

A SYSTEMATIC APPROACH TO VERIFY

AN EMBEDDED CAPACITIVE TOUCHSCREEN SYSTEM

By

Jeffrey Lee Richardson

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Engineering

Boise State University

August 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boise State University - ScholarWorks

https://core.ac.uk/display/61729482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2013

Jeffrey Lee Richardson

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Jeffrey Lee Richardson

Thesis Title: A Systematic Approach to Verify an Embedded Capacitive Touchscreen

System

Date of Final Oral Examination: 18 June 2013

The following individuals read and discussed the thesis submitted by student Jeffrey Lee

Richardson, and they evaluated his presentation and response to questions during the

final oral examination. They found that the student passed the final oral examination.

Sin Ming Loo, Ph.D. Chair, Supervisory Committee

Hao Chen, Ph.D. Member, Supervisory Committee

Jennifer Smith, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Sin Ming Loo, Ph.D., Chair of the

Supervisory Committee. The thesis was approved for the Graduate College by John R.

Pelton, Ph.D., Dean of the Graduate College.

iv

To

Sarah

Samuel, Carter, and Logan

Dad and Bruce

v

ACKNOWLEDGEMENTS

I am grateful for this opportunity to thank the people that have helped me through

this process. First, I express my thanks to my advisor, Dr. Sin Ming Loo, for his patience

with me and the advice he has given me over the years.

I thank Elizabeth Weese for her time and willingness to read through my thesis

multiple times and make necessary edits and corrections to my sentence structure and

grammar. I thank Todd Schwoewer, Ryan Seguine, Eric Blom, Tomasz Cewe, and Aaron

Gordon for reviewing my thesis at different stages along the way and giving excellent

advice. I thank Erik Anderson, Patrick Prendergast, Blake Gilfillan, and Jacob Tomy for

their ideas and expertise. I thank Marcin Lobrow, Erik Anderson, and Jenny Bui for

letting me use some of their graphics. I thank Greg Lupion for his feedback on my

writing. I also give a special thanks to Jenny Bui and Ian Smith for their implementation

of the custom-built test management software.

Finally, I thank my wife, Sarah, for her patience and all of the very long hours she

has dedicated to allowing me to finish this work. Words cannot express the love and

gratitude I have for her. I express my thanks and love to our three boys: Samuel, Carter,

and Logan who have been patient with me and have missed out on many (not all) fishing

and camping trips. I give my love and special thanks to the rest of my and my wife‟s

family who have been a tremendous support and excellent examples of hard work and

determination throughout my life; especially, my mother. Thank you.

vi

ABSTRACT

The conspicuously massive growth in the number of products utilizing capacitive

touchscreen technology has raised awareness of the technology. The embedded system

used to detect and report finger touches to the host is fairly complex and difficult to

verify. An automated verification system is required to systematically test this type of

system in a reasonable amount of time. This thesis describes the framework for an

automated verification system for embedded capacitive touchscreen systems. The

framework includes a Cartesian desktop robot, test instruments, communications bridge,

and custom-built test management software. The criteria for selecting a Cartesian desktop

robot rather than a SCARA robot are discussed. The SCARA robot provides quicker but

less precise movements, while the Cartesian desktop robot supports a larger payload and

accommodates more touchscreen panels in its work envelope. The criteria for choosing to

develop custom-built test management software instead of purchasing existing off-the-

shelf test management are also discussed. Both solutions support hardware abstraction,

verification procedures, procedure sequencing, and output of the results. The custom-

built solution is more flexible, providing access to how the software framework is

implemented and allowing adjustments as needed. Off-the-shelf solutions are limited in

what customizations they support and often have unnecessary features that utilize

valuable computing resources.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. v

ABSTRACT ... vi

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS .. xiii

CHAPTER ONE: INTRODUCTION ... 1

1.1 Mobile Computing Systems .. 1

1.2 Capacitive vs. Resistive Touchscreens ... 2

1.3 Capacitive Touchscreen Trend ... 2

1.4 Verification ... 3

1.4.1 Capacitive Touchscreen ... 4

1.4.2 Repeatability .. 4

1.5 Verification Automation ... 5

1.6 Thesis .. 5

1.7 Overview ... 6

CHAPTER TWO: PREVIOUS WORK AND EXISTING TECHNOLOGY 8

2.1 Previous Research ... 8

2.2 Existing Technology ... 10

2.2.1 TestStand Test Management Software .. 10

viii

2.2.2 SCARA Robot ... 13

CHAPTER THREE: SYSTEM VERIFICATION AUTOMATION ARCHITECTURE 17

3.1 Overall System Architecture ... 17

3.2 System Under Verification ... 18

3.2.1 Touchscreen Controller Board ... 18

3.2.2 Touchscreen Sensor Panel ... 19

3.3 Verification Equipment ... 19

3.4 Test Management Software .. 20

CHAPTER FOUR: SYSTEM VERIFICATION HARDWARE .. 22

4.1 Hardware Under Verification ... 22

4.1.1 Touchscreen Sensor Panel ... 22

4.1.2 Touchscreen Microcontroller ... 25

4.2 Hardware Utilized for Verification ... 26

4.2.1 USB Communications Bridge.. 27

4.2.2 Cartesian Robot .. 27

CHAPTER FIVE: VERIFICATION SOFTWARE .. 31

5.1 Software Architecture ... 31

5.2 Automated Test Engine ... 32

5.2.1 Hardware Abstraction .. 32

5.2.2 Procedures .. 33

5.2.3 Sequencer ... 36

5.3 Data Collector ... 37

5.3.1 Data Object .. 37

ix

5.4 Data Processor .. 38

5.5 Report Generator ... 40

5.5.1 Report Object ... 40

5.5.2 Document Generation .. 41

5.6 Output ... 41

CHAPTER SIX: CAPACITIVE TOUCHSCREEN VERIFICATION AUTOMATION 43

6.1 Automating SNR Verification .. 43

6.2 Automating Report Rate Verification ... 47

6.3 Automating Linearity Verification ... 50

6.4 Automating Accuracy Verification ... 53

6.5 Automating Jitter Verification .. 56

CHAPTER SEVEN: CONCLUSIONS .. 60

7.1 Robot ... 60

7.2 Test Management Software .. 61

CHAPTER EIGHT: FUTURE WORK .. 63

8.1 Robot Touch Objects .. 63

8.2 Test Management Report Generation ... 64

8.3 Test Management Software Database Support ... 64

8.4 Human Experience .. 64

REFERENCES ... 66

x

LIST OF TABLES

Table 1. Refresh Rate Measurement ... 49

Table 2. Linearity Deviation Measurement .. 53

Table 3. Accuracy Error Measurement ... 56

Table 4. Jitter X and Y Measurement ... 58

xi

LIST OF FIGURES

Figure 1. Automation Verification System ... 5

Figure 2. SCARA Robot Kinematic Diagram [43] ... 14

Figure 3. SCARA Work Envelope 2D [42] .. 15

Figure 4. SCARA Work Envelope 3D [41] .. 15

Figure 5. System Architecture [36] [37] [38] [39] [40] .. 17

Figure 6. Projected Capacitive Touchscreen Sensor Panel Layers 23

Figure 7. Ghost Effect in Self-Capacitive Sensing ... 23

Figure 8. Mutual Capacitive Sensing .. 24

Figure 9. Detecting Multiple Touches in Mutual Capacitance Sensing 24

Figure 10. Cartesian Robot Kinematic Diagram [35] ... 28

Figure 11. Cartesian Robot Work Envelope [34] ... 29

Figure 12. Test Management Software Architecture .. 32

Figure 13. Test Case Structure .. 35

Figure 14. TRD Test Case Example ... 35

Figure 15. Sequencer Flow ... 36

Figure 16. Linearity Type of Data Processing .. 39

Figure 17. SNR Measurements – Bar Graph .. 45

Figure 18. SNR Measurement – Heat Map ... 46

Figure 19. Low Refresh Rate .. 48

Figure 20. High Refresh Rate ... 48

../Thesis_JeffRichardson.doc#_Toc363036411
../Thesis_JeffRichardson.doc#_Toc363036412

xii

Figure 21. Linearity .. 50

Figure 22. Linearity Measurement Plots ... 52

Figure 23. Accuracy (ACC) .. 54

Figure 24. Accuracy Measurement Plot and Histograms ... 55

Figure 25. Jitter ... 57

Figure 26. Jitter Measurement Bar Graphs ... 59

xiii

LIST OF ABBREVIATIONS

ADO ActiveX Data Objects

ADC Analog-to-Digital Converter

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ATML Automatic Test Markup Language

COM Component Object Model

DOC Microsoft Word Document

DMM Digital Multimeter

FPC Flexible Printed Circuit

HTML Hyper Text Markup Language

I/O Input / Output

I
2
C Inter-Integrated Circuit

ITO Indium Tin Oxide

IVI Interchangeable Virtual Instruments

LCD Liquid Crystal Display

OCA Optically Clear Adhesive

xiv

ODBC Open Database Connectivity

PCB Printed Circuit Board

PDF Portable Document Format

PET Polyethylene terephthalate

PMMA Poly(methyl methacrylate)

RS-232 Recommended Standard 232

SCARA Selective Compliant Articulated Robot Arm

SMPS Switched-Mode Powered Supply

SNR Signal-to-Noise Ratio

SPI Serial Peripheral Interface

TRD Test Requirements Document

USB Universal Serial Bus

VISA Virtual Instrument Software Architecture

VME VERSAmodule Eurocard bus

VXI VME Extensions for Instrumentation

XML Extensible Markup Language

1

CHAPTER ONE: INTRODUCTION

1.1 Mobile Computing Systems

The concept of mobile computing systems has been around since the “Dynabook”

was conceived in 1968 [1]. When the Xerox Alto (a.k.a. “interim Dynabook”) [2] and

IBM‟s Special Computer, APL Machine Portable (SCAMP), were created in 1973 [3][4],

mobile computing systems became a reality. Since then, mobile computing systems have

become slimmer and smaller with multiple core CPUs and high-capacity memory.

