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  ABSTRACT 

Climate exerts primary control over vegetation and fire occurrence but landscape 

structure, vegetation type, and density determine fire pattern, frequency and severity (i.e., 

fire regime), and the nature of fire-related geomorphic response. To explore these 

relationships, we compare alluvial charcoal records of fire and fire-related sedimentation 

with a woodrat midden reconstruction of vegetation at the northern migration front for 

single-leaf pinyon and Utah juniper at City of Rocks National Reserve (CIRO), south-

central Idaho.  

Radiocarbon ages from 37 charcoal macrofossils sampled from discrete fire-

related deposits indicate five episodes of increased fire activity over the past ~11 ka. 

Fires burned following deglaciation (10,700-9500 cal yr BP), and later during prolonged 

drought (7200-6700 cal yr BP). A moderate fire interval (2400-2000 cal yr BP) followed 

arrivals of Utah juniper (~3800 cal yr BP) and single-leaf pinyon (~2800 cal yr BP). Fire 

activity increased as pinyon-juniper expanded (850-700 and 550-400 cal yr BP), and fire 

peaks during this interval correspond to decadal droughts. No fires were recorded during 

extended wetter conditions (~9500-7200 cal yr BP) and fires were also infrequent during 

an interval of dry but relatively stable climate (~6700-4700 cal yr BP), suggesting a fire 

regime shift from a moisture-limited system to a fuel-limited system likely occurred 

during the mid-Holocene.  
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Characteristics of Holocene fire-related deposits also provide information about 

past fire severity and landscape characteristics. Gently sloping terrain (mean slope <16°) 

and clay-poor colluvium at CIRO make debris flow development unlikely; rather, 

sediment-rich, low-volume sheetfloods from unburned basins dominate the modern 

response to storm events. Alluvial stratigraphic sections also record small sheetflooding 

events ~6500-2500 cal yr BP, which account for only 4% of measured alluvial 

stratigraphic thickness. This suggests a prolonged interval of minimal erosion, when 

drier, warmer mid-Holocene climate and low vegetation densities suppressed both severe 

fires and colluvial storage of sediment needed for debris flow development. However, our 

record indicates large fire-related debris flows were common during early and late 

Holocene. After ~4000 cal yr BP, higher vegetation densities (inferred from midden 

radiocarbon ages) re-stabilized hillslopes and increased colluvial storage, as indicated by 

post ~2200 cal yr BP soil horizon development. This, combined with frequent fires of 

expanding pinyon-juniper woodlands, likely triggered episodic post-wildfire debris flows.  
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INTRODUCTION 

In recent decades, extreme droughts, decreasing snowpacks, earlier snow melts 

and earlier onset of plant growth (Stewart et al., 2004; Mote et al., 2006; Kunkel and 

Pierce, 2010; Pederson et al., 2011) have intensified fire frequency, severity, and size 

across a range of ecosystems in the western U.S. (e.g., Flannigan et al., 2000; Westerling 

et al., 2006). Climate models forced by projected increases in greenhouse gases suggest 

2-5° C mean spring temperature increases in the western U.S. by 2100 (Abatzoglou and 

Redmond, 2007). Predicted increases in spring temperatures and summer droughts and 

the subsequent increase in occurrences of large fires will likely increase post-fire flooding 

and erosion, incur costly damages to property and infrastructure, undermine conservation 

efforts, impact water resources and forest products, and possibly transform ecosystems 

(Westerling et al., 2006, 2011). Our ability to predict and prepare for such changes hinges 

on our understanding of how climate drives shifts in vegetation, fire regimes, and fire-

related erosion. Most fire studies have focused on forested ecosystems since fire records 

from semiarid ecosystems are limited due to sparse trees for fire scar records and a 

paucity of lakes with charcoal sediments. Paleoecological studies of past vegetation and 

fire regimes from a range of ecosystems can help elucidate likely effects of projected 

changes in climate on fire regime shifts and vegetation dynamics.  

While climate ultimately governs vegetation and fire occurrence (Westerling et 

al., 2006), vegetation type, fuel availability, and continuity primarily control fire 

frequency and severity (i.e., fire regime; Baker, 2009). These complex relationships vary 
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temporally (e.g., Pierce et al., 2004; Whitlock et al., 2010), and across ecosystems (Littell 

et al., 2009). Over annual timescales, climate controls fuel availability and moisture 

content (Swetnam and Betancourt, 1998; Heyerdahl et al., 2002; Westerling et al., 2006), 

while over decadal to multi-centennial timescales, climate modulates the composition and 

structure of plant populations, and the associated fire regime (Grissino-Mayer and 

Swetnam, 2000; Whitlock et al., 2003; Mensing et al., 2006).  

Wildfire is a primary driver of enhanced hillslope erosion in both modern (e.g., 

Cannon et al., 2001; Jackson and Roering, 2009) and paleo-records (e.g., Meyer et al., 

1995; Pierce et al., 2004). The nature of the fire-related erosional response is controlled 

by basin geomorphic features (topography and slope), basin lithology (Cannon and 

Reneau, 2000; Cannon et al., 2001, 2010), and vegetation type and density (e.g., Wilcox 

et al., 2011). Fire removal of vegetation, addition of fine-grained ash, and development of 

hydrophobic soil layers (DeBano, 2000) likely push the erosional responses past 

geomorphic thresholds. In granitic terrain, fire may shift the erosional response from 

frequent sheetflooding (Blair, 1999) to episodic, and more catastrophic, debris flows.  

The relationship between large fires and drought for many ecosystem types is 

evident in both historic and Holocene-scale records (e.g., Meyer et al., 1995; Flannigan et 

al., 2000; Westerling et al., 2006). Likewise, modern and historic relationships between 

vegetation type, associated fire regime (as summarized in Baker, 2009), and geomorphic 

response (Cannon et al., 2001, 2010) are also generally understood. However, a key 

research question about the influence of vegetation change on fire regimes remains 

unresolved. Specifically, which comes first, the shift in fire regime or the change in 

vegetation? How are these dynamics manifested in the stratigraphic record? How can 
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these past relationships be extrapolated to the future? To answer these questions, this 

study employs a novel combination of geomorphology and paleoecology. We use alluvial 

charcoal records and woodrat midden records to reconstruct contemporaneous changes in 

vegetation, fire, and alluvial histories along the leading edge of a relatively recent (~4-2 

ka) plant species migration at the City of Rocks National Reserve (CIRO) in south-

central Idaho.  

 CIRO is located in the transition between woodland and steppe, at or near the 

northern limits of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus 

osteosperma; Little, 1971), and between north-south opposing precipitation responses to 

Pacific climate variability (Dettinger et al., 1998). Granitic bedrock at CIRO has 

weathered to form majestic domes and spires. Incision of the easily-mobilized, grussy 

colluvium affords excellent exposure of stratigraphy that incorporates both the fire 

history from alluvial charcoal and the related alluvial process, including the occurrence of 

sheetfloods and debris flows (e.g., Meyer et al., 1995; Pierce et al., 2004). Woodrat 

middens preserved in numerous rock crevices and shelters at CIRO contain fossilized 

vegetation and pollen collected from around the animals’ nests. Middens allow detailed 

reconstruction of vegetation and plant migration history (e.g., Betancourt et al., 1991). 

The main hypothesis tested in this study is that Holocene vegetation changes, and 

specifically local colonization and expansion by single-leaf pinyon and Utah juniper, 

triggered shifts in both fire occurrence and fire-related sedimentation. This study provides 

useful insight about the response of fire and erosion to projected plant migrations under 

changing climate.  
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STUDY AREA 

Description, Modern Climate, and Geology 

The City of Rocks National Reserve and nearby Castle Rocks State Park are 

located in the Albion Range of south-central Idaho in the northeastern Great Basin Desert 

Region, approximately 60 km northwest of the Great Salt Lake, Utah (Figure 1). The 

study area is characterized by gentle to moderate slopes, with a mean slope of 15.6°, and 

spans an elevation range of 1600-2700 m.  

Geologically, CIRO is comprised predominantly of Oligocene (29 Ma) Almo 

Pluton granite, which has eroded to form magnificent fins, domes, and spires. The pluton 

intruded Proterozoic (1.6 Ga) Green Creek Complex metasediments and Archean (2.5 

Ga) granitic gneiss. The pluton and uplifted basement rocks are ringed by exposures of 

Proterozoic Elba quartzite and sparsely capped with Miocene rhyolitic tuff (Miller and 

Bedford, 1999; Miller et al., 2008; Pogue and Katz, 2008; Figure 2). Mechanical and 

chemical weathering and erosion of the Almo Pluton granite has blanketed much of the 

gently sloping terrain with a thick grussy mantle (Pogue and Katz, 2008). Active incision 

reveals excellent exposures of fire-related alluvial stratigraphy.  
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Figure 1: Map showing location of CIRO relative to the Bonneville Basin, regional 

paleoclimate proxy record sites and alluvial charcoal record sites used for 

comparison in this study. The Lake Bonneville outline shows the approximate extent 

of the Bonneville highstand (20,000-16,000 yrs BP; Automated Georeference Center, 

2001). 
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Figure 2: Geologic map of CIRO (Miller and Bedford, 1999; Ludington et al., 2006). 
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The study area consists of six headwater basins of varying lithologies that drain 

into the Raft River, a tributary of the Snake River, Idaho. The basins are shown in Figure 

3 and are oriented north to south as follows:  

1. Almo Creek drains 57.9 km
2
 and is composed of quartzite to the west and 

gneiss to the east. 

2. Stines Creek drains 6.9 km
2
 and is composed of quartzite to the west and 

granite to the south. 

3. Graham Creek drains 8 km
2
 and is composed of quartzite to the west, granite to 

the east, and gneiss to the south.  

4. Circle Creek drains 17.4 km
2
 and is composed of granite and a fin of gneiss to 

the east. 

5. Heath Canyon drains 13.9 km
2
, and is composed of granite to the north and 

quartzite to the south.  

6. Emigrant Canyon drains 13.3 km
2
, and is composed of quartzite.  

Mean annual precipitation at CIRO is 280 mm, peaking in April through June 

(Western Regional Climate Center). The majority (60%) of annual precipitation falls as 

snow (Western Regional Climate Center). Located at 42° N, CIRO lies in the transition 

between opposing modes of precipitation responses to Pacific variability (El Nino 

Southern Oscillation and Pacific Decadal Oscillation). Using both instrumental and tree-

ring data from the western U.S., Dettinger et al. (1998) identified a north-south seesaw of 

precipitation that pivots near 40-42° N and manifests at many timescales (e.g., Brown 

and Comrie, 2004; Pederson et al., 2011). 
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Figure 3: Study area map showing the six drainage basins at CIRO, charcoal 

sampling sites, and midden sampling sites. 
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Vegetation 

CIRO is a floristically diverse woodland-steppe ecotone, with over 450 

documented plant species (John, 1993). Lower elevations (<1800 m) are dominated by 

big sagebrush (Artemisia tridentata) and antelope bitterbrush (Purshia tridentata) with an 

understory of several native and non-native bunch grasses. Single-leaf pinyon (Pinus 

monophylla) dominates lower to middle elevations (1600-2000 m), along with Utah 

juniper (Juniperus osteosperma), and Rocky Mountain juniper (Juniperus scopulorum). 

Co-occurrence of single-leaf pinyon and limber pine (Pinus flexilis) at CIRO is 

unusual in the Great Basin (Thomas and Packham, 2007) and probably represents late 

Holocene pinyon colonization of intermediate elevations (1600-2000 m) gradually being 

vacated by postglacial contraction of limber pine (Thompson, 1990). In this location, 

limber pine may represent a relict species from the Last Glacial Maximum (LGM), a time 

when modeled projections indicate that average regional temperatures were ~5° C cooler 

(Schmittner et al., 2011) and average regional precipitation was increased by ~100-200 

mm/year (Braconnot et al., 2007). Figure 4 illustrates the maximum and minimum mean 

annual precipitation and temperatures where these trees and shrubs are found today 

(Thompson et al., 1999) and the modern vs. modeled LGM temperature and precipitation 

at CIRO.  

Patches of mountain mahogany (Cercocarpus ledifolious) and aspen groves 

(Populus tremuloides) grow at middle to upper elevations (>1800 m). At upper elevations 

(>2000 m), in the northern portion of CIRO, subalpine fir (Abies lasiocarpa), lodgepole 

pine (Pinus contorta), limber pine, and Douglas fir (Pseudotsuga menziesii) are found. 

The reserve is dissected by riparian habitat that includes Rocky Mountain maple (Acer 
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glabrum), box elder (Acer negundo), redosier dogwood (Cornus sericea), and narrow leaf 

cottonwood (populus angustifolia). 

 
Figure 4: Percent cumulative occurrences of vegetation plotted against mean annual 

precipitation (upper) and temperature (lower). Limber pine and Rocky mountain 

juniper typically occur in colder, wetter climates compared to single-leaf pinyon, big 

sagebrush, and Utah juniper (Thompson et al., 1999). Red boxes show modern mean 

annual precipitation and temperature at CIRO, while blue boxes show modeled 

mean annual precipitation (Braconnot et al., 2007) and temperature (Schmittner et 

al., 2011) from the Last Glacial Maximum.  
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FIRE REGIMES AND POST-FIRE RECOVERY IN PINYON-JUNIPER, 

SAGEBRUSH, AND LIMBER PINE COMMUNITIES 

Most forested ecosystems have “moisture-limited” fire regimes, where fire is 

limited by too much moisture. Although these ecosystems may contain sufficient fuels, 

moist conditions inhibit fuel flammability, and ignition depends on the drying of fuels 

during fire season drought (Westerling et al., 2003). Arid to semiarid shrublands and 

grasslands are typically “fuel-limited” systems, where fire extent is limited by fuel 

availability. These ecosystems typically do not experience widespread fire unless fuels 

have accumulated during wetter conditions 10-18 months prior to the current fire season 

(Westerling et al., 2003). “Ignition-limited” systems have abundant accumulated fuels 

that are often dried and ready for ignition, but fire occurrence is restricted by climate 

conditions that may limit ignition, such as infrequency of convective storm events 

(Romme et al., 2009; Gedalof, 2011). However, with recent invasions of annual grasses 

such as cheatgrass (Bromus tectorum), a cool-season grass that matures early, lengthens 

fire seasons and provides a continuous fine fuel source (Keane et al., 2008), the term 

“fuel-limited” may no longer be applicable in many modern Great Basin plant 

communities. For example, in 2007, the Murphy Complex fire burned over 2600 km
2
 of 

cheatgrass-dominated rangeland in southern Idaho, making it the third largest wildfire in 

Idaho since 1910 (National Interagency Fire Center). 

Fire rotation is the average projected time it takes to burn an entire area of a given 

size, and is calculated by dividing the time period of observation by the summation of 
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burned area (fire patches) and expressed as a proportion of a defined area of interest (i.e., 

a watershed; Baker, 2009). Fire rotations typically span decadal to centennial timescales 

and vary according to ecosystem (Baker, 2009). Figure 5 demonstrates these fire-

ecosystem relationships, and compares CIRO mean fire rotation with estimated fire 

rotations for other alluvial charcoal records referred to in this study.   

Figure 5: Fire rotation time (yrs) plotted against ecosystem type. CIRO and other 

alluvial charcoal records used for comparison in this study are also plotted and 

include; the South Fork of the Payette, Idaho (SFP; Pierce et al., 2004), Wood Creek 

in the Danskin Mountains, southern Idaho (Nelson and Pierce, 2010), Yellowstone 

National Park (YNP; Meyer et al., 1995) and the Sawtooth Mountains, central Idaho 

(Svenson, 2010). Ecosystems that fall on the left side of the graph are typically 

semiarid, fuel-limited systems, transitioning to ignition-limited systems, while 

ecosystems on the right side of the graph are typically cooler, wetter, moisture-

limited systems and high-elevation ecosystems. Some sparsely-vegetated, high-

elevation forests (e.g., 5-needle pine forests) may also be relatively fuel-limited. 

