

The growth history of quartz may be recorded in fine-scale zoning of trace 

elements in individual quartz grains (Cherniak et al., 2006). Some of this zoning may be 

observable via variations in CL intensity, and higher Ti concentrations in quartz correlate 

to a higher CL intensity.  Cherniak and Watson (2007) measured Ti diffusion in synthetic 

and natural quartz under dry 1-atm conditions. An Arrhenius relation was obtained for 

diffusion parallel to (001), which indicates that Ti may diffuse ~500 µm at 800°C and 

~15 µm at 600°C in a million years. For temperatures of mylonitization (300-500°C), 

characteristic length scales for diffusion are only .001- 2 µm for a time scale of 1 m.y 

(Cherniak and Watson, 2007). Therefore, quartz grains that reequilibrate during 

recrystallization below ~500 °C will retain their compositions (Kohn and Northrup, 

2009).  

Consequently, thermal information provided by TitaniQ in our study depends on 

the temperature at which a grain or domain last recrystallized.  Zoning in quartz in 
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mylonitic rocks may result from recrystallization of different domains at different 

temperatures, or from progressive growth of the quartz grains during changes in P-T 

conditions.  

1.2.4 Deformation, Recovery, and Dynamic Recrystallization  

When a differential stress acts upon a crystal at moderate to high temperatures, 

lattice imperfections, or dislocations, are introduced into the crystal structure, increasing 

the internal strain energy of the crystal.  These dislocations are free to migrate through 

the crystal in the direction of the sense of shear, after the critical resolved shear stress is 

exceeded, by dislocation glide and dislocation climb, together referred to as dislocation 

creep.  Effectively, the internal strain energy of the crystal is relieved and the crystal 

changes shape without loss of cohesion to the crystal structure.  This process is known as 

ductile deformation.   

Ductile deformation is accompanied by processes known as recovery and 

dynamic recrystallization. During recovery, dislocations will concentrate in discrete 

zones, or deformation bands, in the crystal. This has the effect of decreasing the 

dislocation density in other parts of the crystal. These parts of the crystal are referred to 

as subgrains, and they are separated from adjacent parts of the crystal by sharp, low relief 

boundaries. The crystal lattices of subgrains on either side of a deformation band may 

differ by up to 5° (Fitzgerald et al., 1983; White and Mawer, 1988).  

Non-recovered deformation in a crystal is evidenced by undulose extinction. 

Undulose extinction may be sweeping, due to a large scale, regular bending of the crystal 

due to dislocations, or it may be patchy or irregular. Patchy or irregular extinction results 

from microkinks and microfractures in the crystal lattice, which is probably due to 
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cataclastic failure at site of dislocation tangles (Hirth and Tullis, 1992). Deformation 

lamellae, which consist of long, thin, solid and fluid inclusion trails, elongate subgrains, 

and dislocation tangles, may also be present in a deformed crystal. A lattice preferred 

orientation may indicate that deformation occurred by dislocation creep (Passchier and 

Trouw, 1998). At high temperatures, recovery and recrystallization may erase evidence 

for intra-crystalline deformation.  

Dynamic recrystallization may be evidenced by a partially recrystallized fabric or 

a completely recrystallized fabric. A bimodal grain size distribution characterizes a 

partially recrystallized fabric. Aggregates of small grains with uniform extinction occur 

adjacent to larger grains with undulose extinction. The large grains will contain subgrains 

of approximately the same size as the small grains. However, a completely recrystallized 

fabric may sometimes be difficult to distinguish from a non-deformed, fine-grained rock. 

Evidence of complete recrystallization comes from a lattice preferred orientation of 

grains (LPO), and irregular grain boundaries due to pinning microstructures, window 

microstructures, dragging microstructures, and left-over grains (Figure 1.3; Passchier and 

Trouw, 1998).  

The three main dynamic recrystallization mechanisms operative in quartz are 

Subgrain Rotation recrystallization (SR), Grain Boundary Migration recrystallization 

(GBM), and Bulging recrystallization (BLG; Figure 1.3). SR is caused by the progressive 

misorientation of subgrain crystal lattices on either side of a subgrain boundary.  The 

progressive misorientation is due to the continued migration of dislocations by 

dislocation creep to these subgrain boundaries.  Grains recrystallized by SR are 

recognized by core and mantle structures in which small, recrystallized grains surround 
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larger grains that contain subgrains of approximately the same size as the recrystallized 

grains (Passchier and Trouw, 1998; Hirth and Tullis, 1992; Stipp et al., 2002).   However, 

core and mantle structures are not present in all samples that recrystallized by SR.  

GBM, on the other hand, is driven by differences in dislocation densities between 

neighboring grains:  if a very deformed grain with a high dislocation density neighbors a 

less deformed grain with a lower dislocation density, then atoms from the more deformed 

grain may migrate into the less deformed grain.  In effect, the less deformed grain grows 

at the expense of the more deformed grain.  Grains that recrystallized by GBM are 

recognized by their shape and size: The recrystallized grains are all approximately the 

same size and they have straight but irregular grain boundaries (Passchier and Trouw, 

1998; Hirth and Tullis, 1992; Stipp et al., 2002).  

BLG, like GBM, is also driven by differences in dislocation densities between 

neighboring grains. However, during BLG, movement of the grain boundary occurs over 

a localized area and not throughout the entire grain boundary.  Grains that recrystallized 

by BLG are recognized by their irregular grain boundaries and bulges.  Sometimes the 

bulges pinch off and form smaller, separate, recrystallized grains (Passchier and Trouw, 

1998; Hirth and Tullis, 1992; Stipp et al., 2002).  

Dynamic recrystallization mechanisms in quartz have been studied both 

experimentally and empirically.  Hirth and Tullis (1992) identified three different 

dislocation creep regimes in experimentally deformed quartz aggregates, operative over 

different temperature ranges. Stipp et al. (2002) also identified three regimes in naturally 

deformed quartz veins in the Eastern Tonale strike-slip shear zone, Italian Alps, which 

were characterized by these different dynamic recrystallization mechanisms.  
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Temperatures across the shear zone were estimated from metamorphic phase equilibria.  

The microstructures and temperatures associated with the different dynamic 

recrystallization mechanisms in this ‘natural laboratory,’ for a presumed strain rate, 

correlate with the dislocation creep regimes defined by Hirth and Tullis (1992):  BLG 

dominates from 280 to 400°C, SR dominates from 400 to 500°C, and both SR and GBM 

dominate from 500 to 700°C.   

However, there are large uncertainties (at least ± 50°C) associated with 

determining temperatures of deformation in mylonites from deformation textures in 

quartz.  There are two main sources for these uncertainties: First, although each of these 

different dynamic recrystallization mechanisms is dominant in quartz at different 

temperatures, each mechanism is, in fact, operative at all temperatures (Hirth and Tullis, 

1992; Stipp et al., 2002).  Second, the mechanical behavior of quartz is not only 

dependent on temperature, but also on strain rate (Hirth and Tullis, 1992). More precise 

temperature estimates would allow us to determine more accurate strain rates and 

effective viscosities of crustal materials (Kohn and Northrup, 2009).  

1.2.5 Exchange Equilibria and Net Transfer Equilibria 

The formal thermodynamic relationship among pressure, temperature, and 

mineral composition can be defined by the fundamental thermodynamic equation (Spear, 

1993): 
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Values of enthalpy, entropy, specific heat capacity, and volume are known from 

experimental calibrations or thermodynamic tables, and the value of the equilibrium 

constant is measured for a sample by determining the compositions of minerals. A unique 

equilibrium constant exists at each temperature and pressure and is thus sensitive to 

changes in pressure and temperature. The pressure and temperature dependence of the 

equilibrium constant (Keq) is used to calculate metamorphic pressures and temperatures 

of equilibrium for a sample. After determining the Keq of a sample, a line of constant Keq 

can be drawn on a P-T diagram and it is inferred that the sample equilibrated somewhere 

along this line.  

If two different equilibria can be evaluated, then the intersection of the two lines 

defines a unique pressure and temperature of equilibration. Two such equilibria are the 

garnet biotite Fe-Mg exchange thermometer (Ferry and Spear, 1978), and the garnet-

biotite-muscovite-plagioclase barometer (Ghent and Stout, 1981; Hoisch, 1990). These 

equilibria allow calculation of equilibrium temperatures and pressures from the measured 

distribution of elements among coexisting phases (Winter, 2001).   

1.2.6 Fe-Mg Garnet Biotite Exchange Geothermometer  

Reactions that show strong temperature dependence of the equilibrium constant 

are good geothermometers. One such geothermometer is the garnet-biotite Fe-Mg 
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exchange geothermometer. The distribution of Fe and Mg between garnet and biotite is a 

function of pressure and temperature, and the differential discrimination of Fe and Mg 

between garnet and biotite decreases as temperature increases. This occurs because the 

energetic distinction between different elements becomes smaller as temperatures 

increase, so the crystals display less of a preference for one element over another (Spear, 

1993).  

Ferry and Spear (1978) calibrated the partitioning of Fe and Mg between Ca-free 

garnet, (Fe, Mg)3Al2Si3O12, and biotite, K(Fe, Mg)3AlSi3O10(OH)2 in the cation exchange 

reaction Fe3Al2Si3O12 + KMg3AlSi3O10(OH)2 = Mg3Al2Si3O12 + KFe3AlSi3-O10(OH)2.  In 

their experiments, biotite was equilibrated with a reservoir of garnet of a known 

composition at temperatures ranging from 550 to 800°C. The equilibrium constant was 

calculated at each experimental temperature and the composition of the biotite was 

analyzed by electron microprobe. The results of this experiment yielded a 

geothermometer for rocks containing garnet and biotite, which appears to work well for 

low-Ca garnets in the greenschist and amphibolite facies (Winter, 2001). 

