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ABSTRACT 

More than 20,000 km
2
 of sagebrush (Artemesia spp.) ecosystems within the Great 

Basin have been replaced, often following wildfire, by the nonnative winter annual 

cheatgrass (Bromus tectorum). At a field site in the central Snake River Plain of southern 

Idaho, the impact of this invasion on the soil carbon (C) reservoir has been evaluated and 

the potential soil C benefits of bunchgrass (Agropyron cristatum) seeding was assessed. 

Using a large soil C dataset (n = 850), differences in total organic carbon and root 

biomass were quantified in immediately-adjacent sagebrush, cheatgrass, and bunchgrass 

communities. Statistical significance was determined by employment of nonparametric 

analysis using bootstrap resampling and the two-population Kolmogrov-Smirnov test for 

statistical significance. Replacement of sagebrush by cheatgrass following fire has 

resulted in a 50% loss in below-ground carbon (56 to 29 Mg C ha
-1

, over a 27 yr period), 

with decreased root-C accounting for 20% of the total below-ground carbon loss. 

Bunchgrass seeding immediately following the fire reduced the amount of C lost to 

sagebrush degradation by 30% (31 vs. 40 Mg C ha
-1

). There is a positive relationship 

between above-ground biomass and below-ground soil carbon, however C loss is an 

order of magnitude greater in below-ground compared to above-ground C pools           

(27 vs. 3 Mg ha
-1

). Observed changes in soil structure, in particular the loss of large soil 

aggregates, and altered soil moisture conditions may contribute to the observed soil 

carbon loss. Extension of these results to the entire Great Basin, suggest the total below-
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ground carbon loss with cheatgrass invasion is on the order of 60 Mt C and projected 

losses may exceed 2 Gt C. Conversely, treatment with bunchgrass or recovery of the 

original sagebrush may achieve similarly large carbon storage benefits. 
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CHAPTER ONE: INTRODUCTION 

1.1  Degradation and Reclamation of the Sagebrush-steppe Ecosystem 

The sagebrush-steppe ecosystem (Artemisia spp.) is one of the most expansive in 

the U.S., covering approximately 480,000 km
2
 and distributed across 13 states (Connelly, 

Knick, Schroeder, & Stiver, 2004). Healthy sagebrush-steppe ecosystems (sagebrush) are 

important social and economic resources that support a diversity of wildlife and livestock 

grazing (Mack et al. 2000). However, during the last century sagebrush-steppe 

communities of the Great Basin and elsewhere have been dramatically affected by 

climate change and anthropogenic activities where, often following wildfire or other 

disturbance, invasion by the nonnative winter annual, cheatgrass (Bromus tectorum), is 

widely observed (Bradley 2009). Cheatgrass invasion reduces ecosystem function by 

diminishing resources such as livestock grazing and wildlife diversity. This ecological 

shift is challenging to remediate because, once established, cheatgrass is more fire prone, 

limiting the ability of more slow growing sagebrush to compete (DiTomaso 2000). 

Accordingly, cheatgrass infestation has been a cause of ecosystem degradation 

throughout the Intermountain West, specifically within the Great Basin (Bradley 2009; 

Connelly et al. 2004). A qualitative survey conducted by the U. S. Bureau of Land 

Management (BLM) in 1991 that spanned 400,000 km
2 

(Idaho, Oregon, Nevada, Utah, 

Washington), estimated that cheatgrass has displaced over 11,000 km
2
of sagebrush 

habitat and become a major understory component in a further 57,000 km
2
 of BLM-

managed public lands (Pellant 1994). More recently, Bradley & Mustard (2005) analyzed 
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satellite imagery and mapped over 20,000 km
2
 of cheatgrass monocultures within the 

Great basin, whereas Bradley (2009) mapped 760,000 km
2
 of land in the western U.S. at 

risk of cheatgrass invasion under current climatic conditions. 

One promising solution to cheatgrass degradation of sagebrush ecosystems 

involves introducing species other than sagebrush that are more effective competitors (M. 

Pellant, 2010, personal communication).  One such strategy that has shown success is 

seeding certain bunchgrass species such as Crested Wheatgrass (Agropyron cristatum) 

either immediately following fire or after active removal of cheatgrass. Once bunchgrass 

is established, it may then be possible to reintroduce sagebrush (M. Pellant, 2010, 

personal communication).   

The goal of this research was to quantify changes in below-ground carbon storage 

associated with: (1) cheatgrass degradation of sagebrush ecosystems and (2) cheatgrass 

remediation via bunchgrass seeding. This was done in an effort to provide the framework 

for a long-term approach to mitigate CO2 emissions while simultaneously improving the 

health of cheatgrass-degraded sagebrush ecosystems. 

1.2  Previous Research 

1.2.1  The Soil Carbon Reservoir: Functional Pools and the Influence of Vegetation 

There are large differences in the physiology of plant species, implying that a 

change in species dominance can greatly affect the degree to which carbon (C) is 

introduced and retained in soils. Consequently, a shift in the dominant plant life form can 

alter the size and nature of the underlying soil C reservoir. Such physiological shifts are 

apparent in plant communities that represent degradation and improvement of disturbed 
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sagebrush (cheatgrass and bunchgrass, respectively), where senescence of cheatgrass, 

bunchgrass, and sagebrush occurs in late spring, early summer, and late summer, 

respectively. Cheatgrass allocates much of its resources to seed and shoot production 

while generating a dense and shallow root system (Upadhaya, Turkington, & McIlride 

1986), whereas sagebrush and bunchgrass dedicate more resources to producing deeply 

penetrating perennial root systems (Caldwell, White, Moore, & Camp 1977; Dahlman & 

Kucera 1965; Hooker et al. 2008). These differences reflect the timing and duration of 

CO2 fixation, as well as the allocation of that carbon, and thus the size of the soil C 

reservoir. 

Carbon derived from living and dead roots is extremely important to below-

ground C fluxes (Jackson, Mooney, & Schulze 1997). Living roots contribute carbon in 

the form of sugars and organic acids through rhizodeposition, whereas dead roots are 

incorporated into the soil matrix by bacterial decomposition (Stevensen 1994). Roots tend 

to be more resistant to decomposition than above-ground litter because of high lignin 

content (Lorenz & Lal 2005) and, consequently, increased root input promotes C storage. 

In addition, some researchers have documented variability in root turnover rates with 

depth (Gill, Burke, Milchunas, & Lauenroth 1999; Ares 1976; Dahlman & Kucera 1965); 

this is an important distinction because the residence time of root-derived C may vary 

with depth due to changing soil temperature and moisture regimes (Gill, Burke, 

Milchunas, & Lauenroth 2002). 

Carbon respiration is equally critical in determining the size of the soil C reservoir 

and can be largely influenced by vegetation (Lorenz & Lal 2005). Both the composition 

and timing of inputs for above- and below-ground material are important to carbon 
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mineralization rates. Similarly, higher soil moisture and temperature can enhance 

respiration rates while being influenced by vegetation (Wedin & Tilman 1990, Gill et al. 

1999).  

There are specific functional pools within the soil C reservoir, each having unique 

dynamics and residence times (Lorenz & Lal 2005; Christensen 1992; Stevensen 1994; 

Gill & Burke 1999).  An accurate description of the C budget impact of vegetative shifts 

therefore requires quantification of specific C pools. Total carbon (TC) within soils 

includes total inorganic carbon (TIC) and total organic carbon (TOC). TIC consists of 

carbonates that are deposited by processes of soil formation, whereas TOC represents all 

organic carbon that is the product of biological activity in any stage of decay (Christensen 

1992). TOC can be classified as either root-C or soil organic carbon (SOC).  In this study, 

root-C represents various types of plant residue within soil that is greater than 250 µm, 

including roots and other partially decomposed material, whereas SOC is a metabolic 

product of root-C. SOC typically has longer soil residence times in soils (Brady & Weil 

2008; Stevenson 1994).  

The development of soil structure can strongly influence the nature and degree of 

soil carbon sequestration (Six, Bossuyt, Degryze, & Denef 2004). Soil macroaggregates 

(>250 µm) can form within soils, physically preserving root-C and SOC. Within 

macroaggregates, metabolized organic C becomes encrusted with clay particles and 

microbial products, forming very stable microaggregates (250 -53µm). Eventually, these 

microaggregates break down into less stable silt- and clay-sized organo-mineral 

complexes (Six et al. 2004). Stable isotope and radiocarbon studies have corroborated the 

theory that soil C residence times are negatively correlated to SOC aggregate sizes 
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(Christensen 1992; Gill & Burke 1999; Del Galdo, Six, Peressottis, & Cotrufo 2003; 

Marzioli et al. 2010; and others), although whether or not this trend is due to organic 

recalcitrance or physical exclusion is still debated (McCarthy, Ilvasky, Jastrow, Mayer, & 

Perfect 2008). Therefore, in order to accurately describe changes in SOC storage and 

dynamics, it is important to investigate changes in the distribution of SOC within soil 

aggregates. 

1.2.2  Soil Carbon Investigation within Sagebrush-steppe Ecosystems 

Several researchers have attempted to quantify C budget changes associated with 

shifts in species dominance of semi-arid ecosystems (Gill & Burke 1999; Potter, Torbert, 

Johnson, & Tischler 1999; Chen & Stark 2000; Norton, Monaco, Norton, Johnson, & 

Jones 2004; Hooker et al. 2008; Rau, Johnson, & Blank 2011) (Table 1). In comparing 

the SOC content of near surface soils (0-10 cm), Hooker et al. (2008) reported cheatgrass 

to have significantly higher SOC content compared to sagebrush soils, whereas Gill et al. 