Studies in pinyon-juniper woodlands estimate fire rotations that range from 290-

600 years (Floyd et al., 2000; Huffman et al., 2008; Shinneman and Baker, 2009) and 

post-fire regeneration can take 150-200 years (Goodrich and Barber, 1999). Evidence of 

low-severity fires in pinyon-juniper woodlands is scarce (Baker and Shinneman, 2004). It 

is unlikely that these woodlands experience low-severity, surface fires because of a fuel 
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structure that is characterized by discontinuous fine fuels (Baker and Shinneman, 2004), 

and trees with thin, fire-intolerant barks (Miller and Rose, 1999; Romme et al., 2009) and 

low crowns (Romme et al., 2009). In general, fires destroy all of the trees in a pinyon-

juniper ecosystem, and top-kill shrubs and understory vegetation within the burned area 

(Romme et al., 2009). Pinyon-juniper woodlands can become quite dry and flammable 

during a fire season. However, fire occurrence is not necessarily controlled by availability 

and continuity of fine fuels because closed canopy conditions can limit understory plant 

growth. Instead fires in these systems depend on climate conditions conducive to ignition 

(i.e., ignition-limited; Romme et al., 2009; Gedalof, 2011). However, when ignition 

occurs, fires in pinyon-juniper systems are more common where more fine fuels are 

accumulated (Floyd et al., 2000; Romme et al., 2009; Bauer and Weisberg, 2010).  

In big sagebrush communities, fire is characteristically stand-replacing and kills 

all aboveground biomass (Kauffman and Sapsis, 1989). Fires are more likely during 

wetter than average years or following years with above average precipitation (Miller and 

Tausch, 2001; Mensing et al., 2006). Post-fire recovery can take 35-100 years and mean 

fire rotations are estimated between 70-200+ years (Baker, 2006).  

 Limber pine forests typically occupy drier, rocky, and nutrient-poor sites at 

subalpine elevations (>1500 m), where fires are likely rare due to sparse canopy cover 

and limited fine fuels at these locations (Schoettle, 2004). Although fire regimes are 

poorly understood in these ecosystems, fire regimes and surface fire occurrences likely 

varied over time with climate (Brown and Schoettle, 2008). Regeneration following fire 

can be slow, taking as long as 450-700 years (Rebertus et al., 1991).  
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REGIONAL HOLOCENE CLIMATE AND VEGETATION  

Located in the eastern Great Basin and 75 km south of CIRO, the Great Salt Lake 

is the Holocene descendent of Pleistocene Lake Bonneville (Figure 1). The Bonneville 

Basin has been extensively studied and paleoclimate conditions have been reconstructed 

from geomorphic evidence and radiocarbon dating of charcoal and organic material 

deposited on past shorelines (Murchison, 1989; Oviatt et al., 2003; Miller et al., 2005; 

Patrickson et al., 2010), pollen records (Davis et al., 1986; Madsen et al., 2001; 

Louderback and Rhode, 2009) and faunal evidence (Broughton et al., 2000; Grayson, 

2000). These records are important for comparison because of the geographic proximity 

of the Bonneville Basin to CIRO.  

Bear Lake straddles the Idaho-Utah border and is located at the same latitude 190 

km east of CIRO (Figure 1). Diatom and isotopic records (Moser and Kimball, 2009) and 

pollen records (Doner, 2009) reconstruct climate and vegetation from the late Pleistocene 

to present. Bear Lake climate and vegetation records are important for comparison 

because it is located at the same latitude as CIRO, within the north-south hydroclimate 

transition zone (Dettinger et al., 1998) and likely experienced similar climate forcings 

during the Holocene.  

Most climate records agree (e.g., Davis et al., 1986; Murchison, 1989; Broughton 

et al., 2000; Grayson, 2000; Madsen et al., 2001; Oviatt et al., 2003; Louderback and 

Rhode, 2009) that the Bonneville Basin and Great Basin were colder and wetter than 
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today during the Younger-Dryas cool interval (12.8-11.2 ka; Berger, 1990), when Lake 

Bonneville shorelines reached the maximum Holocene elevation, known as the Gilbert 

shoreline (Oviatt, 1997; Benson et al., 2011). Between ~11-9.5 ka, warming climate 

drove Lake Bonneville shorelines elevations downward (Murchison, 1989, Madsen et al., 

2001) and pushed subalpine fir upward in elevation in the Albion Range (Davis et al., 

1986). Regionally, vegetation populations were changing in response to warming climate. 

At Blue Lake Marsh on the western margin of the Bonneville Basin, warmer taxa 

replaced sagebrush (Louderback and Rhode, 2009), and sagebrush steppe replaced cold 

tolerant vegetation at Bear Lake (Doner, 2009).  

Between ~9.5-8 ka, Lake Bonneville shorelines rose once more (Murchison, 

1989; Louderback and Rhode, 2009). A record from Stansbury Island, located on the 

southern shore of the Great Salt Lake, estimates that shorelines peaked at ~8.3 ka and 

may have exceeded the earlier Gilbert shoreline (Patrickson et al., 2010). Warming 

resumed after ~8.2 ka, when Blue Lake Marsh dried up between ~8-6.5 ka (Louderback 

and Rhode, 2009), single-leaf pinyon migrated to the Bonneville basin (Madsen et al., 

2001), and some small animal species became locally extinct in the Great Basin 

(Grayson, 2000).  

Warming and drying persisted during the middle Holocene in the Bonneville 

Basin (Murchison, 1989; Schmitt et al., 2002; Louderback and Rhode, 2009) and 

throughout the Rocky Mountain Region (Shuman et al., 2009). Evidence of low lake 

levels in the Rocky Mountains between ~7-4 ka (Shuman et al., 2009), in the Uinta 

Range between 6-3 ka (Corbett and Munroe, 2010), and isotopic evidence for higher 
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evaporation between 7.6-5.9 ka at Bear Lake (Moser and Kimball, 2009) suggest region-

wide, extended drought.  

Pollen, midden, and lake records indicate that between ~4-2 ka climate shifted 

from middle Holocene drought to cooler and wetter conditions in both the Great Basin 

(Miller and Tausch, 2001) and in the Bonneville Basin (Madsen et al., 2001; Louderback 

and Rhode, 2009). Several accounts estimate a Lake Bonneville highstand occurred 

between 3.8 ka and 3.5 ka (Murchison, 1989; Broughton et al., 2000; Miller et al., 2005), 

which supports evidence of cooler and wetter conditions beginning ~4 ka. This return to 

wetter, cooler climate was documented earlier at Bear Lake, when vegetation shifted to a 

conifer-dominant forest by ~5.3 ka (Doner, 2009) and isotopic evidence suggests reduced 

evaporation (Moser and Kimball, 2009).   

After ~3.5 ka, Lake Bonneville records do not agree well (Murchison, 1989; 

Broughton et al., 2000; Miller et al., 2005). Although it seems likely that lake records 

should exhibit lowstands during the warm and droughty Medieval Climatic Anomaly 

(MCA) between ~1.1-0.7 ka (Stine, 1994), only the Murchison (1989) record indicates a 

lowstand at ~1 ka, and fish remains from the Homestead Cave indicate a highstand only 

100 years later at ~0.9 ka (Broughton et al., 2000). Nearby lake level reconstructions 

from the Great Basin, however, indicate both high and low lake levels during the MCA 

(Adams, 2003), suggesting this was a time of both multidecadal droughts and wet 

intervals in this region. This MCA variability is supported by Palmer Drought Severity 

Index (PDSI) reconstructions from tree ring records which indicate variable climate 

between ~1-0.6 ka (Cook et al., 2004), and rapidly shifting lake levels might reflect such 

variability. Lake records were also discordant during the cooler and wetter Little Ice Age 
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(LIA) between 0.6-0.1 ka (Grove, 2001). The Murchison (1989) record shows a 

highstand ~0.5 ka, while the Locomotive Springs record indicates that shorelines were 

dropping ~0.5 ka (Miller et al., 2005). However, dune activation in the Snake River Plain 

(Rittenour and Pearce, 2011) and droughts reconstructed from tree rings in the Uinta 

Range (Gray et al., 2004) agree with dropping lake levels reported by the Locomotive 

Springs record (Miller et al., 2005). Furthermore, locally reconstructed PDSI (within 100 

km of CIRO) during this period indicates that conditions were drier than average (Cook 

et al., 2004), suggesting that although the LIA was regionally cooler and wetter (Grove, 

2001), conditions may not have been cooler and wetter at CIRO.  
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METHODS 

Field Methods 

 We sampled charcoal from fire-related deposits exposed in arroyos, stream 

terraces, and one incised alluvial fan within the study area. We identified depositional 

characteristics and inferred depositional process from stratigraphic units (e.g., sheetflood, 

debris flow, overbank flood, channel flood), and recorded deposit thickness and depth 

within the profile. We described units according to clast size, sorting, clast orientation, 

and imbrication, and identified soil properties, color, and texture according to Birkeland 

et al. (1991).  

Clast-supported, moderately-well sorted deposits that alternate between fine-

grained and coarse-grained couplets are defined as sheetflood deposits. Textures of fine 

units in sheetflood couplets are loam, sandy-loam, and silty-loam with <20% of clasts 

coarser than 2 mm. Textures of coarse-grained units in sheetflood couplets are sandy, 

loamy-sand, and sandy-loam with 20-50% of clasts coarser than 2 mm. Individual 

couplets vary in thickness 0.25 cm to 6 cm. Maximum clasts sizes are typically 3 mm in 

fine-grained units and 10 mm in coarse-grained units.  

Matrix-supported and poorly sorted fine-grained units with 30% of clasts coarser 

than 2 mm that consist of randomly oriented fine to coarse gravel-sized clasts are 

identified as debris flow deposits. Textures of matrix material in debris flow deposits are 

typically loam and silty-loam, and sometimes silty-clay-loam. Deposits vary in depth but 
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can reach 100+ cm thicknesses. Debris flow deposits are more cohesive than sheetflood 

deposits and form more vertical, sometimes overhanging faces in stratigraphic profiles. 

Clasts in both sheetflood and debris flow deposits at CIRO are composed of grussy 

gravels that are relatively small (1-20 cm), and rarely exceed 20 cm. 

Well-sorted, fine-grained units with 5-40% of clasts coarser than 2 mm but finer 

than 10 mm are identified as overbank flood deposits. Textures are typically loam, silty-

loam, and silty-clay loam. Clast-supported, poorly to moderately-sorted deposits with 

imbricated sand to boulder-sized clasts are identified as channel flood deposits.  

Charcoal-rich deposits are termed “fire-related” and the geomorphic response to 

fire is inferred from the type of depositional process (e.g., sheetflood vs. debris flow). 

Charcoal preserved in overbank deposits suggests hydrodynamic separation of charcoal 

during flood events. Regardless of the depositional event, charcoal, and its associated 

radiocarbon age, records the timing of a past fire. We interpret laterally continuous 

burned surfaces that are stratigraphically below fire-related debris flow deposits or fire-

related sheetflood deposits, as likely representing the burn surface that is associated with 

the subsequent overlying fire-related deposit.  

Analytical Methods 

Annually produced wood, such as, twigs, branches, and seeds were prioritized for 

radiocarbon dating to decrease “inbuilt age” error, which is the difference between the 

age of wood formation and the date of fire (Gavin, 2001). Angular versus rounded wood 

fragments were selected to avoid dating re-worked charcoal that can produce 
14

C ages 

that are inverted stratigraphically (e.g., Meyer et al., 1995). Charcoal macrofossils were 

dated with Accelerator Mass Spectrometry (AMS) 
14

C, and dates were calibrated into 
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calendar years before 1950 A.D. (cal yr BP) using the CALIB 6.0.1 program (Stuiver and 

Reimer, 1993). All results are presented in this paper as the median age of the 1σ error, 

although 2σ age errors are also provided. Individually calibrated fire ages are summed 

and presented as a cumulative probability density distribution of fires plotted against 

time. Our record begins at 0 cal yr BP (equivalent to 1950 A.D.), and progresses 

backward in time to 13,000 cal yr BP.  

Fire frequency is calculated by dividing the number of dated alluvial charcoal 

samples in the study area by number of years that make up a cluster of radiocarbon ages. 

Alluvial charcoal fire frequency is reported as a minimum recorded frequency because 

we cannot be sure that every fire is preserved or exposed in fire-related stratigraphy.  

For example, not all fires produce a fire-related erosional response (i.e., sheetfloods or 

debris flows) and some fire-related deposits remain buried in the subsurface.  

We summed the total measured alluvial thickness (as measured and recorded in 

the field) to estimate erosional trends during the Holocene. We used radiocarbon ages for 

dated units combined with stratigraphically inferred ages for undated units based on 

location within the profile, upper and lower age constraints, and deposit characteristics. 

We binned the thickness of depositional units by process into 500-year time interval bins. 

The percentage of total measured Holocene thickness per depositional process is plotted 

backward in time to 13,000 cal yr BP.  

We identified charcoal macrofossils under a microscope through comparison with 

magnified images and descriptions of burned wood (Adams and Murray, 2011). Charcoal 

was classified as “pine,” “juniper,” or “sagebrush,” and characteristics of each vegetation 

type are described in Table 1. We used general categories for “pine” and “juniper” 



21 

 

 

 

because differentiation between different species of pine and different species of juniper 

is difficult, and beyond the scope of this project. The midden record documents the 

presence of limber pine and Rocky Mountain juniper at CIRO since the late Pleistocene. 

The midden record documents the arrival of single-leaf pinyon and Utah juniper, 

(Betancourt, unpublished data) before which we assume that all burned “pine” was 

limber pine and all burned “juniper” was Rocky Mountain juniper. After colonization, 

“pine” includes limber pine and single-leaf pinyon, and “juniper” includes Rocky 

Mountain juniper and Utah juniper. 

Table 1: Characteristics used for macrofossil vegetation identification (Adams and 

Murray, 2011).  

 

We compared our fire record to calibrated radiocarbon ages of woodrat midden 

vegetation reconstructions, sampled from many of the same drainage basins as alluvial 

charcoal sampling locations (Figure 3; Betancourt, unpublished data). We include midden 

radiocarbon ages from the Oneida Narrows in southeastern Idaho and the Lost River 

Vegetation type Vegetation Characteristics

Common name Scientific name Ring patterns Ring boundaries Vessels Resin Canals

Juniper

Includes:  J. 

osteosperma, 

J. scopulorum

Distinct; rings 

consist of 

parrallel rows 

of very small 

fibertracheids

Distinct; narrow 

latewood 

boundary and 

wide earlywood 

boundary Absent Absent

Pine

Includes:  P. 

flexilis, P. 

monophylla

Distinct; 

variable width 

rings

Distinct; abrupt 

boundary 

between 

earlywood and 

latewood Absent Abundant

Big sagebrush

Artemisia 

tridentata

Semi-ring  

porous; 

vessels 

concentrated 

at earlywood 

and latewood 

boundaries Distinct

Abundant; 

distributed 

within the ring  

in "flamelike" 

patterns Absent
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Range in south-central Idaho with the CIRO midden record as a regional measure of 

ecosystem productivity (Betancourt, unpublished data; Smith and Betancourt, 2003). 

Relative abundances of midden radiocarbon ages can be used to infer periods of past 

ecosystem productivity. During times of high ecosystem productivity, packrat 

populations flourish and are reflected by increased nest (midden) construction (Webb and 

Betancourt, 1990). 

We graphically compared our fire record with independent paleoclimate records 

from the Bonneville Basin, and Northern Great Basin. We selected lake paleoshoreline 

reconstructions from Lake Bonneville, Utah (Murchison, 1989; Miller et al., 2005; 

Patrickson et al., 2010), pollen-inferred reconstructions of subalpine fir forest elevational 

shifts from nearby Lake Cleveland sediments in the Albion Range (Davis et al., 1986), 

and pollen-inferred temperature reconstructions from the Blue Lake Marsh region in the 

Western Bonneville Basin (Louderback and Rhode, 2009; Figure 1). We used the 2000-

year dendrochronological reconstruction of the Palmer Drought Severity Index (PDSI), 

offered on a 2.5 degree grid point plot that covers the U.S and Canada (Cook et al., 

2004). CIRO is located at the same latitude and approximately equidistant between grid 

points 70 and 89, so we averaged these values.  

