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ABSTRACT

The memristor has been hypothesized to exist as the missing fourth basic circuit ele-

ment since 1971 [1]. A memristive device is a new type of electrical device that behaves

like a resistor, but can change and remember its internal resistance. This behavior makes

memristive devices ideal for use as network weights, which will need to be adjusted as the

network tries to acquire correct outputs through a learning process. Recent development

of physical memristive-like devices has led to an interest in developing artificial neural

networks with memristors.

In this thesis, a circuit for a single node network is designed to be re-configured into

linearly separable problems: AND, NAND, OR, and NOR. This was done with fixed weight

resistors, programming the memristive devices to pre-specified values, and finally learning

of the resistances through the Madaline Rule II procedure. A network with multiple layers

is able to solve difficult problems or recognize more complex patterns. To illustrate this,

the XOR problem has been used as a benchmark for the multilayer neural network circuit.

The circuit was designed and learning of the weight values was successfully shown.

vi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Network Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Back Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Madaline Rule II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Threshold Logic Unit Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Linearly Separable TLUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Non-Linearly Separable TLUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Memristors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Computer Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Cadence Simulink Cosimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 Cadence Memristor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vii



3 Evaluation of Network Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Back Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Madaline Rule II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Circuit Realization Of Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 The ANN Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Converting Weights into Resistance Values . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Programming a Memristor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Programming Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2 Programming a Single Memristor . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Feed Forward Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Network Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Single Node (Adaline) Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Cadence Simulation - Fixed Resistance . . . . . . . . . . . . . . . . . . . . . 42

5.1.2 Adaline Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.3 Cadence Simulation - Memristors . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.4 Adaline with Madaline Rule II Training Algorithm . . . . . . . . . . . . . 46

5.1.5 Adaline Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Multiple Node (Madaline) Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Cadence Simulation - Fixed Resistors . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2 Cadence Simulation - Memristors Look Up . . . . . . . . . . . . . . . . . . 52

5.2.3 Multilayer Network With Madaline Rule II Training Algorithm . . . 53

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Adaline Results of Training with MRII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B Madaline Results of Training with MRII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



LIST OF FIGURES

2.1 An example of a two layer neural network . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Gradient descent method to find the cost function minimum . . . . . . . . . . . . 7

2.3 Madaline Rule II algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 The linearly separable vs. non-linearly separable problems and their deci-

sion boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Adaline Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Weight variation for the AND, NAND, OR, and NOR operators . . . . . . . . . 14

2.7 Device resistance based on initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Basic experiment to characterize the memristor behavior . . . . . . . . . . . . . . 18

2.9 Movement of the memristor state in response to the writing and erasing

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Experiments to evaluate how programming noise affects the network per-

formance with different learning parameters . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Training performance for XOR ANN with back propagation training versus

weight change size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Number of iterations versus weight change size for BP. Error bars indicate

variance of results about the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Training performance for XOR ANN with Madaline Rule II training versus

weight change size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

x



3.5 MRII with different variable perturbation growth rate and learning rate has

a very low learning success rate (maximum at 25%). . . . . . . . . . . . . . . . . . . 30

3.6 The success rate was increased to 100% with the new method of resetting

the network and retraining for multiple epochs. . . . . . . . . . . . . . . . . . . . . . . 30

4.1 A neuron with two input synapses and one bias synapse . . . . . . . . . . . . . . . 32

4.2 One synapse with negative weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Synapse supporting negative weights feeding into the summation circuit of

the neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Programming circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Programming a single memristor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Feed forward circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 A complete circuit of one synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.8 The Cadence memristor model controlled by Simulink to operate at the

feed forward mode or programming mode . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Schematic of an Adaline with fixed weight resistors in Cadence . . . . . . . . . 42

5.2 The result of the Adaline simulation with fixed weight resistors . . . . . . . . . 44

5.3 1st prototype of an Adaline on a breadboard . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Adaline with Memristors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Conversion between theoretical weights and resistance values . . . . . . . . . . . 47

5.6 Inaccuracy variations for the AND, NAND, OR, and NOR operators . . . . . 50

5.7 XOR neural network circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.8 The result of the XOR simulation with a multilayer ANN using fixed weight

resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xi



LIST OF ABBREVIATIONS

ANN – Artificial Neural Network

MRII – Madaline Rule II

BP – Back Propagation

FPGA – Field-Programmable Gate Array

TLU – Threshold logic unit

xii



LIST OF SYMBOLS

η learning rate

xi ith input feature vector

y j jth output of a hidden node

zk kth output vector

w ji weights of the hidden layers

wk j weights of the output layers

tk kth target output

J cost function

G synapse gain

RM memristor resistance

xiii



1

CHAPTER 1

INTRODUCTION

Artificial neural networks (ANNs) themselves are nothing new; they are widely used in

pattern recognition, but they are also mostly implemented in software. Hardware imple-

mentations of artificial neural network have been attempted with FPGAs [2–4]. Once a

network is trained, the weight of each synapse stays fixed and can’t be changed on the

FPGA without recompiling. Using memristive devices or memristors [5], artificial neural

networks can finally be fully implemented in hardware so that they can be retrained by

changing the device resistances. Hardware-only ANNs are expected to learn much faster

than software ANNs and consume less power. The goal of this thesis is to lay a foundation

in building a hardware-only neural network by describing the process of converting the the-

oretical artificial neural network into a circuit neural network using memristors as synapse

weights. The problem is memristors with today’s technology cannot be programmed to an

exact weight value, therefore, this thesis will also investigate how programming inaccuracy

affects the network performance.

There are several important factors that contribute to building an ANN such as the

number of hidden layers, the number of inputs, activation functions, training algorithms,

and learning parameters... The objective of this thesis is to simulate the ANN with com-

binations of these factors not only to choose the best learning method but also to pick out

more suitable components for the circuit design.
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At first, a single node hardware-only ANN using look-up weight resistance will be

attempted to configure some linearly separable operators such as AND, NAND, OR, and

NOR. If this single node circuit design can realize these basic operators successfully, the

fixed weight resistances will be replaced with memristor models and the network will be

implemented with a learning algorithm to automatically find the correct resistance weights

without a look-up table. This single node will then be duplicated to make a two layer neural

network to realize XOR operator. XOR is a simple problem with only two inputs, but it is

difficult for an ANN to solve because its outcomes are non-linearly separable. Because of

this reason, XOR has been a famous benchmark for a lot of neural network performance,

and therefore will be naturally used as a test for the hardware neural network designed in

this thesis as well.

Although the scope of this thesis only covers the network simulations, it will attempt

to build the first prototype of a single node ANN using discrete circuit components only.

The design will be tested with the four basic threshold logic gates AND, NAND, OR, and

NOR. The vision is to expand these ANNs into multiple layers with thousands of nodes to

mimic how human brains function after gaining some knowledge of how a hardware ANN

actually works. The remaining thesis has been organized as follow:

Chapter 2 provides a brief background about theoretical ANNs, threshold logic unit

problems, memristors, and some computer simulation tools used in this thesis.

Chapter 3 evaluates two network training algorithms: back propagation and Madaline

Rule II with different learning parameters. In the end, it will determine which one is better

suited for the ANN.

Chapter 4 describes the circuit realization of the network. Most of the conversion

between the theoretical ANNs and the circuit ANNs will be in this chapter, but it also

covers the details on how to program a memristor.
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Chapter 5 presents the network simulations of single node ANNs, then multilayer

ANNs. Both start with fixed weight resistors, then replace fixed resistors with memristors

programmed to target resistance values and finally a learning algorithm is implemented for

the network to automatically learn the resistance based on input-output patterns.

Chapter 6 talks about some problems encountered, concludes the thesis, and discusses

future work for this research.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 Artificial Neural Network

An artificial neural network (ANN) is a computational network that attempts to mimic how

humans and animals process information through their nervous system cells. This system

is formed by trillions of nerve cells exchanging electrical pulses across synapses. A neuron

in a neural network is based on one of these nerve cells. In an ANN it is called a node. The

strength between these synapses is implemented by the weights of the network. A neural

network is constructed of one input layer, hidden layer(s), and one output layer. Figure 2.1

shows an example of such a multilayer neural network. The input feature vectors of the

network are xi, the hidden node outputs are y j, and the network outputs are zk. w ji denotes

the input to hidden layer weights at the hidden unit j, and wk j denotes the hidden to output

layer weights at the output unit k.

At each node, the weighted summation of the inputs is calculated by

net j = w j0 +
c

∑
i=1

w jixi, (2.1)

where w j0 is the weight of the bias input, which always stays constant (usually 1). The

summation is passed through a nonlinear operator called the activation function f (.) to

yield an output. This output is then transmitted to other neurons and the process is repeated
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Figure 2.1: An example of a two layer neural network

until it reaches the output layer. In other words, the input of a cell arrives in the form of

signals with different weight factors. These signals are built up and finally, the cell will

discharge through the output to other cells. A perceptron is a single layer ANN. An Adap-

tive Linear Neuron or Adaline has the structure of a perceptron but with a hard-limitting

activation function. If there is more than one Adaline layer in the ANN, the network is

referred to as a Madaline, which stands for multiple Adaline. The output of each layer then

acts as a new input feeding into the next layer. With Madalines, the output layer can have as

many adaptive units as desired, which greatly increases the power of the network to realize

arbitrary input-output relationships presented to it.

The term “feed-forward” ANN comes from the network structure where the output of

one layer’s neuron feeds forward into the next layer of neurons and never the other way.
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The process is repeated at sequential layers until it reaches the output layer. The neurons

are fully connected in that all the nodes from one layer are connected to all the nodes from

the next layer. Using this feed forward mechanism, the neural network is able to take in

the inputs and respond with some outputs. However, the feed forward structure alone is not

enough because the output values will just be random numbers. To complete an artificial

neural network, a learning algorithm is needed so that the network can learn to adjust its

weights to produce desired outputs for the given inputs.

2.2 Network Learning Algorithms

Two ANN learning algorithms will be discussed in this thesis. They are back propagation

and Madaline Rule II.