1.2.7 Garnet-Biotite-Muscovite-Plagioclase Geobarometer 

Equilibrium reactions, such as net transfer reactions that show strong pressure 

dependence of the equilibrium constant, are good barometers. Net transfer reactions 

cause the production and consumption of phases and therefore result in relatively large 

changes in volume, which makes the equilibrium constant sensitive to changes in 

pressure. Garnet bearing rocks that crystallized at low pressures and high temperature 

contain garnets with low grossular (Ca end-member) contents and anorthitic plagioclases 

(Ca end-member), whereas those that crystallized at high pressures and low temperatures 
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contain garnets with high grossular contents and plagioclase with low anorthite contents. 

The ratio of grossular to anorthite in the presence of quartz and micas defines the 

equilibrium constant. 

An electron microprobe may be used to measure the compositions of coexisting 

garnet, plagioclase, and micas, which are used to infer the activity of each phase (Spear, 

1993). However, caution must be taken when selecting which garnet compositions to pair 

with biotite, muscovite, and plagioclase compositions for temperature and pressure 

calculations: typical garnets are compositionally zoned, and retrograde net transfer 

reactions (ReNTRs) may increase zoning complexity. In a compositionally growth-zoned 

garnet, Mn decreases rim-ward while Fe and Mg increase rim-ward. During (ReNTRs), 

the garnet dissolves and Mn piles upon the garnet rim, yielding an increase in Mn along 

the rim (known as the ‘Mn kick-up’), since garnet is one of the few phases that takes in 

Mn (Kohn and Spear, 2000). The trough (the inner rim), which retains the highest 

retrievable temperature conditions, and is associated most closely with peak metamorphic 

temperatures, can be resolved by looking at garnet X-ray maps.  It is advisable to pair 

trough compositions with distal biotite compositions to ensure against local re-

equilibration of biotite with garnet.  

1.3 Methods of Analyses - Data Collection and Interpretation 

Fifty-five samples of granite mylonites, schists, marbles, quartzites, and quartz 

veins were collected across a NW-SE transect from the Northern Scandinavian 

Caledonides in Norway and Sweden in the summer of 2010.  Collection spanned the 

Narvik/Harstad area in northwestern Norway to the Kiruna region in northern Sweden. 

Polished oriented thin sections were then prepared perpendicular to foliation and parallel 
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to lineation for petrographic analysis. Mineral assemblages, microstructures, and 

deformation textures were characterized for each sample (see Appendix and Tables 1.1 

and 1.3). 

The samples were then organized into 11 groups (groups A through K) based on 

their collection location:  A = SC10-26 to -31; B =SC10-17 to -25; C = SC10-01 to -16; 

D = SC10-39 and SC10-42; E = SC10-43 to -45; F = SC10-32 to -37, and SC10-40 to      

-41; G = SC10-46; H = SC10-47 to -48; J = SC10-51 to -54; I = SC10-49 to -50; and K =  

SC10-55. These collection groups were projected onto a NW-SE line that was drawn 

parallel to the transport direction of the nappes (Figure 1.1).  

Most samples in a group recrystallized in the same manner, and transitions 

between dislocation creep regimes were drawn perpendicular to the main transport 

direction of the nappes (Figure 1.4). At least one sample from each group was selected 

for further analyses.  A total of twenty-three samples that contained rutile and that 

contained representative microstructures were petrographically characterized and selected 

for further analyses. Two of the twenty-three samples also contained garnet, biotite, 

plagioclase, and muscovite.  

1.3.1 Secondary Ion Mass Spectrometer Chemical Analysis  

The twenty-three samples that were selected for further analyses were carbon 

coated and then imaged with a JEOL T300 scanning electron microscope (SEM)—using 

a mounted Gatan Mini-cathodoluminescence (CL) detector at Boise State University.  

Locations for secondary ion mass spectrometry (SIMS) analyses were targeted using CL 

textures and intensities within and between quartz grains because CL intensity correlates 

with trace element content.  Carbon coats were then removed by polishing with 0.3 µm 



15 

 

alumina, and selected areas were drilled from the polished thin sections using a drill press 

and a 5 mm diamond studded drill bit, producing 5 mm diameter rounds.  

 The polished thin section rounds were then mounted in a one inch epoxy round 

along with a Herkimer “diamond”, a low temperature quartz that formed at 150-200°C 

(Smith, 2006), so should contain Ti concentrations 3 ± 2.5 ppb (Kohn and Northrup, 

2009), and a natural quartz crystal from a Himalayan migmatite (LT01-15), whose Ti 

contents were determined by electron and ion microprobes (33 ± 9 ppm Ti; Kohn and 

Northrup, 2009). The Herkimer “diamond” and natural quartz sample acted as a quartz 

“blank” and a standard, respectively, and were mounted and polished before being 

remounted with the samples. A total of 9 mounts were made with two to three sample 

rounds, one Herkimer quartz standard, and one natural quartz standard per mount (Figure 

1.5). The rounds and standards were positioned within the inner 1.1 cm of the mount. For 

low Ti samples, Ti contamination during sample preparation can be a risk. So, we used 

Epofix resin to mount the samples since it has a low Ti concentration, a low viscosity, 

and it sets quickly with low volatility (Engwell and Hall, 2008). The mounts were then 

photographed in reflected light (Figure 1.6) and specific locations on each sample were 

selected for SIMS spot analyses. Selecting specific locations for analyses allowed for 

greater microstructural control, and analytical efficiency.  

At Arizona State University, the nine mounts were gold coated for SIMS analyses 

and then inserted into a stainless steel sample holder.  Ti concentrations in quartz were 

collected with a Cameca 6F ion microprobe at the School of Earth and Space Exploration 

at Arizona State University. Analyses were obtained as described by Behr et al. (2011) 

with the 1
st
 field aperture set to 1800 microns and the 2

nd
 contrast aperture set to 150 
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microns. Masses 
48

Ti, 
49

Ti, 
30

Si, 
40

Ca, and 
27

Al were collected using an energy window of 

250 eV and a mass resolving power of 2800.  
49

Ti/
30

Si ratios were consistent with the 

measured 
48

Ti/
30

Si ratios and relative abundance of 
48

Ti and 
49

Ti. 
40

Ca and 
27

Al were 

collected to monitor for contamination and microinclusions. Mass cycles that were 

contaminated with excess 
40

Ca and 
27

Al were removed during data processing.   

One spot analysis of the Herkimer “diamond” and three to seven spot analyses of 

the natural quartz standard were obtained per mount. The Herkimer diamond was 

analyzed to monitor surface contamination and to determine analytical background 

levels. In most cases, upon analysis, the Ti/Si ratio of the Herkimer quartz drifted steadily 

downward throughout analysis, which suggested surface contamination. To eliminate 

surface contamination, we first rastered an area of 50x50 microns, at 17-20 nA, and then 

reanalyzed it, in its center, with a focused, 25x25 micron spot at 4-8 nA. Peak count times 

were 15 minutes during the initial raster and 20 minutes per spot analysis.  We followed 

this procedure for all spot analyses.  

Three to four spots on single or adjacent grains were analyzed per sample. Spots 

were chosen based on CL character, grain size, and textural and chemical complexities. 

The average 
48

Ti/
30

Si ratios in each natural quartz standard were calculated and used to 

normalize a known concentration (Mt 1 = .0017; Mt 2 = .0021; Mt 3 = .0016; Mt 4 = 

.0013; Mt 5 = .0013; Mt 6 = .0015; Mt 7 = .0016; Mt 8 = .0014; and Mt 9 = .011 
48

Ti/
30

Si 

at 39 ppm; Kohn and Northrup, 2009) of Ti in the natural quartz.  The resulting 

conversion factors (39 ppm/.0017 = 22900; 39 ppm/.0021 = 18500; 39 pm/.0016 = 

24400; 39 ppm/.0013 = 29100; 39 ppm/ .00103 = 29300; 39 ppm/ .0015 = 26900; 39 

ppm/.0016 = 24223; 39 ppm/.0014 = 27800; and 39 ppm/.0011 = 35400 ppm, 



17 

 

respectively) were then multiplied by the 
48

Ti/
30

Si concentrations measured in the sample 

to obtain Ti concentrations (Figure 1.7). 

1.3.2 Electron Microprobe Chemical and Thermobarometric Analysis 

Two samples, SC10-18 and SC10-30, were selected for thermobarometric 

analyses using standard petrographic criteria (e.g., Kohn, 2008). These samples contained 

mineral compositions that were appropriate for determining peak temperature and 

pressure estimates via thermodynamic equilibria.   

Dr. Stacey Corrie acquired garnet X-ray maps and elemental compositions 

(Figures 1.8 and 1.9) using a Cameca SX100 electron microprobe housed in the 

Department of Earth and Environmental Sciences at Rensselaer Polytechnic Institute, 

Troy, New York. Analyses were obtained as described by Corrie (2010): X-ray 

compositional maps of the elements, Fe, Mg, Mn, Ca, and Al, were collected on garnet 

via stage-mapping. Operating conditions for the X-ray maps consisted of an accelerating 

voltage of 15 kV, a current of 200 nA, a pixel time of 30 msec, and a step size of 2-5 

microns/pixel. These maps allowed us to target the location of the line scans. Natural and 

synthetic silicates and oxides were used for calibrations, and quantitative measurements 

were made using an accelerating voltage of 15 kV and a current of 20 nA.  A minimum 

beam size was used on garnet at 10 µm intervals along the line.  A 10 µm beam size was 

used on plagioclase and micas. Peak count times were 10 s (Na, Ca, Fe, Mn, Si, Al), and 

20 s (Mg, Ti, K).  

Peak temperatures and pressures were calculated via exchange reactions and 

thermodynamic equilibria using Ferry and Spear’s (1978) garnet-biotite thermometer, 

Bermans’s (1990) garnet solution model, and Hoisch’s (1990) garnet-plagioclase-
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muscovite-biotite barometer (Figures 1.10 and 1.11).  The lowest Mn and Fe/(Fe+Mg) 

values, associated with a trough in garnet compositions from core to rim, were selected 

for temperature and pressure estimates. These near rim garnet compositions were least 

affected by garnet dissolution and retrograde reactions and most accurately approximate 

peak metamorphic conditions.  These garnet compositions were combined with 

compositions of plagioclase, biotite, and muscovite near the garnet that appeared to be 

texturally equilibrated rather than retrograde products. Peak metamorphic temperatures 

were also estimated at the highest grades using petrogenetic grids (Spear and Cheney, 

1989). 