The CIRO record was also compared to data from four regional alluvial charcoal 

records, which are important because they employ the same methods as this study. We 

used two records from more xeric regions: the Wood Creek record, a semiarid ponderosa 

forest-sagebrush ecotone in the Danskin Mountains of south-central Idaho (Nelson and 

Pierce, 2010), and the South Fork of the Payette record (SFP), a ponderosa pine and 

Douglas fir dominated region of central Idaho (Pierce et al., 2004). We used two records 
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from cooler, higher elevation ecosystems: the Sawtooth record, a Douglas fir, lodgepole 

Pine forest of central Idaho (Svenson, 2010), and the Yellowstone record (YNP) a 

lodgepole pine forest ecosystem in northeastern Yellowstone National Park, Wyoming 

(Meyer et al., 1995). 

Correcting for the Fading Record and Limitations of the Method 

 

We used a stratigraphically-based model put forth by Surovell et al. (2009) to 

correct for “taphonomic bias,” which is defined as the tendency for over-representation of 

younger macrofossils relative to older macrofossils due to destructive processes such as 

weathering and erosion. The model represents the rate of geologic (or archeological) 

sample loss through time by comparison of a temporal frequency distribution of 

radiocarbon ages for volcanic events preserved in ice cores with a temporal frequency 

distribution of radiocarbon ages for terrestrial records of volcanism. The model attempts 

to correct for the fading geologic record using the following equation: 

nt = 5.73 x 10
6
(t +2176.4) 

-1.39 
 

where nt is the number of radiocarbon dates surviving from time t. 
 

Another form of sampling bias is governed by the Law of Superposition, where 

stratigraphic exposures are sampled from top to bottom, and deposits that are lower in the 

profile and therefore older in age may not be exposed at the time of sampling (Surovell et 

al., 2009). This bias, like “taphonomic bias,” can bias the data towards younger versus 

older radiocarbon ages.  

Not all fires produce a fire-related erosional deposit. Alluvial charcoal deposition 

is episodic in nature because it occurs following episodic fire events in response to 
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complex interactions among climate, fire, vegetation, and the geomorphic response. Such 

geomorphic processes are further controlled by lithology, topography, and slope.  

Lastly, radiocarbon ages do not produce annually resolved records, like tree ring 

chronologies (e.g., Grissino-Mayer and Swetnam, 2000). Instead, radiocarbon ages have 

an associated error of ~ ±100 years; therefore, we cannot resolve the timing of fire to the 

year of fire but rather provide a period of time in which the fire likely occurred.  

Geomorphic Analytical Methods 

Drainage basin delineation provides an estimate of the extent of the potential 

charcoal source area. Comparison of similarly aged fires that burned in multiple basins 

can help distinguish between smaller and larger fire events. Drainage basins were 

delineated upstream of each charcoal sampling site using a 30 meter Digital Elevation 

Model (DEM; Gesch et al., 2002; Gesch, 2007). In ArcGIS, basin delineation was 

conducted using hydrology tools (flow accumulation > flow direction) and the reclassify 

tool to identify pixels that drain 300+ upslope pixels from which basin areas were 

calculated.  

 Incised alluvial exposures are present throughout the study area; however, not all 

exposures contain fire-related stratigraphy. We used ArcGIS geomorphic analysis 

methods to better understand geomorphic and lithologic controls on fire-related erosion. 

We delineated six headwater drainage basins to identify trends between lithology, mean 

slope, ruggedness, and the absence or presence of fire-related stratigraphy across basins. 

Slopes steeper than 30% (16.7°) have been correlated to debris flow initiation in 

burned basins (Cannon et al., 2010). Skewness of slope frequency histograms per basin 

have been used as a metric for the type of diffusive processes that dominate a basin. For 
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example, creep-dominated basins exhibit positively-skewed slope frequency histograms 

and landslide-dominated basins exhibit negatively-skewed slope frequency histograms 

(Wolinsky and Pratson, 2005). We used DEM-extracted slope values to calculate mean 

slopes per basin and to create slope frequency histograms per basin. 

Debris flow initiation in burned basins has been correlated to higher ruggedness 

values, i.e., high topographic variability (Cannon and Reneau, 2000), and standard 

deviation of slope has been shown to accurately identify terrain ruggedness (Grohmann et 

al., 2011). We created slope rasters for each basin using ArcGIS (surface>slope) and used 

the standard deviation of slope reported in classification statistics to identify relative 

ruggedness between basins. 
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RESULTS 

Alluvial Charcoal 

 We dated 37 charcoal samples preserved in 18 sheetflood deposits, 17 debris flow 

deposits, one overbank deposit, and one channel flood deposit that were collected from 

sites exposed in arroyos, streambanks, and one alluvial fan at CIRO (Figure 6; Table 2; 

Appendix). Arroyo sites include: A2, C5, C8, C9, C11, C12, C13, and H15 (Figure 3: 

Figure 6). These sites are typically incised 1-6+ m and drain small areas (0.01-0.5 km
2
; 

Figure 7). Arroyo stratigraphy is characterized by abundant sheetflood deposits, some 

debris flow deposits, and occasional buried soils. Active channel sites include: A1, G4, 

C6, C7, C10 and C14 (Figure 3; Figure 6). All active channel sites are incised <4m and 

typically drain larger areas (0.5-24 km
2
; Figure 7). Streambank stratigraphy is 

characterized by debris flow deposits, fine-grained overbank deposits, some sheetflood 

deposits, and occasional channel flood deposits. Site S3 is exposed in a 1.5 m deep 

incised alluvial fan that contains the oldest dated deposit (12,740 cal yr BP) and consists 

of debris flow deposits, sheetflood deposits, and buried soils (Figure 3: Figure 6). 

We applied the correction for “taphonomic bias” (loss of geologic samples over 

time; Surovell et al., 2009) to the fire radiocarbon ages. To see how the correction 

impacts the data over time, we applied the method during different timeframes (Figure 8). 

Surovell et al. (2009) suggest that the method should not be applied to ages <750 cal yr 

BP because these ages are least likely to be impacted by taphonomic bias.  
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Figure 6: Summary illustration of the stratigraphic characteristics of each charcoal 

sampling site and the stratigraphic correlations between sites.  
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Figure 7: Map of CIRO showing delineated contributing drainage basins upslope of 

each charcoal sampling site. 
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Figure 8: The top graph shows the uncorrected summed probability distribution of 

charcoal radiocarbon ages. Moving downward, the next graph shows the correction 

applied to all ages older than 1000 cal yr BP, next the method is applied to all ages 

older than 5000 cal yr BP and the bottom graph shows all ages corrected. 

 

It is likely that the fading record at CIRO is primarily a function of depth of incision, 

where fire-related deposits deeper than natural exposures are not exposed and therefore 

not sampled. Figure 9 plots median radiocarbon ages against depth of sample in profile. 

The majority (96%) of macrofossil radiocarbon ages younger than 5000 cal yr BP were 

sampled from the uppermost 200 cm of stratigraphy, while 77% of samples older than 

5000 cal yr BP are exposed between 200-600 cm depth. All but one of the stratigraphic  
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Figure 9: Median radiocarbon age for each charcoal sample plotted against depth of 

sample location within the stratigraphic profile. 

exposures at CIRO are 200 cm or greater in depth (Figure 6), which suggests that depth 

of incision likely contributes to sampling bias, especially for samples >5000 years old. 

Charcoal preservation over time (i.e., taphonomic bias; Surovell et al., 2009), where 

buried charcoal macrofossils decompose over time, likely plays a secondary role in the 

fading record at CIRO. One debris flow deposit containing sparse charcoal was dated 

12,700 cal yr BP. However, several fire-related deposits older than ~9000 cal yr BP 

contain abundant charcoal, suggesting either that charcoal preservation is not as 

important as stratigraphic exposure, or that charcoal preservation varies on a site-by-site 

basis (Table 2). Based on the age-depth relationships at CIRO, we therefore believe the 

Surovell et al. (2009) correction model provides the most accurate representation when 

applied to all radiocarbon ages older than 5000 cal yr BP (where ages are under-

represented due to lack of exposure), but not applied to ages <5000 cal yr BP (Figure 8).  

Radiocarbon ages show five episodes of enhanced fire activity during the 

Holocene (Figure 10c). The earliest period of fire activity, between 10,700-9500 cal yr 

BP, is recorded in four debris flow deposits (H15, S3, C8), two sheetfloods (C8), and one 

overbank deposit (C10; Figure 6; Figure 10; Table 2; Appendix). The second fire interval 
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occurred between 7200-6700 cal yr BP and charcoal is preserved in three sheetflood 

deposits (C12, C14) and in four thin (<10 cm), fine-grained debris flow deposits that are 

interbedded with fire-related sheetflood deposits and charcoal-poor sheetflood deposits 

(C12, H15; Figure 6; Figure 10; Table 2; Appendix). The third period of moderate fire 

activity, between 2400-2000 cal yr BP, is preserved in two debris flow deposits (C11, 

H15), one sheetflood deposit (A1), and one channel flood deposit (C11; Figure 6; Figure 

10; Table 2; Appendix). The two most recent fire intervals are represented by fire peaks 

between 850-700 and ~550 cal yr BP. These recent fire-related sedimentation events are 

the most geographically widespread, and charcoal is preserved throughout the study area 

in nine sheetflood deposits (C9, C12, A1, A2, C6, H15), four debris flow deposits (C6, 

C8), and in one overbank deposit (C7; Figure 6; Figure 10; Table 2; Appendix).  

Two stratigraphic profiles (C6 and C11) yielded stratigraphically inverted 

radiocarbon ages. At site C6, a twig macrofossil dated ~490 cal yr BP was sampled from 

a sheetflood deposit at a depth of 80 cm, and a wood macrofossil dated ~400 cal yr BP 

was sampled from a debris flow deposit at a depth of 135 cm. The two units are preserved 

in distinctly separate fire-related deposits with clear boundaries, and 1σ and 2σ age errors 

do not overlap (Table 2), so we infer that the upper sheetflood deposit likely transported 

older charcoal from an earlier fire. While the upper deposit cannot be interpreted as the 

geomorphic response to a fire dated ~490 cal yr BP, the radiocarbon age does date the 

timing of fire, and the fire-related deposit indicates post ~400 cal yr BP.  
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Table 2: Summary of sampled charcoal ages, calibrated ages including 1σ and 2σ 

error ranges, associated depositional processes, location in stratigraphic profile, 

type of macrofossil, and charcoal abundance. 

1
 

                                                           
1
 Deposit type abbreviations: SF = sheetflood, DF = debris flow, OB = overbank and CF = channel flood. 

 
2 
Burned vegetation type abbreviations: J = juniper, SB = sagebrush and P = pine. 

 
3
 Charcoal abundance: abundant indicates fire-related deposit, present = likely a fire-related deposit, and  

scarce = probably a fire-related deposit. 

Site 

ID Lab ID Sample ID

14
C 

age 

BP

Ana-

lytical 

error 

±

Median 

calibrated 

age        

(cal yr BP)

Error 

(1 σ) 

Error 

(2 σ) 

Deposit 

type 
1

Depth 

(cm)

Char-

coal 

type

Burned 

vegetation-

type (%)                       

(J)(SB)(P)
2

Charcoal 

abundance 
3

Drainage Basin:  Almo Creek 

A1 80536

KWCA02-

2-3A 485 20 520

512-

527

506-

535 SF 130 twig (17) (67) (17) abundant

AA88400

KWCA02-

5 2428 39 2470

2370-

2514

2362-

2582 SF 185 wood (40) (40) (20) present

A2 80537

AHCA06B-

3 900 20 810

767-

839

756-

886 SF 195 wood (0) (100) (0) scarce

Drainage Basin:  Stines Creek 

S3 80538 AHCA04 10875 35 12740

12656-

12803

12626-

12887 BS/DF 105 wood not identified scarce

Drainage Basin:  Graham Creek 

G4 AA88389

KWCR06-

3 1655 37 1560

1521-

1609

1486-

1629 DF 90 twig (50) (7) (43) abundant

Drainage Basin:  Circle Creek,  Location:  North Fork of Circle Creek

C5 AA88388 SPCR03-1 180 35 180

132-

208

103-

300 DF 50 wood (38) (25) (38) present

C6 AA88390

NCCR01-

1 415 35 490

485-

495

480-

500 SF 80 twig (40) (50) (10) present

AA88391

NCCR01-

4 356 35 400

377-

427

314-

435 DF 135 wood (28) (40) (32) abundant

AA88397

NCCR04-

5B 846 42 760

708-

790

681-

802 SF 160 twig (0) (89) (11) present

Drainage Basin:  Circle Creek,  Location:  Middle Fork of Circle Creek

C7 AA88398

KWCR15-

1 913 36 830

788-

837

782-

873 DF 95 wood (15) (69) (15) abundant

Drainage Basin:  Circle Creek,  Location:  South Fork of Circle Creek

C8 AA88396

TRCR02-

2B 786 36 710

699-

711

694-

718 DF 75 wood (40) (60) (0) present

80524

TRCR02-

4A 3990 20 4490

4483-

4512

4418-

4450 SF 160 branch (35) (35) (41) present

80525

TRCR05A-

1 8605 25 9550

9535-

9567

9519-

9588 DF 175 wood not identified scarce

80526

TRCR05C-

4 9155 25 10290

10250-

10319

10240-

10319 SF 250 wood (67) (11) (22) abundant

80527

TRCR05B-

5 9390 25 10620

10572-

10657

10549-

10702 SF 300 wood (100) (0) (0) scarce
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Table 2 continued: Summary of sampled charcoal ages, calibrated ages including 1σ 

and 2σ error ranges, associated depositional processes, location in stratigraphic 

profile, type of macrofossil, and charcoal abundance.  

2
 

 

                                                           
1
 Deposit type abbreviations: SF = sheetflood, DF = debris flow, OB = overbank and CF = channel flood. 

 
2 
Burned vegetation type abbreviations: J = juniper, SB = sagebrush and P = pine. 

 
3
 Charcoal abundance: abundant indicates fire-related deposit, present = likely a fire-related deposit, and  

scarce = probably a fire-related deposit. 

