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ABSTRACT

With advances in solid-state power electronic devices and microprocessors, various

pulse-width-modulation (PWM) techniques have been developed for industrial applica-

tions. For example, PWM-based three-phase voltage source inverters (VSI) convert DC

power to AC power with variable voltage magnitude and variable frequency.

This thesis discusses the advantages and drawbacks of three different PWM tech-

niques: the sinusoidal PWM (SPWM) technique, the third-harmonic-injection PWM (THIPWM)

technique, and the space-vector PWM (SVPWM) technique. These three methods are

compared by discussing their ease of implementation and by analyzing the output har-

monic spectra of various output voltages (poles voltages, line-to-neutral voltages, and

line-to-line voltages) and their total harmonic distortion (THD).

The simulation results show that both the THIPWM and SVPWM techniques have

lower total harmonic distortion than the SPWM technique. The THIPWM and SVPWM

techniques in the under-modulation region can both increase the fundamental output volt-

age by 15.5% over the SPWM technique. Moreover, the SVPWM technique can increase

the fundamental output by about 5% in each of the overmodulation regions 1 and 2,

respectively.
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1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Pulse-width modulation (PWM) is a technique where the duty ratio of a pulsating wave-

form is controlled by another input waveform. The intersections between the reference

voltage waveform and the carrier waveform give the opening and closing times of the

switches.

PWM is commonly used in applications like motor speed control, converters, audio

amplifiers, etc. For example, it is used to reduce the total power delivered to a load without

losses, which normally occurs when a power source is limited by a resistive element.

PWM is used to adjust the voltage applied to the motor. Changing the duty ratio of the

switches changes the speed of the motor. The longer the pulse is closed compared to the

opened periods, the higher the power supplied to the load is. The change of state between

closing (ON) and opening (OFF) is rapid, so that the average power dissipation is very low

compared to the power being delivered. PWM amplifiers are more efficient and less bulky

than linear power amplifiers. In addition, linear amplifiers that deliver energy continuously

rather than through pulses have lower maximum power ratings than PWM amplifiers.

There is no single PWM method that is the best suited for all applications and with ad-

vances in solid-state power electronic devices and microprocessors, various pulse-width-

modulation (PWM) techniques have been developed for industrial applications. For these

reasons, the PWM techniques have been the subject of intensive research since 1970s.
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1.2 Literature Review

With advances in solid-state power electronic devices and microprocessors, various in-

verter control techniques employing pulse-width-modulation (PWM) techniques are be-

coming increasingly popular in AC motor drive applications. These PWM-based drives are

used to control both the frequency and the magnitude of the voltages applied to motors [1].

Various PWM strategies, control schemes, and realization techniques have been developed

in the past two decades [2]. PWM strategy plays an important role in the minimization of

harmonics and switching losses in converters, especially in three-phase applications. The

first modulation techniques were developed in the mid-1960s by Kirnnich, Heinrick, and

Bowes as reported in [3]. The research in PWM schemes has intensified in the last few

decades. The main aim of any modulation technique is to obtain a variable output with a

maximum fundamental component and minimum harmonics [4].

The carrier-based PWM methods were developed first and were widely used in most

applications. One of the earliest modulation signals for carrier-based PWM is sinusoidal

PWM (SPWM). The SPWM technique is based on the comparison of a carrier signal and a

pure sinusoidal modulation signal. It was introduced by Schonung and Stemmler in 1964

as reported in [5]. The utilization rate of the DC voltage for traditional sinusoidal PWM is

only 78.5% of the DC bus voltage, which is far less than that of the six-step wave (100%).

Improving the utilization rate of the DC bus voltage has been a research focus in power

electronics [6].

This problem of the under-utilization of the DC bus voltage led to the development

of the third-harmonic-injection pulse-width modulation (THIPWM). In 1975, Buja de-

veloped this improved sinusoidal PWM technique, which added a third-order harmonic

content into the sinusoidal reference signal leading to a 15.5% increase in the utilization

rate of the DC bus voltage [6].