We estimated depths of the MBT by assuming that the MBT was dipping 10˚ to 

the NW during the main Caledonian orogeny, similar to the current dip magnitude of the 

main Himalayan thrust (MHT) in the Himalaya (Henry et al., 1996), which was measured 

at the surface exposure of the MHT.  We then calculated pressures at each depth, 

knowing from thermobarometry that the pressure at the NW extent of our collections was 

8 kbar (see section 1.4), and assuming a pressure of ~ 3 kbar (i.e., 10 km for the brittle-

ductile transition) near the thrust front.  We explored the effects of changing the assumed 

dip magnitude of the MBT from 5˚ to 12˚ NW, and found that calculated TitaniQ 

temperatures were not sensitive to changes in the dip angle. The MBT could not have 

dipped more steeply than 12˚ on average: relative to the western end of the transect, it 

would project to the surface west of the eastern end of the transect, well west of the 

present eroded thrust front. 

We calculated temperatures using the Ti-in-Qtz thermobarometer (RTlnXqtz,TiOx = 

-60952 + 1.520*T(K)-1741*P(kbar)+RTlnaTiO2; Thomas et al., 2010). Temperatures 
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associated with large analytical errors (2σ > 50°C) were discarded and temperatures that 

were statistically equivalent in a sample were averaged.    

1.4 Results 

Both samples analyzed for garnet-biotite Fe-Mg exchange thermometry (SC10-18 

and -26) show similar or lower TitaniQ temperatures (Figure 1.12): SC10-18Grt-Bt = 525 + 

20°C and SC10-18TitaniQ = 420 ± 8, and 325 ± 8°C; SC10-26Grt-Bt = 525 ± 35, and SC10-

26TitaniQ = 494 ± 18°C.  The occurrence of the assemblage Grt+Ky+Bt+Ms at the highest 

metamorphic grades (farther west) imply minimum temperatures of ~575°C (Spear and 

Cheney, 1989).  

In all instances, cross-cutting quartz vein temperatures mimic TitaniQ 

temperatures of the host rocks, and the host rock groups (Figure 1.13): Quartz vein SC10-

25, of group B, = 419 ± 11°C, and group B = ~380-452°C; quartz veins SC10-04 and -06, 

of group C, = 454 ± 8, and 418 ± 20°C, respectively, and group C = ~400-475°C; quartz 

vein SC10-34, of group F, = 371 ± 15°C, and group F = ~330-370°C; and quartz vein 

SC10-46, of group G = 344 ± 16°C, and group G = 345 ± 16°C. Directly comparing 

cross-cutting quartz veins to their host rocks, shows quartz vein SC10-04 = 454 ± 8°C, 

and host rock SC10-03 = 435 ± 16°C; and quartz vein SC10-34 = 371 ± 15°C, and host 

rock SC10-33 = 361 ± 11°C.  

Metamorphic mineral assemblages that contain garnet + kyanite + biotite + 

staurolite in the structural basement of the Caledonides indicate that amphibolite facies 

conditions were attained (Northrup, 1996b). Ultramylonites with local psuedotachylite 

found near the thrust front indicate that conditions approached the brittle-ductile 

transition. TitaniQ temperatures range from <300°C at the thrust front to >400°C at the 
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deepest crustal levels. Higher TitaniQ temperatures are also preserved in some grains and 

more closely reflect peak metamorphic conditions inferred from metamorphic phase 

equilibria (see upper bound in Figure 1.14).  

Lastly, TitaniQ temperatures are broadly consistent with temperatures expected 

from quartz microstructures (Figure 1.14). However, TitaniQ temperatures reveal grain 

boundary migration recrystallization (GBM) occurring at temperatures as low as 340°C, 

which is significantly lower than previously published temperatures for GBM (500-

700°C; Hirth and Tullis, 1992; Stipp et al., 2002). We also observe quartz recrystallizing 

primarily by BLG at temperatures of ~450°C, which is higher than previously published 

temperatures for BLG (400°C; Hirth and Tullis, 1992; Stipp et al., 2002).   

1.5 Discussion 

Because mylonites texturally postdate the peak of metamorphism, quartz grains 

that recrystallized during mylonitization should record lower temperatures than either the 

metamorphic peak or igneous cooling. We take the lowest temperature recorded by 

recrystallized quartz as the temperature of final shearing, a cluster of temperatures near 

this minimum as the range of temperatures over which the shear zone moved (at a 

specific location) and anomalously high temperatures as possibly relict protolith or peak 

metamorphic grains or domains whose Ti content was incompletely erased by later 

deformation (Figure 1.14).   

Minimum temperatures were regressed vs. distance using a linear least squares 

model to estimate the final temperatures of thrust movement and the average temperature 

gradient along the thrust during final movement.  Minimum TitaniQ temperatures, 

estimated to range from 210 ± 48°C at the thrust front to 475 ± 25 °C at the deepest 
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crustal levels, reflect the best estimate of the final temperatures of deformation (Figure 

1.14).  

We conclude that Ti contents in quartz must be reset during deformation, since 

most TitaniQ deformation temperatures fall well below the metamorphic peak, and 

because TitaniQ temperatures in host rocks mimic TitaniQ temperatures in cross-cutting 

quartz veins (we assume that retrograde deformation post-dated peak metamorphism). If 

deformation pre-dated peak metamorphism, then the deformation textures in quartz 

would not be preserved, as they are in our samples. The higher temperatures that are 

preserved in each location more closely reflect expectations from metamorphic phase 

equilibria (see Upper Bound in Figure 1.14). Finally, TitaniQ temperatures are mostly 

consistent with temperatures expected from quartz microstructures, but on average, 

TitaniQ temperatures are lower (Figure 1.14).  

In Figure 1.14, minimum temperatures for groups A through K plot on the line y 

= 1.69x + 210. This line is projected to intersect the secondary axis (thrust front) at 210 ± 

48˚C, which is the presumed temperature of deformation currently exposed at the thrust 

front and brittle-ductile transition.  Some samples cluster and record a small range of 

temperatures, which we interpret as the range of temperatures over which the shear zone 

moved (at a specific location), whereas others record a large range of temperatures.  

We interpret the upper bound on these temperatures as the minimum temperature 

of peak metamorphism, due to loss of Ti during recrystallization, and the lower bound as 

the temperature at which quartz was equilibrating during the final stages of deformation. 

Resetting of Ti contents in quartz does not appear effective at temperatures below 275˚C, 

since SC10-55, of group K, does not plot on the lower bound. Similarly, SR does not 
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seem to be as effective as GBM at completely resetting Ti contents in quartz crystals 

during dynamic recrystallization, since samples SC10-51 (Figure 1.15) and -49, of groups 

I and J, respectively, which recrystallized by SR, record anomalously high temperatures. 

Sample SC10-45, of group E, plots on the upper bound, rather than the lower bound, 

perhaps because it too recrystallized by SR.  CL images of Sample SC10-45 reveal very 

bright cores and dark rims, even on a subgrain scale, which suggests a very high 

concentration of Ti in the cores (i.e., relict compositions; Figure 1.16). 

Anomalous temperatures in samples were interpreted based on microstructural 

controls and CL variability.  Anomalously high temperatures in the cores of grains were 

interpreted as temperatures of a cooling pluton that were not completely reset, or as 

metamorphic temperatures. Anomalously high temperatures near rims or on grain 

boundaries might have resulted from minor rutile in the grain boundaries. Anomalously 

low temperatures, on the other hand, were interpreted as temperatures associated with 

late-stage, retrograde deformation. This interpretation is supported by overprinted 

deformation textures (undulose extinction, subgrains, and bulges) and cross-cutting 

chlorite. The deformation textures observed in each sample are associated with the last 

temperatures of deformation, which correspond to the lowest temperatures at which the 

quartz equilibrated.   

The estimated temperature for the thrust front is 210 ± 48˚C, even though a 

TitaniQ temperature of 333 ± 22˚C is recorded for sample SC10-55 of group K. We 

hypothesize that SC10-55 may not plot on the line for several reasons: 1) Equilibration 

was incomplete due to ineffective SR at lower temperatures; 2) Sample SC10-55 is either   

an ultramylonite or alternatively a quartzite, in which case, the temperatures recorded in 
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this sample are taken out of context; and 3) The beam likely sputtered through grain 

boundaries since the average grain size in sample SC10-55 is <10 microns.  Similarly, 

sample SC10-51, in group J, may simply be a quartzite (Figure 1.15), so the temperatures 

recorded in this sample are also suspect. The lowest temperature recorded in sample 

SC10-51 projects on the lower bound, but the other temperatures might be anomalously 

high for the reasons stated above. An anomalously high temperature was also recorded in 

sample SC10-49 of Group I. This sample is an ultramylonite with an unknown protolith. 

Therefore, in addition to the reasons stated above, this anomalously high temperature 

might be the temperature of a cooling pluton that was incompletely reset.  This is most 

likely why sample SC10-03 of group F records an anomalously high temperature.  

Hirth and Tullis (1992) identified different dislocation regimes in experimentally 

deformed quartz aggregates, operative over different temperature ranges.  Stipp et al. 