(1999) found higher soil carbon content within shrubs (Atriplex confertifolia) compared 

to cheatgrass. Norton et al. (2004) found no significant differences in near surface C 

between sagebrush-steppe and cheatgrass soils. Norton et al. (2004) also observed the 

most variability in OC content of cheatgrass soils compared to the shrub-grass-interspace 

soils in sagebrush, as proposed by Chen and Stark (2000). This lack of scientific 

consensus on the impact of cheatgrass invasion on the soil C reservoir may be attributable 

to: (1) variability in stand age, (2) level of cheatgrass encroachment, (3) contrasting 

concentrations of antecedent soil carbon, and (4) differences in experimental design. 

Potter et al. (1999) found SOC to be linearly correlated with stand age in reclaimed 

grasslands, and Rau et al. (2011) showed the level of cheatgrass invasion to be inversely 
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correlated with OC content. Importantly, Rau et al. (2011) concluded that replacement of 

perennial grasses with cheatgrass could result in a net loss of 6-9 Mg C ha
-1

 for sagebrush 

ecosystems, while also predicting loss of sagebrush to cause a further decline in SOC 

content.  

Potter et al. (1999) documented a significant decrease in SOC when grasslands 

were degraded by cultivation (inversion tillage) and that subsequent restoration of these 

grasslands produced a linear increase in SOC storage (447 kg C ha
-1

 yr
-1

). Similarly, Del 

Galdoet al. (2003) used 
13

C stable isotope signatures to show that forestation of cultivated 

lands significantly increased SOC within distinct aggregate sizes. The results of these 

studies are potentially relevant as several researchers have likened the effects of 

cheatgrass invasion to cultivation for agriculture (Norton et al. 2004; Schimel 1986). In 

this study, we quantify differences in below ground carbon with cheatgrass invasion, 

demonstrating, for the first time, dramatic declines in soil carbon content.  
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CHAPTER TWO: MATERIALS AND METHODS 

2.1  Introduction 

Key components of our research approach included (1) locating a site with 

homogeneous properties of climate, soil, and stand age, (2) designing efficient field and 

lab methods that facilitate the processing of large quantities of samples, (3) accurately 

quantifying distinct C pools, and (4) using statistical analyses to quantify uncertainty of 

observed trends. 

2.2  Study Site 

2.1.1  Site Location 

Kuna Butte, located in the western Snake River Plain of Southern Idaho 

(43°27’55”N,  116°28’55” W, elevation 915 m; Figure 1), is public land administered by 

the Bureau of Land Management (mean temp and precipitation is 11 °C and 280 mm yr
-1

, 

respectively). The soil (70 to 90 cm total depth) is a loamy, mesic shallow Xerollic 

Duragid, with parent material of loess over basalt bedrock (Barker, McDole, & Logan 

1983), providing relatively flat topography. Approximately 20 cm of duripan lies above 

bedrock, providing an ideal boundary condition for quantifying C pools. 

Covariates between vegetative stands are minimal at Kuna Butte, owing to a 

juxtaposition of the three plant communities representing each stage of sagebrush 

alteration (initial condition, cheatgrass-degraded, and partially reclaimed). Importantly, 
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the vegetative stands representing stages of sagebrush alteration (cheatgrass and 

bunchgrass) have been established for equal and extended periods of time, potentially 

long enough to affect soil C stores; this conjecture is based on the work of Potter et al. 

(1999) who documented differences in soil C of reclaimed agricultural soils after six 

years of growth.  

2.1.2  Site History 

Kuna Butte experienced a wildfire in the spring of 1983, which consumed a large 

portion of sagebrush, except for an area that was excluded from fire due to the presence 

of a small dirt road (Figure 2). In late fall of 1983, a 25 m wide strip of Fairway Crested 

Wheatgrass (Agropyron cristatum) was drill seeded (4.5 lbs·seed·acre
-1

) beginning near 

the road. The spring of 1984 revealed that the seeded area had high germination and 

growth rates, and cheatgrass (Bromus tectorum) dominated the adjacent unseeded area 

(Johansen 1984). The path of crested wheatgrass (bunchgrass) seeding was well 

pronounced at the time of this study, forming a sharp transition between bunchgrass and 

cheatgrass communities, indicating that neither grass species has invaded the other since 

establishment. Conversely, cheatgrass has remained present in sagebrush interspaces, 

occupying approximately 80% of sagebrush interspace during the time of this study. 

2.2  Field Methods 

2.2.1  Soil Sampling for Total Carbon (TC), Total Organic Carbon (TOC), Soil Organic 

Carbon (SOC), and Below-ground Biomass (Rb) 

Along four 30 m long transects (15 m in each vegetation type) orientated 

perpendicular to species community boundaries, soil cores were extracted at a 1 m 
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spacing. The four sampling transects crossed the species boundaries in the following 

manner: cheatgrass/bunchgrass (C/B), cheatgrass/sagebrush (C/S), sagebrush/bunchgrass 

(S/B), and cheatgrass/bunchgrass (C/B 2).  Due to the presence of the road, the two 

transects including sagebrush were discontinuous. Accordingly, each half of the C/S and 

S/B transects began more than 10 m from the road to avoid potential disturbances. This 

sampling scheme was designed to compare the effects of species dominance and natural 

variation of plant biomass and soil carbon, but also to investigate changes in soil carbon 

with respect to distance from species boundary.  

All samples were collected from July to early September of 2010 using a 7 cm 

sand auger (AMS, 300.41). This auger provided the ability to remove and retain roots, 

allowing estimation of below-ground biomass in each plant community. The upper 3 cm 

of soil was sampled using a bulb planter to isolate elevated C content from litter 

incorporation. Following removal of the upper 3 cm of the soil profile, samples were 

collected at 5 cm increments to a depth of 18 cm and every other 5 cm increment was 

retained for analysis thereafter. Sampling depth did not exceed 58 cm because this was 

approximately the depth at which duripan was encountered. Samples were stored in 

plastic bags and frozen at -10 °C until analysis. 

2.2.2  Soil Sampling for Aggregates Containing of Soil Organic Carbon 

Soil aggregate samples were collected within the same transects established for 

soil carbon samples. A 7 cm sand auger (AMS, 300.41) was used to remove the upper 0-5 

cm of soil and a 5 cm diameter slide hammer (AMS, 404.61) was used to collect a 

continuous 10 cm sample from 5-15 cm. This depth increment was chosen for aggregate 

sampling because it was deemed to be actively influenced by root exudation and assumed 
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to be deep enough so that influence of above-ground processes are insignificant. All 

samples were stored at 10 °C until analysis could be carried out. 

2.2.3  Soil Sampling for Bulk Density and Grain Size 

Four soil pits, each located throughout the study site and within contrasting plant 

communities (Figure 2), were excavated by hand to allow field classification of soil 

properties following USDA protocols (SSDS 1993). Samples were collected from pit 

walls with a 5 x 10 cm diameter slide hammer (AMS, 404.61) for laboratory analysis of 

grain size and bulk density. All samples were centered at the same depth increments as 

those for soil carbon analysis, excluding the 0-3 cm increment. If compaction of samples 

was evident, the sample was discarded and another was collected. 

2.2.4  Quantification of Canopy Cover 

Canopy cover was estimated in an effort to quantify potential differences between 

sample locations but within plant communities. However, cheatgrass communities were 

not included in estimation of canopy cover because little to no bare ground was present 

within transects and all populations were assumed to be monocultures representing 100% 

canopy cover. Canopy cover was estimated by linearly classifying ground cover as either 

bare ground, beneath canopy, or invaded by cheatgrass, at a resolution of 5 cm along each 

transect. Additionally, the number of soil cores taken beneath canopy for each transect 

was documented.  

2.2.5  Sample Collection of Above-ground Biomass 

Above-ground biomass was estimated for each plant community following U.S. 

Department of the Interior protocols (Habich 2001). For cheatgrass and bunchgrass, three 
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9 m
2
 plots representing the range in biomass for each species was selected for destructive 

harvest. For sagebrush communities, six 6.25 m
2
 plots were selected as being 

representative and cut to the soil surface. A wood chipping device was used to 

homogenize biomass and to ease transport and weighing for sagebrush populations. All 

samples were subsequently dried until no further decrease in mass was observed and 

weighed to determine moisture content. Biomass was estimated on a mass per unit area 

basis for entire stands. Dried biomass samples were frozen (-10 °C) until analyzed for 

carbon content. 

2.3  Laboratory Methods 

2.3.1  Homogenization and Subsampling 

Samples collected via sand auger were used for quantification of multiple below-

ground C pools (TC, TOC, TIC, root-C, or SOC). Samples were first removed from 

frozen storage, weighed, dried at 90 °C for 24 h, and reweighed for determination of 

gravimetric moisture content. Samples were then placed in a standard blender used in 

food preparation to aid in the breakdown of cemented soil clods and to improve 

homogenization of roots and organic matter. Samples were then passed through a 2 mm 

(10 mesh) sieve to remove and quantify rock fragments, and to ensure that roots were 

small enough to allow adequate homogenization. The entire sample passing the 2 mm 

sieve (including root-C) was then further homogenized by overturning and pouring the 

sample into “cones” five times (after Schumacher, Shines, Burton, & Papp 1990). The 

sample was then split in half using a standardized 17 mm riffle splitter (W.S. Tyler, SS-
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50).  Half of the original sample (average 200 g) was used in analysis of TC, TOC, TIC, 

and SOC, whereas the remaining half was used in quantification of root-C. 