2.2.1 Back Propagation

The most commonly learning algorithm for ANNs is Back Propagation (BP) [6]. BP uses

gradient descent to determine a weight combination that minimizes the cost function, which

measures the error between the output zk of the network and its target value tk presented to

the network during a training procedure, described by the equation

J =
1
2
(tk− zk)

2. (2.2)

To find a local minimum of a function using gradient descent, one takes a small step in the

direction of the steepest descent until the local minimum is reached. Figure 2.2 shows an

example of 1-D gradient descent. The ordinate is the value of the cost function, which is a

function of one independent process variable drawn on the abscissa. After an initialization,

a step down-hill is taken in the direction that has the steepest slope. In Figure 2.2, the
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algorithm is initialized on the right, so it will take a step to the left until it gets to the local

minimum. The size of the step is the learning rate of the algorithm and it gets smaller and

smaller as the cost approaches the minimum to avoid overshoot.

Figure 2.2: Gradient descent method to find the cost function minimum

BP requires a non-linear activation function and the most commonly used is the sigmoid

function

y =
1

1+ e−λx
, (2.3)

where the parameter λ determines the steepness of the sigmoid function. BP will calculate

the partial derivative of the cost function with respect to the weights to determine each

weight’s contribution to the error. Then the weights in each layer are adjusted simultane-

ously based on their contribution to the errors by using

∆w =−η
δJ
δw

, (2.4)

where η is the learning rate, which indicates the step size of the weight change. J is the

cost function taken from Equation 2.2. The weight adjustments at the output layer are then
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calculated by first finding the sensitivity δ of unit k using

δk =−
δJ

δnetk
= (tk− zk) f ′(netk), (2.5)

f (netk) = zk = f (
c

∑
j=1

wk jy j), (2.6)

and

f ′(netk) = λ f (netk)[1− f (netk)] = λ zk(1− zk). (2.7)

Taken together, they give the weight update results of the output layer:

∆wk j = ηδky j = η(tk− zk) f ′(netk)y j. (2.8)

Similarly, the same calculation is repeated within the hidden layer to find the sensitivity of

unit j as follows:

δ j = f ′(net j)
c

∑
k=1

wk jδk, (2.9)

f (net j) = y j = f (
c

∑
k=1

w jixi), (2.10)

and

f ′(net j) = λ f (net j)[1− f (net j)] = λy j(1− y j). (2.11)

The weight update results for the hidden layer are then calculated by

∆w ji = ηxiδ j = η

(
c

∑
k=1

δk j

)
f ′(net j)xi = η

[
c

∑
k=1

wk j(tk− zk)

]
f ′(net j)xi. (2.12)

The disadvantage of back propagation is that it takes a lot of iterations to train a pattern, in

addition to finding the appropriate learning rate ηopt so that the cost function will converge.
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If η < ηopt , convergence is assured, but the training process can be needlessly slow. If

ηopt < η < 2ηopt , the system will oscillate but nevertheless converge, and the training

process is also needlessly slow. If η > 2ηopt , the system will diverge [7].

2.2.2 Madaline Rule II

An alternative training algorithm is Madaline Rule II (MRII), which was originally devel-

oped in 1988 by Winter and Widrow [8]. MRII expects the activation function to be a

hard-limiting function. It uses the principle of minimal disturbance to train the network.

The flow chart in Figure 2.3 describes how MRII works.

Figure 2.3: Madaline Rule II algorithm

When an input is fed into the network and it responds correctly to the training values,

no weight adaptation is done, otherwise, it randomly changes the weights at the input of the

node that has the least confidence in its output. After the weights are changed, the network
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is tested to see if the change reduced the classification error rate. If this is the case, the

change is kept, otherwise, the weight is reset to the original, then another set of weights

is changed. If the error is not reduced, this search continues to weights at nodes further

from their switching threshold. If there is still an error in classification, a pair of nodes is

changed at the same time, then a triplet of nodes... If changing weights in the output layer

does not reduce the classification error, the MRII algorithm will move to the hidden layer,

working its way deeper back into the network until it reaches the input layer. The amount

by which the weights are changed can be a function of the amount of residual errors in

the network or a random amount. If after a certain number of iterations the weight change

does not increase the overall network performance, the weight change will be increased by

a factor called the growth rate. The maximum number of iterations used in this thesis for

MRII is 50. After each training epoch of 50 iterations, the network training will be declared

either a success or a failure.

2.3 Threshold Logic Unit Problems

In this thesis, threshold logic unit problems will be used as a test bench to measure the

performance of the ANN built with memistors. There are 16 possible binary logic oper-

ations that can be created with two binary inputs X1 and X2. These are shown in Table

2.1. Except for XOR and XNOR, the 14 remaining logic operations are linearly separable.

Figure 2.4 shows an example of the difference between linearly separable and non-linearly

separable problems. The AND, NAND, OR, and NOR operators are linearly separable

because the input set can be separated by a single straight line decision boundary to group

like outputs. In contrast, XOR is not linearly separable because the set cannot be separated

by a single straight line. The 16 logic operators are separated into these two categories
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because the linearly separable problems can be realized using just a single layer network

with a hard-limiting activation function, while non-linearly separable problems require at

least a two layer network.

Table 2.1: 16 possible binary logic operations
INPUTS X1 0 0 1 1

X2 0 1 0 1
OUTPUTS FALSE 0 0 0 0

A AND B 0 0 0 1
A DOESN’T IMPLY B 0 0 1 0

TRUE A 0 0 1 1
A IS NOT IMPLIED BY B 0 1 0 0

TRUE B 0 1 0 1
A XOR B 0 1 1 0
A OR B 0 1 1 1

A NOR B 1 0 0 0
A XNOR B 1 0 0 1

NOT B 1 0 1 0
A IS IMPLIED BY B 1 0 1 1

NOT A 1 1 0 0
A IMPLIES B 1 1 0 1

A NAND B 1 1 1 0
TRUE 1 1 1 1

There are multiple possible weight values that will correctly realize most problems.

Figure 2.4(a) shows some examples of linearly separable problems: the AND, NAND, OR,

and NOR operators. These operators have high tolerance in decision boundaries, meaning

that there are many ways to draw a straight line to separate the inputs based on the output

result. Therefore, it is suspected that the weights for these problems will have a high

tolerance as well. In theory, these weight values can be infinite because the output logic

is thresholded at 0. However, the purpose of the thesis is to build a practical circuit for

an ANN, and the hardware can only take in a limited gain from the weights. Therefore,

for this discussion, these weights are limited to the values between [-10,10]. This range
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(a) Linearly separable problems: AND, NAND, OR,
NOR operators

(b) Non-linearly separable prob-
lem: XOR operator

Figure 2.4: The linearly separable vs. non-linearly separable problems and their decision
boundaries

can illustrate the four logic operations used in this thesis, and also is logistic for designing

hardware ANN circuits.

2.3.1 Linearly Separable TLUs

To find a sample set of weights that works for linearly separable problems, an exhaustive

search was performed to find the correct weights in the weight space. Because these

problems are linearly separable, a single node with two inputs, one bias input, one output

and three weights w0, w1, w2 as seen in Figure 2.5 can be used. The output of the

feed-forward network was calculated for each weight combination. For every operation,

a set of weights is said to be qualified for that logic operation if and only if the network

produces correct logic outputs for all four input pairs (-1,-1), (-1,1), (1,-1), and (1,1). The

result is shown in Figure 2.6. The qualified regions for the four logic operations AND,
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Figure 2.5: Adaline Structure

OR, NAND, and NOR are highlighted. All the weight combinations within each region

can classify the corresponding logic gate correctly. From the weight space in Figure 2.6, a

working set of weights was manually picked and is displayed in Table 2.2.

Table 2.2: A sample set of weights for linearly separable problems extracted from the
weight space in Figure 2.6

w1 w2 w0
NAND -0.5 -0.7 0.5
NOR -0.5 -0.7 -0.5
AND 0.3 0.6 -0.5
OR 0.3 0.6 0.5

A weight for the bias node further from 0 provides better tolerance. Another interesting

observation is that one can change the logic from an AND to an OR, or a NAND to a NOR

just by switching the sign of the bias weight. Last but not least, this insight explains why

most of the threshold logic ANNs use bias inputs. Looking at the plane w0 = 0 in Figure

2.6, the number of weight combinations that do not require a bias weight are distributed

discontiuously on a diagonal line. Therefore, it is possible to have a set of weights that do
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not require a bias node for these ANNs, however, the probability of finding them will drop

dramatically without using the bias node.

Figure 2.6: Weight variation for the AND, NAND, OR, and NOR operators

2.3.2 Non-Linearly Separable TLUs

XOR and XNOR behave differently than the other operations because they are not linearly

separable. They require a second layer with a total of 9 weights, 6 more than the previous

one layer ANN structure, Figure 2.1. Because of its simplicity and extremely non-linear

decision boundary, XOR is famous for being a benchmark for a lot of neural network

prototypes. Table 2.3 shows a sample weight combination that works for the XOR operator.
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Table 2.3: A sample set of XOR weight values
w1 w2 w0

hidden weights -0.6485 -0.4646 0.6592
-1.9410 -1.5920 -1.2104

output weights 0.3732 -0.4063 -0.2250

2.4 Memristors

The memristor was hypothesized to exist by Chua in 1971 [1]. Since then, several other

groups have also made memristive-like devices, those that simply show variable resistance

and hysteresis in the device IV curve, but have not shown explicitly to exhibit the properties

of memristance as proposed by Chua [1] including Dr. Campbell’s group at Boise State

University [9], Strukov et al. from Hewlett-Packard [10]. There has been a debate about

whether these devices are called memristors and in 2011, Chua explicitly suggested that all

the memristive devices that have a common fingerprint consisting of a dense continuum of

pinched hysteresis loops whose area decreases with the frequency are called memristor [5].