(2002) similarly identified three regimes in naturally deformed quartz veins in the Eastern 

Tonale strike-slip shear zone, Italian Alps, which were characterized by these different 

dynamic recrystallization mechanisms. The microstructures and temperatures associated 

with the different dynamic recrystallization mechanisms in this ‘natural laboratory’, for a 

presumed strain rate, correlate with the dislocation creep regimes defined by Hirth and 

Tullis (1992):  BLG dominates from 280 to 400°C, SR dominates from 400 to 500°C, and 

both SR and GBM dominate from 500 to 700°C.  Grujic et al. (2011) also applied 

TitaniQ to mylonites from the Eastern Tonale fault zone and his findings agree well with 

the previous studies. Thus, their results contrast markedly from ours, where BLG, as the 

dominant recrystallization mechanism, is not observed at any temperature, SR is 

observed at temperatures well below 400°C, and GBM is observed at temperatures as low 
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as 350°C. Strain rate and temperature both contribute to the textures observed in quartz, 

and therefore it is inadvisable to determine temperatures of mylonites based solely on 

quartz microstructures. In the Caledonides, a much lower strain rate may stabilize SR and 

GBM at lower temperatures than anticipated elsewhere.   
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Figure 1.1: A) Tectonostratigraphic map of the northern Scandinavian Caledonides 

adapted from Gee (1975) with sample collection locations and sample collection 

groups. B) Map of Scandinavia showing field area in red rectangle.  
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Figure 1.2: Example of a rock that shows the progression from undeformed granite 

to mylonitized granite (the foliation defines the degree of deformation). Neoblastic 

quartz vein (grey) cross-cuts the host rock, and provides a constraint on the 

minimum temperature of deformation. TitaniQ temperatures of quartz veins 

provide an independent check on accuracy of TitaniQ temperatures of host rocks. 
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Figure 1.3: Images showing different deformation textures in samples. A) Left-over 

grains displayed in sample SC10-04; B) pressure shadow and inclusions indicate 

that the garnet grew pre-deformation; C) grain boundaries are highly irregular due 

to bulging in sample SC10-29; D) bulges and left-over grains present in sample 

SC10-34 indicate GBM; E) patchy extinction distinguishes subgrains in sample 

SC10-45; F) uniform extinction and uniform grain size and straight grain 

boundaries indicate that grains recrystallized by grain boundary migration; G) 

ultra mylonite containing K-spar porphyroclasts; H) Classic core and mantle 

structure indicating recrystallization by SR. Each small interval on ruler is 100 

microns. 
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Figure 1.4: A) Tectonostratigraphic map of the northern Scandinavian Caledonides 

adapted from Gee and Sturt (1985) with sample collection locations, sample 

collection groups, and dynamic recrystallization mechanisms. B) Map of 

Scandinavia showing field area in red rectangle.  
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Figure 1.5: Example of a mount containing three samples, and two standards. 

Bottom left standard is the Lang tang natural quartz standard, and bottom right 

standard is the Herkimer quartz standard. 
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Figure 1.6: Example of a reflected light image of sample SC10-03.2 
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Figure 1.7: Two graphs that illustrate precision of TitaniQ using the SIMS. A) 

Ideally, the LT standard should give the same temperature each time it is analyzed. 

In fact, this is not true because the LT quartz is not perfectly homogenous and it is 

possible to get different ratios on the SIMS on different sample mounts due to the 

geometry of the polished disc in the stainless steel sample holder. B) Similarly all 

samples of SC10-30 should record the same temperature since they were deforming 

together. 
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Figure 1.10: Pressure-temperature plots for sample SC10-18. Intersection of the 

garnet-biotite (Ferry and Spear, 1978) and the garnet-biotite-muscovite-plagioclase 

(Hoisch, 1990) equilibria indicates 525 ± 20°C and 8.5 ± 1.3 kbar. 
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Figure 1.11: Pressure-temperature plots for sample SC10-26. Intersection of the 

garnet-biotite (Ferry and Spear, 1978) and the garnet-biotite-muscovite-plagioclase 

(Hoisch, 1990) equilibria indicates 525 ± 35°C and 7.5 ± 1.0 kbar. 
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Figure 1.12: Temperatures obtained by garnet-biotite exchange equilibria and 

TitaniQ in sample SC10-26 were in agreement with each other. On the other hand, 

in sample SC10-18, the temperature obtained by garnet-biotite exchange equilibria 

was much higher than the temperatures obtained by TitaniQ. 
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Figure 1.13: A) Cross-cutting quartz veins record the same temperatures as the 

rocks in the same sample locations (groups). B) Temperatures obtained from two 

cross-cutting quartz veins (SC10-04 and Sc10-34) mimic temperatures of their 

respective host rocks (SC10-33 and SC10-34, respectively). 
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Figure 1.14: Groups A through K plot on the line y = 1.6943x + 210. This line is 

projected to intersect the secondary axis at ~ 210°C which is the presumed 

temperature of deformation at the thrust front. The lower bound is interpreted as 

the best representation of minimum temperatures of deformation. The lower bound 

was regressed through the lowest temperatures from each group. The upper bound 

is interpreted as the minimum temperature of peak metamorphism, due to loss of Ti 

during retrograde metamorphism. The upper bound was drawn parallel to the 

lower bound, passing through the point (140, 525), since we know, from garnet-

biotite Fe-Mg thermometry, that sample SC10-26, of group A, equilibrated at 

525°C. Re-equilibration does not seem to be effective at resetting Ti contents in 

quartz at temperatures below ~275°C, and SR does not seem to be as effective as 

GBM at completely resetting Ti contents in quartz crystals during dynamic 

recrystallization at lower temperatures. Black stars mark specific locations of each 

group along the shear zone. Thin, dashed vertical line indicates precise boundary 

location, and thick, dashed vertical lines indicate uncertainty in boundary location. 
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Figure 1.15: Photomicrograph of ultramylonite SC10-51. Temperatures are in 

degrees Celsius. Scale bar is 100 microns. 
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Figure 1.16: A) Photomicrograph and B) CL image of sample SC10-45.  

Temperatures are in degrees Celsius.  Scale bar is 500 microns.  The 

dominant dynamic recrystallization mechanism operative in quartz is SR. CL 

image reveals very bright cores and dark rims, even on a subgrain scale, 

which suggests a very high concentration of Ti in the cores. 
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Table 1.4: 48Ti/30Si and 49Ti/30Si ratios of standards. 

# 48Ti/Si  ± 49Ti/Si  ± 

Mt 1 LT_01 0.00168 4 0.000125 9 

Mt 1 LT_02 0.00168 4 0.000123 10 

Mt 1 LT_03 0.00216 83 0.000153 58 

Mt 1 LT_04 0.00153 22 0.000105 17 

Mt 1 LT_05 0.00175 9 0.000123 28 

Mt 1 LT_06 0.00148 6 0.000106 20 

Mt 1 LT_07 0.00166 7 0.000125 22 

     Mt 2 LT-01 0.00245 10 0.000172 22 

Mt 2 LT-02 0.00228 13 0.000161 35 

Mt 2 LT-03 0.00205 12 0.000135 33 

Mt 2 LT-04 0.00202 8 0.000136 27 

Mt 2 LT-05 0.00210 13 0.000150 19 

Mt 2 LT-06 0.00192 6 0.000138 16 

Mt 2 LT-07 0.00197 8 0.000138 16 

Mt 2 LT-08 0.00202 8 0.000139 18 

     Mt 3 LT-01 0.00144 5 0.0000989 13 

Mt 3 LT-02 0.00159 8 0.000117 11 

Mt 3 LT-03 0.00168 6 0.000121 10 

Mt 3 LT-04 0.00168 6 0.000123 15 

     Mt 4 LT-01 0.00141 2 0.0000982 6 

Mt 4 LT-02 0.00131 9 0.0000892 9 

Mt 4 LT-03 0.00130 3 0.0000932 10 

     Mt 5 LT-01 0.00107 2 0.0000737 5 

Mt 5 LT-02 0.00124 2 0.0000843 6 

Mt 5 LT-03 0.00161 55 0.000114 41 

Mt 5 LT-04 0.00139 5 0.000101 6 

     Mt 6 LT-01 0.00139 25 0.000100 15 

Mt 6 LT-02 0.00155 8 0.000105 7 

Mt 6 LT-03 0.00143 2 0.000101 8 

Mt 6 LT-04 0.00144 4 0.000101 6 

     Mt 7 H-01 2.60E-06 0 0.000000 0 

Mt 7 H-02 4.03E-06 0 1.05E-07 0.2 

Mt 7 H-03 2.91E-06 0 0.000000 0 

Mt 7 H-04 2.95E-06 0 1.29E-07 0.3 
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*Ti concentration of LT natural quartz standard is 39 ppm. 

 

     Mt 8 LT-01 0.00153 10 0.000108 10 

Mt 8 LT-02 0.00141 4 0.0000994 9 

Mt 8 LT-03 0.00128 7 0.0000932 7 

     Mt 9 LT-01 0.00107 2 0.0000773 4 

Mt 9 LT-02 0.00119 5 0.0000849 9 

Mt 9 LT-03 0.00105 1 0.0000739 3 
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Table 1.5: Titanium concentrations (ppm), and 
48

T,/
30

Ti and 
49

Ti/
30

Si ratios of samples. 