Allowing root-C to be incorporated into soil samples, as in this study, is atypical 

for many soil C studies. However, since the main goal of this study was to quantify the 

total below-ground organic carbon, it was appropriate and efficient to include all below-

ground organic C pools in a single analysis. Incorporation of root-C within a soil sample 

allows processing of many more samples, providing the ability to generate a more robust 

dataset. 

2.3.2  Processing of Laboratory Duplicates 

Laboratory duplicates were generated for every 10
th

 sample processed. Duplicates 

were generated by homogenizing and splitting the initial sample into four subsamples via 

riffle splitter (average mass 100 g). Two of the four subsamples would be used as root-C 

duplicates and the remaining two were used for TC, TOC, and TIC duplicates.  Since 

duplicates were generated during the first step of sample preparation, they represent the 

combined error of all lab processing.   

2.3.3  Analysis of Total Carbon (TC), Total Organic Carbon (TOC), Total Inorganic 

Carbon (TIC), and Total Nitrogen (TN) 

Half of the original soil sample (splitting described previously) was further 

homogenized by overturning the sample three times and randomly removing a 10 g 

subsample after each repetition. The final subsample, which was a combination of three 

10 g subsamples (~ 30 g total mass), was again homogenized by overturning, and a final 

10 g sample was removed for grinding. The 10 g sample was then ground via mortar and 

pestle to pass a 125 µm (120 mesh) sieve. This sieve size was chosen based on replicate 
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analysis and by visual confirmation that all roots and organic matter was 

indistinguishable. The sample was then dried at 105°C for 24h and concentrations of TC 

and nitrogen were determined for a 60 mg sample using a Thermo Electron Flash EA 

1112 CN analyzer (CE Elantech, Inc., Lakewood, NJ).  

Because significant concentrations of carbonates are present throughout soil 

profiles in this area (Barker et al. 1983), all samples required pretreatment for removal of 

carbonates in order to quantify TOC. Approximately 300 mg of ground sample (120 

mesh) was treated with 3 mL of 0.73 M H2SO3 and dried at 105 °C as described by 

Nelson & Sommers (1996). According to Heron, Barcelona, Andersen, & Christensen 

(1997), this ratio of solids to acid is sufficient to remove approximately 7% TIC by 

weight. Approximately 60 mg of pretreated sample was then analyzed for carbon and 

nitrogen concentrations using a Thermo Electron Flash EA 1112 CN analyzer (CE 

Elantech, Inc., Lakewood, NJ) and results were reported as wt. % TOC. Because TC and 

TOC were both quantified using the same pulverized sample, TIC could be calculated as 

TIC = TC – TOC. 

2.3.4  Quantification of Below-ground Biomass (Rb) and Root-Carbon 

Quantification of root biomass (Rb) and, accordingly, organic carbon present as 

root biomass (root-C) was achieved through modification of a root flotation method 

outlined by Al-Khafaf (1977). This method consisted of the following steps: (1) half of 

the original soil sample (splitting described previously) was further homogenized, split, 

and mass (m) was determined, Accordingly, 25% of the original sample was used in 

quantification of Rb (average mass 100 g). This subsample size was chosen based on 

efficiency requirements and on the work of Schroth & Kolbe (1994), in their 
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investigation of subsample sizes needed to accurately represent root mass within soil 

cores. In short, they concluded that 5-10% of a total sample was needed to adequately 

estimate plot scale (70 m
2
) root mass in a groundnut field using combined soil cores. (2) 

Approximately 100 g of soil was weighed and added to a 500 mL graduated cylinder 

containing a solution of 4% (wt/wt) (NaPO3)6 for deffloculation of clays. (3) The cylinder 

containing the soil solution was placed on a 250 µm (60 mesh) sieve that was partially 

submerged in DI water within a plastic tub. (4) 50 mL of 50% CaCl2 solution was then 

added to the soil solution to flocculate clays and increase the solution density to 

approximately 1.1 g·cm
-3

, causing the flotation of roots. (5) DI water was then added to 

completely fill the cylinder so that roots could be flushed onto the 250 µm sieve. Because 

flocculation was extremely rapid, some roots were quickly buried in soil and further 

agitation of the soil solution was repeated until no roots floated to the surface. (6) The 

material remaining on the sieve was rinsed, dried at 70 °C for 24-hr, and Rb mass (z) was 

determined at a precision of 0.1 mg. Rb was then calculated as Rb = 100 ·z ÷ m. Rb 

samples were then ground to pass a 120 mesh sieve and analyzed for carbon 

concentrations using a Thermo Electron Flash EA 1112 CN analyzer (CE Elantech, Inc., 

Lakewood, NJ). Root-C was then calculated as root-C=  Rb x weight % Root-Carbon ÷ 

100. 

Quantification of Rb and root-C via root flotation was performed on samples 

ranging from 0 to 38 cm depth. Samples taken from deeper in the profile were not able to 

be processed by this method because they contained extremely low concentrations of 

roots, possibly due to the presence of carbonates. A subset of samples taken from the 43-

48 and 53-58 cm depth intervals were handpicked for roots to verify that an insignificant 
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amount of Rb and, accordingly, root-C was present at these depths. Additionally, the root 

flotation method was validated using 12 samples that were homogenized and split (as 

previously described), creating replicate samples. Rb content of replicate samples was 

then quantified in one of two ways: either root flotation, or handpicking of roots. 

2.3.5  Physical Fractionation of Soil Aggregates 

Soil samples collected via slide hammer were fractionated by aggregate size 

according to the wet sieving procedure outlined by Elliott (1986), consisting of the 

following steps: (1) field moist samples were removed from cold storage (4 °C) and 

passed through a 4.75 mm (4 mesh) sieve and subsampled. (2) Gravimetric moisture 

content was determined (dried 105 °C, 24 h) and the dry weight of each subsample (i) 

was calculated (~50 g). (3) The sample was slacked for 5 min. on a 250 µm (60 mesh) 

sieve and (4) floating roots were removed by vacuum. (5) The sieve was then moved with 

a slight angle at a 3 cm amplitude for 50 repetitions during a 2 min period; the remaining 

material was backwashed into an aluminum pan and classified as small macroaggregates. 

(6) Material passing the 60 mesh sieve was poured onto a 53 µm (270 mesh) sieve and 

the wet sieving procedure repeated; the material remaining on the sieve (microaggrgates) 

was backwashed into an aluminum pan, whereas all passing material was classified as silt 

+ clay. (7) Aluminum pans containing DI water and aggregates were dried at 105 °C. (8) 

Dry mass of each size fraction (d) was determined and the mass percentage of aggregate 

fractions (Z) were calculated as Z=100 ×d÷i. (10) SOC content (f) was determined on 

each fraction after acidification (0.73 M H2SO3) using a Thermo Electron Flash EA 1112 

CN analyzer (CE Elantech, Inc., Lakewood, NJ). (9) Percent of total SOC (w) within 

each aggregate size was then calculated as w = f × Z ÷100. 
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The composition of macroaggregates was determined using the microaggregate 

isolation methodology described in Six, Elliott, & Paustian (2000). Physical fractions 

occluded in macroaggregates were classified as occluded particulate organic matter (O-

POM), occluded microaggregates (O-microaggregates), or occluded silt and clay (O-

silt+clay). 

2.3.6  Quantification of Bulk Density and Grain Size 

Samples collected via slide hammer from soil pits excavated throughout the field 

site (Figure 2) were used for quantification of bulk density and grain size distribution. 

Dry bulk density and gravimetric soil moisture was calculated by combining oven-dried 

soil mass (105°C, 24 hr) determined after removal of gravel and the known volume of the 

soil corer.  Grain size distributions were calculated using a combination of dry sieving 

and hydrometer analysis, as outlined in ASTM D422-63.  

2.3.7  Analysis of Carbon Content of Above-ground Biomass 

Carbon content of above-ground biomass was determined for the three plant 

communities (cheatgrass, bunchgrass, and sagebrush) for a 20 g subsample. Samples of 

dry biomass were removed from frozen storage and finely ground using a standard coffee 

grinder. Pulverization was continued by hand until samples passed a 125 µm (120 mesh) 

sieve. Approximately 10-20 mg of pulverized sample was analyzed for carbon content 

using a Thermo Electron Flash EA 1112 CN analyzer (CE Elantech, Inc., Lakewood, NJ) 

calibrated using aspartic acid and peach leaves. 
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2.4  Statistical Analyses 

2.4.1  Non-Parametric Analysis 

The Lilliefors goodness-of-fit test for composite normality was used to determine 

if the data respected normally.  The Lilliefors test calculates the empirical cumulative 

distribution function (ECDF) for a sample population and applies a 2-sided goodness-of-

fit test using a normally distributed CDF with mean and standard deviation calculated 

from the sample population (Lilliefors 1967). The largest difference between the two 

distributions is quantified and compared to a table of critical values to determine a p-

value for the comparison. If the p-value is sufficiently low (≤0.05), the null hypothesis of 

normality is disproved and the sample population can be viewed as non-normal. The 

Lilliefors test is included in the MATLAB statistics package and was applied to the data. 

Approximately 40% of the sample populations tested (depth x vegetation type) did not 

appear to respect normally (Table 2), and therefore nonparametric statistical analyses 

were used to examine all data. 