Site 

ID Lab ID Sample ID

14
C 

age 

BP

Ana-

lytical 

error 

±

Median 

calibrated 

age        

(cal yr BP)

Error 

(1 σ) 

Error 

(2 σ) 

Deposit 

type 
1

Depth 

(cm)

Char-

coal 

type

Burned 

vegetation-

type (%)                       

(J)(SB)(P)
2

Charcoal 

abundance 
3

Drainage Basin:  Circle Creek,  Location:  South Fork of Circle Creek

C9 AA88384

KRCR01-

1A 308 35 390

358-

430

298-

469 SF 25 needle (47) (27) (27) abundant

AA88385

KRCR01-

7B 425 35 490

499-

505

494-

509 SF 150

seed 

pod (7) (57) (36) abundant

C10 AA88387

KWCR04-

1 3393 41 3640

3591-

3688

3495-

3736 SF 50 twig (50) (50) (0) scarce

AA88392

KWCR11-

1 9469 56 10720

10598-

10783

10553-

10869 OB 230 wood (100) (0) (0) present

C11 80534

KWCR03-

2-1A 2250 20 2290

2288-

2327

2182-

2331 DF 75 wood (33) (0) (67) abundant

80535

KWCR03-

2-2 2050 20 2010

1988-

2019

1972-

2033 CF 140 wood not identified abundant

C12 80518

TRCRO4-

1C 375 20 450

446-

490

410-

495 SF 60 seed (32) (32) (37) abundant

80519

TRCRO4-

2B 660 20 610

567-

584

562-

594 SF 115 branch (33) (67) (0) abundant

80520

TRCR04-

3B 770 20 690

687-

709

677-

734 DF 145 seed (23) (46) (31) abundant

80521 TRCR04-5 5995 20 6830

6805-

6849

6783-

6873 DF 250 wood (0) (33) (67) present

80522

TRCR04-

6A 6090 20 6950

6939-

6970

6923-

6983 DF 335 wood (8) (46) (46) abundant

80523

TRCR04-

7B 6280 60 7210

7203-

7231

7193-

7249 SF 380 wood (0) (45) (55) abundant

C13 80539

AHCR19-

3 175 20 184

150-

189

268-

282 DF 75 twig (40) (40) (20) abundant

Drainage Basin:  Circle Creek,  Location:  Main Fork of Circle Creek

C14 80528

CCCR01-

2-1 4135 20 4680

4602-

4684

4580-

4801 SF 83 wood (0) (100) (0) scarce

AA88386

CCCR01-

2B 5864 45 6680

6674-

6700

6658-

6710 SF 180 wood (0) (43) (57) present

80529

CCCR02-

4 6165 20 7080

7017-

7128

7000-

7150 SF 230 wood (0) (72) (28) abundant

Drainage Basin:  Heath Canyon

H15 AA88394

KWCR17-

1 189 34 180

147-

191

136-

225 SF 30 twig (25) (0) (75) abundant

80531

KWCR18-

2-2B 2230 20 2240

2185-

2243

2169-

2318 BS/DF 290 wood (0) (67) (33) abundant

80532

KWCR18-

2-3B 5905 20 6720

6700-

6745

6677-

6770 DF 350

seed 

pod (33) (0) (67) abundant

80533

KWCR18-

2-3C 6230 25 7170

7170-

7197

7148-

7029 DF 420 wood (92) (0) (8) abundant

AA88393

KWCR12-

4B 8862 59 9970

9910-

10,121

9896-

10,135 DF 500 wood (92) (0) (8) abundant

AA88395

KWCR18-

3 10034 56 11540

11395-

11643

11278-

11770 DF 560 twig (71) (12) (18) abundant
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Figure 10: Summary of results from fire, vegetation and depositional processes data 

plotted against time. a. Relative percent of vegetation type per charcoal sample, 

plotted as discrete points and binned per mean age of fire interval (dashed lines 

simply connect points), b. calibrated radiocarbon ages for middens as an indicator 

of ecosystem productivity, c. calibrated radiocarbon ages for alluvial charcoal 

(>5000 cal yr BP ages corrected according to Surovell et al., 2009), arrival timing of 

juniper and pinyon and number of fires, and d. stratigraphic record of percent 

alluvial thickness per depositional process. 
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fire-related sedimentation event. At site C11, a wood macrofossil with a radiocarbon age 

of ~2290 cal yr BP preserved in a debris flow deposit stratigraphically overlies a channel 

flood deposit with a wood macrofossil dated ~2010 cal yr BP. Errors (1σ and 2σ) for both 

radiocarbon ages at C11 do not overlap (Table 2), therefore we interpret that these 

radiocarbon ages represent the timing of separate fire events. The younger (yet 

stratigraphically lower) sample, records a fire and the geomorphic response to the fire 

event, while the older sample only records the previous fire event.  

Charcoal macrofossil identification indicates that during early Holocene fires 

(11,500-9900 cal yr BP), juniper accounted for 79% of sampled charcoal. Pine and 

sagebrush made up 14% and 7% of sampled charcoal, respectively. The type of 

vegetation burned shifted to roughly 1/3 juniper, 1/3 sagebrush, and 1/3 pine per charcoal 

sample, during middle to late Holocene fires (7200-6000, 4700-2600, 2500-1500 and 550 

cal yr BP). However, between 850-700 cal yr BP, sagebrush made up 67% of sampled 

charcoal (Figure 10a). 

Holocene Erosion, Fire-Related Sedimentation and Soil Development 

 Field observation of frequent, small-scale sheetflood deposition on moderate to 

gentle-slopes (<18°) and material eroded from upstream channels and arroyos is regularly 

transported in sheetflood events (Figure 11). Active incision in arroyos is evident, for 

example, following a two week storm characterized by intermittent rain that totaled 2 cm 

of precipitation during July-August 2010 (Western Regional Climate Center), 30 cm of 

material was removed from the base of arroyo site C12, and fresh incision occurred at 

arroyo sites C8 and H15. The same storm deposited sheetfloods at other sites.  
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Figure 11: Example of modern sheetflood deposit burying grass. 

 

During the Holocene, debris flows appear to be predominantly fire-related, and 

debris flow activity is rare in the modern record. We observed evidence for only one 

recent debris flow event on an alluvial fan, where a thin, discontinuous debris flow buried 

trunks of ~50 year old sagebrush. Throughout the Holocene, as in the modern record, 

sediments are primarily transported via sheetflooding events. Sheetflood deposits account 

for the majority (57%) of total measured alluvial thickness, while debris flow deposits 

and overbank deposits make up 37% and 6% of total Holocene alluvial thickness, 

respectively (Figure 10d).  

A period of minimal deposition is observed in the record between ~6500-2500 cal 

yr BP, when only 4% of the total measured alluvial thickness was deposited. During this 

time, debris flow activity was at a minimum and overbank deposition is absent from the 

record (Figure 10d). Although four debris flow deposits were identified during this 

timeframe, they are all thin (<10 cm), muddy units with fine-grained clasts. These 



37 

 

 

 

deposits are strikingly different from debris flows deposited during the early and late 

Holocene, which are much thicker (>40 cm), and contain coarser clasts. Four debris flow 

deposits were dated older than ~9500 cal yr BP, and one more was stratigraphically 

inferred as older than ~7000 cal yr BP. After ~2200 cal yr BP, we identified fourteen fire-

related debris flow deposits: nine were radiocarbon dated, and five more were 

stratigraphically inferred ages (Figure 6; Figure 10d). At site C12, there is a gap in 

deposit ages between ~700 cal yr BP and ~7000 cal yr BP with ~100 cm of undated 

charcoal-poor sheetfloods filling in the age gap, and at site H15 there is a gap in deposit 

ages between ~2200 cal yr BP and 6800 cal yr BP. However, there is no stratigraphic 

evidence of erosion (e.g., cut-and fill or unconformable contacts between deposits) and 

dated units are laterally continuous within the exposures at these sites (Figure 6). 

Active hillslope erosion in coarse-grained, grussy parent material with low 

vegetation density has inhibited modern soil development on hillslopes at CIRO. In some 

locations, disturbed and platy upper horizons, overlying plow pans are observed, and are 

likely a result of turn of the century agricultural practices (Morris, 2006). Modern soils in 

granitic parent material at CIRO are poorly developed, with absent to weakly developed 

B-horizons (USDA, NRCS, 2011). However, we did observe well-developed soils at 

CIRO: two are buried soils and two are unburied soils. At site S3, one ~12,700 cal yr BP 

soil developed on a debris flow deposit that was subsequently buried by sheetfloods 

exposed in a recently incised alluvial fan. These units are capped by another debris flow 

deposit that exhibits extensive soil development. At arroyo site A15, soil developed on a 

~2230 cal yr BP debris flow deposit and was later buried by 170 cm of <300 year old 

sheetflood deposits. Another well-developed soil formed on a ~2290 cal yr BP fire-
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related debris flow deposit exposed in the incised streambank site C10 (Figure 6; Table 2; 

Appendix).  

Fire-Related Geomorphic Response Recorded in Arroyo Stratigraphy 

The combined stratigraphic records from four arroyo sites (C8, C9, C12, and 

H15) tell a relatively complete story of Holocene fire and fire-related erosion. The 

complete arroyo site descriptions, details, and ages are summarized in the appendix. 

Arroyo site H15 drains west to east, and is situated in a saddle below a northern summit 

composed of Almo granite and a southern granitic knob capped with Miocene rhyolite 

tuff (Miller et al., 2008; Pogue and Katz, 2008; Figure 2; Figure 3; Figure 7). H15 

originates 0.5 km north of the saddle from the northern summit (<1 m depth) exposing 

sheetflood deposits. At the saddle, the arroyo drops abruptly over a bedrock knickpoint 

and at its deepest point, exposes ~575 cm of fire-related stratigraphy (Figure 12). Incision 

disappears at a bedrock bench 0.25 km downslope from the saddle. The four oldest debris 

flow deposits exposed in the H15 arroyo contain a combination of rhyolitic and granitic 

clasts, suggesting that earlier Holocene debris flow deposition initiated from the southerly 

knob (H15 South; Figure 7). More recent sheetflood and debris flow events likely 

originated from the northern summit because deposits are granitic composition and 

upslope incision exhibits a northerly trend (Figure 3; H15 North; Figure 7).  

The uppermost ~160 cm of stratigraphy exposed at H15 consists of ~180+ cal yr 

BP charcoal-rich sheetflood deposits. The dated sample was collected from the top 40 cm 

of this unit, so underlying sheetfloods are possibly older. Based on comparison with 

radiocarbon ages and stratigraphic characteristics of other arroyo exposures, these  
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Figure 12: Site H15 exposure of arroyo fire-related stratigraphy with black dots 

representing charcoal: A) charcoal rich sheetflood deposits, B) abrupt boundary 

between units, C) buried soil developed on thick fire-related debris flow deposit, D) 

continuous, thin, fine-grained (muddy) fire-related debris flow deposit with abrupt 

upper boundary, E) sheetflood deposits, F) continuous, thin, fine-grained (muddy) 

fire-related debris flow deposit with abrupt upper boundary, G) sheetflood deposits, 

H) light-colored, fine-grained unit, Mazama Ash ~7700 cal yr BP (Zdanowicz et al., 

1999), I) continuous, fine-grained (muddy) fire-related debris flow deposit and, J) 

medium-sand with charcoal, overbank deposit or debris flow deposit. 

 

sediments may correspond with deposition ~400 to 600 cal yr BP. Farther down in the 

profile, a buried soil that developed on the ~2240 cal yr BP debris flow deposit 

(discussed above) is exposed at 160-350 cm depth. The buried soil surface and the 

underlying units exhibit a moderately steeper slope than the modern surface, suggesting 

that sheetflood deposits have filled in a surface concavity over the last ~400-600 years. 

At a depth of 350 cm, an abrupt boundary is formed between the overlying debris flow 

deposit, and a thin (10 cm), fine-grained, fire-related ~6720 cal yr BP debris flow deposit. 

Another thin, fine-grained ~7170 cal yr BP fire-related debris flow deposit is exposed at 
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420 cm depth, and is sandwiched by ~120 cm of undated, charcoal-poor sheetflood 

deposits. At a depth of 497 cm, a thin, lighter-colored, fine-grained unidentified tephra 

unit overlies a 50 cm thick 9970 cal yr BP fire-related debris flow deposit. While 

geochemical analysis of the tephra unit did not identify the unit as Mazama ash (~7700 

cal yr BP; Zdanowicz et al., 1999), extensive mixing may have contaminated the sample, 

and we infer that this glass-rich unit constrained by 7170-9970 cal yr BP charcoal ages is 

likely Mazama ash. At the base of the exposure, ~75 cm of an ~11,540 cal yr BP debris 

flow deposit is exposed.  

Arroyo sites C12 (Figure 13) and C8 drain southward into South Fork of Circle 

Creek, and have small upslope contributing areas of 0.04 km
2
 and 0.03 km

2
, respectively 

(Figure 3; Figure 7). Located only 0.5 km apart, and separated by a sharp granitic fin, 

these sites record fires from ~10,600 to 400 cal yr BP. Radiocarbon ages and stratigraphic 

characteristics of sites C8 and C12 corroborate, and when combined, provide a more 

complete fire and depositional history (Figure 6).  

Incision at site C12 exposes ~500 cm of stratigraphy (Figure 13; Table 2; 

Appendix). The top of the profile consists of 115 cm of charcoal-rich sheetfloods that are 

dated ~450 cal yr BP at 60 cm depth, and~ 610 cal yr BP at 115 cm depth. These upper 

sheetfloods form an abrupt boundary with an underlying ~50 cm thick ~690 cal yr BP 

fire-related debris flow deposit. Stratigraphy exposed between 150-250 cm depth consists 

of undated sheetfloods interbedded with two undated thin (<5 cm), fine-grained, 

charcoal-rich debris flow deposits, or these are possibly fine-grained portions of 

sheetflood couplets. These deposits overlie a sequence made up of three thin (~10 cm), 

fine-grained, fire-related debris flow deposits dated downward in the profile ~6830, 6950, 
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Figure 13: Site C12 exposure of arroyo fire-related stratigraphy where black circles 

represent charcoal: A) charcoal-rich sheetflood deposits, B) charcoal-rich sheetflood 

deposits, C) charcoal -rich debris flow deposit (charcoal is more concentrated within 

unit compared to unit B with abrupt lower boundary, D) undated sheetfloods 

interbedded with very thin (<5 cm) muddy debris flow deposits, that may 

correspond to ~2500-2000 cal yr BP fire interval or to 4490 cal yr BP sheetflood 

deposits at site C8, E) thin debris flow deposit (~10 cm) interbedded within 

sheetfloods, F) thin debris flow deposit (~10 cm) interbedded within sheetfloods, G) 

thin debris flow deposit (~10 cm) interbedded within sheetfloods and, H) debris flow 

deposit. 

 

and 7210 cal yr BP, respectively, interbedded with ~130 cm of charcoal-rich sheetfloods 

exposed between ~250 and 380 cm depth. Below 380 cm depth, a ~100 cm thick package 

of sheetfloods overlies an undated thin (~10 cm) debris flow deposit exposed at the base 

of the profile.  
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Site C8 exposes ~650 cm of stratigraphy and was measured and described from 

two sections that consist of a ~285 cm thick upper section and a ~375 cm thick lower 

section, on opposite sides of the arroyo (Figure 6). At the top of the upper section, ~50 

cm of undated sheetfloods overlie a ~75 cm thick ~710 cal yr BP debris flow deposit, 

which may have deposited during the same fire interval as the ~690 cal yr BP debris flow 

at C12. This unit overlies ~160 cm of sheetfloods dated ~4490 cal yr BP. Across the 

drainage at C8, and stratigraphically below the ~4490 cal yr BP unit, is a 175 cm thick 

debris flow deposit dated ~9550 cal yr BP. This unit likely corresponds to the undated 

debris flow deposit at the base of C12 based on stratigraphic characteristics and location 

within the profile (Figure 6; Figure 13; Table 2; Appendix). The debris flow deposit 

overlies ~200 cm of sheetfloods dated ~10,390 and ~10,620 cal yr BP, respectively.  

 The nearby arroyo site C9 records fires and fire-related deposition in 150 cm of 

successive sheetflood deposits and one debris flow deposit dated between 390-490 cal yr 

BP (Figure 6; Table 2; Appendix). Sheetfloods at site C9 correspond to sheetfloods 

exposed in sites A1, H15, C12, and C8, and indicate active and widespread fire-related 

sheetflooding during the last ~700 years (Figure 6).  

Fire-Related Geomorphic Response Recorded in Streambank Stratigraphy 

In this section, we provide a detailed description of one streambank site (Site 

C10) because it is the deepest streambank exposure and exposes the oldest streambank 

stratigraphy in the study area. The rest of CIRO streambank stratigraphy is summarized 

in the appendix. Site C10 exposes ~350 cm of fire-related stratigraphy (Figure 14) in the 

active channel of South Fork of Circle Creek (Figure 3; Figure 6; Table 2; Appendix).  

During the last ~10 years, this site has experienced meander cutbank erosion that  
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Figure 14: Site C10 streambank exposure: A) extensive soil developed on thick 

continuous debris flow deposit, B) continuous charcoal-rich debris flow deposit, C) 

undated oxidized sheetflood deposits containing sparse charcoal and, E) overbank 

deposit with upper charcoal-rich layer. 

 

removed part of a hiking trail and caused park staff to re-route the trail near the creek. 

Between the 2010 and 2011 summer field seasons, a thin tongue of land that existed 

between two meanders (one that exposed C10 stratigraphy) was breeched and a tree fell 

into the channel, burying much of the C10 exposure (Figure 15; Figure 16).  