# 
48

Ti/Si ± 
49

Ti/Si ± ppm Ti 

SC10-03-01 0.000179909 3 0.0000114 7 4.1 

SC10-03-02 0.000635199 7 0.0000503 17 14.5 

SC10-03-03 0.00013513 2 0.0000085 6 3.1 

SC10-03-04 0.000166111 3 0.0000104 6 3.8 

      SC10-04-01 0.000225669 3 0.0000150 7 5.2 

SC10-04-02 0.000216708 2 0.0000142 5 5.0 

SC10-04-03 0.000568192 24 0.0000399 16 13.0 

      SC10-06-01 0.000103096 2 0.0000070 5 2.4 

SC10-06-02 0.000145055 2 0.0000100 7 3.3 

SC10-06-03 0.000121648 2 0.0000086 5 2.8 

SC10-06-04 0.000109404 2 0.0000093 6 2.5 

      SC10-12-01 0.000370451 2 0.0000297 7 6.9 

SC10-12-02 0.00030749 4 0.0000223 7 5.7 

SC10-12-03 0.000140031 1 0.0000097 4 2.6 

SC10-12-04 0.000406072 3 0.0000288 9 7.5 

      SC10-18-01 0.000136505 2 0.0000094 4 2.5 

SC10-18-02 6.80E-05 1 0.0000051 3 1.3 

SC10-18-03 0.000131746 2 0.0000081 4 2.4 

      SC10-21-01 7.73E-05 1 0.0000067 5 1.4 

SC10-21-02 0.000104507 2 0.0000100 8 1.9 

SC10-21-03 7.67E-05 2 0.0000040 4 1.4 

SC10-21-04 0.000159876 2 0.0000131 6 3.0 

      SC10-25-01 0.000100707 1 0.0000069 4 2.5 

SC10-25-02 9.46E-05 2 0.0000063 4 2.3 

SC10-25-03 0.0001082 1 0.0000070 4 2.6 

      SC10-26-01 0.000215531 2 0.0000146 5 5.3 

SC10-26-02 0.000361959 7 0.0000225 10 8.8 

SC10-26-03 0.000276372 3 0.0000195 7 6.7 

      SC10-29-01 0.00014072 1 0.0000112 5 3.4 

SC10-29-02 0.00013842 1 0.0000105 4 3.4 

SC10-29-03 0.000143406 2 0.0000113 6 3.5 

SC10-29-04 0.00014779 2 0.0000100 5 3.6 
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      SC10-30.1-01 0.000161476 0 0.0000111 1 4.7 

SC10-30.1-02 0.000164862 1 0.0000111 3 4.8 

SC10-30.1-03 0.000144953 1 0.0000099 2 4.2 

      SC10-30.2-01 0.000141118 1 0.0000102 3 4.1 

SC10-30.2-02 0.000200185 1 0.0000153 3 5.8 

SC10-30.2-03 0.000178932 1 0.0000124 3 5.2 

      SC10-30.3-01 0.000129579 1 0.0000077 2 3.8 

SC10-30.3-02 0.000100986 1 0.0000071 2 2.9 

SC10-30.3-03 0.000110562 1 0.0000071 0 3.2 

      SC10-31-01 0.000242649 1 0.0000169 2 7.1 

SC10-31-02 0.000235218 1 0.0000161 2 6.9 

SC10-31-03 0.000218842 1 0.0000162 2 6.4 

      SC10-32-01 6.36E-05 2 0.0000044 1 1.9 

SC10-32-02 6.12E-05 0 0.0000036 2 1.8 

SC10-32-03 6.91E-05 1 0.0000050 2 2.0 

SC10-32-04 7.96E-05 1 0.0000061 1 2.3 

      SC10-33-01 4.30E-05 0 0.0000030 1 1.3 

SC10-33-02 5.48E-05 1 0.0000034 1 1.6 

SC10-33-03 4.78E-05 1 0.0000030 1 1.4 

SC10-33-04 3.02E-05 0 0.0000024 1 0.9 

      SC10-34-01 5.95E-05 1 0.0000041 1 1.6 

SC10-34-02 6.84E-05 1 0.0000039 1 1.8 

SC10-34-03 6.72E-05 2 0.0000049 2 1.8 

      SC10-35bii-01 7.67E-05 1 0.0000051 2 2.1 

SC10-35bii-02 5.67E-05 1 0.0000048 2 1.5 

SC10-35bii-03 4.99E-05 1 0.0000031 1 1.3 

      SC10-38-01 7.97E-05 1 0.0000054 1 2.1 

SC10-38-02 7.23E-05 1 0.0000042 2 1.9 

SC10-38-03 5.34E-05 1 0.0000036 1 1.4 

      SC10-45-01 0.000340352 2 0.0000226 3 8.2 

SC10-45-02 0.000311168 1 0.0000216 3 7.5 

SC10-45-03 0.000316495 1 0.0000226 3 7.7 

SC10-45-04 0.000340091 1 0.0000226 3 8.2 
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      SC10-46-01 4.48E-05 0 0.0000031 1 1.1 

SC10-46-02 5.67E-05 1 0.0000040 1 1.4 

SC10-46-03 3.57E-05 0 0.0000025 1 0.9 

SC10-46-04 4.28E-05 1 0.0000030 1 1.0 

      SC10-48-01 9.38E-05 1 0.0000068 3 2.6 

SC10-48-02 4.81E-05 2 0.0000032 3 1.3 

SC10-48-03 3.70E-05 1 0.0000020 1 1.0 

SC10-48-04 4.30E-05 1 0.0000023 2 1.2 

      SC10-49-01 1.12E-05 0 0.0000008 1 0.3 

SC10-49-02 6.35E-05 3 0.0000047 3 1.8 

SC10-49-03 1.71E-05 0 0.0000011 1 0.5 

SC10-49-04 0.000108078 1 0.0000053 1 3.0 

      SC10-51-01 0.000576239 3 0.0000432 4 20.4 

SC10-51-02 3.49E-05 1 0.0000014 2 1.2 

SC10-51-03 1.01E-05 0 0.0000006 1 0.4 

      SC10-55-01 7.52E-05 2 0.0000051 2 2.7 

SC10-55-02 6.46E-05 2 0.0000044 2 2.3 

SC10-55-03 7.11E-05 1 0.0000053 2 2.5 

SC10-55-04 7.69E-05 3 0.0000041 2 2.7 
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CHAPTER TWO: IMPLICATIONS  OF TITANIQ TEMPERATURES FOR THE 

THERMAL AND KINEMATIC EVOLUTION OF THE SCANDINAVIAN 

CALEDONIDES AND MODERN COLLISIONAL OROGENS 

Abstract 

Two competing end-member models for the steady state thermal and kinematic 

evolution of orogens exist: The critical wedge model and the channel flow-extrusion 

model. Due to the unusual and consistent exposure of thrust surfaces for ~140 km across 

the orogen, the Caledonides provide insights into the down-dip behavior of thrusts not 

determinable in other collisional orogens. Using TitaniQ, in combination with other 

thermometers and barometers, to obtain precise and accurate pressure-temperature 

estimates of quartz recrystallization in the Northern Scandinavian Caledonides, we 

resolve a consistent down-dip thermal gradient along the basal thrust shear zone of 1.43 ± 

2°C/km. This low thermal gradient supports the critical wedge model for the evolution of 

the Caledonides.  We suggest that the Caledonides formed from critical wedge mechanics 

together with general non-coaxial flow and gravitational spreading of the nappes.  In 

addition to resolving a down-dip thermal gradient across the Caledonides basal shear 

zone, we calculated strain rates for quartz deformation ranging from 1.00E
-22

 to 1.00E
-13 

s
-1

. 
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2.1 Introduction 

Upper crustal geologic processes can be studied in active orogens (e.g., the 

Himalaya, the Andes).  However, deeper crustal processes are not determinable in active 

orogens, so we must look to ancient orogens to understand geologic processes occurring 

in the middle and lower crust (Andresen et al., 2007). Due to the unusual and consistent 

exposure of thrust surfaces for ~140 km across the orogen, the deeply eroded remains of 

the late Silurian-early Devonian Scandinavian Caledonides (Gee and Sturt, 1985) provide 

a natural laboratory to test competing models of the thermal and kinematic evolution of 

orogens.  

Two such competing models for the thermal and kinematic evolution of orogens 

are 1) the channel flow-ductile extrusion model and 2) the critical wedge model. The 

channel flow-extrusion model treats the middle and lower crust as mechanically weak 

layers that dominate the metamorphic and structural development of the orogen when 

coupled with focused denudation (Zeitler et al., 2001; Beaumont et al., 2001, 2004; 

Jamieson et al., 2002, 2004).  The critical wedge model is the classic model of wedge 

evolution in which the wedge is accreted by forward propagating thrust faults (Royden, 

1993; Henry et al., 1997; Harrison et al., 1998; Huerta et al., 1998; Bollinger et al., 2006). 

The critical wedge model suggests that weak portions of the crust might exist at depth but 

they do not induce flow or otherwise control overall thermal and mechanical behavior 

(Kohn, 2008). Fortunately, both models predict different systematic trends in P-T 

conditions and P-T-t histories for rocks exposed at the surface, so we can compare our 

observations to discriminate among models.   
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We have resolved the thermal gradient in the transport direction along the main 

basal thrust zone (MBT) via Titanium-in-Quartz (TitaniQ) thermometry from the 

Scandinavian Caledonides to discriminate among models. The evolution of the 

Caledonides involved some amount of general non-coaxial flow (Northrup, 1996) and 

possibly evolved by gravitational spreading of the nappes (Ramberg, 1977, 1981; 

Sanderson, 1982). Both the channel flow-extrusion model and the critical wedge model 

have been advocated for the Indo-Tibetan Himalaya. 

 In addition, we have calculated strain rates for mylonites that deformed during 

the main Caledonian event using temperatures calculated via TitaniQ thermometry and 

recrystallized quartz grain paleopiezometry. Flow laws and strain rates are critical to 

understanding deformation conditions in the earth and may allow us to better understand 

crustal viscosities (Kohn and Northrup, 2009), and constrain the strength of the crust 

(Kohlstedt and Weathers, 1980; Ord and Christie, 1984). 

2.2 Background 

2.2.1 Tectonic Setting 

The Scandinavian Caledonides (Figure 2.1) formed during the late Cambrian to 

early Devonian periods, in response to contractional tectonic events known as the 

Caledonian orogeny.  These events culminated in extensive syn-to-post metamorphic, 

southeastward thrusting of diverse rock complexes onto autochthonous, foreland 

sedimentary successions (Roberts, 2003). The first such event, the Finnmarkian, occurred 

during the late Cambrian/earliest Ordovician (520-500 Ma). This event was marked by 

the subduction of the Baltoscandian margin of Baltica beneath a magmatic arc that was 
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positioned in the Aegir Sea, which separated Baltica from Siberia.  The second event, the 

Trondheim event, took place during the early Ordovician (480-475 Ma).  This event was 

marked by the seaward subduction of a microcontinent that had earlier rifted off of 

Baltica.  At this time, Baltica had already started to rotate counter-clockwise away from 

Siberia so that it now faced Laurentia across a gradually contracting Iapetus Ocean.  The 

Trondheim event was followed by the Taconian event, which occurred during the mid-to-

late Ordovician.  This event was marked by the seaward subduction of the continental 

margin of Laurentia beneath a diverse arc complex, which was positioned in the Iapetus 

Ocean.  Finally, these contractional events culminated in the late Silurian/early Devonian 

periods (circa 430-400 Ma) during the Scandian event.  The Scandian event is considered 

the main orogenic event in this region, and it was marked by the oblique, southeastward 

directed collision of Laurentia into Baltica (Roberts, 2003).   