2.4.2  Bootstrap Sampling to Quantify Uncertainty in Mean Values 

A bootstrap sampling routine was coded in MATLAB and used to determine the 

uncertainty in estimating the true mean carbon values (reported as 95% range) at each 

depth increment and within each vegetation type. Bootstrap sampling operates on the 

postulation that a set of samples can be viewed as one realization out of an infinite 

number of possible sample sets taken from a study site (Martínez & Martínez 2008). By 

resampling a dataset with replacement (bootstrapping), it is possible to choose the same 
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sample more than once or not at all during subsequent realizations. This permits 

quantification of the variability of a statistic of interest for a given dataset. For each 

bootstrap simulation, a mean is calculated and stored and the true mean is estimated by 

calculating the mean of all bootstrap simulations and the uncertainty in this estimate is 

reported as the 95% range of the means calculated from all 100 simulations. A similar 

strategy has been demonstrated by Poussartet al. (2004) to be applicable for 

quantification of differences in soil carbon between two populations, specifically when 

data non-normality is observed. 

2.4.3  Two-Population Kolmogrov-Smirnov Test (K-S test) for Significant Difference 

The two population Kolmogrov-Smirnov test (K-S test) is used to determine if, 

given the variability of soil carbon values, one population can be deemed to have 

significantly greater below-ground carbon. Similar to the Lilliefors test, the K-S test 

compares two ECDFs generated from each of the sample populations while making no 

assumptions about the underlying distribution of the data. The null hypothesis of the K-S 

test is that the two populations being tested are from the same distribution. If the largest 

distance between the two ECDFs is larger than a critical value, the null hypothesis is 

disproved and the test concludes that the samples are from two distinct populations (p ≤ 

0.05). The K-S test is included in the MATLAB statistics package and was applied to 

each of the datasets of below-ground carbon (vegetation type x depth) in a two-by-two 

fashion. 

In addition to applying the K-S test to the entire sample population, the results of 

the K-S test were investigated for varying population sizes. A bootstrap routine that 

applied the K-S test to increasing sample sizes was coded into MATLAB and 1000 
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simulations were preformed for each comparison and for a given sample size. For each 

sample size, the bootstrap routine simulated 1000 alternative datasets (realizations) for 

cumulative TOC to a depth of 38 cm using data from two vegetation types. A K-S test 

was applied to each of the 1000 realizations and an average p-value was calculated for a 

given sample size (modified from Poussart, Ardo, & Olsson 2004). Lower depth 

increments (43-48 and 53-58 cm) were not included in this analysis because fewer 

samples were collected at these depths due to obstructions. Due to the low variability in 

TOC at these depths (Figure 11, Table 7), it was assumed that their exclusion would not 

affect the results.  
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CHAPTER THREE: RESULTS 

3.1  Laboratory Duplicate Analysis of Total Carbon (TC), Total Organic Carbon, 

and Below-ground Biomass (Rb) 

A total of 67, 68, and 52 laboratory duplicates were analyzed for TC, TOC, and 

Rb, respectively (Table 3). The mean difference in laboratory duplicates was 8.2 (5.4% 

median) and 11% (8% median) for TC and TOC, respectively, where the largest 

differences generally occurred at low concentrations. Rb duplicates produced mean and 

median differences of approximately 19 and 16%, respectively. In addition to laboratory 

duplicates, the accuracy of the root flotation method was investigated using 12 replicate 

samples that were handpicked to determine Rb content. Linear regression of the two 

methods produced an R
2
 value of 0.95 (Figure 3). 

3.2  Bulk Density, Grain Size, and Gravimetric Moisture Content 

Bulk density averaged approximately 1200 kg·m
-3

 throughout the site and no 

trends with depth or vegetation were observed (Figure 4). Depth-averaged grain size was 

approximately 18, 56, and 26 % for sand, silt, and clay, respectively, corresponding to a 

silt loam textural class. Clay content increased to a profile maximum of 37 % within the 

13-18 cm depth increment (Figure 5; Table 4) and decreased with depth thereafter. 

Depth-averaged gravimetric moisture content indicated higher summertime moisture 

contents under cheatgrass and lower values under sagebrush for two consecutive years 

(Figures 6 and 7).  
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3.3  Above-ground Biomass 

Above-ground biomass increased in the order where: cheatgrass<bunchgrass 

<sagebrush, corresponding to 1.7, 2.9, and 8.4 Mg·ha
-1

, respectively. Carbon content was 

46, 43, and 50 wt. %, corresponding to above-ground C storage of 0.8, 1.3, and 4.2 

Mg·ha
-1

 for cheatgrass, bunchgrass, and sagebrush, respectively (Figure 8; Table 2).  

3.4  Canopy Cover of Sampling Transects 

Canopy cover in areas sampled within cheatgrass communities was approximately 

100% for replicate sample populations throughout the study site, with the exception of 

CB2, which contained significant cover (~20 %) of Rush Skeleton weed (Chondrilla 

juncea). Similarly, canopy cover within replicate bunchgrass communities was similar, 

estimated as ranging from 42 to 50% within transects (Figure 9), likely due in part to the 

drill seeding method used in bunchgrass establishment. In contrast, replicate canopy 

cover in sagebrush populations varied from 28 to 40% for S and CS transects, 

respectively. 

3.5  Below-groundTotal Inorganic Carbon (TIC) 

Total inorganic carbon (TIC) averaged 32, 46, and 57 Mg·ha
-1

 for cheatgrass, 

bunchgrass, and sagebrush, respectively, but was not significantly different between plant 

communities (Table 5). There was a significant difference in TIC within the 53-58 cm 

depth interval for all three vegetation types, with TIC increasing where: cheatgrass < 

bunchgrass < sagebrush (Figure 12). The uncertainties in estimating TIC were relatively 

large due to the additive error produced when combining measurements of TC and TOC. 
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3.6  Below-ground Total Organic Carbon (TOC) 

Below-ground total organic carbon (TOC) was significantly reduced in 

cheatgrass. Cumulative TOC averaged 29, 41, and 56 Mg C·ha
-1

 for cheatgrass, 

bunchgrass, and sagebrush, respectively. The results of the K-S test and the bootstrap 

routine indicated that greater TOC within sagebrush relative to cheatgrass was significant 

for all depths, with the exception of the 18-28 cm interval (Figure 10, Table 6). The 

cumulative TOC decrease in cheatgrass relative to sagebrush represented approximately 

27 Mg·ha
-1

, corresponding to a 50% decrease. The largest differences in TOC were 

between sagebrush and cheatgrass and occurred in the upper 18 cm of soil, where this 

decrease accounted for 63% of the total loss in TOC. Mean values of TOC for bunchgrass 

were significantly greater than cheatgrass at all depths below 8 cm (Figure 10, Table 6); 

excluding the upper 8 cm of the soil profile, this corresponds to a cumulative increase of 

9 Mg·ha
-1

 (53%) TOC.  Increased TOC in bunchgrass relative to cheatgrass was 

approximately equal at all depths below 8 cm as the two populations had similar depth 

distributions of TOC. 

The trends reported for TOC were reproducible for both grass communities at 

locations separated by approximately 200 m (Figure 11, Figure 2). In contrast, replicate 

sagebrush populations, “S” and “CS”, separated by approximately 35 m displayed similar 

depth distributions of TOC, but exhibited significant differences in TOC content (49 vs. 

64 Mg·ha
-1

, respectively).  

3.7  Below-ground Biomass (Rb) and Root-Carbon (C) 

Root biomass (Rb) averaged 11, 22, and 31 Mg·ha
-1

 for cheatgrass, bunchgrass, 

and sagebrush, respectively (Table 8). Rb content within sagebrush and bunchgrass 
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communities was significantly greater than cheatgrass at all depths below 3 cm, whereas 

bunchgrass and sagebrush were statistically indistinguishable at all depths (Figure 13, 

Table 6).  Rb content in the upper 0 to 3 cm of the soil profile accounted for 

approximately 65, 51, and 61 % of total profile Rb in cheatgrass, bunchgrass, and 

sagebrush communities, respectively, while accounting for 70% of the error in estimating 

total profile Rb. Rb content was below detection level for all depths below 38 cm.  

Trends with depth were reproducible for replicate populations where, specifically, 

sagebrush replicates display a decrease in TOC and a parallel decrease in Rb within the 

“S” population relative to the “CS” population (Figures 12 and 15). C content of Rb 

samples (n = 47) averaged approximately 27 wt. % and was not significantly different 

between communities. Accordingly, root-C and Rb depth distributions are similar, but 

differ in magnitude by a factor of 0.27.   

3.8  Soil Organic Carbon (SOC) 

Total profile SOC averaged 23, 33, and 44 Mg·ha
-1

 for cheatgrass, bunchgrass, 

and sagebrush, respectively (Figure 15; Table 9). Importantly, because Rb content was 

found to be insignificant at depths exceeding 38 cm, SOC was assumed to equal TOC for 

depths ranging from 38 to 58 cm. This model appears reasonable as the distribution of 

SOC with depth remains uniform for depths exceeding 38 cm. 

3.9  SOC Content of Aggregate Fractions 

Soil macroaggregates (> 250 µm) were present at significant levels (22% soil 

mass) in sagebrush communities only; cheatgrass and bunchgrass had no detectable 

quantity of macroaggregates (Figure 16, Table 10). Conversely, microaggregate 
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concentrations (53 – 250 µm) were similar in all three plant communities and accounted 

for approximately 50% soil mass.  Silt+clay sized particles (< 53 µm) represented 45% of 

soil mass in both grass communities, and accounted for 27% soil mass in sagebrush. The 

remaining proportions of soil mass were characterized by sand fractions. 