A memristor is a passive device that behaves like a resistor, but whose history influences

its resistance state. Unlike potentiometers, a memristor is an integrated circuit device and

is programmable. The resistance of the memristors used in this thesis can be changed

through a writing or erasing procedure, which is only effective if the applied voltages

exceed a certain threshold, otherwise the memristor will act as a linear resistor. Applying

a positive voltage above the threshold causes the memristor to write, which means that the

device decreases its intrinsic resistance. In contrast, applying a negative voltage causes

the memristor to erase, which means that the intrinsic resistance increases. This behavior

makes memristors ideal for use as ANN weights, which will need to be adjusted as the

network tries to acquire correct outputs through its learning process. Often, a short pulse is

used to write or erase a memristor so that the it is not put under a constant stress.
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Since discovery, important applications of memristors include ultradense, semi-non-

volatile memories and learning networks that require a synapse-like function [10]. Re-

cently, Adhikari et al. has proposed a neural network hardware architecture using memris-

tor bridge synapse to solve the problem of non-volatile weight storage to recognize images

of cars from behind [11].

2.5 Computer Simulation Tools

In preparation for building the actual hardware, the neural network was first simulated on

the computer. The two software tools used in this thesis are Cadence and MATLAB/Simulink.

The ANN discrete circuit is built in Cadence, and Simulink controls the learning algo-

rithm of the network. Section 2.5.1 will describe the process of interfacing Cadence with

Simulink. Section 2.5.2 will talk about the Cadence memristor model.

2.5.1 Cadence Simulink Cosimulation

The Cadence Virtuoso AMS Designer Simulator provides a bidirectional link between

MATLAB Simulink and Cadence, enabling cosimulation and early verification of ANN

board design that combines both analog and digital components. The interface is imple-

mented by either the Cadence coupler block placed in the Simulink model or the AMS

coupler block placed in the Virtuoso schematic to represent the Simulink model. These

two coupler modules give the user a lot of flexibility to configure input and output param-

eters. There are three cosimulating modes: Cadence initiates the simulation and waits for

Simulink to run, Simulink initiates the simulation and waits for Cadence to run, or both can

be running at the same time.



17

Assuming that the standalone simulations work correctly in MATLAB/Simulink and

Cadence SpectreRF, these steps are required to set up the cosimulation:

1. Insert and configure the SpectreRF in the Simulink schematic.

2. Setup the netlist to adopt the SpectreRF and MATLAB cosimulation.

3. Run the cosimulation.

2.5.2 Cadence Memristor Model

The memristor model representing the weights used in this thesis was provided by Dr.

Vishal Saxena based on “A memristor device model” by C. Yakopcic et al. [12]. The

memristor model code written in VerilogA is included in Listing 2.1. The “state input”

pin “xd” is used to sneak into the memristor state. The state input value is inversely

proportional to the memristor resistance. Figure 2.7 shows the device resistance varies

from 120Ω to 170KΩ as the initial value of the state input pin varies from 0.001 to 1.

Although, the model for this memristor can operate at the high resistances region (MΩ),

only the low resistance region (KΩ) is purposely chosen in this thesis to avoid other discrete

circuit components having to work with a large dynamic range.

Figure 2.8 shows a basic experimental set up to characterize the memristor model. A

series of positive and negative pulses with an amplitude of 200 mV and 1 µs pulse width

were applied to the model. Figure 2.9 shows how the memristor state responds to the

writing and erasing processes. Applying a positive pulse causes the meristor to write, which

decreases the memristor resistance, meaning that the “state” will be increasing. In contrast,

applying a negative pulse causes the memristor to erase, which increases the memristor

resistance, meaning that the “state” will be decreasing. This memristive model can be



18

updated in the future to match with the actual memristors fabricated and packaged by Dr.

Campbell’s group at Boise State University.

Figure 2.7: Device resistance based on initial state

Figure 2.8: Basic experiment to characterize the memristor behavior
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(a) writing process, decreasing the device resistance

(b) Erasing process, increasing the device resistance

Figure 2.9: Movement of the memristor state in response to the writing and erasing process
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1 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

2 / / Ver i logA model f o r BSU Memri s to r

3 / / V e r s i o n : 1 . 0

4 / / v i s h a l s a x e n a @ b o i s e s t a t e . edu

5 / /

6 / / Bo i se S t a t e U n i v e r s i t y

7 / / ECE Dept . March 2012

8 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

9

10 ‘ i n c l u d e ‘ ‘ c o n s t a n t s . vams ”

11 ‘ i n c l u d e ‘ ‘ d i s c i p l i n e s . vams ”

12

13 module Memris tor BSU v10 ( p , n , xin , xd ) ;

14 i n o u t p , n ;

15 i n o u t x i n ;

16 o u t p u t xd ;

17

18 e l e c t r i c a l p , n , xin , xd ;

19

20 / / Device p a r a m e t e r s

21 p a r a m e t e r r e a l Vp = 0 . 1 6 ;

22 p a r a m e t e r r e a l Vn = 0 . 1 5 ;

23 p a r a m e t e r r e a l Ap = 4000 ;

24 p a r a m e t e r r e a l An = 4000 ;
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25 p a r a m e t e r r e a l xp = 0 . 3 ;

26 p a r a m e t e r r e a l xn = 0 . 5 ;

27 p a r a m e t e r r e a l a l p h a p = 1 ;

28 p a r a m e t e r r e a l a l p h a n = 5 ;

29 p a r a m e t e r r e a l a1 = 0 . 1 7 ;

30 p a r a m e t e r r e a l a2 = 0 . 1 7 ;

31 p a r a m e t e r r e a l b = 0 . 0 5 ;

32 p a r a m e t e r r e a l t 0 = 2e−9;

33 p a r a m e t e r r e a l d t = 0 . 1 e−9;

34

35 / / S t a t e v a r i a b l e and p a r a m e t e r s

36 r e a l x0 ;

37 r e a l x , g , f ;

38 r e a l a s s e r t ;

39 r e a l wp , wn ;

40 b r a nc h ( p , n ) memr ;

41

42 / / I n i t i a l c o n d i t i o n s

43 a n a l o g b e g i n

44 @( i n i t i a l s t e p ) b e g i n

45 f =1; g =0;

46 x0=V( x i n ) ; a s s e r t =0 ;

47 end

48

49 / / Using t i m e r t o make i t work wi th S i m u l i n k Cosim
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50 / / S i m u l i n k i n p u t s a r r i v e l a t e i n t o s p e c t r e ( use t 0 )

51 @( t i m e r ( t 0 ) ) b e g i n

52 x0 = V( x i n ) ;

53 a s s e r t =1 ;

54 end

55

56 / / R e s t a r t t h e i n t e g r a t o r a t t ime = t 0 + d t

57 @( t i m e r ( t 0 + d t ) ) b e g i n

58 a s s e r t =0 ;

59 end

60

61 / / f i n d g (V( t ) )

62 i f (V( memr ) > Vp )

63 g = Ap∗ ( exp (V( memr ) )−exp ( Vp ) ) ;

64 e l s e i f (V( p , n ) < −Vn )

65 g = −An∗ ( exp(−V( memr ) )−exp ( Vn ) ) ;

66 e l s e g = 0 ;

67

68 / / f i n d f ( x )

69 i f (V( memr ) >0)

70 i f ( x>xp ) b e g i n

71 wp = ( xp−x ) /(1− xp ) + 1 ;

72 f = exp(− a l p h a p ∗ ( x−xp ) ) ∗wp ;

73 end

74 e l s e f = 1 ;
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75 e l s e

76 i f ( x<=1−xn ) b e g i n

77 wn = x /(1− xn ) ;

78 f = exp ( a l p h a n ∗ ( x+xn−1) ) ∗wn ;

79 end

80 e l s e f = 1 ;

81

82 / / S t a t e u p d a t e ( i n t e g r a t o r )

83 x = i d t ( g∗ f , x0 , a s s e r t ) ;

84

85 / / Ass ign o u t p u t s

86 I ( p , n ) <+ a1∗x∗ s i n h ( b∗V( memr ) ) ;

87 V( xd ) <+ x ; / / Normal ized s t a t e

88 end

89 endmodule

Listing 2.1: VerilogA Memristor Model Code
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CHAPTER 3

EVALUATION OF NETWORK TRAINING ALGORITHM

In simulation, every memristor model can be programmed correctly to a specific resistance

value within a certain tolerance. However, in reality there is a process variation that causes

the memristors to respond inconsistently to the same programming pulses. Progress is

being made toward developing a more precise way to program the memristors by the

neuromorphic group at Boise State University. In the mean time, experiments were run

to evaluate the effect of imprecision in weight changes of memristors in training an XOR

problem. Although, the network will be built first to recognize linearly separable problems,

the classic XOR operator is chosen in this evaluation to get results that are applicable to a

wider range of problems. If the network can train an XOR operator, it is more likely to be

able to train other linearly separable problems also.

A small amount of Gaussian noise with variance σ was added to the basic training rule

w(n+1)
k j = w(n)

k j +ηδky j +Nσ , (3.1)

w(n+1)
ji = w(n)

ji +ηδ jxi +Nσ . (3.2)

Two training algorithms were evaluated: back propagation and Madaline Rule II. Each

algorithm will be run with different learning parameters to determine which one is better

suited to be implemented in the hardware ANN. Figure 3.1 shows an overview of the
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experiments in this section. Again, BP will be evaluated with three different steepness

of the sigmoid functions and MRII with varying the growth rate and number of epochs.

Figure 3.1: Experiments to evaluate how programming noise affects the network perfor-
mance with different learning parameters

3.1 Back Propagation

With back propagation, besides the learning parameter η , the activation function param-

eter λ is probably the most important factor that determines the network learning ability.