Resistive and capacitive touchscreens enable mobile computing systems that weren‟t

even imaginable in the 1960‟s, such as tablets, mobile phones, and GPS units. These

systems eliminate the need for keyboards and mice, and demand for these systems is

increasing. As the systems have become smaller, they are often referred to as devices.

Touchscreen sensors play a big part in the user interface of today‟s mobile

devices. Touch interfaces have a modern aesthetic and provide users with an easy and

intuitive way of using the device. Touchscreens dominate mobile phone interfaces. In

addition to making phone calls, they allow the user to text, play games, take pictures and

video, browse the internet, and navigate all on the same mobile device. In addition, touch

sensors give users easy access to hundreds of thousands of apps, providing additional

resources.

The increase in production of the materials used to manufacture touchscreens

clearly demonstrates how this technology has taken off. Production grew 66% from 5.8

2

million square meters produced in 2010 to 9.6 million square meters produced in 2011.

Growth is expected to reach 16.4 million square meters by 2014. The resulting numbers

include both capacitive and resistive touchscreens [5].

1.2 Capacitive vs. Resistive Touchscreens

Resistive touchscreens were widely used until recently. Resistive touchscreens are

comprised of two conductive layers. A finger touch is detected when the user pushes on

the screen making the layers contact one another. Resistive touchscreens are more cost

effective than capacitive touchscreens because they only require four to eight wires to

interface with the system. However, they provide a less desirable user experience because

they require users to touch with enough force to connect the two layers.

There are several advantages capacitive touchscreens have over resistive

touchscreens. Capacitive touchscreens do not require any actuation force from a finger or

object [28]. They provide a more transparent screen because the material does not have to

be flexible, and a more durable screen because they can support a hard layer of safety

glass on the surface. Resistive touchscreens only transmit about 75% of the display

luminance [29]. Capacitive touchscreens allow multiple simultaneous touches.

1.3 Capacitive Touchscreen Trend

As the materials used to manufacture capacitive touchscreens have become more

transparent and less expensive, they have become increasingly popular in mobile

computing systems. Moreover, users adapt quickly and easily to the light touch allowed

with capacitive touchscreens as compared to the forceful touch or stylus required to use

resistive touchscreens. In 2010, the supply of resistive touchscreens exceeded demand.

3

Some resistive touchscreen manufacturers are retooling to produce capacitive

touchscreens. The number of capacitive touchscreen manufacturers grew from 27 in 2009

to more than 80 in 2011[5].

The increase in demand for products with capacitive touchscreens has stoked

competition and the drive to get the next best device to market. The reality of shorter

product cycles with dramatically reduced time-to-market can lead to major mistakes, loss

of revenue, and distrust of the product among users. This means that users may be more

likely to choose a different product or manufacturer in future purchases. Therefore, it‟s

important to trace the roots of these mistakes. These issues often stem from holes in

system validation and verification. It is crucial that all intrinsic design defects are

discovered well before a product is release to the market.

As capacitive touchscreens are experiencing increased demand and decreased

development time simultaneously, this thesis will focus on how to efficiently and

systematically verify an embedded capacitive touchscreen system.

1.4 Verification

The focus of this thesis is verification rather than validation. Verification is

absolutely critical to the long-term success of any system. Validation is defined as

evaluating the system throughout the development process to ensure that the right system

is being built. Verification uses the planned requirements and specifications to evaluate

the system throughout the development process and ensure the system is both designed

and built correctly. The cost to verify systems depend greatly on the complexity of the

system.

4

1.4.1 Capacitive Touchscreen

Embedded capacitive touchscreen systems consist of two major pieces: the

capacitive touch sensor and the microcontroller. The capacitive touch sensor requires

touch stimulation to evaluate the system‟s performance versus its specification. The

microcontroller interfaces with the sensor to detect touches, gather data, calculate data for

each touch, and report it to the host. Factors such as power will be described later, along

with additional details on each piece of the system. Verifying a capacitive touchscreen

system can be challenging when you consider that there are an infinite number of ways to

move a finger across a touchscreen.

1.4.2 Repeatability

Every human finger is different and, by nature, it is easy for humans to

misinterpret clearly written verification procedures. For example, there are multiple ways

to interpret what it means to “go from the top left corner of the screen to the bottom right

corner.” When verifying a specific requirement, it is absolutely necessary to verify it the

same way every time even if a different person is verifying it. Otherwise, different results

could be generated, causing confusion and adding additional time to the process.

Using a robot in conjunction with conductive touch objects as much as possible

during verification eliminates the problems caused by finger-to-finger variation and

misinterpretation. Automated verification procedures become necessary when using a

robot with conductive touch objects because the cost of manually operating the robot is

very significant. The verification procedures will be run hundreds of times over a year,

and automating the procedure is more economical and provides repeatability.

5

1.5 Verification Automation

An automated verification system consists of five major pieces (Figure 1): PC,

robot, touchscreen controller board, touchscreen panel, and verification equipment.

PC Robot

Touchscreen
Controller

Board

Touchscreen
Panel

Verification
Equipment

Figure 1. Automation Verification System

The PC communicates with the robot, touchscreen controller board, and the

verification equipment using test management software. The software is written to enable

communication with the robot, touchscreen controller via the firmware, and the

verification equipment. Further details about each of these items and the overall

architecture will be described later.

1.6 Thesis

There are many ways to solve the problem of systematically verifying an

embedded touchscreen system. There have been testing methodologies introduced in

previous work that is applied to this work. This thesis places extra emphasis on an

automation framework supporting hardware abstraction, verification procedures, test

sequences, and output of the results. Using test management software and a robot is a

highly successful and cost-effective solution for the verification automation system. This

6

thesis will begin by discussing an existing solution that uses a Selective Compliant

Articulated Robot Arm (SCARA) type robot and off-the-shelf test management software.

This thesis will then introduce a lower cost, more flexible solution that uses a Cartesian

type robot with a custom-built test management software. The robots in both solutions are

similar in cost; however, there are some distinct advantages of using a Cartesian type

robot.

The solution described in this thesis is fully operational and running on a daily

basis. Certain details of the system, such as code snippets and system pictures, were

intentionally omitted due to proprietary rights.

1.7 Overview

This thesis will describe two automated verification systems: an off-the-shelf

solution that exists today and a solution that employs a Cartesian type robot and a

custom-built test management software. Chapter 2 presents the previous research done on

automation verification systems. It also describes the off-the-shelf solution that utilizes a

SCARA robot and the TestStand test management software from National Instruments.

Chapter 3 introduces the system being verified, the verification equipment, and the

custom-built test management software. Chapter 3 also describes the overall architecture

including all system layers from the touchscreen panel and test equipment to the PC

software. Chapter 4 discusses the hardware being verified including the touchscreen

panel, microcontroller, system power, system communications, and data storage. Chapter

4 also discusses the hardware utilized for verification including the PC communications

bridge and the Cartesian robot. Chapter 5 provides details of the test management

software solution when considering the needs for support of hardware abstraction,

7

sequences, procedures, and output. Chapter 6 explains the types of verification performed

via the test management software in conjunction with the robot. Chapters 7 and 8 present

conclusions and future work respectively.

8

CHAPTER TWO: PREVIOUS WORK AND EXISTING TECHNOLOGY

2.1 Previous Research

Because manually verifying touchscreens is prohibitively expensive, automated

verification systems have been gaining attention. The focus on these systems has

increased over the years as technology has improved and automation resources have

increased. A couple of areas of research are directly related to the test management

software and verification methodologies.

Li and Wu‟s book on developing an automated testing tool focuses on the process

of creating custom-built test management software [15]. The book‟s software oriented

focus means that it does not provide some of the hardware interfacing required by the

system developed in this thesis. It does however point out some salient disadvantages of

using an off-the-shelf solution. Excessive time and cost can be required to compare all

available products. Vendors often make unrealistic test coverage claims because they fail

to consider rapid advancements in technology and company trade secrets that may require

special tool enhancements. An off-the-shelf solution will never deliver a complete

package; there is always going to be test procedure development.

The verification test process must be solidified before moving forward with the

test automation architecture and implementation. Mette and Hass proposed a generic test

process that emphasizes the importance of test planning, design, development, execution

(including execution sequence), and reporting [17]. Although their work is not directly

9

related to automation, their process covers the essential pieces for automation and the

functions needed in the test management software in this thesis.

In the International Journal of Software Engineering and Its Applications, Lim et

al. presented a test framework for robot components consisting of four parts: test data

generation, test manager, test execution, and test monitoring [16]. Test data generation is

not required for this thesis; however, the other three are necessary and map to the test

engine work presented in Chapter 5. The article did not focus on test results output,

which is important for system analysis.

Coffman‟s thesis introduced a test automation framework for a system containing

both hardware and software. This work was done over fifteen years ago and emphasized

test procedure sequencing [18]. The work also discussed automating test results output

and interfacing with external hardware including test equipment. Given the many

advances in software and hardware abstraction since it was published, this thesis provides

advanced test results reporting and provides an example of how hardware abstraction is

not as difficult to accomplish.

Other work has focused on test results and test sequencing. He‟s article proposed

an embedded system modular approach [24]. While Jovalekic and Rist‟s work involved

distributed embedded systems and provided more details on how to generate a test plan

for this type of system [25].

Work related to using National Instruments‟ (NI) LabView and external test

equipment for automation was also important for the work presented in this thesis

[26][27]. The authors did not utilize NI‟s TestStand™ as it had been used in previous

work [8]. NI‟s TestStand is described in the next section.