Cumulative SOC of all size fractions after acidification and root removal 

corresponded to 0.25, 0.32, and 0.81 wt. % for bunchgrass, cheatgrass, and sagebrush, 

respectively; these values of SOC were roughly equivalent to those previously 

determined by subtracting root-C from TOC (Figure 16). SOC content of 

macroaggregates within sagebrush populations was approximately 3 g kg
-1

, which 

corresponded to approximately 36% of total SOC for sagebrush. For sagebrush, 

microaggregates occluded within macroaggregates contained 18% (1.5 g kg
-1

) of the total 

SOC, whereas occluded silt+clay and POM accounted for the remaining 7 (0.6 g kg
-1

)  

and 11% (0.9 g kg
-1

), respectively. 

Average SOC concentrations of free microaggregates corresponded to 1.2, 1.6, 

and 3.6g kg
-1

 for cheatgrass, bunchgrass, and sagebrush, respectively.  SOC concentration 

of the silt+clay fraction was equivalent for bunchgrass and sagebrush (1.6 g kg
-1

) but was 

less for cheatgrass populations (1.3 g kg
-1

).  

Carbon/Nitrogen (C:N) ratios were calculated for non-occluded size fractions 

within vegetation type. C:N ratios were positively correlated with aggregate size for all 

vegetation types (Table 11). Additionally, C:N ratios increased in the order where: 

cheatgrass< bunchgrass< sagebrush for all aggregate sizes, although this trend was not 

statistically significant. 
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3.10  Total Nitrogen (TN) 

Total nitrogen (TN) was determined to be 6, 6, and 8 Mg·ha
-1

 within cheatgrass, 

bunchgrass, and sagebrush populations, respectively (Figure 17). The depth distribution 

of TN was similar to TOC for all three vegetation types. Both cheatgrass and bunchgrass 

had low variability in TN but were indistinguishable at all depths, whereas sagebrush had 

significantly greater TN at all depths with higher variability.   

3.11  Sample Sizes Required to Demonstrate Significant Differences in TOC 

Cumulative TOC values (0-38 cm) obtained from each community indicated that, 

to reach a p-value less than 0.05, 24 soil cores would be needed from each population to 

distinguish differences in cheatgrass compared to sagebrush (Figure 18). The results also 

indicate that at least 36 soil cores would be needed from each population for statistical 

distinction of bunchgrass from either sagebrush or cheatgrass at a p-value less than 0.05, 

which was more than obtained in this study. Application of the K-S test to discrete depth 

increments using the current data set (Table 6) indicates that the additional samples 

required may be confined to the upper 8 cm of soil when comparing cheatgrass to 

sagebrush, whereas intermediate depths would require additional samples when 

comparing bunchgrass to sagebrush.  
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CHAPTER FOUR: DISCUSSION 

4.1  Rates of Change in the Carbon Budget 

Part of an established sagebrush community was lost to wildfire in the spring of 

1983, 27 years prior to this study; the burned area was immediately converted to either a 

cheatgrass or crested wheatgrass monoculture. Rates of C loss may be on the order of 1 

Mg C ha
-1

 yr
-1

, twice the rate of C gain in restored grasslands (447 kg C ha
-1

 yr
-1

) 

reported by Potter et al. (1999). The initial rate of C loss may be enhanced in bunchgrass 

communities at Kuna Butte due to the soil aeration caused by drill seeding. However, the 

loss rates may decrease non-linearly in grass communities as labile C becomes limited 

during establishment and, subsequently, plant-derived inputs begin to offset losses.  

4.2  Loss of Total Inorganic Carbon (TIC) Following Sagebrush Degradation 

The significant decrease in TIC concentration at depth (53-58 cm) in cheatgrass 

(Figure 12) is in contrast to the results of Chen & Stark (2000), where they documented a 

trend in TIC where: sagebrush < bunchgrass < interspace soils. They attributed this trend 

to increasing respiration and organic acid production in bunchgrass and sagebrush, which 

could dissolve and prevent carbonate precipitation. However, increased photosynthesis 

would also correspond to an increase in evapotranspiration and, consequently, carbonate 

precipitaiton, producing the trends in soil moisture and TIC at Kuna Butte (Figures 6 and 

7).  Alternatively, differences in TIC at depth could also be due to decreased profile 

thickness or an underestimation of coring depth in sagebrush. The former was 
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investigated via soil pits and determined to be unlikely while the latter is improbable as 

underestimation of coring depth would likely be random in all plant communities. 

Greater TIC in shallow sagebrush soils, although not statistically significant, may 

be due to increased capture of aeolian carbonates caused by denser ground cover in 

sagebrush communities (see Norton et al. 2004). Alternatively, Emmerich (2003) 

documented 15% annual variation in TIC of shallow grass- and brushland soils, 

indicating that significant cycling of TIC does occur and may be dependent on 

vegetation. Our estimated C losses from sagebrush degradation do not include TIC pools 

due to lack of any specific mechanism. 

4.3  Changes in TOC Distribution: Pool and Depth Allocation 

Our results indicate that both sagebrush and bunchgrass had higher concentrations 

of root-C in the subsoil; this was also documented by Hooker et al. (2008). This implies 

higher C input at lower depths within sagebrush and bunchgrass communities where rates 

of decomposition can be reduced due to lower soil temperatures, anaerobic conditions, 

and pH changes (Lorenz & Lal 2005). This claim was supported by Gill et al. (1999) who 

used
14

C labeling to identify decreasing SOC decomposition rates with depth. 

The second peak in SOC at the 13-28 cm depth observed in grass communities 

(Figure 16) corresponds to increased clay content (Figure 5).  A similar distribution of 

SOC was documented by Gill et al. (1999) within a shortgrass-steppe ecosystem and also 

corresponded to increased clay content. This correlation suggests that higher clay content 

contributes to SOC stabilization, likely due to greater occlusion (Lorenz & Lal 2005; Six 

et al. 2004). 
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The relative contribution of root-C and SOC to TOC was not markedly different 

between communities for specific depths, or throughout the entire profile (Table 12); 

both root-C and SOC decreased across the entire profile. This indicates that C loss 

following sagebrush degradation was not limited to near surface soils or a specific C 

pool. The observation of declining carbon across the entire profile is in contrast to 

previous studies that documented significant differences to exist only within shallow soils 

(Hooker et al. 2008; Norton et al. 2004; Gill et al. 1999). The observation of proportional 

declines in SOC and root-C also suggests changes in both root-C input and SOC 

stabilization. 

4.4  Potential Mechanisms for TOC Loss Following Sagebrush Degradation 

4.4.1  Decreased Input Quantity 

Using annual root turnover rates of 1 and 0.5 yr
-1 

for cheatgrass and bunchgrass, 

respectively (Gill & Jackson 2000), our observed values indicate annual root-C inputs of 

approximately 3 Mg C·ha
-1

 for both grass communities, whereas a root turnover rate of 

0.3 yr
-1 

for sagebrush (Caldwell et al. 1977) corresponds to an input of                            

2.4 Mg root-C·ha
-1
·yr

-1
. Accounting for the cheatgrass presence in sagebrush at Kuna 

Butte (~60% areal cover) increases our estimate of root-C input to 5.6 Mg ha
-1
·yr

-1
 for 

sagebrush; these results are higher than those reported by Gilmanov, Svejcar, Johnson, 

Angell, & Nicanor, (2006), who used Bowen ratio-energy balance (BREB) 

instrumentation to calculate annual respiration and primary production in a sagebrush-

steppe of southeastern Idaho (annual precipitation 283 mm, 40% canopy cover); average 

primary productivity and respiration was reported as 4.4 and 3.7 Mg C·ha
-1
·yr

-1
, 
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respectively; using a root/shoot ratio of 4, as calculated in this study, their results 

correspond to a root-C input of 3.3 Mg ha
-1
·yr

-1
. 

We did not distinguish between living and dead roots or plant residue in 

determining root-C. Estimates of annual root-C input may therefore be overestimated due 

to inclusion of dead plant material in root-C estimates. Greater than 50% of all root-C is 

located within the upper 3 cm of soil for all three plant types (Table 8); this may be an 

artifact of litter incorporation into the shallow subsurface, however studies have reported 

between 50 and 80% of total root biomass within the upper 10 cm of soil (Rau et al. 

2011; Hooker et al 2008; Gill et al. 1999; Dahlman 1965, and others). Other studies in 

similar environments have quantified root-C by removing roots using sieves ranging from 

2 to 4 mm (Gill & Burke 1999; Gill et al. 1999; Hooker et al. 2008; Norton 2004; Svejcar 

& Sheley 2001, and others) while average root diameters are documented to range from 

0.1 to 0.3 mm (Hooker et al. 2008; Gill et al. 2002). This discrepancy may indicate an 

underestimation of root-C in past studies; Rau et al. (2011) reported root-C to be 25% of 

those reported for sagebrush. In addition, the shallow subsurface boundary condition at 

Kuna Butte may produce higher concentrations of root-C in near surface soils. 

4.4.2  Decreased Quality of Inputs 

Higher TOC content may be produced by greater recalcitrance of sagebrush roots; 

however our observed C:Nfor Rb (mean of 25) are similar to those of Svejcar and Sheley 

(2001), who reported no significant differences in C:N of Rb for sagebrush and 

cheatgrass. In contrast, Hooker et al. (2008) documented significantly higher C:N in 

bunchgrass roots while also reporting higher lignin, a chemically recalcitrant compound 

(Lorenz & Lal 2005), in sagebrush roots compared to bunchgrass. Their results may 
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provide the mechanism for documenting a higher accumulation of root-C in the 

subsurface of sagebrush and bunchgrass compared to cheatgrass soils. Alternatively, 

researchers have shown root turnover to be positively correlated with diameter (Gill et al. 