Another method of increasing the output voltage is the space-vector PWM (SVPWM)
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technique. SVPWM was first introduced in the mid-1980s and was greatly advanced by

Van Der Broeck in 1988 [9]. Compared to THIPWM, the two techniques have similar re-

sults but their methods of implementation are completely different. With the development

of microprocessors, SVPWM has become one of the most important PWM methods for

three-phase inverters [7]. Many SVPWM schemes have been developed and extensively

investigated in the literature. The goal in each modulation strategy is to lower the switching

losses, maximize bus utilization, reduce harmonic content, and still achieve precise control

[8].

The SVPWM technique utilizes the DC bus voltage more efficiently and generates less

harmonic distortion when compared with the SPWM technique [4]. The maximum peak

fundamental magnitude of the SVPWM technique is about 90.6% of the inverter capacity.

This represents a 15.5% increase in the maximum voltage compared with conventional

sinusoidal modulation [10].

In 1991, Holtz proposed a classical over-modulation technique based on SVPWM,

which divided the over-modulation range into two modes of operation and increased the

utilization rate of the DC voltage to that of a six-step wave [6,11,12,13]. Holtz pro-

posed this technique using switching time calculations in the over-modulation region of

SVPWM.

In 1998, Lee analyzed Holtz’s over-modulation technique graphically, gave some ap-

proximate linear expressions between the modulation index and its own auxiliary param-

eter, and discussed the harmonic problem [14]. He showed that this technique generated

less harmonic distortion in the output voltages (or) the currents applied to the phases of

an AC motor and provided more efficient use of the DC input voltage. Because of its

superior performance characteristics, it has found widespread application in recent years

[4]. Accordingly, many other researchers have explored various aspects of this technique

in the literature [6,15,16,17].
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1.3 Research Motivation

The SPWM technique is the easiest modulation scheme to understand and to implement

in software or hardware but this technique is unable to fully utilize the DC bus supply

voltage available to the voltage source inverter. This drawback led to the development of

THIPWM and SVPWM. THIPWM is a technique that adds a third-order harmonic content

to a sinusoidal reference signal thereby increasing the utilization rate of the DC bus voltage

by 15.5%.

The implementation of the conventional SVPWM is especially difficult because it

requires complicated mathematical operations. In the under-modulation region, this al-

gorithm provides 15.5% higher output voltages compared to the SPWM technique. More-

over, the utilization of the DC bus voltage can be further increased when extending into

the over-modulation region of SVPWM.

Three-phase voltage source pulse-width modulation inverters have been widely used

for DC to AC power conversion since they can produce outputs with variable voltage

magnitude and variable frequency. For example, modern power electronics controllers

have been rapidly moving toward digital implementation. Typical solutions employ mi-

crocontrollers or DSPs [18].

This thesis discusses the principles, theories, mathematical equations, and procedures

involved for the software (MATLAB/Simulink package) implementation of these tech-

niques. This thesis synthesizes and compares the main theories behind three-phase genera-

tion of SPWM, THIPWM, and SVPWM. These three techniques are used to generate their

respective output PWM signals, which are then compared based on harmonic content and

distortion using the total harmonic distortion (THD) measure of various output voltages.
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1.4 Thesis Organization

This thesis is comprised of seven chapters. Chapter 1 is an introduction including a

literature review, research motivation, and thesis outline. Chapters 2, 3, and 4 provide an

in-depth look into the concepts, mathematical equations, implementation, and waveforms

generated by the SPWM, THIPWM, and SVPWM techniques. Chapter 5 presents the

Simulink models and output plots obtained from the simulation of SPWM, THIPWM,

and SVPWM in the under-modulation region and over-modulation region 1. Chapter 6

compares the results of these three techniques from Chapter 5 along with a discussion

of the output harmonic spectra of various output voltages and a THD measure for each

output. Chapter 7 summarizes the thesis with conclusions and recommendations for future

research.
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CHAPTER 2

SINUSOIDAL PWM AND THIRD-HARMONIC-INJECTION PWM

2.1 Sinusoidal PWM

2.1.1 Sinusoidal PWM Concept

The sinusoidal pulse-width modulation (SPWM) technique produces a sinusoidal wave-

form by filtering an output pulse waveform with varying width. A high switching fre-

quency leads to a better filtered sinusoidal output waveform. The desired output voltage

is achieved by varying the frequency and amplitude of a reference or modulating volt-

age. The variations in the amplitude and frequency of the reference voltage change the

pulse-width patterns of the output voltage but keep the sinusoidal modulation.