10

2.2 Existing Technology

A common way to deploy an automated verification system is to use off-the-shelf

technology. NI‟s TestStand test management software is widely used by the industry and

comes ready to use. A SCARA type robot provides the work envelope, repeatability, and

speed necessary to ensure the touchscreen verification process is repeatable and robust.

2.2.1 TestStand Test Management Software

The sole responsibility of the test management software is to automate the

verification process. The software achieves this goal with providing support for the four

areas of focus that have discussed in the previous work mentioned: hardware abstraction,

verification procedures, test sequences, and output of the results.

TestStand provides all of these main functions. NI lists the following supported

features: Hardware Support (hardware abstraction), Test Execution (verification

procedures), Sequence Development (test sequences), and Report/Result Management

(output of the results) [6]. These features are standard across other test management

software solutions. To deploy TestStand in a verification system, the test designer must

become familiar with the software, configure it, and set it up to work with the specific

verification equipment, robot, and controller board.

2.2.1.1 Hardware Support

Instruments are essential for verifying any type of embedded system. Hardware

abstraction denotes the ability to virtually control instruments. TestStand handles

abstraction with Interchangeable Virtual Instruments (IVI) standard instrument drivers

[7]. IVI supports eight classes of instruments: digital multimeter (DMM), oscilloscope,

11

arbitrary waveform generator, DC power supply, AC power supply, switch, power meter,

spectrum analyzer, and RF signal generator. IVI supports communication with

instruments that utilize Serial, Ethernet, USB, GPIB, VXI, and PXI, in conjunction with

the VISA I/O standard library. Instrument specific APIs are available for the verification

procedures. This enables automated instrument control in the verification system

hardware setup.

TestStand does not come with hardware support for specific robots. The robot

manufacturer can provide the required driver. TestStand can then use the robot‟s driver

via IVI.

2.2.1.2 Test Execution

Test execution describes the process of running a verification procedure in a test

sequence. Although TestStand is described as an off-the-shelf solution, the verification

procedures have to be customized, or developed, for their intended purpose. Multiple

verification procedures are required for an embedded touchscreen system. Each

verification procedure needs to provide the following: inclusion of libraries (for test

instruments), stimulus, execution of or routing tasks, expected result, and actual result

(either by making measurements or interfacing with hardware).

An example verification procedure for a touchscreen verification system would

instruct the robot to pick a finger and check the linearity of the touch reports as the finger

is moved across the sensor. Each verification procedure can have different input

parameters such as movement direction, finger size, and movement speed. Each

verification procedure is run from within TestStand via a sequence file.

12

Verification procedures for TestStand can be written in any programming

language. LabView is one of the most common languages used with TestStand.

2.2.1.3 Sequence Development

The order in which the verification procedures are run is defined in the test

sequence. You develop the test sequence using TestStand‟s Sequence Editor. The test

sequence contains one or more step types that appear in the order in which they should be

run. Each step calls a verification procedure or code module. The test sequence is where

test limits and conditions are set. Each step is configured individually.

TestStand comes with a set of predefined test steps as well as allowing you to

create custom test steps. TestStand supports conditional step types including: Action,

Sequence Call, Statement, Call Executable, Limit Loader, Flow Control, Database,

Synchronization, and IVI. The remaining step types call test modules that return actual

test results. These include Pass/Fail Test, Numeric Limit Test, Multiple Numeric Test,

and String Value Tests.

2.2.1.4 Reporting/Results Management

Verification procedures are meaningless without their corresponding results.

TestStand‟s reporting structure displays all of the results from each test module in the test

sequence. Report format options include: ASCII Text, HTML, XML, and ATML [8].

You can configure the report title, location, and content for each individual test sequence

and/or test station. Reports can be generated “on-the-fly” (after each step in the test

sequence) or after the full test sequence is completed.

13

Results can be stored in a database. TestStand supports ADO and ODBC

compliant databases including: MySQL, SQL Server, Access, Oracle, and Sybase. It

utilizes the API that comes with ADO and ODBC, enabling you to store your test results

in the database without knowing how the database is implemented.

 2.2.2 SCARA Robot

There are numerous types of robots to choose from when designing an automated

test system. A robot that is used for assembly is a good choice since touchscreen

verification requires similar movements. The SCARA type of robot is capable of making

movements similar to humans. This enables a more intuitive approach to automating a

verification procedure that mimics how a human would move.

Two articulated arms enable X and Y axis movement similar to that of a human

arm as shown in the kinematic diagram (Figure 2). Z axis movement is similar to a

Cartesian type of robot and is completely linear as represented with the rectangular prism.

The X and Y axis of a SCARA robot creates a circular work envelope and is dependent

on the rotational reach as represented with the cylindrical shapes. SCARA robot

manufacturers typically provide a driver that automatically translates polar to linear

coordinates. This makes it easier to use the robot with the linear characteristics of a

touchscreen. There are many manufacturers of SCARA robots appropriate for this type of

use.

14

Figure 2. SCARA Robot Kinematic Diagram [43]

2.2.2.1 Work Envelope

The work envelope defines the space in which a robot is capable of moving. The

work envelope needs to be of primary concern when selecting a robot. The arm will need

to extend fully across the touchscreen panel. Figure 3 shows a typical work envelope of a

SCARA robot. A three dimensional view of the work envelope is shown in Figure 4.

Z

XY

XY

15

The work envelope of a SCARA robot with an arm reach of approximately 400

mm is large enough to reach more than one 4.7” touchscreen panel in at a time. However,

more than one touchscreen (Panels A, B and C) will not be aligned in order to fit inside

the work envelope as shown in Figure 3. The Z space will need to be about 100 mm,

depending on the type of tools used in the robot arm.

2.2.2.2 Repeatability and Speed

The positioning repeatability of SCARA type robots ranges from ±0.01 mm to

±0.025 mm. Robots that support higher payloads not only have a higher price tag, but

they also have greater repeatability error (closer to ±0.025 mm). As noted earlier,

repeatability is critical to verification automation.

The speed of the robot is another important factor. This is especially important if

high-speed testing is necessary in the automated verification system. SCARA type robots

are capable of moving at speeds of about 3,000 mm/s along the X and Y axis, and 1,000

mm/sec along the Z axis. Acceleration from a complete stop to maximum speed is an

important characteristic to consider. In order to reach maximum speed while touching the

Figure 3. SCARA Work Envelope 2D [42] Figure 4. SCARA Work Envelope 3D [41]

16

panel, the robot will need to move on one edge of the work envelope and accelerate to the

maximum speed. As it reaches the panels‟ edge, it can be lowered down while

maintaining its speed and swipe across the panel.

2.2.2.3 Payload

The robot‟s payload includes the metal touch object used to stimulate the

touchscreen panel and anything else attached or used to hold the object in place. SCARA

type robots are somewhat limited in their payload capacity. Typical SCARA type robots

are rated for 1 Kg of payload and can have a maximum payload of about 3 Kg. Some

SCARA type robots are rated for a 5 Kg payload, however, they can cost up to 1/3 more.

2.2.2.4 Cost

SCARA type robots for this type of application cost about $17,000 – 18,000. The

price can increase to $30,000 for robots with longer arms and larger payload ratings.

Robots with longer arms and higher payload rating have lower repeatability.

17

CHAPTER THREE: SYSTEM VERIFICATION AUTOMATION ARCHITECTURE

3.1 Overall System Architecture

There are many system architectures that can automate embedded touchscreen

system verification. The architecture presented in this work allows the flexibility of using

different touchscreen controller boards and sensor modules in order to compare

verification results. Figure 5 shows the overall architecture of the automated verification

system.

Test Mangement
Software

Test Equipment

USB

RS-232

I2C
SPI

USB

USB Communications
Bridge

Touchscreen Sensor
Panel

Cartesian Robot

Touchscreen
Controller Board

Firmware

Sensor
 Electrodes

Host PC

Touch Object

System Under Verification

Figure 5. System Architecture [36] [37] [38] [39] [40]

18

There are several components in this system architecture. The Cartesian robot is

controlled by the host PC and moves the touch object that stimulates the touchscreen

sensor panel. The data generated by the touchscreen controller board is transmitted to the

host PC via the USB communications bridge. The test equipment is controlled by the host

PC and may be connected to the touch object to provide additional stimulus as well as to

the touchscreen controller board to collect data.

3.2 System Under Verification

The system under verification includes the touchscreen controller board and its

associated firmware and the touchscreen panel. These components make up the

embedded system or subsystem that is integrated into the end product (e.g., phone, GPS,

or MP3 player).

3.2.1 Touchscreen Controller Board

In typical applications, the touchscreen microcontroller is mounted on a flexible

printed circuit (FPC) that is connected to the touchscreen sensor panel. For development

and verification purposes, the touchscreen microcontroller is populated on a printed

circuit board (PCB) that is laid out according to datasheet specifications. The PCB has a

mounted connector for the FPC of the touchscreen sensor panel, which connects all of the

pins from the sensor panel to the touchscreen microcontroller I/O pins. The touchscreen

controller board also includes an I
2
C and SPI connector for communicating with the host

PC via the USB communications bridge.

The populated PCB comes from the touchscreen microcontroller manufacturer in

a development kit. It is important to consider that the touch microcontroller silicon has

19

been through the silicon validation and verification processes from the manufacturer.

Hence, only system-level verification is needed. Details of the touchscreen

microcontroller will be explained in the next chapter.

3.2.2 Touchscreen Sensor Panel

The touchscreen sensor panel includes an FPC for connecting to the touchscreen

controller board. They typically come from the manufacturer with each electrode tested

for opens and shorts. It is very likely that the sensor panels are delicate when they are

outside of an enclosed system and can be easily damaged after handling, which may be

found during verification. Further details about the touchscreen sensor panel are provided

in the next chapter.