Three different sigmoidal activation functions were used based on different values of λ in

Equation 2.3. The larger λ makes the curve steeper. For each value of λ a preliminary

set of experiments were run to choose a suitable learning rate η . A larger λ requires

a smaller η . In this thesis, BP will be explored with different learning rate and weight

noise and λ = {4,8,10}. Each experiment was run 100 times and the learning success rate

was recorded in Figure 3.2. The maximum number of iterations allowed for BP in these

experiments is 10,000.
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Figure 3.2: Training performance for XOR ANN with back propagation training versus
weight change size

Training an XOR sometimes does not always converge to a correct solution after a lot

of BP iterations. It occasionally gets stuck in a local minimum. To fix this problem, a

momentum factor can be added to the algorithm to help BP get out whenever it is stuck in

a local minimum. However, it is beyond the scope of this thesis. When moderate amounts

of additive Gaussian noise were included in the weight changes (σ < 0.4), the percentage

of instances when the network properly trained increases as shown in Figure 3.2. This is

because, just like momentum, a small amount of noise is able to kick BP out of a local

minimum. The average number of iterations needed also decreases as seen in Figure 3.3.

Therefore, a moderate imprecision in memristive weights would actually help the network

train better. This is not a surprise, the effect of imprecision in the weights has been explored

and it was determined that it is not detrimental to the ANN operation [13]. However, as the
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amount of noise increases past 0.5, the training performance declines dramatically. When

the noise variance reaches 1, the network becomes unstable and fails to solve the given

problem. In addition, as λ increases leading to a steeper sigmoid function, the training

is less effective and eventually fails when the sigmoid becomes a step function. This is

understandable because BP calculates the weight changes based on the derivative of the

activation function. Thus, to explore the step activation function, the Madaline Rule II will

be employed.

Figure 3.3: Number of iterations versus weight change size for BP. Error bars indicate
variance of results about the mean.
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3.2 Madaline Rule II

Since MRII randomly perturbs network weights rather than calculating the weight changes

based on the error gradient, the effect of weight setting noise is not relevant, but analysis

of the size of the weight change is relevant. For each experiment the network was trained

100 times with the weight randomly initialized and using different starting seeds in the ran-

dom number generator. The standard deviation of the random perturbation was gradually

increased in Figure 3.4. The success rates for training within the maximum of 50 iterations

allowed increased as the perturbation size was increased, but reached a maximum at 25%.

Figure 3.4: Training performance for XOR ANN with Madaline Rule II training versus
weight change size

If the first weight change causes an overall network improvement, but leads to setting

weights that cannot be changed to the weight values that are eventually needed, MRII

will fail. The XOR network in this thesis only has three nodes that the MRII algorithm
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can almost exhaustively search for at which node the weights should be changed. If the

training is not proceeding well initially, the network is likely to fail within 50 iterations.

A solution for this is to make the weight change larger so the network will jump to a

significantly different decision boundary. To try this, the size of the change in weights was

set to increase by a growth rate if all the possibilities were tried and no increase in network

performance was noted. Once the error rate decreases, the weight change was returned

to the original weight change amount. Figure 3.5 shows the success rate versus the base

weight change standard deviation and weight growth rate. As the growth rate increases, the

training is accomplished more regularly, but not so much compared to the base algorithm

after the grow rate is larger than 3.

Because MRII has a low learning success rate to begin with, a revised training proce-

dure was developed in such a way that if the network does not train after 50 iterations, the

weights are reset and the MRII process is rerun. Each time the weights are reset, a new

epoch is launched. This process is repeated up to a certain number of epochs. Figure 3.6

shows that the modified version of MRII was able to achieve the success training rate of

100% within 20 epochs.

3.3 Conclusion

Training with MRII is much faster than BP even with having to reset the network (50 MRII

iterations x 20 epochs vs. 10,000 BP iterations). Plus, MRII depends on the randomness of

the weight change, so it is not sensitive to noise, so it is well suited for using memristors

as weights. In addition MRII is designed for networks that use the hard-limiting activation

function, which is already available for implementing in circuit ANNs as a comparator.

BP might still be considered in the future for different types of problems when a chip is
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developed where a non-linear activation function can be realized, but the rest of this thesis

will be focusing on implementing the network using the MRII learning algorithm.

Figure 3.5: MRII with different variable perturbation growth rate and learning rate has a
very low learning success rate (maximum at 25%).

Figure 3.6: The success rate was increased to 100% with the new method of resetting the
network and retraining for multiple epochs.
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CHAPTER 4

CIRCUIT REALIZATION OF NETWORKS

The goal of this thesis is to explore and develop a method to build a hardware-only ANN

with memristors through simulations in Cadence and MATLAB. The circuit that realizes a

single layer network will be first introduced in Section 4.1, then later it will be expanded

into multiple layers to be tested with an XOR problem. The weights are the memristor

conductance, which are by default always positive, however, for ANNs we desire the

weights to sometimes be negative. Section 4.1 will show the circuit design to accommodate

this problem. Section 4.2 will describe the process of converting theoretical ANNs into

circuit ANNs. Section 4.3 will describe the method of programming a single memristor.

Lastly, Section 4.4 will describe the complete structure of one synapse.

4.1 The ANN Circuit

Figure 4.1 shows the traditional view of a neuron and its equivalent circuit structure.

Three memristors RM1, RM2, and RM0 are used as the two input weights and the bias

weights respectively. The weighted summation is replaced by an op-amp to sum up all

the input currents. The summation current will be passed through a comparator acting as

an activation function. The weights in this case are the conductance of the memristors,

clearly there is a problem that they do not allow for negative weights. A circuit has been

developed to overcome this problem and is shown in Figure 4.2. R0 and R1 have the same
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(a) Traditional view

(b) Circuit view

Figure 4.1: A neuron with two input synapses and one bias synapse

resistance value so that they invert the positive input voltage coming out of the op-amp. The

output current is the summation of the two currents going through RM and RN as follow

I =
VIN

RM
+
−VIN

RN
(4.1)

The negative weight problem is overcome by adjusting the resistance of the memristor so

the total output current is negative. This current is then amplified through the summation

op-amp to provide negative output voltage. An appropriate value will be chosen later for

RN so that the gain of this circuit is within the desired weight limit. The operating range of

the memristors chosen in this thesis is between 10 KΩ and 100 KΩ. Adjusting the device
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resistance RM within this range will swing the output voltage from a negative to a positive

voltage, and therefore will solve the negative weight problem.

Figure 4.2: One synapse with negative weight

4.2 Converting Weights into Resistance Values

In the process of building the actual hardware for the network, the theoretical weight values

for the network in Section 2.3 need to be converted to resistance values. The calculations

to achieve this were developed at Boise State University jointly by Adrian Rothenbuhler

and myself. Figure 4.3 shows the equivalent circuit of the theoretical synapses and their

summation in Figure 4.1. Within the synapse, the voltage at the negative terminal VN is

calculated by

VN =VCM−R2 ∗
VIN−VCM

R1
= 2VCM−VIN . (4.2)

The current going to the summation op-amp is calculated by

IS = I1 + I2 =
VCM−VIN

RM
+

VN−VCM

RN
. (4.3)
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Figure 4.3: Synapse supporting negative weights feeding into the summation circuit of the
neuron

Using the summation current calculated in Equation 4.3, the output voltage of the circuit

can be calculated using

VOUT =VCM−RF ∗∑
i=1

IS. (4.4)

The gain G of the circuit is calculated by

G =
VOUT −VCM

VIN−VCM
= RF(

1
RN
− 1

RM
). (4.5)

Knowing G, the memristor resistance can be calculated using

RM =
RFRN

RF −G∗RN
. (4.6)

In order to convert the weight into actual resistance for RM, RN and RF have to be calculated

first by reversing Equations 4.5 and 4.6 as
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RN = RMHigh−
RMHighGHigh

RMHighGHigh−RMLowHLow
(RMHigh−RMLow), (4.7)

RF =
RN(RMHighGHigh−RMLowGLow)

RMHigh−RMLow

, (4.8)

where GHigh and GLow are the highest and lowest weight of the ANN, while RMHigh and

RMLow are the highest and lowest optimal range of the memristors. The two resistors RN

and RF set the gain of the circuit to be within the desired weight limit while adjusting the

resistance of the memristor RM between 10 KΩ and 100 KΩ. Following Equations 4.7 and

4.8, RN and RF were calculated to be 33.33 KΩ and 500 KΩ, respectively. Table 4.1 shows

a summary of the conversion of the weights and logic levels between the theoretical ANNs

and the circuit ANNs.

Table 4.1: Conversion between theoretical ANNs and circuit ANNs
Theoretical ANNs Circuit ANNs

Weights -10 10 KΩ

10 100 KΩ

Logic level -1 -100 mV
1 100 mV

4.3 Programming a Memristor

Programming a memristor is challenging because the device material has an inconsistent

response to the programming pulse. Therefore, a method of programming the device has

been developed based on the difference between the original and the target resistance.

4.3.1 Programming Circuit

Recall from Section 2.4, there are two modes in programming a memristor: writing and

erasing. Writing will decrease the device resistance and erasing will increase the device
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resistance. For the memristor model used in this thesis, a 1 µs pulse with an amplitude

higher than the threshold voltage is used to program the memristor so that the device is not

under a constant stress. Figure 4.4 shows the schematic of the programming circuit [14].

Figure 4.4: Programming circuit

To read the current value of the memristor, the same circuit will be used, however, with

an amplitude pulse that is much smaller than the threshold voltage. For the memristor

model used in this thesis, a (100 mV, 1 µs) pulse is chosen to be sufficiently small in order

to avoid disturbing the current state of the device while reading it. The memristor resistance

is then determined by measuring the output voltage of the circuit and applying Ohm’s law

RM =
Vprog

Vout−Vprog
R1. (4.9)

4.3.2 Programming a Single Memristor

The programming circuit in Figure 4.4 was built in Cadence first and then it was connected

to Simulink using the Cadence coupler block. A MATLAB script was written to provide

the voltage inputs to automatically drive the memristor to a desired resistance. Pseudocode

for the algorithm is in Listing 4.1. The script will keep generating programming pulses with
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amplitudes proportional to the difference between the current resistance Ri of the memristor

and the desired value Rd . If the difference is large, it will send a bigger amplitude pulse

and vice-versa. This amplitude gets smaller and smaller as the memristor approaches the

desired resistance. The erasing process is more sensitive than the writing process, therefore,

the gain in the erasing process is a factor of 1/3 smaller than the gain in the writing process.