During the Scandian event, the western margin of Baltica was subducted west-

ward to deep levels, and a crustal-scale composite allochthon was thrust eastward onto 

the Baltic craton (Griffin and Brueckner, 1980; Hodges et al., 1982; Stephens and Gee, 

1989).  This large composite allochthon, or orogenic wedge, was separated from the 

Precambrian basement (Baltica) by a weak decollement zone (Fossen, 1992, 2000), 

which has been inferred to dip at low angles (c. 1-2°) westwards, and then steepen 

beneath the hinterland of the orogen towards the Norwegian coast (Gee et al., 2010).  

The thrust sheets making up the orogenic wedge were derived from the rifted 

margin of Baltica, the Iapetus Ocean basin, and rocks of Laurentian affinity (Roberts and 

Gee, 1985). The thrust sheets can be categorized as the Lower Allochthon, the Middle 

Allochthon, the Upper Allochthon, or the Uppermost Allochthon.  The lower and middle 
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Allochthons are of Baltican affinity and consist mainly of gneisses and metamorphosed 

sedimentary cover rocks.  The Upper Allochthon can be subdivided into the Särv, the 

Seve, and the Kӧli Nappes. The Särv and the Seve Nappes are derived from the outer 

margin of the continent Baltica (Gee et al., 2010) and the Kӧli Nappes, which consist of 

metabasalts and metamorphosed deep marine sediments, are derived from the Iapetus 

Ocean basin.  Lastly, the Uppermost Allochthon is of Laurentian affinity and also 

consists of metamorphosed shallow marine sediments and accretionary prisms (Gee, 

1975; Northrup, 1997; Gee et al., 2010).  The metamorphic grade in the Lower and 

Middle allochthons increases upwards into the Seve Nappes and then decreases abruptly 

in the overlying Kӧli Nappes. The decrease in metamorphic grade occurs across 

extensional faults (Gee et al., 2010). 

At least four ultrahigh pressure (UHP) events affected the Scandinavian 

Caledonides within a 100 m.y time span (Brueckner and van Roermund, 2004).  These 

events are evidenced by the concentration of UHP coesite- and diamond-bearing 

eclogites and garnet peridotites (Hacker, 2007).  Eclogites have been found in the 

Baltican basement rocks, in the sedimentary cover rocks, the Middle Allochthon rocks, 

the Middle Allochthon’s sedimentary cover rocks, and the Upper Allochthon rocks 

(Hacker, 2007).  The best known exposure of eclogites in the Scandinavian Caledonides, 

and perhaps the world, is in the Western Gneiss Region, Norway. These eclogites are 

hosted in migmatitic gneisses that record polyphase metamorphism, significant melting, 

and intense shearing (Tucker et al., 1990; Andersen et al., 1991; Hacker et al., 2003, 

2010; Terry and Robinson., 2003, 2004; Brueckner and Van Roermund, 2004; Engvik et 

al., 2007; Fossen., 2010). These UHP and HP rocks along the western coast of Norway 
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have been interpreted to record underthrusting of Baltica underneath Laurentia, followed 

by orogenic extension and the formation of Devonian sedimentary basins.  

Caledonian deformation is inferred to have involved the entire crust in 

westernmost Norway, in the hinterland of the orogen. On the other hand, deformation is 

inferred to be concentrated only in the upper crust in Eastern Norway and Sweden (Gee 

et al., 2010). The amount of Caledonian contraction in the lower crust is difficult to 

estimate because geophysical data yield different interpretations, and direct evidence 

from the lower crust is lacking.  

In response to extreme crustal thickening, the Caledonides underwent post-

collisional extension during the Devonian period (Norton, 1986; Fossen, 1992; Northrup, 

1997; Roberts, 2003; Braathen et al., 2000).  This extension involved the reactivation of 

the MBT as a west/northwest directed normal fault (displacement > ~30 km; Fossen and 

Rykkelid, 1992), along with the development of smaller west/northwest directed normal 

faults within the nappe stack (Fossen, 1992).   

Extension in the upper crustal levels is also believed to have occurred during the 

Caledonian orogeny, while thrusting was occurring at deeper crustal levels (Andersen et 

al., 1991; Gee et al., 1994). This syn-collisional extension is reported in NE Greenland 

(Andresen et al., 2007), the Ofoten-Efjorden region of the Scandinavian Caledonides 

(Northrup, 1996), and the central Caledonides (Gee et al., 1994). Unroofing of high-

pressure rocks in the Western Gneiss Region of southern Norway occurred while 

thrusting continued in the foreland (Andersen et al., 1991) and further supports syn-

collisional extension in the Scandinavian Caledonides.  
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Extension, along with erosion, forced the exhumation and exposure of rocks from 

all major structural levels in the orogen.  Today, the Caledonides consist of a thin but 

regionally extensive remnant of the original nappe stack lying structurally above 

autochthonous or parautochthonous rocks of the Baltic craton and its pre-Caledonian 

sedimentary cover (Roberts and Gee, 1985).  

2.2.2 The Channel Flow Model 

The channel flow extrusion model (Beaumont et al., 2001, 2004; Jamieson et al., 

2004; Figure 2.2) links overall wedge geometry with profoundly weak middle and lower 

crustal levels that behave ductilely, advecting and transporting heat and partially molten 

rock up to ~150 km in tens of m.y to the thrust front (Kohn, 2008) when coupled with an 

erosional front.  As the migmatitic rocks move upward and toward the foreland, they 

advect “extra heat” yielding high temperatures at low pressures (Kohn, 2008). The extra 

heat essentially contact metamorphoses surrounding rocks and decreases their viscosities 

by “melt weakening,” or in-situ partial melting (Jamieson et al., 2004). Beaumont et al. 

(2001) used coupled thermal-mechanical numerical models to show that channel flow 

and ductile extrusion may be dynamically linked through the effects of surface 

denudation focused at the edge of a plateau that is underlain by low-viscosity material. 

CFM predicts that heat and mass are transported horizontally in a channel-like 

conduit with coeval thrust- and normal-sense distributed shear across the lower and upper 

parts of the channel. The presumed channel retains its geometry, persists over geologic 

time periods, and dominates the structural and metamorphic development of the orogen 

(Zeitler et al., 2001; Beaumont et al., 2001, 2004; Jamieson et al., 2002, 2004). Thus, the 

model predicts a large-scale effect of the channel.   
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Flow in the channel requires an inclined thrust surface and focused denudation at 

the thrust front (the high-relief transition between plateau and foreland) as deformation 

focuses into the channel (Beaumont et al., 2001, 2004; Kohn, 2008). The channel, and its 

susceptibility to large-scale horizontal flow, is initiated by a reduction in viscosity, due to 

the increase in melt-fraction of the thickened crust, and the difference in horizontal 

pressure between the internal, thick orogenic crust and external, thin crust (Beaumont et 

al., 2004). The channel flow model predicts an inverted metamorphic sequence: peak P-T 

conditions in the sillimanite stability field (Corrie, 2010; Kohn, 2008); peak metamorphic 

pressures that decreases structurally downward; and retrograde isothermal exhumation 

until rocks begin cooling relatively close to the surface (Kohn, 2008; Corrie, 2010).  It 

also predicts a high thermal gradient along the thrust surface (tens of °C/km). 

2.2.3 The Critical Wedge (Taper) Model 

The Critical Wedge model is the classic model of wedge evolution (Royden, 

1993; Henry et al., 1997; Harrison et al., 1998; Huerta et al., 1998, 1999; Bollinger et al., 

2006; Figure 2.3). The wedge is made up of allochthonous sheets that are thrust upon 

each other during convergence. The model does not preclude weak portions of the crust 

and partial melts at depth, but suggests that the partial melts never approach the thrust 

front. In other words, the effect of a presumed channel is small and does not induce flow: 

the partial melts at depth are not transported to the orogenic front and a flow channel has 

only a minor influence on the overall thermal and mechanical behavior of the orogen 

(Kohn, 2008). Critical wedge theory is based on mechanical models that assume a wedge 

of deforming rock is everywhere at a condition of critical failure (Dahlen, 1990), and is 

accommodated by in-sequence thrusting. However, normal faulting may occur if the 
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wedge becomes super-critical (the combination of internal strength of the wedge and the 

shear stress across its base are insufficient to support the topographic gradient; Platt, 

1986). In general, a wedge may grow by accretion of new material, or a wedge may 

maintain its size if erosion is coupled by underplating of new material to the base. 

Metamorphic field gradients are strongly influenced by details regarding erosion and 

underplating rates (Henry et al., 1996). 

Critical wedge advects much less heat than channel flow, and thus produces 

relatively low temperatures at high pressures (Henry et al., 1996; Kohn, 2008).  The 

critical wedge model predicts P-T conditions well within the kyanite stability field; initial 

retrograde isobaric cooling; “hairpin” P-T paths; and relatively slow cooling rates (Kohn, 

2008). It also predicts a low thermal gradient (a few °C/km) along the thrust surface.  

2.2.4 Gravitational Spreading of Nappes 

The Gravitational Spreading of Nappes (GSN; Ramberg, 1977, 1981; Sanderson, 

1982) is a model for the emplacement of thrust nappes that have undergone transport-

parallel elongation during thrusting (Northrup, 1996). GSN assumes general non-coaxial 

flow in the middle and lower crust. It is driven by critical wedge kinematics, but it 

incorporates flow dynamics. Deformation within the nappes results from a dynamic 

interaction between plate tectonic convergence and the force of gravity acting on the 

nappe stack (Northrup, 1996). In this model, rocks in the middle and lower crust are 

weakened due to increased radioactive heat production of the thickened crust. The strong 

upper crust then compresses the soft, partially molten rocks in the middle and lower crust, 

which induces flow in all directions. Thus, general non-coaxial flow has the effect of 

attenuating the wedge and may be evidenced by a multi-directional stretching lineation in 
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the fabric of mylonites. Unlike CFM, general non-coaxial flow does not maintain a 

channel-like conduit and does not persist over geologic time. Unlike CFM, both thrust 

and normal movement may occur individually or simultaneously in the upper crust during 

GSN. 