3.3 Verification Equipment

Verifying an embedded touchscreen system requires the following: a PC, a

Cartesian desktop robot, a touch object attached to the robot, a USB communications

bridge, and other test equipment. The PC includes the ports and drivers necessary to

communicate with all of the equipment. USB ports connect to a USB communications

bridge as well as test equipment. An RS-232 (serial) port communicates with the robot.

The USB communications bridge and associated driver come with the

touchscreen microcontroller development kit. In a typical consumer product, the

touchscreen microcontroller communicates to the embedded system host via I
2
C or SPI.

Therefore, the USB communications bridge is connected to the touchscreen controller

board via the I
2
C and/or SPI connector.

20

The robot is a Cartesian desktop robot. The touchscreen controller board, USB

communications bridge, and touchscreen sensor panel are connected and securely

fastened to the robot‟s platform of the robot. A USB cable is connected between the PC

and the USB communications bridge. The cable is long enough to allow the robot to

make all of the necessary movements and is secured. The robot holds the touch object

that stimulates the touchscreen sensor panel.

The other test equipment includes an arbitrary waveform generator, oscilloscope,

and DMM. Additional touchscreen sensor panel stimulation is achieved by connecting

the arbitrary waveform generator to the touch object. The oscilloscope is used to measure

the refresh rate. The DMM is used to record voltages and currents.

3.4 Test Management Software

The custom-built test management software enables complete automation of the

verification test process. Similar to NI‟s TestStand, the test management software

provides the ability to abstract the hardware, setup test sequences, execute specific

verification procedures, and provide sufficient reports documenting the results of all tests

run in a particular sequence.

The custom-built test management software was created using a common

programming language. It could be developed in many different languages. Some

commonly used languages that would work well for this type of application include: C#,

C++, Python, and Perl. Because these programming languages have existed for well over

ten years, they have an abundant supply of supporting documentation and reference

material. In addition, there are many open source packages available to ease software

21

development. Further details on the custom-built test management software are provided

in Chapter 5.

22

CHAPTER FOUR: SYSTEM VERIFICATION HARDWARE

4.1 Hardware Under Verification

The hardware being verified is an embedded touchscreen system. This system

includes a projected capacitive touchscreen sensor panel and a touchscreen

microcontroller.

4.1.1 Touchscreen Sensor Panel

Touchscreen sensor panels are made up of multiple layers of material as shown in

Figure 6. The type of touchscreen sensor panels used for this research are projected

capacitance. In these types of panels, the sensing materials are arranged in rows and

columns of electrodes. The conductive materials are optically transparent so that they can

be placed over LCDs. The most common conductive material used for projected

capacitive touchscreens is Indium Tin Oxide (ITO) [9]. Studies have been done to find an

alternative material such as carbon nanotubes for the conductive layers [30] [31]. The

panels used for this research have ITO applied as a film on each side of a substrate

material such as glass, poly(ethylene terephthalate) (PET), or poly(methyl methacrylate)

(PMMA) [10]. The ITO substrate layers are attached to each other and the cover lens

with an optically clear adhesive (OCA). The assembled layers have an accumulated

transparency greater than 90%.

23

ITO Row

Electrodes

ITO Column Electrodes

Cover Lens

OCA

Substrate

OCA
ITO – Row Electrodes

Substrate

ITO – Column Electrode ITO – Column Electrode ITO – Column Electrode ITO – Column Electrode

Figure 6. Projected Capacitive Touchscreen Sensor Panel Layers

There are two types of projected capacitive touchscreen sensor panels: self-

capacitive and mutual capacitive. Self-capacitive touchscreens use all rows and column

electrodes as sensors. The sensors are scanned individually to detect a change in

capacitance with respect to ground. The coordinates of the touch are determined when a

human finger introduces a change in capacitance on both row and column sensors. Since

only the row and column are indentified, ghost touches result when two fingers touch the

panel as shown in Figure 7. This issue only allows one touch to be detected at time with

self-capacitive touchscreens [11].

X Sensor Electrodes

Y
 S

e
n

s
o

r
E

le
c
tr

o
d

e
s

Real Fingers

Ghost Fingers

Figure 7. Ghost Effect in Self-Capacitive Sensing

24

Mutual capacitive touchscreens use either the row or the column electrodes as a

driver and the other set of electrodes as sensors. All of the sensor electrodes are scanned

for capacitance level changes for each driver electrode. This allows for each row/column

intersection to have a unique capacitance value. A finger touch is detected when the

capacitance changes significantly at one or more intersections as shown in Figure 8.

Cover Lens

OCA

Substrate

OCA

ITO – Driver Electrodes

Substrate

Human

Finger

ITO – Sensor ITO – Sensor ITO – Sensor ITO – Sensor

E-Field

E-Field

Figure 8. Mutual Capacitive Sensing

Mutual capacitance sensing is inherently immune to ghosting. This allows multiple

touches to be detected simultaneously as shown in Figure 9 [12], [13].

Driving Electrodes

S
e

n
s
in

g
 E

le
c
tr

o
d

e
sReal Fingers

Figure 9. Detecting Multiple Touches in Mutual Capacitance Sensing

25

Every row and column electrode of the touchscreen sensor panel is routed to an

FPC that connects the panel to the touchscreen controller board. These electrode signals

are each routed to a microcontroller pin on the controller board.

4.1.2 Touchscreen Microcontroller

Touchscreen microcontrollers generally come in 8, 16, and 32-bit architectures.

They are designed to perform self and/or mutual capacitive sensor scanning and generate

a touch report rate of at least 100 Hz. The microcontroller must provide enough I/Os for

all of the sensor panel‟s electrodes. Therefore, larger sensor panels require higher I/O

count microcontrollers. Other important microcontroller features include: power,

communications, and data storage.

4.1.2.1 Power

Embedded capacitive touchscreen systems require analog and digital power

sources. The electrodes used to drive the mutual capacitance scan use analog voltage,

generally between 2.7 and 3.6 V. Communication busses use digital voltage. I
2
C and SPI

communications generally run between 1.8 and 3.6 V. Verifying touchscreen

performance at the minimum and maximum voltages for both the analog and digital rails

is important. Low voltages are desired for lower power consumption; however, low

voltages can degrade performance because they weaken the touch signal.

Because most consumer devices run on batteries, low power consumption is an

important factor; thus, most touchscreen controllers feature sleep mode. Touchscreen

controllers typically draw less than 25 mW during normal operation and 10 µW in sleep

mode.

26

4.1.2.2 Communications

In a typical end product, the touchscreen microcontroller communicates with the

main system processor (the host) using I
2
C or SPI protocol. For verification, a USB

communications bridge handles the I
2
C or SPI packets sent and received by the

touchscreen microcontroller and the host PC. Touchscreen microcontrollers are typically

designed to perform as I
2
C slaves and support an I

2
C master speed of at least 400 kHz.

4.1.2.3 Data Storage

Touchscreen technology has advanced to the point of being able to support ten or

more touches. This means a greater dependency on data storage. Each touch requires a

few data bytes to record the touch coordinates and a unique identifier. Many additional

touch attributes can also be stored depending on the host and the touchscreen

microcontroller firmware algorithms.

The firmware algorithms require additional data such as panel characteristics.

Panel characteristics could include the number of rows and columns (which gives the

number of sensing intersections), physical dimensions, etc.

It is also useful to pass the touchscreen microcontroller device information and

revision to the host as well as the firmware revision. Other data may need to be stored as

well depending on the microcontroller.

4.2 Hardware Utilized for Verification

Systematic verification of an embedded touchscreen system requires a USB

communications bridge and a Cartesian robot. Other test instruments such as arbitrary

27

waveform generators, oscilloscopes, and power supplies may also be needed depending

on the test suite.

4.2.1 USB Communications Bridge

The USB communications bridge is an essential piece of the verification system.

It is the interface between the controller board and the PC containing the test

management software. USB communication bridges are generally set up to supply digital

and analog voltages. The bridge contains its own microcontroller to support data packet

handling (USB, I
2
C, SPI). They are provided with the touchscreen microcontroller

development kits.

4.2.2 Cartesian Robot

A Cartesian robot has three linear axes for the X, Y, and Z directions as

demonstrated in the kinematic diagram of Figure 10. A variety of Cartesian robots exist

in the market today ranging from large gantry robots to compact desktop robots. The one

presented in this thesis is a desktop version. Embedded touchscreen systems are not very

large; therefore, a desktop Cartesian robot is sufficient.

28

Figure 10. Cartesian Robot Kinematic Diagram [35]

4.2.2.1 Work Envelope

The work envelope for a Cartesian robot is rectangular as depicted in Figure 11.

This shape matches the shape of a touchscreen panel and allows the unit being verified to

easily line up in the available moving space The work envelope only needs to be about

400 mm X 400 mm to accommodate one or more 4.7” touchscreen panels.

A base plate must be mounted to the axis that slides along the base of the desktop

robot. The base plate is used to secure the touchscreen panels during verification. The

amount of space needed in the Z direction is largely dependent on the thickness of the

base plate, the touchscreen panel stack-up, and the tool used to stimulate the touch panel.

100 mm provided enough room to perform the tests used in the verification system

presented in this thesis.

Z

X

Y

29

Figure 11. Cartesian Robot Work Envelope [34]

4.2.2.2 Repeatability and Speed

Cartesian desktop robots generally provide a repeatability of about ±0.01 mm. A

robot with ±0.01 mm precision is sufficient for verifying embedded touchscreen systems

given that touch accuracy requirements are greater than ten times the precision (±0.1

mm).

Cartesian robots typically operate at a velocity between 500 and 800 mm/s for the

X and Y-axes. The time it takes to accelerate to maximum speed is a factor when testing

smaller screens. In order to draw a line across the test panel at maximum speed, the robot

must start at one end of the work envelope and accelerate before it touches down. The

robot cannot replicate a flick type of movement, which requires a speed of about 1,000

mm/s or more. The Z-axis of this robot typically operates at a velocity of about 250

mm/s.