The programming pulse is limited below Vmax so that it will not destroy the device nor

cause clipping in the output voltage of this programming circuit.

1 w h i l e ( abs ( R i − R d ) > t o l e r a n c e )

2 e r r o r = R in − R d ;

3 i f e r r o r > 0

4 g a i n = 0 . 3∗ V gain ;

5 e l s e

6 g a i n = V gain ;

7 end

8 Vpulse = s i g n ( e r r o r ) ∗ min ( abs ( e r rA ) ∗ ga in , Vmax) ;

9 new Ri = sim ;

10 Ri = new Ri ;

11 end

Listing 4.1: Programming a memristor algorithm

After each programming state, the MATLAB script will generate a reading pulse to read

the current resistance of the device. In short, the programming circuit will keep sending

pulses with an adapted amplitude to program, then read the memristor until its resistance

is within a certain tolerance of the desired value. This behaves like a state machine in

hardware. The operating range of the memristor in this thesis is between 10 KΩ and 100
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KΩ. The device was initialized at 40 KΩ, the desired value for the writing mode was 10

KΩ, and for the erasing mode was 100K Ω. Figure 4.5 shows the programming pulses and

the memristor current resistance after each programming cycles. The target resistance is

highlighted in red. The script was able to drive the device to the desired resistance within a

tolerance of 4 KΩ within an average of 10 programming cycles.

(a) Programming from 40 KΩ to 10 KΩ (b) Programming from 40 KΩ to 100 KΩ

Figure 4.5: Programming a single memristor

4.4 Feed Forward Circuit

Figure 4.6 shows the structure of one neuron including the feed forward mechanism. The

op-amp is used as a synapse summation. This circuit is added to the programming circuit as

shown in Figure 4.7. The negative weight circuit is omitted in this schematic. The switch

(θ ,Rb) will be controlling to which circuit the memristor is connected. Depending on which
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Figure 4.6: Feed forward circuit

process the memristor is currently in, it can either be connected to the programming circuit

or to the feed forward circuit.

Figure 4.7: A complete circuit of one synapse

The next step is to connect this circuit to the controllers in Simulink. Figure 4.8 shows

the finished model of one neuron that can operate in both programming mode and feed

forward mode. If the memristor resistance needs to be read or adjusted, the “control

programming line” block will turn on the programming/reading pulse generator. If just
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the feed forward operation is required, then the “control feed forward line” will turn on the

feed forward pulse generator.

Figure 4.8: The Cadence memristor model controlled by Simulink to operate at the feed
forward mode or programming mode
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CHAPTER 5

NETWORK SIMULATION

At first, one single node ANN is built to simulate the linearly separable operators, then

this structure will be expanded into a two layer ANN to simulate non-linealy separable

operators. The procedure of implementing the memristors as weights into these ANNs are

divided into following simulations

• Adaline with fixed resistances set from look-up weights for linearly separable opera-

tors

• Adaline with memristors programmed with weights from the look-up table

• Adaline with the MRII training algorithm to learn the weights

• Madaline with fixed resistances set from look up weights for XOR

• Madaline with memristors programmed with weights from the look-up table

• Madaline with the MRII training algorithm to learn the weights.

5.1 Single Node (Adaline) Circuits

The first simulation is to construct an Adaline structure to realize four basic threshold logic

gates: AND, NAND, OR, and NOR. The weights needed for these binary logic operators

are listed in Table 2.2. These values are converted into actual resistor values shown in
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Table 5.1 based on the equations in Section 4.2. In this first experiment, these weights are

manually calculated without any training method. The purpose of doing this is to verify

that the circuits that were designed can be used to realize the four listed logic operators by

simply re-programming the memristor resistance to a different target value.

5.1.1 Cadence Simulation - Fixed Resistance

Figure 5.1: Schematic of an Adaline with fixed weight resistors in Cadence

The single node network was first built using fixed weight resistors specified in Table

5.1. Figure 5.1 shows the circuit structure for such a network. The two binary inputs

are V1 and V2, while V0 is the bias input, which will always be a high input. The circuit
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is controlled by a switch to make sure that the circuit is not on while the inputs are

switching between their high and low states. The negative resistor RN used in this circuitry

is calculated to be 1.98 KΩ and the feedback resistor RF is 2.02 KΩ. This is to ensure

that the gain between output and input voltages is limited to the range between -1 and 1,

which qualifies for the weights listed in Table 2.2. The Adaline circuitry is centered around

a virtual ground VCM = 2.5 V. Anything below this threshold voltage will be considered as

a negative input, and anything above this threshold voltage will be considered as a positive

input. For an Adaline, the neuron output will be passed through a comparator, which acts

as a hard-limiting activation function, to determine the logic gate result.

Table 5.1: Resistance values converted from Table 2.2 theoretical weights
R1 R2 R0

NAND 1.33 KΩ 1.17 KΩ 3.88 KΩ

NOR 1.33 KΩ 1.17 KΩ 1.33 KΩ

AND 2.81 KΩ 4.81 KΩ 1.33 KΩ

OR 2.81 KΩ 4.81 KΩ 3.88 KΩ

The simulation result for an AND gate is shown in Figure 5.2(a). The first window

shows the clock signal of the circuit, the second and third windows show the two binary

input signals. The amplitude of these two inputs is set within a range of 100mV so that

it will not disturb the current state of the memristor. The fourth window shows the output

voltage superimposed on the 2.5 V virtual ground. The logic output of the comparator is

displayed in the fifth window. It is confirmed that this circuit with the set of resistances

in Table 5.1 works correctly for an AND gate. Figure 5.2(b) - 5.2(d) show similar results

for the NAND, OR, and NOR gates using the same Adaline ANN structure and the other

resistances listed in Table 5.1. This concludes that the conversion from the theoretical

ANNs to the circuit ANNs works correctly.
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(a) AND (b) NAND

(c) OR (d) NOR

Figure 5.2: The result of the Adaline simulation with fixed weight resistors

5.1.2 Adaline Prototype

After successfully simulating the Adaline circuit, the first Adaline ANN prototype in hard-

ware was constructed using three potentiometers instead of the actual memristor devices.

Four LF-411 op-amps were used, three of them were for the negative circuit of the network

inputs, while the last op-amp was for the node summation. Figure 5.3 shows the entire

circuit on a breadboard. The two voltages from Table 4.1 indicating logic levels were

fed into the network to verify that this circuit design in hardware and not just Cadence

simulation. It is confirmed by varying the resistance of the three potentiometers that this

synapse circuitry works for all four operators: AND, NAND, OR, and NOR.
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Figure 5.3: 1st prototype of an Adaline on a breadboard

5.1.3 Cadence Simulation - Memristors

After successfully simulating the four basic logic operations with fixed resistors, this exper-

iment is then repeated using the same Adaline structure but replacing these fixed resistors

with memristor models. These devices are initialized randomly between [10 KΩ, 100 KΩ]

and will be programmed individually to reach the resistance values of these fixed resistors

in Table 5.1. The schematic of an Adaline without the negative weight circuit components

is shown in Figure 5.4.

Using the algorithm in Listing 4.1, each memristor in the network was individually pro-

grammed in an iterative process just like in Figure 4.5 until it reached the target resistance

within a tolerance of 100 Ω. After all the memristors were programmed to match all the

target resistances, a set of feed forward voltages was applied to the network to confirm

the logic outputs for all four AND, NAND, OR, and NOR operations. The results are

similar to Figure 5.2 showing that up to this point of the simulation, the Adaline circuit
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Figure 5.4: Adaline with Memristors

built with memristors is working correctly with look-up resistance values for all four basic

logic operators, and the memristor programming procedure functions correctly also.

5.1.4 Adaline with Madaline Rule II Training Algorithm

In each of the previous sections, the weight or resistance values were determined and set

in the device. The goal is to implement a learning process where the ANN will determine

appropriate weight or resistance values based on some input-output combinations. The

discussion in Section 3 led to the decision to use MRII as the training algorithm. MRII

calculates feed-forward values for all four input pairs, then notes the number of incorrect

outputs of the hard-limiting activation function. The minimum disturbance principle is used

to select the neuron that has the lowest absolute value comming out of the hardlimiter. The

weights for this neuron are then adjusted to reverse the hardlimiter outputs. The weight
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change is accepted if the number of incorrect outputs is reduced, otherwise, the weight

stays the same. Since this Adaline network for the four basic logic operations only has one

neuron, this neuron will always be chosen if weight adjustment is needed regardless of the

minimum disturbance principle result. The choice of which memristor to adjust will vary.

Figure 5.5: Conversion between theoretical weights and resistance values

The network was trained with only one epoch, a learning rate of 0.5 and a growth rate

of 3. The maximum number of iterations was set to be 30. The memristor resistance range

used in this thesis is between 10 KΩ and 100 KΩ. MRII updates weights by a random

amount of ∆w, which decides ahead of time, see Section 2.2.2. At this stage, we do not have

good information about the relationship between the change in weight ∆w vs. the change

in resistance ∆R, and the relationship between ∆R vs. the change in programming pulse ∆P
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sent to the memristor. Therefore, the MRII algorithm is implemented by programming the

memristor to the resistance that is converted from ∆w within a tolerance of 4 KΩ.

The conversion between the weight and resistance values is displayed in Figure 5.5.

This curve can be manipulated by adjusting the resistors RF and RN of the synapse circuit

in Figure 4.3. The steeper the curve is, the faster it is to train the memristor to reach its

desired resistance, but the less tolerance it has for programming noise. For example, with

RN = 2 KΩ, RF = 20 KΩ, one can change the ANN weights from -10 to 0 by adjusting

the device resistance from 1 KΩ to 5 KΩ. This means that it does not take a lot of cycles

to program the memristor, however, if the memristor is not programmed to the correct

resistance, it will make a big difference in the weight update and cause the network to

fail. In contrast, the conversion curve is less steep with RN = 33 KΩ, RF = 500 KΩ,

therefore, adjusting the weight results in less weight change. This allows a higher resistance

tolerance in programming the devices, but it also takes more iterations to reach a desired

resistance. Even though this conversion still favors the positive weight, it now has a better

range [20 KΩ, 35KΩ] to program the negative weight. Ideally, the best conversion would

be a synapse circuit that has a linear conversion between the weights and the resistance, but

this will increase the running time of the simulation. In addition, it is difficult in practice

to program the current memristors to have a resistance less than 10 KΩ. Therefore, to

compensate for this problem and to maintain an appropriate simulation run time, the middle

curve is chosen. Hence, 33 KΩ and 500 KΩ resistors were used for RN and RF , respectively.