The top ~150 cm of C10 consists of a thick debris flow deposit dated 2290 cal yr 

BP that was sampled from site C11, an upstream exposure in an ephemeral channel 

(Figure 6; Figure 7; Table 2; Appendix). The age of this debris flow deposit and 

subsequent period of stability (indicated by soil development) corresponded with a ~2300 

cal yr BP fire-related debris flow deposit and soil at site H15. Lower in the profile, a  
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Figure 15: Site C10. The upper photo was taken in 2010. The lower photo was taken 

in 2011 after streambank collapse. Tree roots shown in the upper corner of the 2010 

photo are from the same tree that fell into the stream shown in the lower left corner 

of the 2011 photo. 
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Figure 16: Site C10. The upper photo showing 2010 site conditions and lower photo 

showing 2011 site conditions following channel erosion. Note the same tree is shown 

in upper photo as indicated in Figure 15. 
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charcoal-rich sheetflood deposit dated ~3640 cal yr BP is exposed at 150 cm depth. This 

fire-related deposit tops a ~100 cm thick package of sheetfloods that contain sparse 

charcoal. These lower, undated sheetfloods may correspond to active charcoal-poor 

sheetflooding during the 7200-6700 cal yr BP fire interval also observed at sites C12 and 

H15. A ~75 cm thick charcoal-rich overbank deposit dated 10,700 cal yr BP is exposed at 

the base of the profile. 

Climate and Vegetation Reconstructions from Woodrat Middens  

 The CIRO midden record shows that Rocky Mountain juniper, limber pine, and 

big sagebrush have been present on the landscape since ~50,000 cal yr BP (Table 3). 

Utah juniper migrated to CIRO at ~3800 cal yr BP and was followed by single-leaf 

pinyon at ~2800 cal yr BP. Single-leaf pinyon is abundant in middens from ~2800-2400 

cal yr BP; however, it is absent in middens dated ~2400-700 cal yr BP, suggesting either 

slow expansion or colonization occurred as two events. The first was a failed invasion, 

while the post-700 cal yr BP event successfully established single-leaf pinyon as a 

dominant species (Betancourt, unpublished data).  

 Periods of frequent midden radiocarbon ages are indicative of flourishing packrat 

midden populations and can be used as a measure for ecosystem productivity (Webb and 

Betancourt, 1990). Summed calibrated radiocarbon ages of middens from CIRO, Oneida 

Narrows, and the Lost River Range are compared to the CIRO fire record in Figure 10b. 

We do not apply the correction for taphonomic bias to the summed probability 

distribution of midden ages, since midden preservation would not be subject to 

taphonomic bias caused by erosion and weathering because middens are typically  
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Table 3: Summary of midden data collected at CIRO.  

 

preserved in rock shelters and caves (Surovell et al., 2009). The midden record began 

around 12000 cal yr BP, however radiocarbon ages do not form high frequency clusters 

until ~4500 to 2000 cal yr BP (Smith and Betancourt, 2003; Betancourt, unpublished 

Lab 

ID Sample ID

14
C 

Age 

BP

Ana-   

lytical 

error 

±

Median 

calibrated 

age            

(cal yr BP)

Error             

(1 σ)

Error             

(2 σ) Vegetation ID

81158 526-Pinnacle Pass Cave 115 15 162 66-258 58-264 Single-leaf pinyon

81146 211C-PIMO-Twin Sisters 120 20 165 67-262 55-268 Single-leaf pinyon

81143 564-PIMO-Twin Sisters 330 15 373 350-396 347-460 Single-leaf pinyon

81300 209A-Flaming Rock Trail 315 15 402 376-427 349-437 Single-leaf pinyon

81301 209B(2)-Flaming Rock Trail 315 15 402 376-427 349-437 Single-leaf pinyon

81165 504-Flaming Rock Trail 345 15 444 428-459 317-478 Single-leaf pinyon

81308 208-Window Arch 575 15 615 604-626 594-634 Single-leaf pinyon

81306 568-South Fork Circle Creek 720 15 671 666-676 661-682 Single-leaf pinyon

81309 207-Window Arch 1280 15 1249 1234-1264 1220-1275 Rocky Mtn juniper

81147 211C-JUOS-Twin Sisters 1380 15 1297 1291-1302 1283-1310 Utah juniper

81310 507-Window Arch 2410 15 2431 2406-2456 2352-2474 Single-leaf pinyon

81144 564-JUOS-Twin Sisters 2685 15 2771 2759-2783 2752-2797 Utah juniper

81304 541-Bath Rock 2740 15 2810 2792-2828 2783-2863 Single-leaf pinyon

81297 511A-Flaming Rock Trail 2835 15 2942 2923-2960 2916-2991 Limber pine

81157 525-Pinnacle Pass Cave 2970 15 3174 3140-3207 3077-3211 Utah juniper

81156 524-Pinnacle Pass Cave 3105 15 3349 3334-3364 3320-3377 Utah juniper

81166 510-Flaming Rock Trail 3180 20 3393 3378-3407 3367-3445 Limber pine

81161 529-Pinnacle Pass Cave 3260 20 3465 3446-3483 3442-3558 Utah juniper

81303 567-Bath Rock Trail 3585 15 3877 3853-3901 3838-3925 Rocky Mtn juniper

81298 511B-Flaming Rock Trail 4000 15 4497 4480-4513 4463-4518 Limber pine

81162 576A-Staircase Trail 4170 15 4723 4702-4743 4685-4762 Rocky Mtn juniper

81299 503-Flaming Rock Trail 4525 15 5148 5132-5164 5054-5186 Rocky Mtn juniper

81163 576B-Staircase Trail 4975 15 5677 5661-5693 5656-5733 Rocky Mtn juniper

81307 210-Window Arch 5225 15 5946 5938-5953 5929-5993 Rocky Mtn juniper

81305 570-Bath Rock Trail 5830 15 6652 6638-6666 6603-6373 Limber pine

81164 531-Flaming Rock Trail 6215 20 7090 7066-7113 7015-7125 Limber pine

81302 542-Bath Rock Trail 7070 15 7883 7870-7895 7856-7903 Limber pine

81148 211D-Twin Sisters 8100 20 9017 9005-9028 8996-9033 Rocky Mtn juniper

81150 211F-Twin Sisters 28460 140 32886 32599-33172 32139-33312 Limber pine

81149 211E-Twin Sisters 28890 140 33364 33061-33667 32940-34232 Limber pine

81155 523-Pinnacle Pass Cave 29720 160 34582 34439-34725 33866-34808 Limber pine

81145 211A-Twin Sisters 31760 190 36432 36263-36600 36152-36723 Limber pine

81153 509A-Pinnacle Pass Cave 42540 690 45706 45172-46239 44631-46974 Limber pine

81152 506B-Pinnacle Pass Cave 44930 910 48116 47027-49204 46342-49950 Limber pine

81159 527-Pinnacle Pass Cave 45140 930 48346 47267-49425 46499-50000 Limber pine

81154 502-Pinnacle Pass Cave 45600 1300 48973 47969-49976 46695-50000 Limber pine

81151 502-Pinnacle Pass Cave 47500 1300 50000 50000 50000 Limber pine

81160 528-Pinnacle Pass Cave 47800 1300 50000 50000 50000 Limber pine
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data). Between 2000 to 700 cal yr BP (the interval in which pinyon expanded slowly or 

failed in an initial expansion), midden 
14

C ages drop off significantly. Midden 

frequencies increase again between 700 to 300 cal yr BP (Smith and Betancourt, 2003; 

Betancourt, unpublished data). 

Geomorphic and Lithologic Controls on Fire-Related Erosion  

Deeply incised arroyos that contain abundant fire-related deposits are common in 

granitic and gneissic lithologies of Circle Creek, upper Heath Canyon, Graham Creek, 

Stines Creek, and Almo Creek (Figure 3). However, fire-related deposits are limited 

and/or absent in the deep arroyos formed in quartzite basins of Emigrant Canyon and in 

lower reaches of Heath Canyon. This suggests that hillslopes formed in resistant quartzite 

are less susceptible to fire-related erosional events. For example in 2000, a mixed-

severity, crown fire burned ~8.5 km
2
 in quartzite terrain of southern CIRO (Monitoring 

Trends in Burn Severity, 2011). Local residents observed increased fire-related surface 

erosion during a storm event a few days following the fire (Morris, 2006), which was 

likely surface rilling (Shakesby and Doerr, 2006). However, field observation found no 

evidence for large-scale post-fire erosional events, such as sheetflood or debris flow 

deposition. The landscape, now characterized by standing dead pinyon and juniper, has 

since been invaded by cheatgrass.  

One definition for surface ruggedness is variability in slope and standard 

deviation of slope can be used as a proxy for basin ruggedness (Grohmann et al., 2011). 

Standard deviation of slope calculated by ArcGIS tools indicates that Circle Creek Basin 

exhibits the highest degree of basin ruggedness (Figure 17). Standard deviation of slope 

accurately identified the local terrain variability of the Almo granitic pluton that  
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Figure 17: Map showing standard deviation of slope (ruggedness) in degrees for 

CIRO study basins. 

 

comprises the majority of Circle Creek Basin, and is rapidly eroding to form fins, domes 

and spires. Consistent with the findings from Cannon and Reneau (2000) of 

characteristics of debris flow producing basins, the majority (>75%) of debris flows 



50 

 

 

 

occurred in the basin with the highest ruggedness value. In addition, Circle Creek Basin 

also contains the greatest number of fire-related deposits with 11 of 16 sampling sites 

located in streambanks on Circle Creek or in grussy arroyos that drain into Circle Creek, 

indicating that this granitic basin is altogether more susceptible to fire-related erosional 

processes.  

Skew of slope frequency histograms are used to identify dominant diffusive 

processes within a basin. When a majority of gentle slopes (<16°) are plotted in a 

histogram, the histogram will exhibit positive skewness, while negatively skewed 

histograms are made up of predominantly steeper slopes (>16°). Positively skewed slope 

frequency histograms are indicative of basins susceptible to creep and slope-wash 

processes, and negatively skewed slope frequency histograms corresponds to basins that 

experience mass-wasting processes, such as debris flows and landslides (Wolinsky and 

Pratson, 2005). All basins at CIRO exhibit ≥0 (positive) skewed slope frequency 

histograms. 

Although DEM-generated slope frequency histograms (Figure 18) do not support 

debris flow generation in any basins at CIRO, stratigraphic analysis shows that debris 

flows did occur and were common during the early and late Holocene in all basins with 

the exception of Emigrant Canyon. Slope frequency plots indicate a higher frequency of 

shallow slopes in quartzite dominated basins (Emigrant and Heath Canyon), while 

gneissic and granitic basins (Almo, Stines, Graham) and granitic Circle Creek exhibit 

moderately higher frequency of steeper slopes (Figure 2; Figure 18). Emigrant and Heath 

Canyon exhibit more positively skewed histograms (+2) than Circle Creek and Graham 

Creek (+1), while slope histograms for Stines and Almo Creek have 0 skew value. Almo, 
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Graham, and Stines basins exhibit bimodal slope frequency histograms, and areas of 

steeper slope are likely initiation points for mass wasting processes within each basin.  

 
Figure 18: Slope raster map illustrating the generally gently-sloping terrain of 

CIRO. Slope frequency histograms and skewness values (left side) showing that all 

basins have positively skewed slope histograms. Bottom graph plots mean slope per 

basin. 
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DISCUSSION 

The CIRO record indicates that Holocene changes in climate drove shifts in 

vegetation, associated fire regime, and fire-related erosional response over the course of 

the last ~13,000 years. During the early Holocene, fires were likely moisture-limited 

when long term wet intervals suppressed fire. However, a switch to a fuel-limited system 

likely occurred sometime during the middle Holocene when long-term dry and generally 

stable climate conditions decreased fire activity. Late Holocene arrivals of Utah juniper 

and single-leaf pinyon correspond to increased fire activity and changes in fire-related 

geomorphic response. As pinyon-juniper densities increased, we infer that fires likely 

became limited more by probability of ignition than fuel availability. These denser forests 

supplied abundant fuels that were often dried during decadal droughts; however, ignition 

occurrences, such as convective storms, were necessary.  

Comparison of this record with other regional alluvial charcoal records from a 

range of ecosystems (Meyer et al., 1995; Pierce et al., 2004; Svenson, 2010; Nelson and 

Pierce, 2010) shows periods of regionally widespread fires and analogous erosional 

trends, indicating that region-wide climate controlled fire and geomorphic response. 

Below we discuss major trends in regional climate, vegetation change, and fire regimes 

within six time frames during the Holocene. We follow these climate sections with a 

discussion of Holocene patterns of fire-related erosion at CIRO and conclude with a 

discussion of land management implications.  
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Late Pleistocene to Early Holocene (13,000 to 9500 cal yr BP) 

Most alluvial charcoal records do not exceed ~8000 years (e.g., Pierce et al., 

2004; Nelson and Pierce, 2010); however, our record documents seven fires older than 

9500 cal yr BP. Two fires burned between 12,700-11,500 cal yr BP, shortly after final 

glacial retreat from Mt. Harrison in the Albion Range (Bovet et al., 2002). These fires 

correspond to the Younger-Dryas Cool Interval (12.8-11.5 ka; Berger, 1990) and to 

cooler, wetter conditions in the Bonneville Basin and Great Basin (Davis et al., 1986; 

Murchison, 1989; Oviatt, 1997; Broughton et al., 2000; Grayson, 2000; Madsen et al., 

2001; Oviatt et al., 2003; Louderback and Rhode, 2009; Doner, 2009). Ignition likely 

occurred during fire season drought, as indicated by diatom records from Bear Lake that 

show moderate lake levels between 12,000-10,800 cal yr BP. Although fluvial inputs to 

the lake were high, increased summer evaporation likely maintained moderate lake 

levels, suggesting wet winters and warm, dry summers (Moser and Kimball, 2009).  

Warming and drying began ~10,800 cal yr BP, as indicated by rapid recession and 

possible desiccation of Lake Bonneville between 10,800-9900 cal yr BP (Murchison, 

1989; Figure 19a). This prolonged dry interval is further supported by Bonneville Basin 

faunal, midden, and pollen records (summarized by Madsen et al., 2001), when 5 fires 

burned at CIRO during a 700 year period (10,700-9500 cal yr BP), indicating a minimum 

recorded fire frequency of one fire per ~140 years (Figure 10c). These fires were likely 

fueled by dense vegetation developed during the late Pleistocene.  

Fire activity may have been greater than indicated by our record between 12,700-

9500 cal yr BP when numerous North American lake charcoal records show increased 

fire activity during rapidly warming climate at ~11,700 cal yr BP (Marlon et al., 2009). 
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However, poor preservation of deposited alluvial charcoal likely diminishes the recorded 

fire frequency during this interval. If so, having seven fires older than ~9500 cal yr BP 

suggests that CIRO likely experienced frequent and severe fires during dramatically 

changing climate. Furthermore, juniper accounts for the majority of sampled macrofossils 

at CIRO before ~9900 cal yr BP, indicating high-severity, stand-replacing fires (Figure 

 
Figure 19: The CIRO fire record (>5000 cal yr BP ages corrected according to 

Surovell et al., 2009) compared to regional paleoclimate records, with gray bars 

highlighting periods of increased fire activity. a. Summary of regional lake shoreline 

elevations from Murchison (1989; solid blue), Patrickson et al. (2010; light blue) and 

Miller et al. (2005; dashed black line). Dashed and solid straight blue lines show 

periods of high and low lake level in the Uinta Range (Corbett and Munroe, 2010) 

and the dashed black line represents an interval of low lake levels in the Rocky 

Mountains (Shuman et al., 2009). b. Dotted green line shows a pollen reconstruction 

of subalpine fire elevation (lowest elevation is up) from nearby Lake Cleveland in 

the Albion Range (Davis et al., 1986). c. Solid green line shows pollen reconstruction 

of climate from the Blue Lake Marsh of the western Bonneville Basin (Louderback 

and Rhode, 2009), d. The CIRO fire record is shown in red with the midden 

vegetation reconstruction (Betancourt, unpublished data) shown in green blocks.  
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10a). Using modern fire severity-vegetation relationships (Miller and Rose, 1999; Baker 

and Shinneman, 2004; Romme et al., 2009), fires burning through this juniper-dominated 

landscape were likely high-severity, stand-replacing fires (Figure 10a).  