30

4.2.2.3 Payload

Cartesian robots are known for their rigid design, which allows them to handle

high payloads. The axis that moves along the base can generally handle between 11 and

15 Kg of payload. This provides some leniency on the base plate needed for mounting the

panels on the robot. The arm of the robot can handle 6 to 7 Kg of payload. This easily

accommodates the touch object weight used for stimulating the panel.

4.2.2.4 Cost

Cartesian desktop robots with an X/Y speed of 500 mm/s cost about $16,000.

Robots with higher speeds, larger work envelopes, and higher payloads are more

expensive.

31

CHAPTER FIVE: VERIFICATION SOFTWARE

The custom-built test management software orchestrates automation of the

verification system. The software is responsible for a wide range of capabilities from

moving the robot to generating output of the test results. The software was carefully

designed to support each of the four main test management software functions including:

hardware abstraction, verification procedures, test sequences, and verification results

output.

5.1 Software Architecture

Figure 12 illustrates the custom-built test management software architecture. The

automated test engine provides the framework for abstracting the hardware, procedure

setup, procedure execution, and procedure sequencing. The data collector and data

processor are intermediate modules required for collecting and processing the data

collected during verification procedure execution. Finally, the report generator analyzes

the results and displays them in human readable format.

32

Test Management Software

Data

Processor

Data

Collector

Automated Test

Engine

Test/Setup

Procedures

Report

Generator

Output

PDF

DOC

LaTeX

MS Word

Hardware

Abstraction

Sequencer

Figure 12. Test Management Software Architecture

5.2 Automated Test Engine

The automated test engine provides most of the functionality required to automate

verification. It provides a way to control the various hardware devices via hardware

abstraction. It executes test cases by initializing the verification system to the settings for

a defined verification procedure and then executing that procedure. Finally, it provides a

test sequencer to manage which tests are run and the order of execution.

5.2.1 Hardware Abstraction

Prepackaged software libraries and drivers are installed on the host PC to enable

hardware abstraction for each piece of equipment including: test instruments, the USB

communications bridge, and the robot.

Test instruments include arbitrary waveform generators, DMMs, and

oscilloscopes. They are typically connected to the host PC via USB, GPIB, serial,

ethernet, VXI, or PXI. A prepackaged VISA library for these test instruments is available

33

for common programming languages such as C#, C++, Perl, and Python. Drivers or I/O

library suites are provided by the equipment manufacturers and installed on the host PC.

For example, Agilent provides “Agilent IO Libraries Suite 16” to install programming

API libraries for VXI test instruments from numerous vendors.

Drivers and/or I/O development libraries are also required to communicate with

the robot and touchscreen microcontroller. They are provided by the hardware

manufacturers. As discussed in Chapter 2, these libraries and drivers are also required for

off-the-shelf test management software.

5.2.2 Procedures

When considering the need for the system under test to be initialized before each

verification procedure is executed, it was necessary to have two different types of

procedures for the test management software: setup and verification. The setup procedure

initializes the hardware for a specific verification procedure in the test sequence. The

verification procedure executes the test on the embedded capacitive touchscreen system.

5.2.2.1 Setup Procedure

The setup procedure performs device maintenance and initializes the test

equipment before each verification procedure. Verification procedures may leave the

device in an unknown state by design or result in a real test failure that affects the next

test in the sequence. It is important for each verification procedure to perform

autonomously and ensure the device and test software are in a known operating state.

Power cycling and reprogramming the device and checking the connections to and

34

initializing test equipment may be necessary between procedures in order to achieve true

autonomy.

The setup procedure is separate from the verification procedure in consideration

of the different hardware resources for different tests. This allows the flexibility of

reusing a generic setup procedure for most test cases or developing special setup

procedures for test cases requiring a unique configuration.

To initialize the system under test, the setup procedure requires numerous

parameters including: analog voltage, digital voltage, a firmware binary file, the

communication protocol, robot specific values, and test instrument specific values. The

way the parameters are defined and handled is described in Section 5.2.2.3 Test Case.

5.2.2.2 Verification Procedure

The verification procedure implements a test used to verify the touchscreen

system. Some example verification procedures include measuring current in sleep mode,

measuring linearity of a line drawn with a robot, and measuring signal performance of

system. The next chapter will describe some tests in detail. Verification procedures may

require robot and test equipment specific parameters as well as expected register values

and voltage values.

5.2.2.3 Test Case

A test case consists of a unique test case ID, requirement ID, setup procedure

(with parameters), and verification procedure (with parameters) as shown in Figure 13.

All test cases including setup and verification procedure parameters are listed in a text

file known as the Test Requirements Document (TRD).

35

test case

Setup Procedure

Name and

Arguments

Test Procedure

Name and

Arguments

A test case contains...

Test Case and

Requirement

ID

Figure 13. Test Case Structure

Figure 14 lists two test case line items from the TRD. The test case and

requirement ID, setup procedure, and verification procedure are separated by the „|‟

character. Both test cases use the setup procedure called “setup” and set the digital

voltage to 1.8 V, the analog voltage to 2.8 V, and use the default firmware

communication protocol (in this case I
2
C). The setup procedure also uses an arbitrary

waveform generator with the relevant settings of a square wave, 120 kHz frequency,

amplitude of 3 V peak-to-peak, a DC voltage offset of 1.5 V, and a 50% duty cycle. Both

test cases use the verification procedure called “linearity” and operate with the robot

running at 50 mm/s starting and ending at the specified X and Y positions. Comparing the

two test cases, the only difference between them is the diagonal line defined by the

“y_beg” and “y_end” positions and their IDs.

Figure 14. TRD Test Case Example

Before executing a test case, the test case is parsed from the TRD with its

associated test case unique ID, requirement ID, setup procedure, and verification

Setup Procedure Verification Procedure ID

36

procedure along with their associated arguments. The test case is then executed using the

run_test_case() function. When considering the importance of logging status and results

with associated timestamps, the function begins by starting the timer and enabling

logging before it calls the setup procedure. The timer and logging is halted when the

setup procedure finishes and restarted when the verification procedure is called.

5.2.3 Sequencer

The TRD contains all of the test cases for the system under test. The sequencer

controls what tests cases are run and their order. The sequencer parses the flow file, a text

file containing a list of test case unique IDs to be executed during a test run. The tests

listed in the flow file are executed in order from top to bottom. During parsing, each test

case instance is placed in an array and a unique instance of the setup and verification

procedures is created. Figure 15 shows an example of how the flow file relates to the

TRD.

TRD.txt

Flow.txt

...

Test Case ID 2

Test Case ID n-1

Test Case ID 1

...

Test Case ID n-1

Test Case ID n

Test Case ID 2

Test Case ID 1

Figure 15. Sequencer Flow

37

After parsing the flow file, the sequencer steps through the array of test cases and

executes the run_test_case() function for each test case until the full test run is complete.

5.3 Data Collector

Data is collected for each test case. Different verification procedures generate

different amounts of data. Stimulating the touchscreen will create a large amount of data,

while a simple data register check will only result in a few bytes. Whether the amount of

data is large or small, all results are gathered by the data collector. When considering the

different types of data being stored, a data object was created to distinguish between

different data types and to determine a method for storage.

5.3.1 Data Object

Each setup and verification procedure instantiates a data object. A data object is

used to store all of the data gathered from the test cases. Data objects enable setting and

getting the data type as well as adding, setting, getting, and clearing data. The procedure

sets the data type and stores the data in the structure setup for that specific data type.

5.3.1.1 Data Type

Data types are defined for each type of test case. Multiple test cases may use the

same data type. The data type is set at the very beginning of a setup or verification

procedure and is used by the data processor to prepare and process the data.

38

5.4 Data Processor

Once data has been collected and stored in the data object, it is ready for

processing. Since data is stored differently for each test case type, a separate processor

module is required for each data type.

Processing data often involves performing calculations and generating tables and

graphs. When considering the consumption of CPU resources to perform this type of

processing, the data processor uses a separate thread from the automated test engine in

order to maximize processing power and parallelize work.

When data is captured from the robot, it is processed for a graphical view. For

example, linearity test results can be displayed using a figure that compares the best-fit

line (calculated from the touch data) to the actual touch data that was recorded when the

touch object traversed along the touch panel. In Figure 16, the red line represents the

best-fit line and the darker line represents the data points collected during the test case.

Each data point is illustrated using blue circular markers (the darker, thicker line). The X

and Y axes represent the physical dimensions of the touchscreen panel in millimeters.

Details on the linearity test are presented in Chapter 6.

39

Figure 16. Linearity Type of Data Processing

Tables are also a common way to display results data to provide a quick look at

the actual data compared to the requirement and to look at pass/fail status. Utilizing one

of the many open source library packages for processing data and generating tables and

figures eased software development and saved time.

40

5.5 Report Generator

Once all of the data has been stored and processed, it is ready to be formatted into

a more formalized report. The formatting options for reports are endless. When

considering what format to use for file generation, it was important to support the most

users; therefore, the report generator for this work automatically creates Portable

Document Files (PDF) and Microsoft Word Document files (DOC). When considering

that the report generation consumes a lot of processing time, the report generator is

executed using a separate thread from the data processor and the automated test engine

threads in order to allow the host PC to start executing the next test case at the same time.

5.5.1 Report Object

When considering that the report being generated needed to be in a specific

format, it was necessary to create a report object in order to properly lay out the pieces of

the report. Once the data has finished processing, a report object is instantiated. The

report object contains a report header, and one or more sections.

The report header includes a title and the system configuration. The system

configuration is contained in a table containing multiple system options, firmware

versions, software versions, panel attributes, and other information such as the date and

time. Each report section contains names, descriptions, and data such as figures and

tables. Generally, a section is created to document the results for every test case. A report

is ready to be generated once the report object has been populated with the processed

data.