As shown in Figure 2.1, a low-frequency sinusoidal modulating waveform is compared

with a high-frequency triangular waveform, which is called the carrier waveform. The

switching state is changed when the sine waveform intersects the triangular waveform.

The crossing positions determine the variable switching times between states.

In three-phase SPWM, a triangular voltage waveform (VT ) is compared with three

sinusoidal control voltages (Va, Vb, and Vc), which are 120◦ out of phase with each other

and the relative levels of the waveforms are used to control the switching of the devices in

each phase leg of the inverter.

A six-step inverter is composed of six switches S1 through S6 with each phase output

connected to the middle of each inverter leg as shown in Figure 2.2. The output of the

comparators in Figure 2.1 form the control signals for the three legs of the inverter. Two
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Figure 2.1: Control Signal Generator for SPWM [27].

Figure 2.2: Three-Phase Sinusoidal PWM Inverter [27].

switches in each phase make up one leg and open and close in a complementary fashion.

That is, when one switch is open, the other is closed and vice-versa. The output pole

voltages Vao, Vbo, and Vco of the inverter switch between -Vdc/2 and +Vdc/2 voltage levels

where Vdc is the total DC voltage.

The peak of the sine modulating waveform is always less than the peak of the triangle
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carrier voltage waveform. When the sinusoidal waveform is greater than the triangular

waveform, the upper switch is turned on and the lower switch is turned off. Similarly,

when the sinusoidal waveform is less than the triangular waveform, the upper switch is

off and the lower switch is on. Depending on the switching states, either the positive or

negative half DC bus voltage is applied to each phase. The switches are controlled in pairs

((S1,S4), (S3,S6), and (S5,S2)) and the logic for the switch control signals is:

◦ S1 is ON when Va>VT S4 is ON when Va<VT

◦ S3 is ON when Vb>VT S6 is ON when Vb<VT

◦ S5 is ON when Vc>VT S2 is ON when Vc<VT .

Figure 2.3: Three-Phase Sinusoidal PWM: a). Reference Voltages (a,b,c) and Triangular
Wave b). Vao, c) Vbo, d) Vco e) Line-to-Line Voltages [27].
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As seen in Figure 2.3, the pulse widths depend on the intersection of the triangular and

sinusoidal waveforms. The inverter output voltages are determined as follows:

if Va>VT then Vao = 0.5Vdc

Vb>VT then Vbo = 0.5Vdc

Vc>VT then Vco = 0.5Vdc

and if Va<VT then Vao = −0.5Vdc

Vb<VT then Vbo = −0.5Vdc

Vc<VT then Vco = −0.5Vdc.

The inverter line-to-line voltages are obtained from the pole voltages as:

Vab = Vao−Vbo

Vbc = Vbo−Vco

Vca = Vco−Vao.

2.1.2 Modulation Index of Sinusoidal PWM

The Fourier series expansion of a symmetrical square wave voltage with a peak magnitude

of Vdc/2 has a fundamental of magnitude 2Vdc/π . The maximum of the output voltage

generated by the SPWM method is Vdc/2. The modulation index is defined as the ratio of

the magnitude of output voltage generated by SPWM to the fundamental peak value of the

maximum square wave. Thus, the maximum modulation index of the SPWM technique is

MI =
VPWM

Vmax−sixstep
=

Vdc
2

2Vdc
π

=
π

4
≈ 0.7855 = 78.55%,
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where VPWM is the maximum output voltage generated by a SPWM and Vmax−sixstep is the

fundamental peak value of a square wave.

2.2 Third-Harmonic-Injection PWM

2.2.1 Concept and Calculation of Optimum Distortion

The sinusoidal PWM is the simplest modulation scheme to understand but it is unable to

fully utilize the available DC bus supply voltage. Due to this problem, the third-harmonic-

injection pulse-width modulation (THIPWM) technique was developed to improve the

inverter performance.