Flow may represent an important kinematic link between contemporaneous 

normal faulting at shallow crustal levels and thrusting at deep crustal levels. General non-

coaxial flow can produce simultaneous foreland directed structural transport, penetrative 

thinning, and transport-parallel elongation at deep levels of the nappe stack (Northrup, 

1996). 

2.2.5 Tectonic Setting and Kinematic Model of the Himalaya 

The Himalayan-Tibetan Orogen is a large orogen that serves as the type example 

of continent-continent collisions. The main phase of thrusting began 20-25 Ma (Henry et 

al., 1996) and continues today with the whole Indian crust underthrusting below the 

crustal wedge of the High Himalaya at a rate of about 15-20 mm/yr (Bilham et al., 2003). 

Today, the average elevation in the High Himalaya exceeds 5000 m and the Tibetan 

plateau is roughly 4000-5000 m (Henry et al., 1996).  Since 20 Ma, shortening across the 

range has been primarily taken up by slip along a single thrust fault, the main Himalayan 

thrust (MHT; Bollinger et al., 2006), which dips approximately 10° (Brown et al., 2006). 

All major thrust faults sole into the MHT, along which, the Indian crust is buried beneath 

the southern edge of Tibet. The Main central thrust (MCT) separates the High Himalayan 

Crystallines (HHC) from the Lesser Himalayan Sequence (LHS) and is thought to be the 

major thrust fault that has contributed to the formation of the Himalaya (Bollinger et al., 

2006). The MCT was activated in the early Miocene.  The Greater Himalayan sequence 
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(GHS) is comprised of high grade metamorphic rocks between coeval thrust- and normal-

sense shear zones corresponding to the South Tibetan Detachment (STD) and the MCT. 

The present average erosional rate over the whole Himalayan belt is ~1 mm/yr 

(for the last 25-30 Myr; Henry et al., 1996); however, local denudation rates have been 

episodically higher (1.1 to 8 mm/yr; Copeland and Harrison, 1990; Pecher, 1989; Kohn, 

2004), which may be related to tectonic events, expressed as extensional movement along 

the STD and North Himalayan Fault systems. Denudation rates are also geographically 

variable. 

Beaumont et al. (2001, 2004) have called upon channel flow coupled with ductile 

extrusion in the middle to lower crust to explain the outward growth of the Tibetan 

plateau and the exhumation of the migmatitic rocks of the GHS. According to these 

geoscientists, channel flow coupled with focused denudation at the thrust front provides 

an internally consistent explanation for the tectonic exposure of the Greater Himalayan 

Sequence (GHS) and its relationship to its bounding shear zones, the South Tibetan 

Detachment (STD) system, and the Main Central Thrust (MCT) system. Bollinger et al. 

(2006) have documented an inverse thermal metamorphic gradient throughout the Lesser 

Himalayan Sequence (LHS).  

On the other hand, Kohn (2008) repudiates large-scale channel flow of the GHS 

and supports CTM for the Himalaya based on P-T-t data from central Nepal. 

Metamorphic and chronologic patterns are matched well by expectations of critical 

wedge models and contrast significantly with published channel flow models.  
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2.3 Methods 

We determined temperatures of deformation using TitaniQ thermometry on 23 

samples from the Scandinavian Caledonides in Norway and Sweden.  We used these 

temperatures, together with the measured lateral distance from the thrust front, to resolve 

a thermal gradient. In principal, a high thermal gradient (tens of °C/km) would support 

CFM, whereas a low thermal gradient (a few °C/km) would support CTM or GSN. 

We optically determined recrystallized grain sizes and identified the transitions 

between dislocation creep regimes (Hirth and Tullis, 1992; Stipp et al., 2010) for flow 

stress calculations. Flow stress (σ), or the yield strength, is defined as the instantaneous 

value of stress required to keep the material deforming. Flow stress was calculated using 

the recrystallized grain size piezometer for quartz: 

                                Eq. 1 

Where D is the diameter of the recrystallized quartz grain (Stipp and Tullis, 2003), which 

corresponds to dislocation creep regimes 2 and 3 (Hirth et al., 2001). Error propagation 

was calculated using numerical error analysis (Roddick, 1987). Strain rate was calculated 

by the formula: 

 ̇       
       ( 

 

  
)       Eq. 2 

Where A is a material parameter, and    ( )                 (   ),      is water 

fugacity at each pressure and temperature (Burnham et al., 1969), m is the water fugacity 

exponent (= 1),   is the flow stress or differential stress, n is the stress exponent (= 4), Q 

= 135 kJ/mol, R is the ideal gas constant (    
 

    
), and T is the absolute temperature 

(Hirth et al., 2001), which we calculated via TitaniQ.  Hirth et al. (2001) determined 

material constants for the strain rate equation by combining natural and experimental 
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constraints, and they determined external variables by thermochronological, structural, 

and microstructural observations from the Ruby gap duplex, central Australia. They 

evaluated the applicability of different quartzite flow laws at natural conditions after 

establishing that the same deformation processes operate at geological and experimental 

conditions. Error arises because dislocations in regime three move with a higher velocity 

than in regime 2 (Hirth et al., 2001), and therefore may experience different activation 

energies in nature.   

Example calculation: Flow stress (σ) and strain rate ( ̇) for sample SC10-26:  
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2.4 Results 

In Chapter 1, I calculated TitaniQ temperatures for samples that recrystallized 

along a ductile shear zone. I plotted Temperature v. Distance from the Thrust Front and 

observed that deformation temperatures ranged from ~210°C at the thrust front to 475°C 

at the deepest structural levels. I fit a line through the minimum temperatures at each 

location to resolve a thermal gradient of 1.7 ± 0.5°C/km along the shear zone (Figure 

1.14). Using these minimum temperatures, I calculated strain rates ranging from 1*10
-22

 

to 1*10
-12

 s
-1

.  I resolved a weak trend to lower strain rates farther from the thrust front 

and deeper in the crust (Figure 2.4, C and D).  My data also show that strain rate is higher 

at lower temperatures (Figure 2.4, A) and in smaller grains (Figure 2.5, C).  
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I constrained the transition between dislocation creep regimes 2 and 3 at flow 

stresses between 20 and 105 MPa (Figure 2.5, B), consistent with the transition estimated 

by Hirth et al. (~65-100 MPa; 2001).  

2.5 Discussion 

A critical wedge model for the thermal and kinematic evolution of the 

Caledonides is supported by 1) a low thermal gradient of 1.7 ˚C/km; 2) the absence of 

high temperatures near the thrust front; and 3) strain rates typical of crustal settings, all of 

which repudiate the effect of a large scale channel.  Due to melt weakening, strain rates at 

the base of a crust deforming by CFM will typically be higher than strain rates at the base 

of a crust deforming by CTM.   

Critical wedge geometry, linked with general non-coaxial flow in the mid-crust 

would account for foreland-directed transport, subvertical thinning, and transport-parallel 

elongation of the rock mass at depth (Northrup, 1996), and could explain coeval upper 

crustal extension and contractional thrusting at deeper crustal levels. In the Caledonides, 

general non-coaxial flow occurred during the Scandian orogeny, prior to, and during the 

main Caledonian orogeny (Northrup, 1996), and is evidenced by spreading lineation in all 

directions. Therefore, we suggest that the Caledonides formed by critical wedge 

kinematics accompanied by Gravitational Spreading of the Nappes.  

One argument for a channel flow model of the Caledonides would be the presence 

of partial melt migmatites at the thrust front. However, migmatites cannot be observed at 

the thrust front, even if they existed there before, because the upper crust of the 

Caledonian orogen has been removed. And although migmatites are present in NE 

Greenland and in the Western Gneiss Region of Norway, they are thought to have 
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resulted from magmatic activity due to basaltic underplating (Andresen et al., 2007), and 

not from channel flow. Granulitic migmatites in the Seve Nappe complex are also 

thought to have originated from the Baltoscandian margin before emplacement eastward 

onto Baltica (Gee et al., 2008), and not from channel flow.  

2.5.1 Comparison with the Himalayan Orogen  

There are broad similarities in deformation patterns between the Scandinavian 

Caledonides, and the Indo-Tibetan Himalaya. We propose that the tectonic model 

supported in this study may be analogous to the tectonic evolution of the Himalaya.  At 

high structural levels of the Himalaya, normal faulting along the South Tibetan 

Detachment System (STDS) occurred contemporaneously with continued movement 

along the Main Central Thrust (MCT) at the base of the allochthon, similar to the coeval 

thrusting and extension that occurred in Scandinavia at different crustal levels during the 

main Caledonian event (Northrup, 1996).  