41

5.5.2 Document Generation

When considering the options for report format and formalization, it is important

to use a tool that is widely used. The standard LaTeX document markup language was

selected for this work because it is not only widely used but also provides high-quality

typesetting. Report generation initially begins by generating a LaTeX file. Most LaTeX

distributions include an open source tool that generates a PDF file from a LaTeX file

called PDFLaTeX that has also been used successfully in other research [14].

A DOC file is generated with Windows low level APIs provided by the

Component Object Model (COM) standard. An open source COM library is used to write

all of the processed data to a DOC file.

When considering test runs containing hundreds of test cases, it was apparent that

a way to view test results on-the-fly was necessary. Every time a report object has been

populated with all of the data from a test case, the new sections are appended to the PDF

report. When all tests in the test sequence have completed execution, the final PDF report

is created along with the Word document.

5.6 Output

The test case output is available in forms other than the generated report. Log files

and command line output are also generated. There are four different levels of logging

verbosity: debug, info, warning, and error. The level of verbosity is set when executing a

test run. Error verbosity level only logs information when a test fails or the setup or

verification procedure is unable to perform a certain function. Warning verbosity level

logs unexpected events that occur as well as all error level logging. Info verbosity level

logs test status information along with what function has been entered and what is

42

happening. Info verbosity also includes all warning level logging. Debug verbosity level

logs information useful for debugging and developing new test cases and includes all info

level logging.

43

CHAPTER SIX: CAPACITIVE TOUCHSCREEN VERIFICATION AUTOMATION

Evaluating the metrics that are most critical for touchscreen performance is a

good place to start when verifying an embedded touchscreen system. Some of the most

common metrics include: signal-to-noise ratio (SNR), report rate, linearity, accuracy, and

jitter. Details for automating the verification procedure for each metric are presented

individually.

6.1 Automating SNR Verification

SNR is an industry-standard performance metric that is particularly important in

capacitive touchscreen systems. SNR is the ratio of signal (when a finger is touching the

panel) to noise (when there is nothing touching the panel). SNR performance determines

how easily a touch can be detected and how well the touch is reported. This is especially

important when a capacitive touchscreen is the system interface.

Noise enters a system in numerous ways. For example, noise is higher when a

battery powered system is charging via switched-mode power supplies (SMPS). Noise

levels also vary based on the type of LCD behind the sensor and the physical

environment in which the device is located.

In order to measure noise, the controller firmware must send raw sensor data. The

raw sensor data is the digital voltage measured from the analog-to-digital converter

(ADC) at a particular sensor (sensor/driver electrode intersection) without the touch

object contacting the panel. The verification procedure takes a number of digital voltage

44

samples () at the panel location being verified. The noise () is calculated by taking

the maximum value in and subtracting the minimum value in ().

 (6.1)

The procedure then commands the robot to move the touch object onto the panel location.

Once the touch object is in place, the verification procedure takes the same number of

samples () of signal data. The signal () is calculated by subtracting the mean () of

the digital voltage samples collected without the touch object on the panel location from

the mean of the digital voltage samples collected with the touch object on the panel

location.

 (6.2)

 Although the signal represents an analog voltage, it is not typically squared for the SNR

calculation because touchscreen controller applications are not as concerned with

transmit/receive power as general sensors and RF applications. Power is useful for an RF

circuit designer, but not useful for a touchscreen designer who writes digital algorithms.

The touchscreen designer only needs a clear ratio of signal/noise to properly adjust

firmware algorithm parameters and/or filter coefficients to help the overall performance

of the system. SNR is the ratio of the calculated signal to the calculated noise.

 (6.3)

SNR measurements are taken on twelve other panel locations to get an overall

picture of the SNR performance. A bar graph of the SNR calculated at each panel

location is produced as shown in Figure 17. A heat map is also generated to provide a

way to view the SNR data from a panel intersection location perspective as shown in

45

Figure 18. The auto generated report lists both figures as part of the data for the SNR

verification procedure.

Figure 17. SNR Measurements – Bar Graph

46

Figure 18. SNR Measurement – Heat Map

If the test results do not meet the system requirements, the procedure is repeated

on a different system to ensure that it is a design issue. If there are no hardware defects in

the panel design, the analog power supply voltage is checked. If the voltage is correct, the

hardware RC filter is reviewed for possible adjustment. If the RC filter is correct, the

digital filters in the firmware are evaluated. Finally, if the digital filters are correct, the

resolution of the ADC and capacitance measurement time is evaluated and may need

adjustment. Changing any of these can have adverse effects on other performance

metrics; therefore, all other tests will need to be rerun as well.

47

6.2 Automating Report Rate Verification

Report rate, or refresh rate, is another common touchscreen controller

performance metric. Refresh rate is the speed at which data is updated when the panel is

being touched. Refresh rate is a function of scan, data processing, and sleep times. It

takes a certain amount of time for the firmware to scan every driving electrode on each

sensing electrode in order to detect touches. Once a scan has completed, the system must

process the data received from the scan. After processing the data, the device will go to

sleep for a period of time to save power. The refresh rate is the sum of the three time

periods.

 (6.4)

Smaller sensor panels have fewer sensor and driver electrode intersections and

therefore require less scan time. This can improve the refresh rate significantly.

To understand how the refresh rate effects touchscreen performance, consider the

case of drawing a curved line. A low report rate reduces the number of samples collected

as a finger traverses the touchscreen and will produce a less desirable result as shown in

Figure 19. A high report rate produces a much smoother curve as shown in Figure 20.

48

Figure 19. Low Refresh Rate Figure 20. High Refresh Rate

Touchscreen controllers typically use a hardware interrupt to notify the host of

new data. To measure the refresh rate, an oscilloscope channel is connected to the

interrupt pin. The actual refresh rate is the time measured between two interrupts.

The verification procedure starts by moving the touch object to the start

coordinates passed in through the TRD. Then, the scope is configured to capture multiple

samples of the refresh rate. The number of samples is dependent on the distance the touch

object travels. The robot moves the touch object far enough to capture at least ten

samples. Once the robot has reached its final touch coordinate, the data object is updated

with the results generated by the scope measurements and sent to the data processor.

Data processing includes finding the minimum, maximum, and average refresh

rates. A table is generated with the samples and their corresponding results as seen in

Table 1. The table lists the parameters, measured value, expected value, and units. The

parameter describes the type of data, whether it is a data point (e.g., REFRESH) or

49

calculated result (e.g., REFRESH_AVG). The measured and expected values are the

actual and required values respectively. The units are milliseconds.

Table 1. Refresh Rate Measurement

Parameter Measured Units Expected Units

REFRESH 15.8764 ms 16 ms

REFRESH 16.2388 ms 16 ms

REFRESH 15.902 ms 16 ms

REFRESH 15.8732 ms 16 ms

REFRESH 15.8 ms 16 ms

REFRESH 15.83 ms 16 ms

REFRESH 15.8604 ms 16 ms

REFRESH 15.926 ms 16 ms

REFRESH 15.8656 ms 16 ms

REFRESH 15.8788 ms 16 ms

REFRESH 15.8648 ms 16 ms

REFRESH 15.8652 ms 16 ms

REFRESH 15.8588 ms 16 ms

REFRESH_MAX 16.2388 ms 16 ms

REFRESH_AVG 15.895385 ms 16 ms

REFRESH_MIN 15.8 ms 16 ms

A failure is reported if any of the measured time periods are less than the expected

time period. If the refresh rate does not meet the specification, the expected time is

evaluated to make sure the size of the panel being tested is correct. If a failure is still

reported, the same test is repeated on a separate system. If the failure is repeatable, the

firmware has to be evaluated for ways to shorten the scanning, data processing, and/or

sleep times. Sleep time can always be reduced as long as the system continues to meet the

power consumption requirement. To shorten scan time, the capacitance measurement

time can be reduced; however, this could affect SNR results. To reduce data processing

time, the algorithms used for calculating and processing finger positions can be modified

50

to be more efficient. This can affect linearity, accuracy, and jitter performance and can

require their associated verification procedures to be rerun.

6.3 Automating Linearity Verification

Another touchscreen controller performance metric is linearity. Linearity

measures how well a finger is tracked when traversing the panel. A best-fit line is

calculated using the data gathered from moving a finger linearly across the panel. The

touch data is compared to the best-fit line location to determine the touch deviation as

shown in Figure 21. Linearity is performed along both axes of the panel as well as across

the diagonal.

Best Fit Line

Linearity

Figure 21. Linearity

Data Points

51

The verification procedure begins by moving the robot to the first coordinate of

the first line and placing the touch object on the panel. Touch data is captured as the robot

traverses to the last coordinate of the line. This process is repeated for each line drawn

along each axis and for each line drawn diagonally. All of the data stored in the data

object and is then sent to the data processor. In order to present the data as an absolute

deviation, the processor calculates the distance from the actual reported touch coordinate

 to the best-fit line using the following equation:

 (6.5)

This calculation is performed for each touch report of every line. Each line traverses

through the edge of the panel and core of the panel. The core is represented by the area

inside of the green rectangle in Figure 22. The edge is represented by the area outside the

green line. Linearity performance on the edge is typically poor compared to inside the

core. Given this performance difference, the data is reported for separately for each area

and the requirement is stricter for the core.

52

Figure 22. Linearity Measurement Plots

Because of the large amount of data, it is not practical to look at the linearity data

for every reported touch. For a quick glance at the panel‟s performance, the minimum,

typical, and maximum deviations are reported as shown in Table 2.

53

Table 2. Linearity Deviation Measurement

Parameter Min Typ Max Units Expected Units

Linearity Edge 0.0 1.21 1.97 mm 2.1 mm

Linearity Core 0.0 0.31 1.08 mm 1.2 mm

A data plot is also generated to compare the best fit lines with the drawn lines as

shown in Figure 22. In the data plot, red lines show the best-fit lines and little blue circles

(which appear as thicker dark lines) are the actual data points.