A similar early Holocene fire interval was observed in the Cygnet Lake record of 

central Yellowstone National Park, when tundra and grasslands were colonized by 

lodgepole pine (Millspaugh et al., 2000). In the Blue Lake Marsh region, warmer taxa 

replaced colder taxa (Louderback and Rhode, 2009), and at Bear Lake, cold tolerant 

plants and trees shifted to sagebrush steppe vegetation (Doner, 2009). Midden records 

from Dutch John Mountain in the Uinta Range of northeastern Utah record a shift from 

mesic conifer forests to more xeric juniper woodlands (Jackson et al., 2005), and at 

nearby Lake Cleveland, Douglas fir was migrating upward in elevation (Davis et al., 

1986; Figure 19b). We infer that CIRO was likely experiencing similar vegetation shifts, 

as July insolation reached its maximum in North America (Berger, 1978) and the 

Younger-Dryas came to an end. Warmer temperatures and increased aridity that dried 

fuels accumulated during the late Pleistocene likely caused one of the most fire-prone 

intervals on record between 10,700-9500 cal yr BP.  

Early to Middle Holocene (9500 to 6500 cal yr BP) 

No fires were recorded between ~9500 to 7200 cal yr BP, however fire activity 

increased again ~7200-6700 cal yr BP, when a 500-year fire period was recorded by 

seven fires, indicating a minimum recorded fire frequency of 1 fire per ~70 years. These 

fires are corroborated by the Lake Cleveland record, ~20 km to north, that showed a post-

Mazama ash (~7700 cal yr BP) increase in lake sediment charcoal (Davis et al., 1986), 

suggesting widespread and possibly larger fires.  
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During the fire-free interval between 9500-7200 cal yr BP, fires were likely 

inhibited by wetter and cooler conditions. At Stansbury Island in the Great Salt Lake, 

radiocarbon dating of lake sediment charcoal recorded a ~8300 cal yr BP Lake 

Bonneville highstand (Patrickson et al., 2010), possibly 60 meters higher than the Gilbert 

shoreline (Oviatt, 1997; Figure 19a). Patrickson et al. (2010) attributed this highstand to 

the “8.2 ka cool interval,” a widely recognized Heinrich event (Alley et al., 1997) that 

increased snowpack to the neighboring mountains (Dean et al., 2002). The highstand is 

corroborated by at least one record: a radiocarbon age from an organic layer presumed to 

have been deposited on a lagoon floor from Antelope Island in the Great Salt Lake 

(Murchison, 1989, Murchison and Mulvey, 2000; Figure 19a). Diatom and oxygen 

isotope records from Bear Lake support wetter and cooler conditions from 9.2-8.2 ka 

(Moser and Kimball, 2009), and lake sediments from the Uinta Range record a prolonged 

wet period from 10-6 ka (Corbett and Munroe, 2010; Figure 19a).  

Climate began to warm again ~8200-6500 cal yr BP (Grayson, 2000; Schmitt et 

al., 2002; Louderback and Rhode, 2009) when regional midden radiocarbon ages indicate 

low ecosystem productivity (Figure 10b; Table 3; Smith and Betancourt, 2003; 

Betancourt, unpublished data). During this interval, Blue Lake Marsh was desiccated 

(Louderback and Rhode, 2009; Figure 19c), Lake Bonneville was periodically low 

(Murchison, 1989; Figure 19a), and in the Great Basin (8000-4000 cal yr BP), pinyon-

juniper woodlands occupied elevations 500 m higher than today (Miller and Tausch, 

2001).  

However, several records provide evidence for a brief period of moderately cooler 

and wetter conditions beginning ~7500 cal yr BP that likely supplied fuel for the 7200-
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6700 cal yr BP fire interval. At Bear Lake (7500-6700 cal yr BP), pollen from cold 

tolerant trees, shrubs, and plants were present in greater abundances than sagebrush 

steppe plants (Doner, 2009), and at Blue Lake Marsh beginning ~7200 cal yr BP, pollen 

records indicate moderate cooling (Louderback and Rhode, 2009; Figure 19a). Lake 

levels were moderately elevated at Lake Bonneville from 7500-6500 cal yr BP (Figure 

19a; Murchison, 1989) and at Bear Lake between 7000-6500 yr BP (Smoot and 

Rosenbaum, 2009). Farther away in Yellowstone National Park, terrace aggradation was 

occurring ~7400-6700 cal yr BP (Meyer et al., 1995).  

The ~7200-6700 cal yr BP fire interval may mark an ecosystem transition from a 

previously moisture-limited system to a fuel-limited system. The type of charcoal 

sampled also changed from early Holocene juniper to a three-way split of juniper, 

sagebrush, and limber pine (Table 2; Figure 10a), suggesting that these fires were likely 

stand-replacing based on studies from sagebrush and pinyon-juniper ecosystems 

(Kauffman and Sapsis, 1989; Baker and Shinneman, 2004). Accordingly, the type of fire-

related geomorphic response shifted from early Holocene larger debris flows and thick 

overbank deposition to predominantly sheetflood deposition with occasional thin, fire-

related debris flow deposits.  

 Not all middle Holocene sheetfloods were fire-related, many thick sheetflood 

deposits containing sparse or absent charcoal are bracketed by dated units during this 

time (Figure 6). Evidence for frequent charcoal-poor sheetflood deposition suggests 

hillslope erosion occurred when vegetation densities were low, and sparsely vegetated 

hillslopes also likely limited fuel. However, prior to the 7200-6700 cal yr BP fire interval, 

brief annual to decadal moisture must have sufficiently increased fine fuel accumulation 
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for fuel connectivity and fire-spread across CIRO and into higher elevation areas at 

nearby Lake Cleveland (Davis et al., 1986).  

Interestingly, other alluvial charcoal records report fire activity between ~7500-

6200 cal yr BP (Figure 20). Fires were recorded ~6300 cal yr BP in Yellowstone (Meyer 

et al., 1995), and at ~6500 cal yr BP in Wood Creek (Nelson and Pierce, 2010). Increased 

fire activity was recorded by sheetflood deposits in the South Fork of the Payette, Idaho 

(SFP) between ~7400-6600 cal yr BP (Pierce et al., 2004). Unlike CIRO, the SFP is 

characterized by significantly steeper, granitic hillslopes prone to post-wildfire debris 

flows; however, during this fire interval, SFP experienced analogous sheetflood 

deposition and limited debris flow activity from currently debris-flow prone north-facing 

slopes (Meyer et al., 2001; Pierce et al., 2004).  

Although 7200-6700 cal yr BP fires at CIRO were likely fueled during a brief 

local cooling (Davis et al., 1986; Murchison, 1989; Louderback and Rhode, 2009; Doner, 

2009), regionally this period marked the beginning of extended drought recorded by low 

lake levels in the Rocky Mountains (Shuman et al., 2009) and in the Uinta Range, Utah 

(Corbett and Monroe, 2010), suggesting that region wide drought was the driver of these 

regionally widespread fires (Figure 19a, b and c).

Middle to Late Holocene (6500 to 2500 cal yr BP) 

Fires were infrequent at CIRO and fire-related erosion was at a minimum between 

6500-2500 cal yr BP. Only two fires were recorded between ~4700-4500 cal yr BP and 

only one fire was recorded at ~3600 cal yr BP, indicating a minimum recorded fire 

frequency of 1 fire per ~700 years (Figure 10d).  
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Figure 20: Comparison of the CIRO fire record (red) to other regional alluvial 

charcoal records (Meyer et al., 1995; Pierce et al., 2004; Svenson, 2010; Nelson and 

Pierce, 2010). The CIRO record is not corrected for “taphonomic bias” (Surovell et 

al., 2009) because the other alluvial charcoal records have not been corrected.  

The period of no recorded fires from 6700-4700 cal yr BP at CIRO corresponds to 

extended regional drought between ~7000 to ~4000 yr BP (Murchinson, 1989; 

Louderback and Rhode, 2009; Shuman et al. 2009; Corbett and Munroe, 2010) that drove 

nearby Lake Cleveland subalpine fir forests up to a maximum elevation at ~4500 cal yr 

BP (Davis et al., 1986; Figure 19). At CIRO, low vegetation densities from previous fire-
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removal, sustained by persistent drought, likely inhibited fuel accumulation on hillslopes. 

Similar no-fire periods are observed in other alluvial charcoal records, suggesting that 

analogous low vegetation densities were regionally persistent (Figure 20; Pierce et al., 

2004; Svenson, 2010; Nelson and Pierce, 2010). While Yellowstone was burning during 

this interval, past fires in this moist, densely vegetated ecosystem have been correlated 

with severe drought (Figure 20; Meyer et al., 1995). 

Beginning ~4000 cal yr BP, Lake Bonneville shorelines begin to rise (Murchison, 

1989; Figure 19a) and subalpine fir elevations were descending at Lake Cleveland (Davis 

et al., 1986; Figure 19b). Midden records from the Oneida Narrows and Lost River Range 

(Figure 10b; Smith and Betancourt, 2003; Betancourt, unpublished data), and northern 

Wyoming (Lyford et al., 2003) suggest a return to cooler, wetter climate between ~4500-

2000 cal yr BP. Regionally cooler climate is supported by faunal, midden, and pollen 

records in the Bonneville Basin and the Great Basin (Broughton et al., 2000; Madsen et 

al., 2001; Mensing et al., 2008; Louderback and Rhode, 2009). During this time, Utah 

juniper migrated to CIRO ~3800 cal yr BP, followed by single-leaf pinyon at ~2800 cal 

yr BP (Table 3; Figure 19d; Betancourt, unpublished data).  

High-frequency fires that burned between ~7200-6700 cal yr BP followed by no 

recorded fire activity until ~4700 cal yr BP may indicate climate-forced fire removal of 

fuel, and subsequent drought suppression of fuels. The climate-fire model put forth by 

Westerling et al. (2011) predicts that as climate warms, fire rotation times will 

progressively decrease until there is insufficient time for forest regeneration between fire 

events. Eventually, fire strips the landscape of vegetation and can trigger transformative 

ecosystem change. According to the midden record, prior to the 7200-6700 cal yr BP fire 
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interval, CIRO was vegetated by limber pine, Rocky Mountain juniper, and sagebrush 

(Table 3). Limber pine forest regeneration can take more than ~500 years (Rebertus et al., 

1991). Although pinyon was not yet present at CIRO during this time, estimates for post-

fire regeneration in pinyon-juniper forests is ~150-200 years (Goodrich and Barber, 

1999). However, juniper recovery can occur faster than pinyon during periods of drought 

(Shinneman and Baker, 2009). Recovery in sagebrush vegetation following fire can take 

35-100 years (Baker, 2006). During the 7200-6700 cal yr BP fire interval, recorded fires 

indicate that CIRO burned a minimum of 1 fire per ~70 years. While this frequency is for 

the entire study area (not individual basins), synchronous fire activity at nearby Lake 

Cleveland (Davis et al., 1986) suggests these fires were large and widespread, so the fire 

frequency may have exceeded the time interval needed for regeneration of limber pine 

and Rocky Mountain juniper. Afterwards, persistent warm and dry conditions likely 

sustained low vegetation densities and suppressed fire. 

The absence of fire at CIRO between 6500-4800 cal yr BP, during a period of 

regionally drier conditions and low ecosystem productivity (Figure 10b; Smith and 

Betancourt, 2003; Betancourt, unpublished data), suggests that drought suppressed fuel 

loads and inhibited fire (Figure 19). However, moderate burning between 4700-3600 cal 

yr BP corresponds to higher ecosystem productivity (Figure 10b; Table 3; Smith and 

Betancourt, 2003; Betancourt, unpublished data). These fires also correspond to a peak in 

fire in the Wood Creek record (Figure 20; Nelson and Pierce, 2010) and to increased fire 

frequency in a sagebrush ecosystem at Newark pond, Nevada ~290 km southwest of 

CIRO (Mensing et al., 2006). All three ecosystems likely experienced increased fire 

activity, as fuel loads increased under wetter climate beginning ~4500 cal yr BP. 
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Late Holocene (2500 to 200 cal yr BP) 

There are two apparent trends during the late Holocene among climate, 

vegetation, and fire. First, Figure 10b shows a strong relationship between periods of 

increased fire activity (specifically at ~1600, ~850, and ~500 cal yr BP) and increased 

ecosystem productivity (Smith and Betancourt, 2003; Betancourt, unpublished data). 

Secondly, fires recorded at ~1600, ~850, and ~500 cal yr BP burned during documented 

droughts (discussed below) subsequent to above average moisture conditions (Figure 21).  

 

Figure 21: A 2600-yr comparison of the CIRO fire record (red) to Palmer Drought 

Severity Index reconstructed from tree rings (upper black line; Cook et al., 2004), 

and to record of drought from the Snake River Plain, Idaho (Rittenour and Pearce, 

2011), Mission Cross Bog, Nevada (Mensing et al., 2008), Uinta Range, Utah (Gray 

et al., 2004) and the Midwestern U.S. (Stahle et al., 2007). Red and blue shading 

show timing of the MCA and LIA. Gray shading highlights fire intervals.  

 

These trends suggest a strong link between variable climate and increased fire activity 

because CIRO fires burned fuels accumulated during wetter intervals that were dried 
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during ensuing drought (Figure 21). The greatest fire frequencies were recorded during 

pinyon-juniper expansion (discussed below), indicating that fuel availability was no 

longer a limiting factor and that the ecosystem likely shifted from a fuel-limited system to 

an ignition-limited system, where fire occurrence is limited by probability of ignition 

(i.e., occurrence of convective storms; Romme et al., 2009; Gedalof, 2011).  

The arrival of single-leaf pinyon was followed by a period of moderate fire 

activity between 2400-2000 cal yr BP, when alluvial sediments recorded a minimum 

frequency of 1 fire per ~100 years (Figure 10c). These fires burned during the tail end of 

~2000 years of cooler and wetter climate (~4000-2000 cal yr BP) as suggested by midden 

radiocarbon ages (Figure 10b), when lake levels were elevated in the Bonneville Basin 

(Figure 19a; Murchison, 1989; Miller et al., 2005) and mark the return of fire-related 

debris flows in the stratigraphic record (Figure 10d).  

Optically Stimulated Luminescence (OSL) dating indicates a period of dune 

activity (as a proxy for drought) occurred ~2 ka in the Idaho Falls dune field of the 

Eastern Snake River Plain (Figure 21; Rittenour and Pearce, 2011). At Mission Cross 

Bog in northeastern Nevada, two droughts lasting at least 100 years were observed ~2500 

and ~2200 cal yr BP (Figure 21; Mensing et al., 2008). Both drought records correspond 

well with fires dated between 2400-2000 cal yr BP at CIRO.  

After ~1600 cal yr BP, fires at CIRO match up well with drought intervals from 

tree ring reconstruction of PDSI (Cook et al., 2004), pollen-inferred droughts from the 

Mission Cross Bog (Mensing et al., 2008), and globally widespread climatic intervals 

such as the MCA and LIA (Figure 21). Interestingly, no fires were recorded at CIRO 

between 1500-1000 cal yr BP, when PDSI reconstruction indicates relatively warmer but 
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comparatively less variable climate (Cook et al., 2004; Figure 21).  The ~850-700 cal yr 

BP fire interval that burned towards the end of the MCA at a minimum recorded 

frequency of 1 fire per ~30 years, may correspond to a severe drought dated 1250-1288 

A.D. (760-700 cal yr BP; Gray et al., 2004) and matches well with ~760 yr BP dune 

activation in the Eastern Snake River Plain (Rittenour and Pearce, 2011; Figure 21).  