2002) and, although not quantified in this study, we observed larger root diameters within 

bunchgrass and sagebrush communities. Additionally, Norton et al. (2004) reported 

cheatgrass to have no roots larger than 1 mm in diameter, whereas sagebrush-steppe 

ecosystems had significant quantities of roots in the 1-2 mm class size, suggesting that 

sagebrush communities have lower root turnover and potentially longer residence times 

of root-C. 

4.4.3  Differences in C Mineralization 

Lower soil C content may be produced by higher rates of carbon mineralization. 

Increased mineralization of SOC could be caused by cheatgrass invasion and may be the 

result of: (1) production of less recalcitrant root-C, corresponding to shorter residence 

time in soils, (2) modifying edaphic factors such as temperature and moisture which can 

influence kinetics of decomposition, or (3) decreased occlusion of organic matter by loss 

of soil aggregate stabilization. 

Soil moisture can often limit bacterial respiration of soil organic matter (Lorenz & 

Lal 2005; Gill et al. 1999). We observed an inverse correlation between soil moisture and 

SOC, with the highest summer soil moisture observed in cheatgrass, followed by 

bunchgrass, with sagebrush exhibiting the lowest summer soil moisture contents (Figures 

6 and 7).  Increased soil moisture in grass communities (bunchgrass <cheatgrass) is likely 

due to cessation of evapotranspiration upon plant senescence, which is earliest in 

cheatgrass followed by bunchgrass and sagebrush. Lower surface temperatures from 
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canopy cover may explain greater near surface soil moisture in bunchgrass and sagebrush 

communities (Figure 9).  These results are similar to those of Prater, Obrist, Armone, & 

DeLucia (2006) who reported higher soil temperature and moisture in cheatgrass 

compared to sagebrush and bunchgrass. Gill et al. (1999) were also able to positively 

correlate decomposition rates to the amount soil moisture available for respiration. At 

Kuna Butte, we documented similar but unequal distributions of SOC within both 

grasses, but the same distribution was not documented for root-C; this disconnect may 

indicate greater decomposition rates in cheatgrass, possibly due to higher soil moisture 

availability. The inverse correlation between root-C and soil moisture also explains the 

loss of both root-C and SOC following sagebrush degradation.  

Our third hypothesis, loss of aggregate stabilization, was documented within 

cheatgrass by the loss of macroaggregates. Although not definitive, these findings 

indicate the likelihood that hypotheses 2 and 3 are correct in that decreased SOC 

stabilization is likely due to both increased soil moisture and decreased aggregation in 

degraded sagebrush ecosystems. 

4.5  The Role of Soil Structure in Carbon Preservation 

4.5.1  Macroaggregates 

Sagebrush degradation caused a loss of physically occluded POM with a 

corresponding decrease in SOC and root-C. This is in agreement with mechanistic 

models of aggregate dynamics where aggregate formation can be largely dictated by root 

dynamics (Brady & Weil 2008; Gregory 2006; Six et al. 2004; Angers & Caron 1998), 

and higher SOC content can enhance macroaggregate stability (Brady & Weil 2008; Six 
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et al. 2004; Christensen 1992, and others). The trends in Rb at Kuna Butte are similar to 

Tisdall & Oades (1982), who showed that conversion of grassland to arable cropping 

caused a decrease in SOC and macroaggregates, where they attributed this loss to 

decomposition of roots and fungal hyphae. Additionally, the larger diameters of 

sagebrush roots may correspond to slower decomposition rates (Gill et al. 2002) as well 

as decreased disruption of aggregate structure (Gregory 2006; Angers & Caron 1998).  

Concentrations of fungal hyphae may not be ubiquitous between plant 

communities. Both sagebrush and bunchgrass are obligate symbionts with vesicular 

arbuscular mycorrhizal (AM) fungi, whereas cheatgrass is merely a facultive symbiont 

and, accordingly cheatgrass often has low AM fungal populations compared to 

bunchgrass and sagebrush communities (Ypsilantis 2003).  This is an important 

distinction because, in addition to the work of Tisdall and Oades (1982), several 

researchers have demonstrated that AM fungi can dramatically affect soil aggregation by 

excreting glomalin and producing hyphae that act as a support structure for aggregates 

(Brady & Weil 2008; Gregory 2006; Angers & Caron 1998).  

Wetting-drying dynamics have been shown to influence the formation of soil 

aggregates by promoting fragmentation (Six et al. 2004, Angers & Caron 1998), whereas 

the stability of aggregates has been shown to increase with decreasing soil moisture due 

to greater cohesion (Horn, Taubner, Wuttke, & Baumartl 1994). This is also consistent 

with the results from Kuna Butte, where macroaggregates were found only within 

sagebrush communities that had the lowest soil moisture. We propose that the presence of 

macroaggregates within sagebrush could be due to (1) decreased soil moisture, (2) higher 

concentrations of roots, (3) concentrations of AM fungi, or (4) root exudates. 
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The greater degree of soil aggregation (macroaggregates) beneath sagebrush 

communities likely contributes to the overall health and productivity of soil by increasing 

aeration, infiltration, and reducing compaction (Brady & Weil 2008), but may also be 

promoting increased SOC storage. Treseder, Egerton-Wardurton, Allen, Cheng, & 

Oechel, (2003) found that SOC content quickly increased within macroaggregates 

following CO2 fertilization of a shrubland; they credited this to AM fungi acting as 

conduits for SOC deposition within macroaggregates. This process could result in 

increased deposition of labile C within physically protected macroaggregates, promoting 

lower C turnover and, potentially, long term C storage. The loss of large-scale soil 

aggregation following sagebrush replacement by cheatgrass is likely an important driver 

of observed declines in soil carbon content.  

4.5.2  The Composition of Macroaggregates in Sagebrush 

The SOC associated with O-microaggregates represents a very stable fraction of 

SOC (Six et al. 2004) that is lost following sagebrush degradation; nearly 20% of 

sagebrush SOC is contained within this fraction (Figure 16). The decrease in the silt+clay 

soil fraction (Table 10) and the existence of O-microaggregates may suggest less 

destabilization of microaggregates in sagebrush. Additionally, the existence of O-POM 

demonstrates increased physical protection of labile C in sagebrush. 
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4.5.3  Free Microaggregates 

The decreased SOC content within free microaggregates of grasses accounted for 

approximately 40% of the total SOC lost following sagebrush degradation (Figures 17 

and 18). Current models for microaggregate formation specify the formation of 

microaggregates within macroaggregates (Six et al. 2004). If these models describe 

microaggregate formation at Kuna Butte, microaggregates within grass communities may 

be remnants of sagebrush; suggesting that greater SOC content within bunchgrasses 

relative to cheatgrass may be due to slower decomposition of microaggregate SOC, 

possibly due to lower soil temperature and moisture relative to cheatgrass. Alternatively, 

if microaggregates are formed independently of macroaggregates, as proposed by Tisdall 

and Oades (1982), the intermediate SOC content of microaggregates within bunchgrass 

(Figure 16) may be due to greater preservation of SOC within microaggregates. 

Importantly, the fraction of soil characterized by microaggregates was not different 

between communities (Table 10), but rather, the SOC content of microaggregates 

decreased where sagebrush >bunchgrass >cheatgrass. Changes in vegetation may 

therefore alter the input of SOC associated with microaggregates without affecting their 

formation or stability in soil. 

The results of recent studies are generally in agreement that microaggregate 

fractions have some of the longest turnover times of SOC (McCarthy et al. 2008; Six et 

al. 2004; Del Galdo et al 2003; Christenson 1992, and others). SOC preservation within 

this fraction may therefore facilitate long term C storage and should be considered an 

important metric when determining the relative ability of vegetation to promote long term 

storage of atmospheric CO2. The decreased SOC concentration of microaggregates within 
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cheatgrass communities should then be regarded as a reduction in long term C storage 

capacity due to sagebrush degradation. 

4.6  Upscaling Results 

Our results indicate that the 20,000 km
2
 of Great Basin vegetation displaced by 

cheatgrass monocultures (Bradley & Mustard 2005) represent significant C emissions. If 

the C losses documented in this study are to the entire Great Basin, approximately 60 Mt 

C has been lost to cheatgrass invasion. In addition, Bradley (2009) estimated that an 

additional 760,000 km
2
 within the Great Basin is at risk of cheatgrass invasion under 

current climatic conditions; with a predicted future emission of more than 2 Gt C. 

Conversely under the same scenario, bunchgrass seeding following fire may prevent the 

loss of nearly 700 Mt C.  