A failure is reported when the linear deviation in either the core or edge area is

greater than the requirement. When a failure is reported, the test is repeated on a separate

system. If the failure is repeatable, the expected value for edge and core are evaluated

with regards to the panel being tested. If the expected value is correct, the coefficients of

the XY filters are examined for possible adjustments. If this does not correct the problem,

the firmware and filters are analyzed and modified. If the failure is core related, the

firmware algorithms and filters for core line drawing are checked. If the failure is edge

related, then the algorithms and filters related to the touch reports for a line approaching

the edge or drawn on the edge are checked. Changes to the filters or algorithms can affect

accuracy and jitter performance and require re-verification.

6.4 Automating Accuracy Verification

Accuracy is often confused with linearity. While the two metrics are very similar,

the touch object does not traverse the panel during accuracy measurements. It touches

and lifts off of a number of points on the panel and the deviation between where the

touch physically occurred and where it was reported is calculated. Accuracy evaluates if a

single touch is correctly reported as seen in Figure 23.

54

Figure 23. Accuracy (ACC)

The verification procedure moves the robot to a corner of the panel, has it contact

the panel with the touch object at that point, and takes one or more samples of touch data.

The number of touch samples taken is passed in through the TRD. The robot then lifts the

touch object off of the panel and moves to the next touch coordinate. This process is

repeated for the entire panel. For each touch point, the data is copied to the data object

and sent to the data processor. The data processor compares each reported coordinate

 to the physical coordinate of the robot. The comparison is done using a

difference calculation for the distance error between the reported coordinate and the

physical coordinate for x and y individually.

 (6.6)

 (6.7)

Once the error for both x and y are calculated, the total accuracy error is calculated.

 (6.8)

55

Much like the linearity test, the accuracy test results are better in the core than in

the edge. The core is the area inside the green line and the edge is outside the green line

as shown in Figure 24.

Figure 24. Accuracy Measurement Plot and Histograms

Test results for the full panel, including the edge, are separated from the core area

because they have different performance requirements. The test can collect thousands of

data points depending on the step size between each data point (as specified in the TRD).

The minimum, typical, and maximum accuracy errors provide an overall look at the

performance as shown in Table 3.

Accuracy Error

56

Table 3. Accuracy Error Measurement

Parameter Min Typ Max Units Expected Units

Accuracy Full 0.0 0.31 0.93 mm 0.76 mm

Accuracy Core 0.0 0.22 0.82 mm 0.71 mm

The generated report includes two histograms and one maximum arrow plot as

shown in Figure 24. The maximum arrow plot provides a full panel view of each

accuracy error. The deviation is represented by an arrow at each touch point. The

histograms illustrate the distribution of all accuracy error measurements. The green line

represents the requirement to be met. The frequency is the number of samples receiving a

particular accuracy measurement. The top histogram is for the whole panel including the

edge. The bottom histogram is for just the core area.

A failure is reported if the maximum accuracy error for the edge and/or core

exceeds the requirement. When a failure occurs, the expected edge and core values are

checked to ensure that they are correct based on the panel type. If they are correct, the

test is repeated on a separate system setup to ensure consistency. If the failure is

repeatable on separate hardware, the coefficients for the accuracy and centroid filters are

evaluated for possible adjustment. If the failure persists, the firmware algorithms related

to finger centroids are evaluated and adjusted. The filters and firmware algorithms are

adjusted differently for edge and core specific failures.

6.5 Automating Jitter Verification

Jitter is closely related to accuracy. During a jitter test, the touch object remains

stationary on the panel for a significant amount of time (as specified in the TRD) and the

deviation between touch reports during the touch period is calculated. Jitter is two

57

dimensional; therefore, the deviation distance is measured for both the X and Y axes as

shown in Figure 25.

Figure 25. Jitter

The verification procedure starts by moving the robot to a spot on the panel and

placing the touch object on the spot. The robot holds the touch object stationary while

capturing multiple data samples. The robot then lifts the touch object and moves to

another panel coordinate. The process is repeated for twelve other locations similar to

those used during SNR verification. Once the robot has completed the last touch

coordinate, the data object is updated with the results and sent to the data processor. Data

processing involves taking the collection of samples from each touch position

and calculating the X distance () and the Y distance () between the two

extreme touch reports.

 (6.9)

 (6.10)

58

The overall results are reported in a table similar to Linearity and Accuracy as

shown in Table 4. Jitter deviation data is much better than the accuracy data because jitter

is similar to resolution. Resolution is a much smaller measurement than an accuracy

measurement. A touchscreen with 0.1 mm jitter and 0.8 mm accuracy means the accuracy

reading can be between 0.7 mm to 0.8 mm due to jitter performance.

Table 4. Jitter X and Y Measurement

Parameter Min Typ Max Units Expected Units

Jitter X 0.0 0.01 0.05 mm 0.12 mm

Jitter Y 0.0 0.05 0.14 mm 0.12 mm

The data is also displayed in a panel-oriented view, as shown in the 3D bar graph at the

top of Figure 26. Jitter measurements are represented on the Z axis in mm and physical

locations on the panel are represented on the X and Y axes. The bottom bar graph allows

for a more accurate comparison of the jitter measurements at their corresponding touch

position.

59

Figure 26. Jitter Measurement Bar Graphs

A failure is reported when the maximum jitter value from any of the thirteen

locations exceeds the requirement. If a failure occurs, the test is repeated on a separate

system setup to ensure that the issue is design related. If it is a design issue, the firmware

algorithm used to determine whether a new coordinate should be reported is evaluated. If

the system continues to fail, the jitter filtering coefficients are evaluated for possible

adjustments. If this does not resolve the issue, the centroiding algorithm is analyzed for

possible improvements. If the centroiding algorithms are modified, the accuracy and

linearity tests need to be rerun.

60

CHAPTER SEVEN: CONCLUSIONS

It is critical to use a systematic approach when verifying embedded capacitive

touchscreen systems due to their complexity and the rigorous demands placed on these

systems. In order to create a repeatable process, it is important to select an appropriate

robot as well as a flexible test software platform. A Cartesian style robot and custom-

built test management software work together to provide a systematic and repeatable

verification solution.

7.1 Robot

Many factors were considered during robot selection. SCARA and Cartesian

robots both have advantages and disadvantages as discussed in this thesis. The Cartesian

robot‟s rectilinear work envelope made it a natural fit for working on touchscreen panels.

Its work envelope was large enough to verify multiple touchscreen systems at once,

reducing setup time. The SCARA robot‟s circular work envelope does not naturally lend

itself to working with multiple rectangular touchscreen panels.

Payload was perhaps the most important reason for choosing the Cartesian robot.

The Cartesian robot can handle about seven times the amount of payload of the SCARA

robot. Higher payloads allow the robot to heft heavier touch objects. This makes the

verification system more flexible. Payload also impacts the robot‟s acceleration and

maximum speed. In order for either robot to reach its maximum speed, the payload can

only be one third to one half of the maximum supported. The SCARA robot has a speed

61

advantage; it can move about six times faster than a Cartesian robot on the XY plane.

This speed would enable the verification system to simulate fast finger movements. The

Cartesian robot is also little more cost effective than the SCARA.

7.2 Test Management Software

The test management software is the engine for automation. Both of the solutions

mentioned in this thesis can automate embedded capacitive touchscreen system

verification. Each one has a different set of advantages and disadvantages. Abstracting

hardware is done similarly with both solutions. TestStand allows verification procedures

to be written in any language. This makes the solution more flexible when implementing

test procedures. Existing software modules written in different languages can be

leveraged. It also means that the person performing verification procedure maintenance

would have to be familiar with all of the languages, which could prove problematic.

Report generation is different for both. TestStand supports ASCII text and/or

markup languages including HTML, XML, and ATML. These formats allow the reports

to easily be viewed in an internet browser. TestStand also supports saving results in a

database. The custom-built solution does not support this type of report generation. It

generates a LaTeX, PDF, and Microsoft Word documents, which are also standard and

easy to use.

Flexibility is the main differentiator between the two test management software

solutions. The off-the-shelf solution comes as a pre-built package that doesn‟t allow for

internal enhancements, which limits what it can do. For example, TestStand cannot

provide the output in a PDF format. A separate external software module must be

developed to take TestStand‟s ASCII text and create a PDF document. Adding and

62

modifying functions is easy with custom-built test management software. A report

generator module can be developed to generate HTML output. The off-the-shelf software

also includes features that are not necessary for this type of application and require

additional computer resources. The custom-built solution only implements the features

that are required for verifying an embedded touchscreen system.

Finally, the custom-built solution can be more cost-effective depending on

development time and the how often the software is executed. TestStand costs

approximately $4,000 per license and can increase to $9,000 if additional verification

procedures must be developed using NI‟s LabView [21]. Additional licenses, support,

and software upgrades also add cost.

63

CHAPTER EIGHT: FUTURE WORK

Improvements can be made to both of the main components of the automated

verification system described in this thesis. For the robot, touch object solutions for panel

stimulation can be researched. For the test management software, more report generation

options and database output can be added. Further work can also be done on accurately

emulating a human experience with the device during the verification process.

8.1 Robot Touch Objects

Panel stimuli come in many forms and sizes. A touch object can be anything that

introduces significant change in capacitance at a given location. There have been reports

of people even using sausages or hot dogs as a stylus in cold weather, enabling them to

use the touch screen while keeping their gloves on [22].

 It is very important to know the system requirements before selecting the touch

objects used for verification. Understanding the appropriate size, shape, and capacitance

requirements is critical for ensuring that the verification process uses the right touch

objects.

Developing an automated solution for changing the form or size of the touch

object without changing touch objects would be very beneficial. Using the same touch

object would increase the amount test coverage, reduce test time, and better utilize robot

resources.