The simulation was repeated 100 times for each threshold logic unit, during this period,

if the resistance ever grows outside of the range of [20 KΩ, 90 KΩ], the network is reset to

start over again. Each training is said to be successful if it produces correct outputs for all

four input pairs within 30 iterations.
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5.1.5 Adaline Simulation Results

The training was repeated 100 times for each logic operator and the success rate was

recorded in Table 5.2. The learning success rate within 30 iterations of training is listed

in Table 5.2. Results from individual resistance are listed in Appendix A. As predicted, the

OR gate has the highest training success rate, and the NOR gate has the lowest success rate.

This is due to the non-linear conversion between the weight and the resistance in Figure 5.5;

the positive weights always have a higher tolerance than the negative weights. The weight

variation in Section 2.3.1 and its equivalent resistance variation using this conversion is

plotted in Figure 5.6. The OR gate has all its weights in the positive region, therefore it

also has the highest tolerance for the resistance weights. In contrast, the NOR gate has

all its weight in the negative region, therefore it has the lowest tolerance for the resistance

weights, making it the most difficult case to program the weights. Recall from Chapter 3

that training an XOR with MRII was able to achieve 100% learning success rate after 20

epochs. Therefore, even though the NOR operator has only 60% learning success rate, this

can be improved by increasing the number of epochs used in training.

A complete cycle of training takes about two minutes to run, but the cycle stops as soon

as a weight solution is found, therefore each simulation lasts roughly two hours. Looking

at the average number of iterations in Table 5.2, the OR gate only takes 4.84 iterations

while the NOR gate takes 6.68 iterations to finish training because NOR has the lowest

tolerance for its resistance weights as seen in Figure 5.6. The NOR gate also has the

highest standard deviation in the number of iterations because of the high sensitivity of the

memristor resistance below 25 KΩ.
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Table 5.2: Success rate for the four basic logic gates trained using MRII with maximum of
30 iterations

OR AND NAND NOR
Success Rate (%) 100 97 81 60
Avg # Iterations 4.84 5.15 5.84 6.65
Var # Iterations 8.22 18.03 25.36 44.54

(a) Weight space

(b) Resistance space

Figure 5.6: Inaccuracy variations for the AND, NAND, OR, and NOR operators
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5.2 Multiple Node (Madaline) Circuit

The second experiment is to build a two layer ANN for XOR by expanding the Adaline

structure from Section 5.1. The output of the first layer is fed into the input of the second

layer. This input should have the same logic level as the first layer, which is -100mV

for a low and 100mV for a high. However, the comparator, which is used as a hardlimiter

activation function, has 0V as a low and 5V as a high. Therefore, a voltage divider circuit is

added between the layers to shift the logic level back to the circuit ANN logic level, which

is from -100mV to 100mV. Similar to the Adaline circuit experiment, the Madaline circuit

is first simulated using fixed resistor weights. Then, the fixed resistors will be replaced

with memristors and finally the Madaline will be implemented using the MRII training

algorithm to produce the correct outputs for the XOR.

5.2.1 Cadence Simulation - Fixed Resistors

The Adaline circuit was duplicated three times to construct the Madaline circuit. A voltage

divider was inserted between layers to convert the high voltage logic output of each node to

a memristor logic input level. The schematic of the XOR neural network circuit is shown

in Figure 5.7. The circuit has a total of nine memristors, of course each device was isolated

from the programming circuit and the network circuit by switches just like in Figure 5.4,

but for simplicity, these circuit components were not drawn in this schematic.

Similar to the experiment with the Adaline circuit, the memristors are first introduced

by fixed resistor weight from Table 5.3. Again, the two inputs are V1 and V2, while V0 is the

bias input. The result in Figure 5.8 shows that this network structure was able to realize the

XOR problem.
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Figure 5.7: XOR neural network circuit

Table 5.3: XOR equivalent resistors of Table 2.3
R1 (KΩ) R2 (KΩ) R0 (KΩ)

hidden layer 31.952 32.332 34.866
29.514 30.135 30.844

output layer 34.184 32.454 32.776

5.2.2 Cadence Simulation - Memristors Look Up

The next step is to program the memristors to the desired weight listed in Table 5.3 with a

tolerance of 100 Ω. The resistor weight values in Table 5.3 are not optimal, so they require

a high accuracy. The final programmed resistance is shown in Table 5.4. All the memristors

were initialized to values between 10 KΩ and 100 KΩ. Each memristor took an average

of 38 programming cycles to get to its desired resistance values. The network was able to

realize the XOR problem correctly using the programmed memristors.
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Figure 5.8: The result of the XOR simulation with a multilayer ANN using fixed weight
resistors

Table 5.4: Programming memristors to target resistance weights for XOR operator
R1 R2 R3 R4 R5 R6 R7 R8 R9

Target 31,952 32,332 34,866 29,514 30,135 30,844 34,184 32,454 32,776
Programmed 31,993 32,360 34,778 29,535 30,187 30,893 34,101 32,489 32,771
# Cycles 40 38 44 48 48 40 26 33 30

5.2.3 Multilayer Network With Madaline Rule II Training Algorithm

The final simulation is to implement MRII so that the network can learn to realize an XOR

by just simply providing it the desired inputs and outputs. The network was trained with a

learning rate of 0.5 and a growth rate of 3 just as in the Adaline simulation. The maximum

number of allowed iterations was increased to from 30 to 50 because XOR has a small zone

in the weight space and it is harder for the network to learn. The weight was still limited to

values between -10 and 10, and the resistance range was still between 10 KΩ and 100 KΩ.

The conversion between the weights and the resistance values was kept the same, therefore

RF was 500 KΩ and RN was 33 KΩ. Out of 10 simulation runs, the network was able to
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realize the XOR four times and the final resistance weights are recorded in Appendix B.

Again, this can still reach 100% learning success rate by increasing the number of epochs

in MRII.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis has described how to use memristors to build a hardware-only ANN. The

conversion between the theoretical weights and the resistance values was analyzed. The

circuits were designed and confirmed to work correctly through simulations. These circuits

includes: single layer ANN, multilayer ANN, negative weight circuit, and adjusting the

interface between the first and second layer of a multilayer ANN. This thesis was able to

illustrate the learning ability of the hardware ANN designed with memristiors by solving

linearly and non-linearly separable problems. Using Madaline Rule II with the modified

epoch parameter, the network was able to achieve 100% learning success rate within 50

iterations. The programming inaccuracy of the memristors was able to help the learning

process.

Improvement can still be made towards the conversion between the theoretical weights

and the resistance values. This limitation is because the network is being designed with

discrete circuit components. This can be handled in a better manner using an on-chip

CMOS circuit, and we should not have a problem to achieve a linear conversion between

the weights and resistance values. More experiments need to be conducted to characterize

the memristive devices to fill in the gap of straight conversion between resistance changes

and programming pulses in MRII learning algorithm.

Memristors are fragile and programming them is challenging because of their incon-
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sistent response to different pulse widths and amplitudes. A better feedback programming

circuit needs to be developed. If the resistance cannot reach a desired value after a certain

number of cycles, it is best to just fully erase the memristors and try again. A better way

to reduce the number of programming cycles to preserve the device is to design the noise

around random pulses sent to the device. Also, the back propagation training algorithm can

be used with CMOS technology to produce a non-linear activation function.

Finally, we do not want to just stop at the simulation. Progress is being made at

Boise State University in building a hardware ANN with actual memristive devices and

the Madaline Rule II implemented on an FPGA. Future work will include fabricating the

entire multilayer ANN on chip.
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APPENDIX A

ADALINE RESULTS OF TRAINING WITH MRII

Table A.1: Resistor values trained with MRII for an OR

operator

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

1 46 47 39 4.13 4.36 2.18 2

2 45 56 42 3.89 6.07 3.10 8

3 41 37 41 2.80 1.49 2.80 3

4 39 40 44 2.18 2.50 3.64 5

5 36 36 36 1.11 1.11 1.11 2

6 43 41 42 3.37 2.80 3.10 8

7 42 36 39 3.10 1.11 2.18 9

8 35 43 43 0.71 3.37 3.37 11

9 34 36 36 0.29 1.11 1.11 1

10 39 47 46 2.18 4.36 4.13 2

11 36 37 35 1.11 1.49 0.71 2

12 47 35 46 4.36 0.71 4.13 9

13 53 43 47 5.57 3.37 4.36 9

14 39 39 39 2.18 2.18 2.18 2

Continued on next page
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Table A.1 – Continued from previous page

Exp R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

15 39 37 37 2.18 1.49 1.49 2

16 39 48 43 2.18 4.58 3.37 6

17 36 36 38 1.11 1.11 1.84 4

18 48 43 38 4.58 3.37 1.84 9

19 40 38 37 2.50 1.84 1.49 4

20 37 40 41 1.49 2.50 2.80 6

21 36 41 42 1.11 2.80 3.10 4

22 40 38 38 2.50 1.84 1.84 4

23 40 36 40 2.50 1.11 2.50 3

24 36 36 34 1.11 1.11 0.29 1

25 40 54 47 2.50 5.74 4.36 7

26 51 38 45 5.20 1.84 3.89 11

27 41 35 41 2.80 0.71 2.80 2

28 35 37 36 0.71 1.49 1.11 4

29 39 44 39 2.18 3.64 2.18 4

30 40 35 40 2.50 0.71 2.50 10

31 47 45 35 4.36 3.89 0.71 5

32 39 51 46 2.18 5.20 4.13 2

33 42 36 39 3.10 1.11 2.18 3

34 40 40 43 2.50 2.50 3.37 5

35 37 44 42 1.49 3.64 3.10 7

36 36 37 36 1.11 1.49 1.11 2

Continued on next page
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Table A.1 – Continued from previous page