Importantly, the current study used a sagebrush-cheatgrass community to quantify 

baseline C content, but the initial loss of perennial herbaceous vegetation in sagebrush 

interspace may represent an additional loss of C (see Rau et al. 2011) and, consequently, 

we may have underestimated total C emission associated with cheatgrass degradation of 

natural sagebrush-steppe ecosystems. At Kuna Butte, bunchgrass seeding prevented the 

loss of 9 Mg C·ha
-1

 in the subsurface following the abatement of sagebrush. These results 

corroborate the projection of Rau et al. (2011), where their results suggest replacement of 

bunchgrasses with cheatgrass in sagebrush interspaces would cause a loss of 6-9 Mg 

C·ha
-1

.  
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CHAPTER FIVE: CONCLUSIONS 

We quantified below-ground C loss associated with conversion of a sagebrush 

ecosystem to contrasting grass monocultures. Our study led to four main results: (1) In 

contrast to previous studies, we demonstrated that conversion of sagebrush ecosystems to 

cheatgrass monocultures caused a 50% loss in below-ground TOC (30 Mg C·ha
-1

). (2) 

Bunchgrass seeding immediately following fire reduced the amount of TOC lost to 

sagebrush degradation by 30%. The significantly greater TOC in subsurface soils of 

bunchgrass corresponded to a 9 Mg C·ha
-1

 reduction in the amount of C lost after 

sagebrush degradation for depths between 8 and 58 cm. (3) Significant differences were 

observed within specific C pools beneath different plant communities. Because we 

documented significant losses within multiple pools of C, namely root-C and SOC, we 

cannot solely attribute the C lost following sagebrush degradation to either decreased C 

input, or greater decomposition of more labile C compounds. (4) Loss of macroaggregate 

stability following sagebrush degradation inhibits physical protection of labile C inputs, 

which would increase the proportion of SOC metabolized by soil biota. SOC content 

within microaggregates decreased following loss of sagebrush, where cheatgrass 

communities had the lowest concentrations of SOC within microaggregates. The inverse 

correlation between soil moisture and microaggregate SOC suggests that sagebrush 

degradation may stimulate greater decomposition stable C fractions. 
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Future work should focus on accurately characterizing the decomposability of 

specific C pools for each stage of sagebrush alteration. This could be accomplished via 

fractionation and laboratory incubations and would serve to address uncertainties 

regarding the stability of various C pools; this may provide an indication of the state of 

equilibrium of these ecosystems. The use of radiogenic C isotopes to estimate C pool 

turnover times may also prove useful in identifying either decreased stabilization or input 

as being the dominant mechanism for C loss following sagebrush degradation. In 

addition, the C budget consequences of decreased fire return intervals characteristic of 

cheatgrass communities should be investigated; such results may further indicate the need 

to prevent cheatgrass degradation of sagebrush ecosystems. 
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Figure A.1: Map showing the location of Kuna Butte 
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Figure A.2: Location of transects and soil pits at Kuna Butte. Letters indicate 

vegetation type and transect label where C, B, and S corresponds to cheatgrass, 

bunchgrass, and sagebrush, respectively. Lines and circles designate transects and 

soil pits, respectively. 
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Figure A.3: Qualification of root flotation method used for quantifying Rb and 

root-C. Rb content was quantified by both handpicking and root flotation of 

replicate samples to compare values. 

  

y = 0.934x

R² = 0.957

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Fl
o

a
te

d
 (w

t.
 %

 r
o

o
ts

)

Hand-picked (wt. % roots)



48 

 

 

 

 

Figure A.4: Depth distribution of dry soil bulk density. Error bars are +/- one 

standard error (n = 4). See Figure 2 for sampling locations. 
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Figure A.5: Depth distribution of grain size classes. Error bars are +/- 1 standard 

error (n = 4). See Figure 2 for sampling locations. 
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Figure A.6: Depth Distribution of gravimetric moisture content in August 2010. 

Error bars represent +/- 1 standard error (n = 10). See Figure 2 for sampling 

locations.  
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Figure A.7: Depth Distribution of gravimetric moisture content in August 2011. 

Lack of error bars is due to small sample sizes. See Figure 2 for sampling locations. 
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Figure A.8: Results for above-ground biomass. Error bars represent +/- 1 

standard deviation (n = 3, 3, and 6 for cheat, bunch, and sage, respectively). 
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Figure A.9: Percent of ground cover for sampling transects. Ground cover 

calculated at 5 cm resolution. See Figure 2 for transect locations. 
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Figure A.10: Total Organic Carbon (TOC) wt. % for each plant community. 

Population sizes for cheatgrass, bunchgrass, and sagebrush were 38, 31, and 30, 

respectively, for each depth increment. Error bars represent 95% range in mean 

values calculated from 100 bootstrap simulations. 
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Figure A.11: Total Organic Carbon (TOC) wt. % for each plant community and 

for individual transects. See Figure 2 for transect locations. 
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Figure A.12: Total Inorganic Carbon (TIC) wt. % for each plant community. 

Population sizes for cheatgrass, bunchgrass, and sagebrush were 38, 31, and 30, 

respectively, for each depth increment. Error bars represent 95% range in mean 

values calculated from 100 bootstrap simulations. 
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Figure A.13: Root carbon (wt. %) for each plant community. Error bars represent 

95% range in mean values calculated from 100 bootstrap simulations. Where error 

bars are not visible, symbol sizes encompass the error range. Rb values can be 

calculated by multiplying the above concentrations of root C by a factor of 3.7. 
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Figure A.14: Root Biomass wt. % (Rb) for each plant community and for individual 

transects. Root C values can be calculated by multiplying the above concentrations 

of Rb by a factor of 0.27. See Figure 2 for transect locations. 
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Figure A.15: Soil Organic Carbon wt. % (SOC) for each plant community. Error 

bars represent 95% range in mean values calculated from 100 bootstrap 

simulations. Where error bars are not visible, symbol sizes encompass the error 

range. 
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Figure A.16: Grams of SOC per kg soil. Data labels are weighted percent of total 

Soil Organic Carbon (SOC) by aggregate size for each community. Error bars 

represent +/- 1 standard error for 

 

 

 

 

Grams of SOC per kg soil. Data labels are weighted percent of total 

Soil Organic Carbon (SOC) by aggregate size for each community. Error bars 

1 standard error for n = 10 (5 from each transect, see Figure 2).

 

 

60 

 

 

Grams of SOC per kg soil. Data labels are weighted percent of total 

Soil Organic Carbon (SOC) by aggregate size for each community. Error bars 

= 10 (5 from each transect, see Figure 2). 
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Figure A.17: Total Nitrogen (wt. %) for each plant community. Error bars 

represent 95% range in mean values calculated from 100 bootstrap simulations. 

Where error bars are not visible, symbol sizes encompass the error range. 
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Figure A.18: Estimated number of soil cores needed to determine if two 

communities are significantly different using the K-S test (p≤ 0.05). Average p-value 

is reported for 1000 bootstrap simulations run for each sample size using the 

current data set. 

 

* Number of Cores indicates the estimated number of soil cores from each population to 

reach a given    p-value. 
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Table B.1: Previous Results for Studies Estimating Organic Carbon Pools 

C pool Study
# cores 

/community
p -value

Sample 

depth

Aboveground % Cover  MgC∙ha
-1

% Cover  MgC∙ha
-1

% Cover  MgC∙ha
-1

Hooker et al (2008) 80% 1.2 (0.1) 37% 1.3 (0.1) 38% 3.8 (0.7)

Bradley et al (2006)
1 ‡   2(1) - 

37(4)

0.22(0.02)-

0.94 (0.26)
--- ---

  35(5) -

36(7)

  3.4 (1.5) -

6.7 (2.9)

Svejcar and Sheley (2001)
2 ‡

~100 0.12-.14 -- -- 1-3 0.1-0.29 * 

This Study ~100 0.8 (0.3) 40-50 1.3 (0.15) 28-40 4.2 (2)

TOC

Hooker at al (2008) 20 0.21 0-100 cm 74.1 (4.2) 72.2 (3.5) 64.4 (4.5)

Norton et al (2004)
 ‡ 21 0-50 cm

18(12)-

140(22)
--

36(15)- 

130 (13)

Rau et al (2011)
3 21 0-90 cm -- -- 43-49

Chen and Stark (2000)
 ‡

5
† 0.12 0-10 cm -- 42** 43**

Gill et al (1999) 4 0.19 0-100 cm 80 89 102***

Svejcar and Sheley (2001)
2 ‡ 3 0-30 cm 12-17 -- 10-16

Bradley et al (2006)
1
 
‡ 40 0-10 cm

5.8 (0.3)-

16.4 (0.5)
--

10.2(0.4)-

12.4 (0.4)

This Study 30 0-60 cm 26 (7) 35 (10) 48 (14)

* Data for sagebrush collected from sagebrush-steppe communities (bunchgrasses present within interspaces)

** Data collected within sage-steppe communities. Carbon content determined for soils beneath canopies of respective species.

*** Data for shadscale (Atriplex confertifolia ) reported in place of sagebrush
†
 Core samples were composited from 9 separate cores collected within a plot (45 total)

‡
 A value of 1.2 g∙cm

-3 
was used to convert carbon concentrations to units of mass∙area

-1

1
 Ranges correspond to increaseing levels of cheatgrass invasion and variable bunchgrass compositions

2
 Root mass & root C content averaged for 0 -10 and 10-30 cm depth increments as determined in May 1994. Root C was dded to SOC values

   determined in July 1994
3
 Data collected within sagebrush communities representing a continuum of cheatgrass invasion. 