64

8.2 Test Management Report Generation

The test management software created for this thesis can generate reports as a

PDF file and a DOC file. This meets the requirements of most verification test systems;

however, other report file types would be useful. Postscript, spreadsheets, and

presentations could all be developed depending on the needs of the people reviewing the

results.

Web browsers are widely used to access information, and utilizing a web browser

to view test results can be very practical. Adding HTML documentation support would

allow the results to be available online to anyone without requiring them to download a

file or a software tool. It would also make it simple to access results from previous test

runs.

8.3 Test Management Software Database Support

Adding database support would make test results more organized and readily

accessible. It will enable post test run results analysis. Programming libraries are

available for ODBC and ADO to provide this support. Supporting databases using ODBC

has its challenges [19], but it would be worth the effort. This type of support is available

in TestStand as described in Section 2.2.1 TestStand Test Management Software. It

provides interfacing support to multiple databases including MySQL, SQL Server,

Access, Oracle, and Sybase.

8.4 Human Experience

Automation is essential for repeatedly and systematically verifying embedded

capacitive touchscreen systems; however, the ultimate judge of how well a device works

65

is the human user. This fact makes verifying this type of system very complicated. Each

person has a unique set of expectations and when combined with their previous

experience using a touchscreen device, they can have very different experiences with the

device. Most new defects are found when performing a manual task. “It is not the

repetition but the development of an automated test and its initial execution that reveals

most defects.” [23]

One way to minimize this issue is to develop tests that are comparable to human

experiences. This includes designing verification procedures that use movements with

great variability, much like natural human movement. The procedures can be designed

using sample data from a large group of people. Data analysis can determine an average

sample and then a verification procedure can repeat the sample data. This method can be

applied to a set of common finger movements.

Another challenge is the fact that every human being introduces a slightly

different amount of capacitance change. This causes the touch signal to vary, which

causes the touch trace result to vary significantly between different people. To help

account for this variation, a circuit that simulates the amount of capacitance that an

average human body introduces could be added between the robot finger and ground.

ANSI/ESDA/JEDEC joint standard uses about 1,500 resister to simulate the human

body model (HBM) with ESD [20].

Even with the suggestions mentioned above, there will be users that have

characteristics outside the range of the verification tests. Some manual verification will

be required. In spite of this fact, automating as much of the verification process as

possible will greatly reduce the time required to manually run verification procedures.

66

REFERENCES

[1] Alan C. Kay, “A Personal Computer for Children of All Ages”, In Proceedings of

the ACM National Conference, Boston, MA, Aug 1972.

[2] Alan C. Kay, Charles (Chuck) Thacker, Mary Lou Jepsen, and Steve Hamm, “The

40th Anniversay of the Dynabook, lecture by Alan Kay et al.”, Computer History

Museum, Mountain View, CA, Nov 2008

http://www.computerhistory.org/collections/accession/102695307

[3] “The History of the Xerox Alto”. Carl J. Clement. March, 2002.

[4] http://www-03.ibm.com/ibm/history/exhibits/pc/pc_1.html

[5] http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/120423_touch_s

ensor_capacity_forecast_to_reach_16.4_million_square_meters_in_2014

[6] http://www.ni.com/pdf/features/us/teststand3_feature_matrix.pdf

[7] IVI Foundation, “IVI Driver Architecture”,

http://www.ivifoundation.org/about/architecture.aspx

[8] S. Delgado, A. Jain, “ATML as a framework for reducing development time and

maintenance of next generation test systems”, Conference: AUTOTESTCON,

International Automatic Testing Conference – AUTEST, pp. 174-177, 2007.

[9] A. K. Kulkarni, T. Lim, M. Khan, K. H. Schulz, “Electrical, optical, and structural

properties of indium-tin-oxide thin films deposited on polyethylene terephthalate

substrates by rf sputtering”, Journal of Vacuum Science & Technology A:

Vacuum, Surfaces, and Films, Volume 16, Issue 3, Feb. 1998.

[10] N. Al-Dehoudi, M.A. Aegerter, “Wet Coating Deposition of ITO Coatings on

Plastic Substrates”, Journal of Sol-Gel Science and Technology, Volume 26, Issue

1-3, pp 693-697, Jan. 2003.

[11] H. R. Kim, Y. K. Choi, S. H. Byun, S. W. Kim, K. Choi, H. Y. Ahn, J. K. Park,

D. Y. Lee, Z. Y. Wu, H. D. Kwon, Y. Y. Choi, C. J. Lee, H. H. Cho, J. S. Yu, M.

Lee, "A mobile-display-driver IC embedding a capacitive-touch-screen controller

system," Solid-State Circuits Conference Digest of Technical Papers (ISSCC),

2010 IEEE International , pp.114 - 115, Feb. 2010.

67

[12] T. H. Hwang; W. H. Cui; I.-S. Yang; O. K. Kwon, "A highly area-efficient

controller for capacitive touch screen panel systems," Consumer Electronics,

IEEE Transactions on , Vol. 56, No.2, pp.1115 - 1122, May 2010.

[13] G. Barrett, R. Omote, "Projected-Capacitive Touch Technology," Information

Display, Vol. 26, No. 3, March 2010, pp 16-21.

[14] K. Hoppner, "Strategies for including graphics in LaTeX documents", In

Proceedings of the Practical TeX Conference, Volume 26, No. 1, June 2005, pp

59-62

[15] K.Li, M. Wu, “Effective Software Test Automation: Developing an Automated

Software Testing Tool,” Alameda, CA; Sybex Inc., 2004.

[16] J. H. Lim, S. H. Song, J. R. Son, T. Y. Kuc, H. S. Park, H. S. Kim, “An

Automated Test Method for Robot Platform and Its Components,” International

Journal of Software Engineering and Its Applications, Vol. 4 No. 3, pp. 9-18, July

2010.

[17] A. Mette, J. Hass, “Testing Processes,” Software Testing Verification and

Validation Workshop, ICSTW‟08, IEEE International Conference on. IEEE,

2008.

[18] T. R. Coffman, “A Framework for Automated System Testing,” Thesis,

Massachusetts Institute of Technology, 1996

[19] H. Abdalhakim, “Addressing Burdens of Open Database Connectivity Standards

on the Users,” Intelligent Information Technology Application Workshops

(IITAW), Third International Symposium, Nov. 2009.

[20] “JS-001-2012”, ANSI/ESDA/JEDEC Joint Standard for Electrostatic Discharge

Sensitivity Testing – Human Body Model (HBM) – Component Level, April

2012.

[21] http://www.ni.com/products/teststand/

[22] http://www.engadget.com/2010/02/11/south-korean-iphone-users-turn-to-

sausages-as-a-cold-weather-me/

[23] S. Berner, R. Weber, R. K. Keller, “Observations and Lessons Learned from

Automated Testing,” In Proceedings of the 27
th

 International Conference on

Software Engineering. pp. 571 - 579, ACM, 2005.

[24] X. He, “Embedded Systems Based Modular Test Automation,” Computing

Communication, Control, and Management, 2009. CCCM 2009. ISECS

International Colloquium on. Vol. 4 pp. 83-86. IEEE, 2009.

68

[25] S. Jovalekic, B. Rist, “Test Automation of Distributed Embedded Systems Based

on Test Object Structure Information,” In Electrical and Electronics Engineers in

Israel, 2008. IEEE 2008. IEEE 25
th

 Convention of, IEEE, pp. 343-347, 2008.

[26] C. Xu, Z. Zhao, F. Wang, K. Xu, “General Automation Test System Based on the

Cooperation of Software and Hardware,” In Control and Automation, 2009. ICCA

2009. IEEE International Conference on, pp. 797-800. IEEE, 2009.

[27] M. D. Nes , J. S. , V. V. C , I. M. Salom, “An Automated

Hardware Testing Using PXI Hardware and LabVIEW Software,” In Circuits and

Systems for Communications (ECCSC), 2010 5th European Conference on, pp.

232-235. IEEE, 2010.

[28] E. Siegel, “Introduction to Capacitive Touchscreen Controllers,” Phoenix, AZ.

2008.

[29] M. Bhalla, A. Bhalla, “Comparitive Study of Various Touchscreen

Technologies,” International Journal of Computer Applications, Vol. 6, No. 8,

2010.

[30] J. Winters, “Touchscreen Alternative,” Mechanical Engineering, New York, NY.

(0025-6501), Vol. 133, Issue 6, pp. 25, June 2011

[31] D. S. Hecht, D. Thomas, L. Hu, C. Ladous, T. Lam, Y. Park, G. Irvin, P. Drzaic,

“Carbon Nanotube Film on Plastic as Transparent Electrode for Resistive Touch

Screens,” Journal of Society for Information Display, Vol. 17 Issue 11. pp. 941-

946. 2009

[32] http://prime.jsc.nasa.gov/ROV/images/cartesian.GIF

[33] http://en.wikipedia.org/wiki/File:Descartes_configuration.png

[34] http://i01.i.aliimg.com/photo/v0/684846143/8_MID_digitizer_touch_screen.jpg

[35] http://www.salt.com.tw/Download/Document/PCI/PenMount%201201%20Contr

ol%20Board%20Data%20Sheet%20V1.03.pdf

[36] http://img.directindustry.com/images_di/photo-m/multiple-purpose-cartesian-

robot-21823-2710715.jpg

[37] http://www.cypress.com/fckimages/CY3295-MTK_img02.jpg

[38] http://www.wavecom.com.au/03_product_images/719/AFG3021B.jpg

[39] http://www.staubli.com/typo3temp/pics/fc80d1fa9a.jpg

[40] http://www.intelligentactuator.com/images/scaracoor.jpg

[41] https://commons.wikimedia.org/wiki/File:SCARA_configuration.png

	OLE_LINK1
	OLE_LINK2
	top