Following Reference [17], consider a waveform consisting of a fundamental compo-

nent with the addition of a triple-frequency term:

y = sinθ +Asin3θ , (2.1)

where θ =ωt and A is a parameter to be optimized while keeping the maximum amplitude

of y(t) under unity. The maximum value of y(t) is found by setting its derivative with

respect to θ equal to zero. Thus,

dy
dθ

= cosθ +3Acos3θ = cosθ(12Acos2
θ − (9A−1)) = 0. (2.2)

The maximum and minimum of the waveform therefore occur at

cosθ = 0 (2.3)

and
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cosθ =

(
9A−1

12A

) 1
2

(2.4)

which yield, respectively,

sinθ = 1 (2.5)

and

sinθ =

(
1+3A

12A

) 1
2

. (2.6)

The peak value of y can be found by substituting the values obtained for sinθ in (2.5) and

(2.6) into (2.1). Using the following trigonometric identity,

sin3θ = 3sinθ −4sin3
θ , (2.7)

Equation (2.1) becomes

y = (1+3A)sinθ −4Asin3
θ . (2.8)

Substituting the values in (2.5) and (2.6), for sinθ we have

ŷ = 1−A (2.9)

and

ŷ = 8A
(

1+3A
12A

) 3
2

, (2.10)

where ŷ is the peak value of y.
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The optimum value for A is that value which minimizes ŷ and can be found by dif-

ferentiating (2.10) for ŷ with respect to A and equating the result to zero. Then, Equation

(2.10) becomes,

dŷ
dA

=

(
1+3A

12A

) 1
2
(

2− 1
3A

)
= 0. (2.11)

Thus, the two possible values of A are

A =−1
3

and A =
1
6
. (2.12)

From Equation (2.9), we can see that the negative value of A makes ŷ greater than unity.

Therefore, the only valid solution for A is 1/6 and the required waveform is

y = sinθ +
1
6

sin3θ . (2.13)

From Equation (2.3), cosθ = 0 yields θ = π/2. Substituting the value of 1/6 for A in (2.4)

gives cosθ = 1/2, i.e., θ = π/3,2π/3, etc. All triple harmonics pass through zero at these

values of θ . If we substitute the values of θ = nπ/3 in (2.13), then we have a maximum

amplitude of ŷ =±
√

3/2 at these angles.

In Figure 2.4, it is shown that the addition of a third harmonic with a peak magnitude

of one sixth to the modulation waveform has the effect of reducing the peak value of the

output waveform by a factor of
√

3/2 without changing the amplitude of the fundamental.

It is possible to increase the amplitude of the modulating waveform by a factor K, so

that the full output voltage range of the inverter is again utilized [17]. If the modulating

waveform is expressed as

y = K(sinθ +
1
6

sin3θ), (2.14)
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the required factor K for a peak value of unity should satisfy the constraint

1 = K
√

3/2 (2.15)

and, therefore,

K =
2√
3
. (2.16)

On the same figure, we see that the addition of this third harmonic produces a 15.5%

increase in the amplitude of the fundamental of the phase voltages. Figure 2.4(a) does

not have a third harmonic, only a peak value and amplitude of fundamental equal 1. The

peak of Figure 2.4(b) is
√

3/2 with one-sixth of the third harmonic added. The amplitude

of the fundamental equals 1. The peak amplitude in Figure 2.4(c) equals 1 while the

peak amplitude of the fundamental equals 2/
√

3 with one-sixth of third harmonic added.

Injecting a third harmonic component to the fundamental component gives the following

modulating waveforms for the three-phase [17]:

Van =
2√
3

(
sin(ωt)+

1
6

sin(3ωt)
)

(2.17)

Vbn =
2√
3

(
sin(ωt−2π/3)+

1
6

sin(3ωt)
)

(2.18)

Vcn =
2√
3

(
sin(ωt +2π/3)+

1
6

sin(3ωt)
)
. (2.19)

The THIPWM is implemented in the same manner as the SPWM, that is, the reference

waveforms are compared with a triangular waveform. As a result, the amplitude of the

reference waveforms do not exceed the DC supply voltage Vdc/2, but the fundamental

component is higher than the supply voltage Vdc. As mentioned above, this is approx-

imately 15.5% higher in amplitude than the normal sinusoidal PWM. Consequently, it
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Figure 2.4: One-Phase Third-Harmonic Injection PWM [17].

provides a better utilization of the DC supply voltage.