2.5.2 Strain Rate Implications 

The strain rates we calculated are typical of crustal settings deforming in a ductile 

shear zone. Strain rates in a ductile shear zone range from 1*10
-6

 s
-1 

at the brittle-ductile 

transition, where deformation transitions from microcracking to dominantly dislocation 

motion (Tullis and Yund, 1977), to infinitely low strain rates at crustal depths.  While 

formatting our strain rate axes in Figures 2.4, A, C, and D, and 2.5, A, and C, I pinned the 

upper bound at 1*10
-6

 s
-1 

and our lower bound at 1*10
-25

 s
-1

, which I considered a  

reasonable minimum strain rate at the base of a deforming crust (the rate at which the 

base of the crust deformed).  
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Finally, I observed dislocation creep regimes 2 and 3 occurring at temperatures 

much lower than previously estimated (see Chapter 1; Hirth and Tullis, 1992), which 

might explain why Hirth et al.’s (2001) transition falls within the upper end of our range 

(Figure 2.5, B). 
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Figure 2.1: A) Tectonostratigraphic map of the northern Scandinavian Caledonides 

adapted from (Gee and Sturt, 1985) with sample collection locations, and sample 

collection groups. B) Map of Scandinavia showing field area in red rectangle.  
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Figure 2.2: Channel Flow model of Himalayan development (from Kohn, 2008; 

based on Beaumont et al., 2004 and Jamieson et al., 2004). Partial melt channel 

(gray zone, ≥700°C) couples with an erosional front (EF) and propagates forward 

over time until hot, partially molten rocks are brought close to the surface before 

cooling begins. 
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Figure 2.3: Figure 2.3. Critical wedge model of Himalayan development (from 

Kohn, 2008; based on Henry et al., 1997 and Bollinger et al., 2006). As erosion 

uniformly removes material from on top of the section, thrusts progressively under-

plate, creating a series of in-sequence thrusts over time. A partial melt zone exists, 

but remains far from the orogenic front. 
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Figure 2.5: A) Increasing strain rate as a function of increasing flow stress; B) 

quartz grains record lower temperatures at higher flow stresses. Black dashed lines 

mark our best constraint on the transition between dislocation creep regimes 2 and 

3. Gray zone is transition between dislocation creep regimes 2 and 3 as defined by 

Hirth et al. (2001), and it falls within the upper end of our constraints; and C) shows 

trend to higher strain rates in smaller grains. 
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Table 2.1: Flow stress and strain rate of rocks from the Scandinavian Caledonides in northern 

Norway and Sweden 

Sample 

Recrystallized 

Grain Size 

(µm) 

σ (MPa) ± 
1σ  

T (°C) Strain Rate (s
-1

) ± 2σ 

      SC10-26 200 10 ± .01 494 1.47E-15 1.57027E-16 

SC10-29 3000 1 ± .10 445 6.41E-20 5.00041E-19 

SC10-30 100 17 ± .01 456 4.41E-15 2.37067E-16 

SC10-31 200 10 ± .01 486 
  SC10-18 50 30 ± .01 420 1.25E-14 2.2008E-16 

 

200 10 ± .01 420 1.54E-16 9.66351E-18 

SC10-21 125 14 ± .01 396 2.95E-16 1.14754E-17 

SC10-25 50 30 ± .01 419 1.21E-14 2.12753E-16 

 

1000 3 ± .04 419 8.97E-19 5.9235E-19 

SC10-03 200 10 ± .01 435 2.52E-16 1.77892E-17 

 

800 3 ± .03 435 3.09E-18 1.56911E-18 

SC10-04 1000 3 ± .04 454 2.78E-18 2.05416E-18 

 

10000 0 ± .34 454 1.86E-21 1.29341E-19 

SC10-06 10000 0 ± .34 418 5.80E-22 4.03972E-20 

SC10-12 300 7 ± .01 469 1.99E-16 2.28791E-17 

SC10-42 200 10 ± .01 

   SC10-45 10000 0 ± .34 473 3.28E-21 2.23102E-19 

SC10-32 1500 2 ± .05 379 5.87E-20 3.01918E-20 

 

200 10 ±.01 379 3.52E-17 8.52249E-19 

SC10-33 150 13 ± .01 361 4.32E-17 7.74018E-19 

 

500 5 ± .02 361 9.46E-19 7.7266E-20 

SC10-34 1000 3 ± .04 371 
  SC10-

35bii 
100 17 ± .01 367 1.99E-16 

2.43198E-18 

SC10-38 200 10 ± .01 378 3.39E-17 8.20261E-19 

SC10-46 3000 1 ± .10 345 1.65E-21 2.49043E-21 

 

500 5 ± .02 345 4.88E-19 3.39029E-20 

SC10-48 200 10 ± .01 348 1.01E-17 1.44623E-19 

SC10-51 10 108 ± .01 282 6.11E-15 3.66079E-18 

SC10-49 300 7 ± .01 279 1.07E-19 1.35399E-21 

 

15 78 ± .01 279 1.44E-15 1.19007E-18 

SC10-55 10 108 ± .01 333 7.17E-14 2.92054E-17 

  150 13 ± .01 333 1.32E-17 5.18766E-20 

 



80 

 

 

Table 2.2: Geologic setting of rocks from the Scandinavian Caledonides in northern 

Norway and Sweden 

Sample Group Rock Type Geologic Setting Depth 

of MBT 

(km) 

SC10-26 A schist Uppermost Allochthon: Calednoian 

Cover 

34 

SC10-29 A quartz vein Uppermost Allochthon: Calednoian 

Cover 

34 

SC10-30 A schist Uppermost Allochthon: Calednoian 

Cover 

33 

SC10-31 A schist Uppermost Allochthon: Calednoian 

Cover 

32 

SC10-18 B schist Caledonian Cover 32 

SC10-21 B quartzite Caledonian Cover 32 

SC10-25 B quartz vein Caledonian Cover 31 

SC10-03 C mylonite Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

30 

SC10-04 C quartz vein Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

30 

SC10-06 C quartz vein Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

30 

SC10-12 C mylonite Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

28 

SC10-42 D mylonite/                

quartzite 

Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

24 

SC10-45 E quartz vein Upper Allochthon: Caledonian 

Cover 

24 

SC10-32 F mylonite Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

24 

SC10-33 F mylonite Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

23 

SC10-34 F quartz vein Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

23 

SC10-35bii F mylonite Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

23 

SC10-38 F  schist Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

22 

SC10-46 G quartz vein Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

22 
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SC10-48 H mylonite Parauatochthon/Autochthon: 

PreCambrian Crystalline rocks 

18 

SC10-51 I ultramylonite Middle Allochthon: Middle 

Proterozoic and older 

18 

SC10-49 J quartzite 

ultramylonite 

Caledonian Cover 16 

SC10-55 K quartzite 

ultramylonite 

Parautochthon/Autochthon 9 
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Figure A.1: A) Photomicrograph and B) CL image of sample SC10- 03. 

Temperatures are in degrees Celsius. Scale bar is 100 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is GBM. 
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Figure A.2: A) Photomicrograph and B) CL image of sample SC10-04. 

Temperatures are in degrees Celsius. Scale bar is 1mm. Dominant dynamic 

recrystallization mechanism operative in quartz is GBM. 
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Figure A.3: A) Photomicrograph and B) CL image of sample SC10-06. 

Temperatures are in degrees Celsius. Scale bar is 1mm. Dominant dynamic 

recrystallization mechanism operative in quartz is GBM. 
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Figure A.4: A) Photomicrograph and B) CL image of sample SC10-12. 

Temperatures are in degrees Celsius. Scale bar is 500 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is GBM. 
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Figure A.5: A) Photomicrograph and B) CL image of sample SC10-18. 

Temperatures are in degrees Celsius. Scale bar is 300 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 
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Figure A.6: A) Photomicrograph and B) CL image of sample SC10-21. 

Temperatures are in degrees Celsius. Scale bar is 300 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 
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Figure A.7: A) Photomicrograph and B) CL image of sample SC10-25. 

Temperatures are in degrees Celsius. Scale bar is 300 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 
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Figure A.8: A) Photomicrograph and B) CL image of sample SC10-26. 

Temperatures are in degrees Celsius. Scale bar is 500 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is GBM. 



97 

 

 

Figure A.9: A) Photomicrograph and B) CL image of sample SC10-29. 

Temperatures are in degrees Celsius. Scale bar is 1 mm. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 
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Figure A.10: A) Photomicrograph and B) CL image of sample SC10-30.1. 

Temperatures are in degrees Celsius. Scale bar is 500 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 
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Figure A.11: A) Photomicrograph and B) CL image of sample SC10-30.2. 

Temperatures are in degrees Celsius. Scale bar is 300 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 
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Figure A.12: A) Photomicrograph and B) CL image of sample SC10-30.3. 

Temperatures are in degrees Celsius. Scale bar is 300 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 
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Figure A.13: A) Photomicrograph and B) CL image of sample SC10-31. 

Temperatures are in degrees Celsius. Scale bar is 1 mm. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 
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Figure A.14: A) Photomicrograph and B) CL image of sample SC10-32. 

Temperatures are in degrees Celsius. Scale bar is 500 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is GBM. 
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Figure A.15: A) Photomicrograph and B) CL image of sample SC10-33. 

Temperatures are in degrees Celsius. Scale bar is 1 mm. Dominant dynamic 

recrystallization mechanism operative in quartz is GBM 
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Figure A.16: A) Photomicrograph and B) CL image of sample SC10-34. 

Temperatures are in degrees Celsius. Scale bar is 500 microns. Dominant dynamic 

recrystallization mechanisms operative in quartz are BLG and GBM. 
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Figure A.17: A) Photomicrograph and B) CL image of sample SC10-35bii. 

Temperatures are in degrees Celsius. Scale bar is 300 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is 
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Figure A.18: A) Photomicrograph and B) CL image of sample SC10-38. 

Temperatures are in degrees Celsius. Scale bar is 300 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is GBM.  
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Figure A.19: A) Photomicrograph and B) CL image of sample SC10-45. 

Temperatures are in degrees Celsius. Scale bar is 500 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 
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Figure A.20: A) Photomicrograph and B) CL image of sample SC10-46. 

Temperatures are in degrees Celsius. Scale bar is 1 mm. Dominant dynamic 

recrystallization mechanism operative in quartz is BLG. 
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Figure A.21: A) Photomicrograph and B) CL image of sample SC10-48. 

Temperatures are in degrees Celsius. Scale bar is 300 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is GBM. 
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Figure A.22: A) Photomicrograph and B) CL image of sample SC10-49. 

Temperatures are in degrees Celsius. Scale bar is 300 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 
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Figure A.23: A) Photomicrograph and B) CL image of sample SC10-51. 

Temperatures are in degrees Celsius. Scale bar is 100 microns. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 
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Figure A.24: A) Photomicrograph and B) CL image of sample SC10-55. 

Temperatures are in degrees Celsius. Scale bar is 1 mm. Dominant dynamic 

recrystallization mechanism operative in quartz is SR. 