Exp R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

37 35 46 45 0.71 4.13 3.89 5

38 40 42 45 2.50 3.10 3.89 5

39 40 37 43 2.50 1.49 3.37 6

40 39 44 41 2.18 3.64 2.80 8

41 43 44 48 3.37 3.64 4.58 2

42 39 40 40 2.18 2.50 2.50 2

43 41 43 42 2.80 3.37 3.10 3

44 39 36 40 2.18 1.11 2.50 2

45 41 42 37 2.80 3.10 1.49 5

46 40 38 47 2.50 1.84 4.36 14

47 39 46 40 2.18 4.13 2.50 4

48 44 35 46 3.64 0.71 4.13 3

49 41 53 42 2.80 5.57 3.10 7

50 47 38 44 4.36 1.84 3.64 2

51 37 36 38 1.49 1.11 1.84 2

52 35 40 39 0.71 2.50 2.18 4

53 38 35 37 1.84 0.71 1.49 6

54 40 39 45 2.50 2.18 3.89 5

55 38 36 37 1.84 1.11 1.49 3

56 37 35 37 1.49 0.71 1.49 6

57 37 40 39 1.49 2.50 2.18 5

58 35 36 37 0.71 1.11 1.49 2

Continued on next page



62

Table A.1 – Continued from previous page

Exp R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

59 61 54 37 6.80 5.74 1.49 9

60 59 57 35 6.53 6.23 0.71 3

61 50 40 50 5.00 2.50 5.00 4

62 37 51 50 1.49 5.20 5.00 8

63 43 41 41 3.37 2.80 2.80 7

64 41 37 38 2.80 1.49 1.84 2

65 44 47 38 3.64 4.36 1.84 2

66 39 36 37 2.18 1.11 1.49 2

67 38 36 40 1.84 1.11 2.50 3

68 46 37 48 4.13 1.49 4.58 2

69 38 37 39 1.84 1.49 2.18 5

70 39 38 37 2.18 1.84 1.49 3

71 40 38 39 2.50 1.84 2.18 6

72 38 39 35 1.84 2.18 0.71 6

73 48 50 67 4.58 5.00 7.54 12

74 37 36 39 1.49 1.11 2.18 2

75 37 41 40 1.49 2.80 2.50 4

76 37 36 35 1.49 1.11 0.71 3

77 36 46 47 1.11 4.13 4.36 8

78 40 35 40 2.50 0.71 2.50 7

79 44 43 38 3.64 3.37 1.84 6

80 53 60 44 5.57 6.67 3.64 5

Continued on next page
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Table A.1 – Continued from previous page

Exp R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

81 44 36 46 3.64 1.11 4.13 3

82 36 39 37 1.11 2.18 1.49 2

83 37 43 42 1.49 3.37 3.10 4

84 35 34 35 0.71 0.29 0.71 1

85 41 40 43 2.80 2.50 3.37 11

86 35 43 43 0.71 3.37 3.37 6

87 39 45 40 2.18 3.89 2.50 8

88 45 42 60 3.89 3.10 6.67 9

89 38 41 38 1.84 2.80 1.84 8

90 36 36 36 1.11 1.11 1.11 2

91 52 60 37 5.38 6.67 1.49 9

92 63 62 38 7.06 6.94 1.84 4

93 35 40 41 0.71 2.50 2.80 2

94 38 36 37 1.84 1.11 1.49 5

95 36 35 35 1.11 0.71 0.71 1

96 42 39 38 3.10 2.18 1.84 3

97 39 39 36 2.18 2.18 1.11 3

98 51 47 38 5.20 4.36 1.84 7

99 42 44 39 3.10 3.64 2.18 6

100 45 43 52 3.89 3.37 5.38 2

Mean 40.92 41.22 40.86 2.59 2.64 2.60 4.84

Variance 31.67 38.48 26.44 2.09 2.55 1.77 8.22



64

Table A.2: Resistor values trained with MRII for an AND

operator

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

1 40 38 29 2.50 1.84 -2.24 5

2 39 39 31 2.18 2.18 -1.13 7

3 39 39 32 2.18 2.18 -0.62 8

4 36 37 30 1.11 1.49 -1.67 4

5 35 35 33 0.71 0.71 -0.15 1

6 45 36 28 3.89 1.11 -2.86 4

7 38 40 32 1.84 2.50 -0.62 5

8 34 36 32 0.29 1.11 -0.62 2

9 35 36 32 0.71 1.11 -0.62 2

10 46 48 31 4.13 4.58 -1.13 12

11 42 41 29 3.10 2.80 -2.24 4

12 50 39 27 5.00 2.18 -3.52 5

13 39 36 32 2.18 1.11 -0.62 2

14 39 40 30 2.18 2.50 -1.67 5

15 34 36 32 0.29 1.11 -0.62 1

16 46 36 28 4.13 1.11 -2.86 8

17 39 35 30 2.18 0.71 -1.67 3

18 34 36 31 0.29 1.11 -1.13 2

19 40 34 30 2.50 0.29 -1.67 2

Continued on next page
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Table A.2 – Continued from previous page

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

20 35 35 31 0.71 0.71 -1.13 2

21 34 34 33 0.29 0.29 -0.15 1

22 49 48 30 4.80 4.58 -1.67 8

23 44 40 29 3.64 2.50 -2.24 7

24 35 35 32 0.71 0.71 -0.62 2

25 39 38 32 2.18 1.84 -0.62 5

26 36 35 33 1.11 0.71 -0.15 2

27 44 50 27 3.64 5.00 -3.52 4

28 35 35 33 0.71 0.71 -0.15 2

29 34 35 33 0.29 0.71 -0.15 1

30 40 46 27 2.50 4.13 -3.52 6

31 38 39 29 1.84 2.18 -2.24 4

32 35 35 33 0.71 0.71 -0.15 2

33 35 36 32 0.71 1.11 -0.62 1

34 38 38 32 1.84 1.84 -0.62 3

35 34 35 32 0.29 0.71 -0.62 1

36 37 37 33 1.49 1.49 -0.15 5

37 38 38 30 1.84 1.84 -1.67 6

38 46 47 32 4.13 4.36 -0.62 13

39 40 44 28 2.50 3.64 -2.86 9

40 35 35 32 0.71 0.71 -0.62 2

41 48 47 30 4.58 4.36 -1.67 2

Continued on next page
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Table A.2 – Continued from previous page

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

42 40 39 32 2.50 2.18 -0.62 3

43 39 36 29 2.18 1.11 -2.24 6

44 44 54 23 3.64 5.74 -6.74 12

45 36 36 33 1.11 1.11 -0.15 5

46 34 36 32 0.29 1.11 -0.62 3

47 43 58 27 3.37 6.38 -3.52 24

48 43 36 27 3.37 1.11 -3.52 9

49 42 41 31 3.10 2.80 -1.13 3

50 34 34 33 0.29 0.29 -0.15 1

51 37 37 31 1.49 1.49 -1.13 3

52 36 36 33 1.11 1.11 -0.15 2

53 51 39 26 5.20 2.18 -4.23 4

54 38 38 32 1.84 1.84 -0.62 3

55 40 60 26 2.50 6.67 -4.23 14

56 51 65 29 5.20 7.31 -2.24 6

57 41 42 29 2.80 3.10 -2.24 12

58 40 43 28 2.50 3.37 -2.86 6

59 39 39 33 2.18 2.18 -0.15 6

60 39 41 31 2.18 2.80 -1.13 4

61 42 41 32 3.10 2.80 -0.62 5

62 35 36 33 0.71 1.11 -0.15 1

63 35 35 31 0.71 0.71 -1.13 1

Continued on next page
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Table A.2 – Continued from previous page

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

64 43 47 29 3.37 4.36 -2.24 6

65 44 37 28 3.64 1.49 -2.86 6

66 40 40 32 2.50 2.50 -0.62 5

67 44 40 30 3.64 2.50 -1.67 6

68 35 35 32 0.71 0.71 -0.62 1

69 37 35 30 1.49 0.71 -1.67 3

70 34 34 33 0.29 0.29 -0.15 1

71 41 44 29 2.80 3.64 -2.24 6

72 37 37 32 1.49 1.49 -0.62 5

73 37 38 29 1.49 1.84 -2.24 11

74 43 43 32 3.37 3.37 -0.62 3

75 35 35 31 0.71 0.71 -1.13 1

76 46 45 23 4.13 3.89 -6.74 23

77 38 39 30 1.84 2.18 -1.67 14

78 43 47 31 3.37 4.36 -1.13 7

79 43 39 30 3.37 2.18 -1.67 5

80 38 37 31 1.84 1.49 -1.13 3

81 43 39 31 3.37 2.18 -1.13 7

82 35 36 31 0.71 1.11 -1.13 7

83 54 54 31 5.74 5.74 -1.13 4

84 38 40 28 1.84 2.50 -2.86 4

85 43 43 32 3.37 3.37 -0.62 4

Continued on next page
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Table A.2 – Continued from previous page