During the LIA, fire frequency increased to a minimum recorded frequency of 1 

fire per ~20 years between ~ 550-400 cal yr BP (Figure 10c). The fire peak corresponds 

to a persistent drought dated 1444-81 A.D. (510-470 cal yr BP) that impacted the western 

and Midwestern U.S. (Stahle et al., 2007), and another drought dated 1437-1477 A.D. 

(510-470 cal yr BP) measured from tree rings in the Uinta range of northeastern Utah 

(Figure 21; Gray et al., 2004). 

 Following its arrival, single-leaf pinyon expanded slowly and did not establish 

dominance until ~700 cal yr BP (Figure 10c; Table 3). This expansion coincides with 

colonization by two-needle pinyon (Pinus edulis) to Dutch John Mountain in the Uinta 

Range between 1000-800 cal yr BP (Jackson et al., 2005). Expansion of two-needle 

pinyon was episodic and largely controlled by variable climate; in addition drought-

driven removal of Utah juniper may have allowed two-needle pinyon to successfully 

populate the area during subsequently wetter decades (Gray et al., 2006). Perhaps at 

CIRO, single-leaf pinyon expansion was inhibited by fires dated between 2400-2000 cal 

yr BP and 1600 cal yr BP. Or perhaps, fires dated 850-700 cal yr BP stripped the 

landscape of other vegetation, such as sagebrush, which accounted for ~67% of sampled 

charcoal during this interval (Figure 10a), and primed the landscape for single-leaf 

pinyon to take hold as dominant species.  
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High stand densities of pinyon by ~700 cal yr BP likely fueled the greatest fire 

peak on record 550-400 cal yr BP. This fire peak was observed in other alluvial charcoal 

records across a range of ecosystems that include lower elevation and middle elevation 

forests from the Payette record (Pierce et al., 2004), more xeric Wood Creek (Nelson and 

Pierce, 2010), and Newark Pond records (Mensing et al., 2006), as well as, cooler high 

elevation forests of Yellowstone (Meyer et al., 1995) and the Sawtooth range (Svenson, 

2010; Figure 20). These separate ecosystems likely burned differently, for example, in 

the Payette region low-severity fires typical of Ponderosa pine and Douglas fir forests 

were prevalent. At CIRO, a new fire regime likely took hold, and high-severity fires 

typical of pinyon-juniper woodlands (Baker and Shinneman, 2004; Romme et al., 2009), 

and sagebrush steppe (Kauffman and Sapsis, 1989) burned through the area. High-

severity fires, which have been correlated to debris flow activity in the SFP record 

(Pierce et al., 2004) likely increased fire-related debris flow erosion at CIRO (Figure 

10d).  

Historical Fires (200 cal yr BP to Present) 

Repeat photographs of CIRO document increases in pinyon-juniper density and 

downslope infilling during the last ~150 years (Morris, 2006), which is consistent with 

other historical observations of recent pinyon-juniper expansion in the western U.S. 

(Romme et al., 2009). The California trail passes through the southern portion of CIRO 

and many emigrants kept diaries that documented climate, fire, and vegetation at CIRO 

from 1846-1871 A.D. Emigrant accounts suggest cooler and wetter conditions than today 

with descriptions of snow-capped peaks from May through September (Morris, 2006). 
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This timing of active emigration through CIRO corresponds to the close of the LIA, 

which ended ~100 years ago (Grove, 2001).  

One repeat photograph dated 1868 A.D. captures an image of a fire-scarred 

hillslope (Morris, 2006), located directly upslope of site C5 which exposes a fire-related 

debris flow deposit dated ~180 cal yr BP (~1770 A.D.). A 50 cm thick layer of charcoal-

rich sheetfloods overlie this ~180 cal yr BP debris flow deposit suggesting that the 1868 

A.D. fire produced these fire-related sheetfloods (Figure 6; Figure 7). Another 

photograph of a fire-scarred hillslope located in the southern portion of CIRO directly 

upslope of site C14 (Figure 6; Figure 7) has an inferred age from the early 1900’s based 

on the clothing-style worn by the people in the foreground (Morris, 2006). Site C14 

shows no evidence for fire-related deposition associated with this fire. However, the 

hillslope above site C14 is composed of quartzite, while the hillslope above C5 forms a 

contact between upper slope gneiss and lower slope granite. These varying lithologic 

properties between sites likely explain differences in the fire-related erosional response.  

Holocene Shifts in Fire-Related Erosion and Deposition  

 

Changes in the nature of alluvial deposits may reveal shifts in both the nature and 

severity of wildfire, and changes in the density of hillslope vegetation. Post-wildfire 

debris flows can develop on hillslopes during small to average-sized storm events a few 

days to a few years after fire (Meyer et al., 2001; Cannon et al., 2008) when most (but not 

all) of the following conditions are met. First, a fire-induced hydrophobic layer can 

develop within the upper few centimeters of soil (DeBano, 2000), which segregates water 

to the surface and increases runoff during post-wildfire storms (Shakesby and Doerr, 

2006; DeBano, 2000). The thin layer of surface material above the hydrophobic layer 
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saturates quickly because dry soil hydrophobic properties cause rainfall to rapidly exceed 

infiltration rates, and small-scale slope failures (rills) entrain surface ash and burned soil 

(DeBano, 2000). Increased surface runoff can also occur in the absence of a hydrophobic 

soil layer by fire removal of vegetation, surface duff, and litter, which reduces surface 

roughness (Shakesby and Doerr, 2006). In this scenario, small-scale rilling can develop 

when surface runoff entrains ash and burned soil. Extensive rill networks can develop and 

have been observed on hillslopes following fire. A debris flow may develop from rills 

through progressive downslope entrainment of surface ash and burned soil during post-

fire storm events (Meyer and Wells, 1997; Cannon et al., 2001).  

Burned hillslopes have been shown to experience exponential increases in erosion 

as slope increases above 5.7° (Wilcox et al., 2011), and Cannon et al. (2010) identified a 

16.7° slope threshold for debris flow formation. However, mean slopes at CIRO are 

~15.6°, which is steeper than the 5.7° erosional threshold and shallower than the 16.7° 

debris flow threshold (Figure 18), indicating that burned hillslopes will likely experience 

post-fire erosion but may not necessarily develop into debris flows. At CIRO, basins with 

positively skewed slope frequency histograms (Figure 18; Wolinsky and Pratson, 2005) 

and hillslopes composed of grussy colluvium that lack fine silts and clays necessary for 

debris flow development further support modern observations that indicate landform and 

lithologic limitations on debris flow activity. Yet, our record indicates that fire-related 

debris flows were an important erosional process before ~7000 cal yr BP and after ~2500 

cal yr BP (Figure 10d). This suggests that severe fires tipped this landscape past an 

erosional threshold, where debris flows become a dominant process.  
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The notable absence of fire-related debris flow deposition during the warmer and 

drier period between ~7000-2500 cal yr BP (Figure 10d) suggests several scenarios that 

are not mutually exclusive (Figure 22):  

1.  Sufficient colluvial storage and pedogenically-produced silt and clay-sized 

particles needed for debris flow formation were limited by paucity in hillslope 

vegetation. 

2.  A discontinuous fuel source restricted fire size, severity, and frequency. 

3.  Limited precipitation during the warmer, drier mid-Holocene restricted storm 

events needed to produce debris flows.   

The period between ~7000-2500 cal yr BP was marked by the July insolation 

maximum (Berger, 1978), manifested by increased temperatures and aridity in the 

Bonneville Basin (Figure 19a, b and c; e.g., Murchison, 1989; Louderback and Rhode, 

2009) that likely limited vegetation on hillslopes. Such drought-induced vegetation 

removal has been linked to enhanced erosion rates (Allen and Breshears, 1998; Yetemen 

et al., 2010), particularly in arid and semiarid zones (Collins and Bras, 2008). At CIRO, 

charcoal-poor sheetfloods constrained by dated fire-related deposits between ~7000-3600 

cal yr BP indicate that frequent sheetflooding occurred under droughty climate in the 

absence of fire (Figure 6).  

Paleo-fire records, and modern observation, have shown that low-severity fires 

typically produce sheetfloods, while high-severity fires produce debris flow deposits 

(Meyer et al., 1995; 2001; Pierce et al., 2004). During the mid-Holocene, sagebrush, 

juniper, and limber pine were present on the landscape. Sagebrush and juniper woodlands 

do not typically sustain low-severity fires during drier climate when ground fuels are 
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discontinuous. Rather, these ecosystems are prone to high-severity fires that occur under 

more mesic conditions (Baker and Shinneman, 2004; Mensing et al., 2006; Romme et al., 

2009; Bauer and Weisberg, 2009). Such ecosystem conditions may explain periods of 

low fire activity during the bulk of this timeframe. However, frequent fires dated 7200-

6700 cal yr BP that produced thin, muddy debris flows and sheetfloods, likely burned as 

more severe fires. Ignition occurred during drought following a brief moist snap when 

  
Figure 22: Conceptual model of wet climate vs. dry climate and resulting fire-

related erosional response. 
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accumulated fine fuels increased fuel connectivity for fire to spread on an otherwise 

sparsely-vegetated landscape. However, suppressed colluvial storage likely inhibited 

debris flow development during this time.  

After ~2200 cal yr BP, at the end of ~2000 years of cooler and wetter climate 

(Murchison, 1989; Madsen et al., 2001; Miller and Tausch, 2001; Miller et al., 2005; 

Louderback and Rhode, 2009; Betancourt, unpublished data), when vegetation densities 

were increasing, and Utah juniper and single-leaf pinyon were expanding (Table 3), fire 

frequency increased and erosion shifted from predominantly sheetflooding to episodic 

debris flow activity combined with sheetflooding. This erosional shift may be entirely 

attributable to a fuel-driven switch from low-severity to high-severity fires combined 

with increased ash production that provided the fine-textural component necessary for 

debris flow development. However, evidence for soil development suggests that 

increased colluvial storage and increased silt and clay production from soil formation 

may have also played a role.  

In general, well-developed surface soil horizons and buried soils are limited at 

CIRO. In semiarid environments, soil development can be inhibited by lower 

precipitation rates, which decrease vegetation and organic input to soil. Drier climate 

reduces leaching processes responsible for translocation of clays and other minerals into 

stratified soil horizons (Jenny, 1941). Soil development is not only climate-dependent but 

occurs on slopes stabilized by dense vegetation, where erosion rates are low (Jenny, 

1941) and colluvial storage is increased. Two buried soils and one unburied soil 

identified in the CIRO alluvial record were developed on debris flow deposits dated 

~12,740, 2290, and 2240 cal yr BP, when climate was wetter/cooler relative to the middle 
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Holocene (Figure 6). Post ~2200 cal yr BP soils correspond to documented increases in 

vegetation densities after the arrival and during the expansion of Utah juniper and single-

leaf pinyon (Table 3). The reemergence of debris flow activity during the late Holocene, 

coupled with soil formation and increased vegetation densities, suggests that the 

landscape was not only experiencing a modification in fire regime but also an erosional 

and geomorphic shift.  

Land Management Implications 

 The CIRO fire and vegetation record indicates fire has been a natural and 

common component of pinyon-juniper woodlands since colonization, and fires were most 

frequent when pinyon-juniper populations thrived and woodlands expanded. Along with 

increased fire frequency, the fire-related erosional response also changed. High-severity 

fires that burned dense pinyon-juniper stands shifted erosional processes from 

sheetflooding to more catastrophic debris flows. Recent woodland infilling and density 

increases at CIRO (Morris, 2006) suggest increased risk of large and high-severity fires 

in the event of ignition. Along with fire damage, fire-related debris flows would likely 

extend beyond burned area boundaries, and further threaten park structures and 

infrastructure.  

Documented pinyon-juniper invasion into sagebrush ecosystems during the last 

~150 years has been attributed to land management practices that include fire exclusion 

and livestock grazing. However, the CIRO record indicates Utah juniper and single-leaf 

pinyon colonized the area much earlier (~3800 cal yr BP and 2800 cal yr BP, 

respectively) and woodlands have been expanding ever since. Expansion and infilling of 

pinyon-juniper woodlands that began long before historically documented expansion 
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suggests that recent pinyon-juniper dynamics fall within the natural range and variability 

of this system; however, livestock grazing may be enhancing contemporary tree densities 

(Shinneman and Baker, 2009).  

Future fires combined with an overall drier and warmer climate may be 

detrimental to the limber pine and Rocky Mountain juniper populations at CIRO, which 

likely exist as relict species from a colder and wetter Pleistocene climate (Figure 4). In 

the event of pinyon-juniper woodland ignition, high-severity fires could remove these 

holdover tree species because regeneration may be difficult under modern warmer, drier 

conditions (Figure 4). Fires would likely spread into already threatened sagebrush steppe 

that forms the ecotone boundary at CIRO, and post-fire invasion by cheatgrass, as 

observed in the southern portion of CIRO following the 2000 fire, would further alter fire 

regimes.  
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CONCLUSIONS 

Changes in climate produced shifts in vegetation populations, fire regimes, and 

geomorphic processes during the last 13,000 years at CIRO. This study documents these 

changes and may provide a useful analog for modern climate-driven relationships among 

fire, vegetation, and erosion.  

Frequent fires burned between 10,700-9500 cal yr BP, during abruptly warming 

and drying climate of the Pleistocene-Holocene transition. These fires produced debris 

flows, suggesting high-severity, stand-replacing fires (Meyer et al., 2001; Pierce et al., 

2004) that burned dense forests developed during the late Pleistocene. Wetter climate 

followed, when no fires were recorded between 9500-7200 cal yr BP, indicating that fires 

were suppressed by moist conditions (i.e., moisture-limited fires).  

During the middle Holocene, frequent fires burned between 7200-6700 cal yr BP. 

Climate during this time was characterized by extended warmer, drier conditions 

(Murchison, 1989; Louderback and Rhode, 2009; Shuman et al., 2009; Corbett and 

Monroe, 2010), however fires were preceded by briefly wetter climate that supplied fine 

fuels and increased fuel connectivity. Mid-Holocene fires produced sheetfloods instead of 

debris flows, suggesting lower severity fires on sparsely vegetated hillslopes (Meyer et 

al., 2001; Pierce et al., 2004). No fires were recorded between 6700-4700 cal yr BP when 

prolonged drought limited fuels, suggesting a fire regime shift from a moisture-limited 

system to a fuel-limited system. 
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Following the arrivals of Utah juniper and single-leaf pinyon (~3800 and ~2800 

cal yr BP, respectively), clusters of high-frequency fires were recorded at 2400-2000, 

850-700, and 550-400 cal yr BP. These fires produced debris flows and burned during 

longer-term (10
2
-10

3 
years) wet, cool periods when ecosystem productivity was high 

(Betancourt, unpublished data), however ignition occurred during annual and decadal 

droughts (e.g., Cook et al., 2004; Gray et al., 2004; Stahle et al., 2007; Mensing et al., 

2008; Nelson and Pierce, 2010; Rittenour and Pearce, 2011). Higher severity fires in 

expanding pinyon-juniper woodlands were likely no longer limited by fuel availability 

but rather by climate control on ignition (i.e., ignition-limited system).  

