

Boise State University ScholarWorks

College of Arts and Sciences Poster Presentations

2010 Undergraduate Research and Scholarship Conference

4-12-2010

Using NMR Techniques to Find Partition Coefficients Across Biphasic Systems

Emily Drussel

Department of Chemistry and Biochemistry, Boise State University

Bryan Martin

Department of Chemistry and Biochemistry, Boise State University

David Luker

Department of Chemistry and Biochemistry, Boise State University

Michael Hill

Department of Chemistry and Biochemistry, Boise State University

Gerry Chingas

Department of Chemistry and Biochemistry, Boise State University

See next page for additional authors

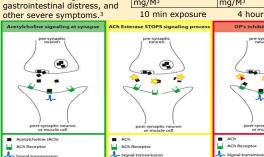
Authors Emily Drussel, Bryan Martin, David Luker, Michael Hill, Gerry Chingas, and Owen McDougal

Using NMR Techniques to Find Partition Coefficients across Biphasic Systems

Emily Drussel*, Bryan Martin*, David Luker*, Michael Hill#, Gerry Chingas*, and Owen McDougal* *Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, #Boise Technology Inc., Nampa, ID 83687

Abstract

A model biphasic system was studied using acetone in water and 1-octanol. The partition coefficient was found using z-axis single pulse slice-selective spatially resolved excitation (SPS³RE) nuclear magnetic resonance (NMR) spectroscopy. This SPS³RE NMR experiment allows for the collection of one-dimensional ¹H spectra at defined spatial intervals along the z-axis, providing analyte quantitation in both phases of the biphasic system. The concentration of acetone was characterized as a function of spatial location from the two-phase interface leading to the determination of partition coefficients by signal integration. This system was then expanded to analyze the hydrolysis of parathion in a biphasic system of parathion and deuterated water or sodium hydroxide with varying amounts of tert-butylammonium chloride. From this, the utility of a simplified, slice-selective pulse for analyzing heterogeneous samples is observed.

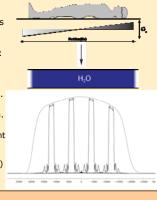

Introduction

- The decontamination of parathion (Figure 1) was studied with the help of a model biphasic system of water and 1-octanol.
- The two systems were investigated by SPS3RE NMR where "slices" between specific frequencies were analyzed.
- Decontamination incorporates two phases because the meniscus can optimize decontamination techniques. 1,2
- The effects of organophosphates are shown in Figure 2.

Figure 2. Acetylcholinesterases catalyze acetylcholine in the brain (yellow panel). When organophosphates are ingested, they phosphorylate acetylcholine. This reduces the ability of acetylcholinesterase to degrade acetylcholine(red panel). This produces a large amount of acetylcholine present in the central and peripheral nervous systems. This may result in salvation,

diarrhea, vomiting,

organophosphate to work with2,3 Parathion LC₅₀=84 VX LC₅₀=30 mg/M³ mg/M³ Fenthion LC₅₀=800 mg/M³ ma/M³

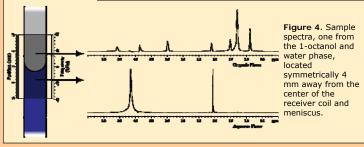

Figure 1. Parathion is a safer

4 hour exposure

NMR and MRI

- Apply magnetic field gradient across a sample. The resulting resonance frequencies can be described by a modification of the Lamor equation: $\omega = \gamma (B_0 + z \cdot G_7)$
- With the sample spatially encoded, desired regions are excited by shaped radio frequency (RF) pulses.
- Combining RF bandwidths of 2 kHz and gradient strength of 4.51 G/cm.

Figure 3. Slices are selected by gradient encoding and a shaped RF excitation bandwidth. This can be used in MRI to look at various regions of the body (top) and adapted to HR NMR to look at discrete volumes within the sample.

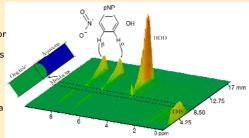


ACh Esterase

A Model System

- Integration of the acetone resonance at various distances from the meniscus of the mixture (also the center of the receiver coil) helped in determining the partition coefficients.
- These were found by taking the ratio of the integrals for symmetric slices about the coil center.
- Due to probe sensitivity and magnetic susceptibility effects, distances near the end of the coil window and near the interface provided inconsistent results.
- Optimal conditions were found between three and four millimeters from the coil center shown in Table 1.
- In Figure 4, one millimeter slices produced the spectra recorded. It provided adequate signal to noise with eight scans in a volume of 14.7 μ L.
- Line shape is not Table 1. Comparison of partition coefficients a concern for the Position (mm) Experimental Log(p) Literature Log(p) model system; integrations remain constant -0.204 0.019 -0.24 regardless of shim quality. -0.184 0.022

Sangster, J Phys Chem Ref Data 1989


Practical System

- This technique has been expanded in preliminary studies to address a system consisting of CCI₄ and D₂O.
- p-Nitrophenol (pNP), a degradation product of parathion (PTH) hydrolysis was placed under saturating conditions in D₂O and allowed to diffuse into the organic phase shown in Figure 5.

Integrations can be tracked as a function of position to monitor the presence of pNP in the organic phase.

This can be used in future studies to monitor the hydrolysis rate under various conditions in a two phase mixture.

Figure 5. Pseudo-3D plot of pNP in D2O and CCI4 on a 500 MHz.

Experimental

H₂O and Octanol system

•270 μL H₂O

•240 uL 1-octanol •60 µL acetone

signal integration.

-0.1

 Partition coefficients were calculated with the use of

D2O and CCl4 System

- •275 μL D₂O
- •275 µL CCI₄
- •115 mM p-nitrophenol
- •Relative concentration was tracked as pNP diffused across the interface.

CC

Conclusions and Future Work

- Fast, single pulse experiment that can be done in a 4 hour lab time.
- Provides accurate partition coefficients.
- Limited by solvent properties: local gradients near interface should have similar magnetic susceptibilities.
- · Nuclei dependent sensitivity and spin considerations.
- · Kinetic studies of parathion hydrolysis.
- Monitor decontamination processes.

Acknowledgements

Dr. Roberto Gil, Ph. D., Carnegie Mellon University, Pittsburgh, PA Dr. Clemens Anklin, Ph. D., Bruker Biospin, Inc.

Mountain States Tumor Medical Research Institute: 6PR3382000170 Boise Technology, Inc. NMR Feasibility Study: 6FT12XXXX0011 Research Corporation Cottrell College Scholars: 6PR3381000172

NSF CRIF-MU/RUI: 0639251

RESEARCH CORPORATION

- 1. Yang, Y. et. al. Chemical Review. 1992; 92: 1729-1643.
- 2. Kulkarni, M., Chaudhari, A. Journal of Environmental Management. 2007; 85:
- 3. http://depts.washington.edu/opchild/acute.html. Accessed 2 April 2010.