Cheat Bunch Sage

Table 1: Previous Results for Studies Estimating Organic Carbon Pools
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Table B.2: Results of the Lilliefors Test for Normally Distributed Data 

 

 

 

 

 

 

 

TOC

Depth D
1

Pr > D
2

D Pr > D D Pr > D D Pr > D D Pr > D D Pr > D D Pr > D D Pr > D D Pr > D

0-3 0.139 0.06 0.001 0.2 0.001 0.22 0.321 0.001 0.001 0.339 0.001 0.321 0.118 0.346 0.5 0.098 0.001 0.215

3-8 0.15 0.03 0.072 0.136 0.001 0.211 0.16 0.04 0.027 0.167 0.001 0.271 0.206 0.002 0.022 0.173 0.011 0.184

8-13 0.125 0.135 0.07 0.137 0.002 0.203 0.094 0.5 0.5 0.099 0.002 0.238 0.218 0.001 0.002 0.211 0.001 0.247

13-18 0.166 0.01 0.146 0.123 0.001 0.22 0.084 0.5 0.456 0.108 0.364 0.132 0.256 0.001 0.001 0.235 0.001 0.254

23-28 0.088 0.5 0.5 0.074 0.001 0.214 0.233 0.001 0.315 0.118 0.303 0.137 0.321 0.001 0.001 0.276 0.128 0.141

33-38 0.275 0.001 0.409 0.102 0.001 0.231 0.187 0.007 0.398 0.112 0.301 0.138 0.186 0.011 0.111 0.146 0.112 0.146

43-48 0.322 0.001 0.095 0.137 -- -- 0.109 0.448 0.5 0.084 -- -- 0.131 0.5 0.5 0.102 -- --

53-58 0.262 0.001 0.005 0.206 -- -- 0.106 0.5 0.171 0.135 -- -- 0.145 0.477 0.043 0.216 -- --
1
 D  is the maximum vertical deviation of the empirical cumulative distribution function from a normally distributed cumulative distribution function.

2
 Pr > D  indicates the probability the two populations are from normal distributions.  If less than 0.05, the null hypothesis

  (of normality) is typically rejected.

Sagebrush

TC Rb

Cheatgrass Bunchgrass

RbTOC TC TC TOC Rb
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Table B.3: Percent Difference in Lab Duplicates for Specific C Pools 

 

 

Table B.4: Mass Percentage by Particle Size Class 

 

 

Table B.5: C Pool Sizes by Plant Community 

Min Max Mean Median

TC (n  = 67) 0.33% 54% 8.2% 5.4%

TOC (n  = 68) 0% 110% 11% 8%

Rb (n  = 52) 0% 82% 19% 16%

Table 3: Percent Difference in Lab Duplicates for Specific C Pools

Depth  % Sand % Silt % Clay

0-3 24 (8) 64 (6) 13 (3)

3-8 21 (6) 63 (5) 16 (3)

8-13 17 (2) 57 (7) 27 (5)

13-18 16 (2) 47 (6) 37 (6)

18-28 17 (4) 48 (4) 35 (4)

28-38 17 (4) 52 (6) 31 (6)

38-38 20 (2) 56 (10) 24 (10)

48-58 17 (2) 61 (10) 22 (10)

Values in parantheses indicate standard deviation (n  = 4).

silty clay loam

silt loam

silt loam

Textural Class

silt loam

silt loam

silt loam

silty clay loam

silty clay loam

C Pool Cheat Bunch Sage

Aboveground 0.8 (0.3)a 1.2 (0.2)ab 4.2 (2)b

TC 61 (16)a 87 (14)ab 113 (22)b

TOC 29 (6)a 41 (7)ab 56 (12)b

TIC 32 (22) 46 (21) 57 (34)

Root C 3 (.8)a 6 (3)ab 8 (2.2)b

SOC 26 (5)a 35 (5)ab 48 (9)b

* Within the same row, values with different letters are significantly
   different (p ≤ 0.05)

Mg C ∙ ha
-1
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Table B.6: Results of the K-S Test for Significant Difference 

 

 

Depth D
1

Pr > D
2

D Pr > D D Pr > D D Pr > D D Pr > D D Pr > D

0-3 0.432 0.0025 0.468 0.0017 0.14 0.8705 0.183 0.7359 0.533 0.0002 0.509 0.002

3-8 0.477 0.0006 0.414 0.0072 0.292 0.0881 0.397 0.022 0.349 0.0362 0.165 0.835

8-13 0.599 < 0.0001 0.54 0.0001 0.441 0.0016 0.537 0.0005 0.434 0.0046 0.249 0.344

13-18 0.472 0.0007 0.61 < 0.0001 0.52 0.0001 0.579 0.0001 0.401 0.0101 0.239 0.394

23-28 0.263 0.1655 0.67 < 0.0001 0.517 0.0001 0.663 < 0.0001 0.306 0.0914 0.252 0.33

33-38 0.526 0.0001 0.83 < 0.0001 0.5 0.0002 0.794 < 0.0001 0.175 0.708 0.186 0.721

43-48 0.714 < 0.0001 0.521 0.0001 0.503 0.0025

53-58 0.713 < 0.0001 0.637 < 0.0001 0.621 0.0003
1
 D  is the maximum vertical deviation of the empirical cumulative distribution functions for the two  populations being compared.

2
 Pr > D  indicates the probability the two populations are from different distributions.  If less than 0.05, the null hypothesis

  (populations from the same distribution) is typically rejected.

Bunch vs Sage

TOC RbTOC Rb

Cheat vs Sage Cheat vs Bunch

TOC Rb
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Table B.7: Depth Distribution of TOC 

 

 

Table B.8: Depth Distribution of Root C 

 

  

Depth Cheat Bunch Sage

0-3 8.9 (1.9)a 10.1 (2.4)ab 14.2 (3.5)b

3-8 3.4 (0.8)a 4.9 (1.1) ab 7.7 (1.9)b

8-13 1.9 (0.4)a 3 (0.4)b 5.7 (1.3)c

13-18 1.9 (0.4)a 2.9 (0.3)b 4.6 (1.3)c

18-28 4.9 (0.5)a 6.8 (0.6)b 6.7 (1.4)ab

28-38 3.9 (0.5)a 5.5 (0.5)b 6.1 (0.8)b

38-48 2.4 (0.5)a 4.2 (0.5)b 5.7 (0.8)c

48-58 1.6 (0.5)a 3.5 (0.6)b 5.2 (1)c

Total 29 (5.5)a 40.9 (6.4)ab 55.9 (12)b

* Within the same row, values with different letters
   are significantly different (p ≤ 0.05)

TOC (Mg∙ha
-1

)

Depth Cheat Bunch Sage

0-3 1.9 (0.6)a 3.2 (2)ab 5 (1.3)b

3-8 0.4 (0.08)a 1.1 (0.4)b 1 (0.3)b

8-13 0.3 (0.06)a 0.51 (0.14)b 0.7 (0.2)b

13-18 0.1 (0.03)a 0.29 (0.06)b 0.4 (0.13)b

18-28 0.2 (0.04)a 0.63 (0.13)b 0.5 (0.12)b

28-38 0.1 (0.03)a 0.46 (0.11)b 0.5 (0.11)b

Total 2.8 (0.8)a 6.3 (2.9)ab 8.3 (2.2)a

* Within the same row, values with different letters

   are significantly different (p ≤ 0.05). Rb values can be

  calculated by multiplying the above values by a factor of

  3.7.

Root C (Mg∙ha
-1

)
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Table B.9: Depth Distribution of SOC 

 

 

Table B.10: Mass Percentage of Soil and SOC Content of Aggregates 

 

 

Table B.11: C/N Ratio of Aggregate Sizes 

 

Depth Cheat Bunch Sage

0-3 6.9 (1.8) 6.8 (1.8) 9.7 (1.6)

3-8 2.3 (0.5)a 4 (1.1)b 6.6 (1.6)b

8-13 1.4 (0.4)a 2.6 (0.4)b 5 (1.2)c

13-18 1.6 (0.3)a 2.8 (0.3)b 4 (1)b

18-28 4.8 (0.5)a 6.5 (0.6)b 6.2 (1.1)b

28-38 3.4 (0.5)a 5.2 (0.4)b 5.5 (0.5)b

38-48 * 2.4 (0.5)a 4.2 (0.5)b 5.7 (0.8)c

48-58 * 1.6 (0.5)a 3.5 (0.6)b 5.2 (0.1)c

Total 25.5 (5)a 34.7(5.7)ab 47.9 (8.8)b

* Root C was below level of detection.

    and SOC was assumed to equal TOC

** Within the same row, values with different letters

     are significantly different (p ≤ 0.05). Rb values can be

     calculated by multiplying the above values by a factor of

     3.7.

SOC (Mg∙ha
-1

)

Community wt. % Soil wt. % SOC wt. % Soil wt. % SOC wt. % Soil wt. % SOC

Bunch 6 0* 50 0.33 44 0.36

Cheat 7 0* 47 0.24 45 0.27

Sage 22 1.49 49 0.73 27 0.62

* Particles greater than 250 µm consisted entirely of rock and root fragments 

Agggregate Size

> 250 µm 53-250 µm < 53 µm

> 250 µm 53-250 µm < 53 µm

Bunch 3.8 (0.5) 3.4 (0.3)

Cheat 3.1 (0.6) 2.6 (0.4)

Sage 8.7 (0.7) 6.4 (0.5) 5.2 (0.4)

Values in parantheses are one standard

error (n= 10).

Aggregate Size
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Table B.12: Percentage of TOC by Mass (Root C and SOC) 

 

 

Root C SOC Root C SOC Root C SOC

0-3 22 78 32 68 35 65

3-8 13 87 23 77 13 87

8-13 15 85 17 83 13 87

13-18 6 94 10 90 10 90

18-28 3 97 9 91 8 92

28-38 2 98 8 92 9 91

38-48 * 0 100 0 100 0 100

48-58 * 0 100 0 100 0 100

Total 10 90 15 85 14 86

Values are percent mass of total  organic carbon (TOC) for distinct

C pools and for each plant community.

Cheat Bunch Sage