We propose a conceptual model of Holocene climate control on vegetation and 

fire, and the resulting geomorphic processes (i.e., debris flows vs. sheetfloods). During 

the early and late Holocene, wetter climate increased forest densities, which in turn 

stabilized hillslopes and increased colluvial storage. Larger, high-severity fires fueled by 

abundant vegetation produced fire-related debris flows (Meyer et al., 2001; Pierce et al., 

2004). At the same time, increased colluvial storage on more stable, densely vegetated 

hillslopes supplied material for debris flow development. During the middle Holocene, 

prolonged drought decreased vegetation densities and limited fire activity. Grussy, 

sparsely vegetated hillslopes produced frequent sheetflooding in the absence of fire, 

therefore limiting colluvial storage. Low-severity fires that burned less densely vegetated 

hillslopes with limited colluvial material produced fire-related sheetflooding instead of 

episodic debris flows. Although the gently-sloping, granitic terrain at CIRO is not 

conducive to debris flow formation, debris flows deposited during the early and late 

Holocene suggest that fire has pushed erosional responses past geomorphic thresholds. 
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The fire intervals dated 7200-6700 and ~550 cal yr BP are corroborated by 

multiple alluvial charcoal records that span a range of ecosystems from Idaho and 

Yellowstone National Park (Meyer et al., 1995; Pierce et al., 2004; Svenson, 2010; 

Nelson and Pierce, 2010). Such widespread fire implies significant regional climate 

forcings. During the middle Holocene, regional drought likely drove regionally 

widespread fires, while during the LIA regional fires burned during globally cooler and 

wetter conditions. Although these fires burned at roughly the same time in response to 

similar climate conditions, the nature of fires (i.e., high-severity vs. low-severity fires) 

likely varied according to ecosystem and pre-fire fuel conditions.  

Since pinyon-juniper colonization of CIRO, high-severity wildfires have burned 

dense fuel loads that were accumulated and subsequently dried during periods of variable 

climate (Cook et al., 2004). Recently, pinyon-juniper woodlands have increased in 

density and expanded into neighboring vegetation committees at CIRO (Morris, 2006) 

and throughout the western U.S. (Romme et al., 2009).  Dense woodland conditions 

combined with increased potential for climate extremes in both precipitation and 

temperatures caused by amplified levels of atmospheric greenhouse gases (e.g., Groisman 

et al., 2005; Duffy and Tebaldi, 2012) suggest elevated risks of catastrophic fires and 

fire-related debris flows. 
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Table A1: Summary of field notes. 

 

____________________________________________ 

 
1
 Texture types: S = sand, Si = silt, Cl = clay, and L = loam. 

 
2
 Process: DF = debris flow, SF = sheetflood, OB = overbank, CF = channel flood, BS = burned surface. 

 

 

 

Site A1:  Active channel on Almo Creek Elevation:  1858 m Coordinates:  42° 08.502N, 113° 39.873W

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-80 0-110 30% Si-L DF

undated debris flow incised older 

sheetfloods, ~200 cm wide, 20-year old 

sagebrush at surface, upstream ~10 m is 

another incised and filled DF

80-110 20-40 10-15% L SF 520

sampled from fine-unit of sheetflood couplet 

that is charcoal rich

110-

150 40-60 40% LS SF

150-

190 20-40 25% SL SF 2,470

sampled from fine-unit of sheetflood couplet 

that is charcoal rich

190-

200 CF

active channel deposits b-max = 30 cm, 

base of exposure

Site A2:  Arroyo near Almo Creek Elevation:  1805 m Coordinates:  42° 07.944N, 113° 40.057W

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-85 20-90 20% Si-Cl-L DF

weak soil development in upper 25 cm, 

weak A, B horizons thin O horizon, Munsel 

color:  (wet) 2.5y 2.5/1, maximum  clast size 

is 2 cm, angular clasts, matrix supported, 50 

year old pinyon at surface (trunk looks 

buried by sheetfloods)

85-120 30-40 25% SL SF

no couplets evident, resembles modern 

arroyo channel

120-

135 10-15 50%/15% S/L SF

6 sheetflood couplets with alternating 

light/dark color, texture for coarse/fine 

component of couplets

135-

180 20-25 50%/5% S/Si-L SF

2 sets of thick sheetflood couplets, ~5-10 

cm each, texture for coarse/fine, alternating 

dark fine, charcoal-rich units with coarse 

lighter colored units

180-

200 20-25 30% S SF 810

no couplets evident, resembles modern 

arroyo channel, bottom of exposure
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Table A1 continued: Summary of field notes. 

 

 

____________________________________________ 

 
1
 Texture types: S = sand, Si = silt, Cl = clay, and L = loam. 

 
2
 Process: DF = debris flow, SF = sheetflood, OB = overbank, CF = channel flood, BS = burned surface. 

Site S3: Incised alluvial fan near Stines Crk Elevation:  1798 m Coordinates:  42° 07.437N, 113° 40.137W 

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-70 50-70 10-15% Si-C-L DF?

soil developed on DF?  Munsel color: (wet) 

10 yr 2/2, long blocky vertical peds, well-

developed A and B horizons, 50-100 yr old 

sagebrush at surface 

70-102 25-35 < 5% LS SF?

charcoal present, lighter color than upper 

and lower deposits 

102-

105 1-3 < 5% Si-C-L BS 12,740 burned soil surface, grungy charcoal present

105-

140 25-40 < 5% Si-C-L DF?

buried soil developed on DF?  Munsel color: 

(wet) 10 yr 4/3, base of exposure

Site G4:  Active channel on Graham Creek Elevation:  2155 m Coordinates:  42° 06.440N, 113° 43.125W

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-50 20-60 15% Si-Cl-L DF

matrix supported w/ flecks of charcoal 

throughout, maximum clast size is 15 cm, 

mature 50+ year old riparian trees on 

surface

50-75 20-25 60% S/LS SF

very wavy, clast supported, maximum clast 

size 5 cm

75-120 30-50 5% Si-L DF 1,560

very charcoal rich, lenses of sheetflood 

deposits, base of exposure

Site C5:  Arroyo site near North Fork Circle Elevation:  1864 m Coordinates:  42° 05.690N, 113° 41.975W

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-45 40-50 30% LS SF

no couplets evident, resembles modern 

arroyo channel, very weak soil development, 

no O horizon, no B horizon, charcoal 

present, 10-20 yr old sagebrush and bunch 

grass at surface 

45-110 50-60 50%

Si-L/              

Si-Cl-L DF 180 abundant charcoal 

110-

200 50-60 20% L/Si-L DF

buried soil?  Munsel color: wet 7.5 yr 3/2, 

burned root present, base of exposure 

(bedrock channel)
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Table A1 continued: Summary of field notes. 

____________________________________________ 

 
1
 Texture types: S = sand, Si = silt, Cl = clay, and L = loam. 

 
2
 Process: DF = debris flow, SF = sheetflood, OB = overbank, CF = channel flood, BS = burned surface. 

Site C8:  Arroyo near South Fork Circle Elevation:  1848 m Coordinates:  42° 04.595N, 113° 42.697W  

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-40 30-40 30% LS SF

charcoal rich, surface is 25-50 yr old 

aspens, pinyon, juniper, weak soil 

development, thin O, weak B, Munsel color: 

(wet) 10 yr 3/1, no visible couplets

40-140 90-100 25% Si-L DF 710

thick unit, with clasts slightly larger than 

matrix material (maximum clast size = 5 cm)

140-

200 40-60 25%/15% SL/Si-L SF 4,490

4 sheetflood couplets, one dark grungy unit 

near top

0-40 40-50 25%/15% SL/Si-L SF

across drainage from upper 200 cm 

(coordinates: 42° 04.602N, 113° 

42.690W), this unit corresponds to 

sheetfloods exposed between 140-200 cm 

on opposite bank, similar surface soil 

development

40-150 80-120 25% Si-L DF

some charcoal present, right side forms 

sheetflood couplets

150-

175 15-25 5% Si-Cl-L DF 9,550 very fine-grained debris flow, charcoal rich

175-

200 20-30 25% S/LS SF

textures for coarse/fine, coarser unit than 

other sheetfloods at site

200-

280 60-100 25% S/LS SF 10,290

5 couplets, textures for coarse/fine, upper 25 

cm may be thin debris flow, dated sample 

from continuous darkened charcoal rich thin 

fine grained SF unit at 260 cm

280-

350 50-75 25% S/LS SF 10,620

9 well-stratified very thin SF couplets with 

dated sample from continuous darkened 

charcoal rich fine grained SF unit, base of 

exposure

Site C9:  Arroyo near South Fork Circle Elevation:  1848 m Coordinates: 42° 04.585N, 113° 42.783W   

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-25 20-30 15% LS SF

weak soil development, A horizon over O 

horizon, no B horizon, some cc

25-30 3-7 15% LS OB 390 fine unit of sheetflood, very charcoal rich

30-112 70-90 40%/10% S/LS SF

9 sheetflood couplets, texture done on 

coarse/fine unit, charcoal present throughout 

but not abundant

112-

145 5-30 15% LS DF organic and wood rich, poorly sorted

145-

160 15 10% LS/SL SF 490 possible buried soil, charcoal rich 

160-

210 40-50 40%/5% S/LS SF

5 sheetflood couplets that are ~4 cm thick, 

texture done on coarse/fine units, base of 

exposure
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Table A1 continued: Summary of field notes. 

 

 

 

 

 

 

 

____________________________________________ 

 
1
 Texture types: S = sand, Si = silt, Cl = clay, and L = loam. 

 
2
 Process: DF = debris flow, SF = sheetflood, OB = overbank, CF = channel flood, BS = burned surface. 

Site C10:  Active channel on South Circle Crk Elevation:  1870 m Coordinates: 42° 04.645N, 113° 42.852W

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-130 50-130 15% SL/L DF

charcoal present, surface is riparian willow, 

aspen, juniper ~50 years old, debris flow 

originates from an incised arroyo to south, 

this is the same debris flow as dated (below) 

from Site C11, pinches out downstream, soil 

development, mottling, Munsel color for 

both mottled colors: (wet) 7.5 yr 2.5/1, 2.5 

yr 5/2

130-

150 20-20 <5% Si-Cl-L SF 3640

possibly also burned surface or thin debris 

flow, hardened unit--2 dark layers separated 

by coarser unit, continuous downstream for 

15 m(where charcoal was actually sampled), 

charcoal rich

150-

250 100-170 40%/5% S SF

texture done at 165 cm and 240 cm, 

sheetflood with no evident couplets, wavy 

base 

250-

350 10-100 40% Si-L OB 10,720

sample taken from charcoal rich unit at top 

of overbank deposit, although charcoal 

throughout unit, base of exposure

Site C11:  Arroyo tributary of South Circle Crk Elevation:  1871 m Coordinates: 42° 04.599N, 113° 42.884W

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-40 10-40 20% L/SL DF

weak soil development, intact micas 

indicates young soil, Munsel color: (wet) 7.5 

yr 2.5/1, A horizon weak B horizon, 

moderately steep hillslope above exposure, 

no mature trees, only bunch grasses

40-120 50-75 25% SL DF 2,290

charcoal rich debris flow, same debris flow 

that tops Site C10, inverted age

120-

170 50-60 50% S CF 2,010

channel flood, maximum clast size is 30 cm, 

base of exposure, inverted age
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Table A1 continued: Summary of field notes. 

 

____________________________________________ 

 
1
 Texture types: S = sand, Si = silt, Cl = clay, and L = loam. 

 
2
 Process: DF = debris flow, SF = sheetflood, OB = overbank, CF = channel flood, BS = burned surface.  

Site C12:  Arroyo site near South Circle Crk Elevation:  1863 m Coordinates: 42° 04.557N, 113° 42.509W

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-85 75-100 20%/15% SL SF 450

3 cm O horizon, weak soil development, A 

horizon Munsel color: (wet) 10 yr 2/1, 50-

75 year old sagebrush at surface, very 

charcoal rich, sample taken from 50-75,  cm 

depth, texture done for coarse/fine 

sheetfloods, 10 couplets

85-175 100 30%/<5% LS/Si-L SF 610

texture done on coarse/fine sheetflood units, 

fine component of sheetfloods are very 

charcoal rich, sample taken at 120 cm

175-

200 50-75 15% Si-L DF 690

darkened fining upward debris flow deposit, 

clasts at bottom maximum clast size is 20 

cm, sample taken from charcoal rich base of 

unit, lower boundary forms abrupt boundary 

between underlying unit

200-

260 50-60 20% S SF/DF 6,830

2 other fine-grained, undated units above 

this, black grungy fine-grained continuous 

debris flow interbedded by sheetfloods, 

sampled at 250 cm

260-

335 60-80 30%/15% LS SF/DF 6,950

11 sheetfloods, charcoal sampled from thin, 

black, grungy continuos debris flow unit 

interbedded by sheetfloods, texture done on 

coarse/fine couplets

335-

380 40-50 30%/15% LS SF/DF 7,210

6 sheetflood couplets, bottom of unit is fine-

grained thin debris flow interbedded in 

sheetfloods, sampled at 380 cm, texture 

done on coarse/fine couplets

380-

425 40-50 30%/15% LS SF 5 couplets, no charcoal present

425-

500 75 20% Si-L SF/DF

similar thin charcoal rich debris flow 

interbedded by sheetfloods, submitted 

charcoal sample to lab but sample dissolved, 

so undated, base of exposure

Site C13:  Arroyo site near South Circle Crk Elevation:  1845 m Coordinates: 42° 04.743N, 113° 42.448W

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-5 1-5 20% LS SF

cored a pinyon on surface = 20 years old, 

very young soil, weak development thin A 

horizon, weak B

5-60 40-65 40%/20% LS SF

charcoal rich, texture done on coarse/fine, 6-

7 sheetflood couplets

60-100 40-50 15% LS DF 180

charcoal rich, poorly sorted, base of 

exposure 
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Table A1 continued: Summary of field notes. 

 

____________________________________________ 

 
1
 Texture types: S = sand, Si = silt, Cl = clay, and L = loam. 

 
2
 Process: DF = debris flow, SF = sheetflood, OB = overbank, CF = channel flood, BS = burned surface 

Site C14: Active channel main fork of Circle Crk Elevation:  1758 m Coordinates: 42° 04.618N, 113° 40.637W

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-45 40-50 10% Si-L DF

Thin O horizon, A horizon at 10 cm Munsel 

color: (wet) 2.5 y 2.5/1, B horizon at 20 cm 

B Munsel color: (wet) 10 yr 3/1, very 

hardened at 20 cm = higher clay content, 

older soil than most sights

45-105 50-70 30% SL DF 4,680

continuous darkened unit at base, sample 

taken at 80 cm at upstream exposure

105-

170 50-75 50%/5% SL/Si-Cl-L SF

pinching out sheetfloods alternating 

coarse/fine, texture done on coarse/fine, 

charcoal present

170-

215 40-50 <5% Si-Cl-L OB/SF 6,680

sample taken at 180 cm from upstream 

location, charcoal rich overbank unit 

215-

230 10-20 50% LS SF 7,080

coarser unit that is very charcoal rich in a thin 

continuous band

230-

350 20-30 50% LS SF

probably same unit as above but no charcoal 

present, base of exposure

Site H15:  Arroyo site in upper Heath Canyon Elevation:  2016 m Coordinates: 42° 03.985N, 113° 43.730W

Depth 

(cm)

Thickness 

(cm)

Texture     

(% >2 mm) Texture (type)
1

Process
2

Age            

(cal yr BP) Notes 

0-170 0-180 15% SL SF 180

sample taken at 40 cm, ~8 sheetflood 

couplets, surface is 75-100 year old 

sagebrush, weak soil development A horizon 

Munsel color: (wet) 10 yr 3/1, charcoal rich 

throughout, sheetfloods pinch out

170-

330 100-150 15% L/SL DF 2,240

buried well developed soil, 170-250 cm 

Munsel color: (wet) 10 yr 2/1, 250-330 cm 

Munsel color: (wet) 10 yr 2/2, mottled 

appearance, lightens in color downward

330-

335 5-10 15% Si-L DF 6,720

abrupt boundary between upper and lower 

unit, very thin, fine-grained debris flow

335-

420 50-60 30% LS SF/DF 7,170

5 couplets with absent charcoal, overlying 

thin debris flow at 420 cm (sampled unit) 

with abundant charcoal and abundant 

obsidian fragments (archeological 

implications??)

420-

480 40-45 30% LS SF 2 sheetflood couplets, no charcoal

480-

485 2-5 <5% Si tephra

rich in glass fragments (examined with 

handlense and under microscope), 

unidentified ash unit

485-

500 10-20 15% Si-L DF 9,970 thin charcoal rich debris flow deposit

500-

575 50-75 15% L OB 11,540

charcoal rich unit, possibly a debris flow but 

hard to distinguish process type, base of 

exposure