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

86 39 39 30 2.18 2.18 -1.67 4

87 36 36 32 1.11 1.11 -0.62 5

88 51 45 30 5.20 3.89 -1.67 12

89 49 37 26 4.80 1.49 -4.23 4

90 39 39 33 2.18 2.18 -0.15 4

91 35 34 32 0.71 0.29 -0.62 1

92 38 38 29 1.84 1.84 -2.24 9

93 35 35 32 0.71 0.71 -0.62 2

94 34 34 33 0.29 0.29 -0.15 1

95 50 62 19 5.00 6.94 -11.32 14

96 38 39 31 1.84 2.18 -1.13 4

97 37 40 30 1.49 2.50 -1.67 5

Mean 39.69 39.82 30.36 2.23 2.20 -1.60 5.15

Variance 23.24 39.06 6.09 2.05 2.58 2.70 18.03
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Table A.3: Resistor values trained with MRII for a NAND

operator

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

1 27 27 37 -3.52 -3.52 1.49 6

2 33 32 34 -0.15 -0.62 0.29 7

3 33 32 35 -0.15 -0.62 0.71 2

4 32 32 35 -0.62 -0.62 0.71 2

5 25 30 54 -5.00 -1.67 5.74 12

6 32 32 35 -0.62 -0.62 0.71 1

7 32 32 37 -0.62 -0.62 1.49 4

8 29 26 50 -2.24 -4.23 5.00 6

9 32 32 35 -0.62 -0.62 0.71 1

10 32 32 34 -0.62 -0.62 0.29 1

11 29 31 39 -2.24 -1.13 2.18 2

12 25 21 68 -5.00 -8.81 7.65 16

13 31 31 34 -1.13 -1.13 0.29 3

14 33 33 35 -0.15 -0.15 0.71 3

15 27 30 43 -3.52 -1.67 3.37 4

16 27 27 54 -3.52 -3.52 5.74 10

17 33 32 35 -0.15 -0.62 0.71 1

18 32 33 35 -0.62 -0.15 0.71 1

19 26 23 42 -4.23 -6.74 3.10 4

20 32 33 35 -0.62 -0.15 0.71 2

Continued on next page
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Table A.3 – Continued from previous page

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

21 30 28 50 -1.67 -2.86 5.00 15

22 29 33 39 -2.24 -0.15 2.18 3

23 26 31 43 -4.23 -1.13 3.37 10

24 27 24 44 -3.52 -5.83 3.64 4

25 30 30 35 -1.67 -1.67 0.71 9

26 27 24 48 -3.52 -5.83 4.58 5

27 31 32 37 -1.13 -0.62 1.49 6

28 30 29 45 -1.67 -2.24 3.89 4

29 33 33 35 -0.15 -0.15 0.71 1

30 28 31 45 -2.86 -1.13 3.89 2

31 32 33 35 -0.62 -0.15 0.71 1

32 32 33 36 -0.62 -0.15 1.11 5

33 32 33 36 -0.62 -0.15 1.11 3

34 28 28 39 -2.86 -2.86 2.18 4

35 26 32 46 -4.23 -0.62 4.13 6

36 32 26 45 -0.62 -4.23 3.89 11

37 27 27 36 -3.52 -3.52 1.11 25

38 31 31 35 -1.13 -1.13 0.71 2

39 30 30 41 -1.67 -1.67 2.80 7

40 26 26 44 -4.23 -4.23 3.64 6

41 32 31 37 -0.62 -1.13 1.49 3

42 33 31 36 -0.15 -1.13 1.11 3

Continued on next page
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Table A.3 – Continued from previous page

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

43 25 23 51 -5.00 -6.74 5.20 6

44 24 29 57 -5.83 -2.24 6.23 16

45 30 31 37 -1.67 -1.13 1.49 5

46 29 30 38 -2.24 -1.67 1.84 4

47 33 33 34 -0.15 -0.15 0.29 1

48 33 32 35 -0.15 -0.62 0.71 1

49 33 33 35 -0.15 -0.15 0.71 1

50 32 32 35 -0.62 -0.62 0.71 1

51 32 28 40 -0.62 -2.86 2.50 6

52 29 30 36 -2.24 -1.67 1.11 3

53 28 29 40 -2.86 -2.24 2.50 13

54 30 32 38 -1.67 -0.62 1.84 2

55 31 28 42 -1.13 -2.86 3.10 3

56 28 27 38 -2.86 -3.52 1.84 11

57 31 29 37 -1.13 -2.24 1.49 12

58 25 27 38 -5.00 -3.52 1.84 18

59 32 32 35 -0.62 -0.62 0.71 1

60 26 32 44 -4.23 -0.62 3.64 16

61 31 28 49 -1.13 -2.86 4.80 7

62 29 29 37 -2.24 -2.24 1.49 5

63 28 24 43 -2.86 -5.83 3.37 10

64 32 31 38 -0.62 -1.13 1.84 3

Continued on next page
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Table A.3 – Continued from previous page

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

65 29 28 39 -2.24 -2.86 2.18 12

66 32 31 36 -0.62 -1.13 1.11 1

67 32 32 35 -0.62 -0.62 0.71 1

68 28 32 41 -2.86 -0.62 2.80 7

69 31 31 38 -1.13 -1.13 1.84 15

70 32 32 36 -0.62 -0.62 1.11 4

71 26 24 43 -4.23 -5.83 3.37 15

72 28 30 44 -2.86 -1.67 3.64 3

73 32 28 39 -0.62 -2.86 2.18 5

74 30 27 40 -1.67 -3.52 2.50 11

75 25 26 36 -5.00 -4.23 1.11 4

76 33 25 52 -0.15 -5.00 5.38 11

77 33 33 34 -0.15 -0.15 0.29 1

78 30 28 38 -1.67 -2.86 1.84 8

79 33 33 35 -0.15 -0.15 0.71 1

80 29 31 38 -2.24 -1.13 1.84 3

81 31 31 37 -1.13 -1.13 1.49 3

Mean 29.86 29.73 39.89 -1.88 -2.00 2.21 5.84

Variance 6.77 8.63 39.53 2.42 3.56 2.74 25.36
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Table A.4: Resistor values trained with MRII for a NOR

operator

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

1 33 32 32 -0.15 -0.62 -0.62 1

2 31 27 29 -1.13 -3.52 -2.24 6

3 30 32 31 -1.67 -0.62 -1.13 4

4 25 26 31 -5.00 -4.23 -1.13 9

5 33 32 33 -0.15 -0.62 -0.15 1

6 27 26 24 -3.52 -4.23 -5.83 5

7 22 25 24 -7.73 -5.00 -5.83 19

8 22 32 21 -7.73 -0.62 -8.81 13

9 34 33 33 0.29 -0.15 -0.15 1

10 31 31 33 -1.13 -1.13 -0.15 3

11 29 22 24 -2.24 -7.73 -5.83 10

12 32 30 31 -0.62 -1.67 -1.13 2

13 25 27 21 -5.00 -3.52 -8.81 10

14 32 31 31 -0.62 -1.13 -1.13 1

15 32 32 32 -0.62 -0.62 -0.62 1

16 31 28 29 -1.13 -2.86 -2.24 3

17 32 33 32 -0.62 -0.15 -0.62 1

18 25 23 30 -5.00 -6.74 -1.67 26

19 26 30 25 -4.23 -1.67 -5.00 24

20 31 28 28 -1.13 -2.86 -2.86 6

Continued on next page



74

Table A.4 – Continued from previous page

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

21 29 29 29 -2.24 -2.24 -2.24 4

22 32 32 32 -0.62 -0.62 -0.62 1

23 24 27 24 -5.83 -3.52 -5.83 7

24 34 34 34 0.29 0.29 0.29 1

25 28 28 31 -2.86 -2.86 -1.13 3

26 26 24 28 -4.23 -5.83 -2.86 4

27 30 27 27 -1.67 -3.52 -3.52 2

28 22 27 25 -7.73 -3.52 -5.00 9

29 29 28 31 -2.24 -2.86 -1.13 11

30 32 33 31 -0.62 -0.15 -1.13 1

31 21 25 24 -8.81 -5.00 -5.83 13

32 32 33 32 -0.62 -0.15 -0.62 1

33 27 24 25 -3.52 -5.83 -5.00 5

34 22 28 20 -7.73 -2.86 -10.00 18

35 32 31 33 -0.62 -1.13 -0.15 1

36 28 30 27 -2.86 -1.67 -3.52 6

37 28 30 32 -2.86 -1.67 -0.62 4

38 33 32 31 -0.15 -0.62 -1.13 1

39 30 33 31 -1.67 -0.15 -1.13 4

40 31 32 31 -1.13 -0.62 -1.13 1

41 27 26 30 -3.52 -4.23 -1.67 6

42 29 28 25 -2.24 -2.86 -5.00 20

Continued on next page
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Table A.4 – Continued from previous page

Experiment R1 (KΩ) R2 (KΩ) R0 (KΩ) w1 w2 w0 Iterations

43 29 23 21 -2.24 -6.74 -8.81 4

44 32 32 33 -0.62 -0.62 -0.15 1

45 31 31 33 -1.13 -1.13 -0.15 3

46 32 28 29 -0.62 -2.86 -2.24 4

47 25 24 24 -5.00 -5.83 -5.83 18

48 27 29 25 -3.52 -2.24 -5.00 12

49 30 28 28 -1.67 -2.86 -2.86 22

50 28 27 26 -2.86 -3.52 -4.23 10

51 33 32 32 -0.15 -0.62 -0.62 2

52 31 31 31 -1.13 -1.13 -1.13 2

53 32 32 32 -0.62 -0.62 -0.62 1

54 31 29 28 -1.13 -2.24 -2.86 19

55 33 32 32 -0.15 -0.62 -0.62 1

56 30 26 25 -1.67 -4.23 -5.00 14

57 22 28 22 -7.73 -2.86 -7.73 4

58 21 21 29 -8.81 -8.81 -2.24 5

59 26 27 28 -4.23 -3.52 -2.86 7

60 32 32 33 -0.62 -0.62 -0.15 1

Mean 28.90 28.88 28.63 -2.61 -2.54 -2.80 6.65

Variance 13.28 10.34 14.34 6.26 4.45 6.91 44.54



76

APPENDIX B

MADALINE RESULTS OF TRAINING WITH MRII

Table B.1: Resistor values trained with MRII for an XOR

operator

Exp R1 R2 R3 R4 R5 R6 R7 R8 R9

1 33,332 34,658 33,012 35,133 32,577 32,889 35,468 35,467 34,981

2 33,030 34,084 32,856 35,122 32,968 31,748 35,090 33,960 35,300

3 31,952 32,332 34,866 29,514 30,135 30,844 34,184 32,454 32,776

4 32,276 35,412 32,210 42,546 29,980 30,803 35,081 38,509 38,483