The three reference voltages and triangular waveform of a three-phase THPWM pro-

duce the following output pole voltages Vao,Vbo,Vco shown in Figure 2.5.
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Figure 2.5: Reference Voltages (a,b,c), Triangular Waveforms (VT ), and Output Voltage
(Vao,Vbo,Vco).
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CHAPTER 3

SPACE VECTOR PWM

3.1 Introduction

Another method for increasing the output voltage about that of the SPWM technique is

the space vector PWM (SVPWM) technique. Compared to THIPWM, the two methods

have similar results but their methods of implementation are completely different. In the

SVPWM technique, the duty cycles are computed rather than derived through comparison

as in SPWM. The SVPWM technique can increase the fundamental component by up to

27.39% that of SPWM. The fundamental voltage can be increased up to a square wave

mode where a modulation index of unity is reached.

SVPWM is accomplished by rotating a reference vector around the state diagram,

which is composed of six basic non-zero vectors forming a hexagon. A circle can be

inscribed inside the state map and corresponds to sinusoidal operation. The area inside

the inscribed circle is called the linear modulation region or under-modulation region. As

seen in Figure 3.1, the area between the inside circle and outside circle of the hexagon

is called the nonlinear modulation region or over-modulation region. The concepts in the

operation of linear and nonlinear modulation regions depend on the modulation index,

which indirectly reflects on the inverter utilization capability.
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Figure 3.1: Under-modulation and Over-modulation Regions in Space Vector Representa-
tion [12].

3.2 Principle of Space Vector PWM

A three-phase mathematical system can be represented by a space vector. For example,

given a set of three-phase voltages, a space vector can be defined by

−→
V (t) =

2
3
[Va(t)e j0 +Vb(t)e j 2π

3 +Vc(t)e j 4π

3 ], (3.1)

where Va(t), Vb(t), and Vc(t) are three sinusoidal voltages of the same amplitude and

frequency but with ±120o phase shifts. The space vector at any given time maintains its

magnitude. As time increases, the angle of the space vector increases, causing the vector

to rotate with a frequency equal to that of the sinusoidal waveforms. When the output
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voltages of a three-phase six-step inverter are converted to a space vector and plotted on

the complex plane, the corresponding space vector takes only on one of six discrete angles

as time increases. The central idea of SVWPM is to generate appropriate PWM signals so

that a vector with any desired angle can be generated.

SVPWM is a form of PWM proposed in the mid-1980s that is more efficient compared

to natural and regularly-sampled PWM. In the space-vector modulation, a three-phase

two-level inverter can be driven to eight switching states where the inverter has six active

states (1-6) and two zero states (0 and 7).

A typical two-level inverter has 6 power switches (labeled S1 to S6) that generate three-

phase voltage outputs. A detailed drawing of a three-phase bridge inverter is shown in

Figure 3.2. The circuit has a full-bridge topology with three inverter legs, each consisting

of two power switches. The circuit allows only positive power flow from the supply system

to the load via a full-bridge diode rectifier. Negative power flow is not possible through

the rectifier diode bridge.

The six switching power devices can be constructed using power BJTs, GTOs, IGBTs,

etc. The choice of switching devices is based on the desired operating power level,

required switching frequency, and acceptable inverter power losses. When an upper tran-

sistor is switched on, the corresponding lower transistor is switched off. Therefore, the

ON and OFF states of the upper transistors S1,S3,S5 can be used to determine the current

output voltage. The ON and OFF states of the lower power devices are complementary

to the upper ones. Two switches on the same leg cannot be closed or opened at the same

time.

The basic principle of SVPWM is based on the eight switch combinations of a three-

phase inverter. The switch combinations can be represented as binary codes that corre-

spond to the top switches S1, S3, and S5 of the inverter as shown in Figure 3.2. Each

switching circuit generates three independent pole voltages Vao, Vbo, and Vco, which are
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Figure 3.2: Three-Phase Bridge Inverter [11].

the inverter output voltages with respect to the mid-terminal of the DC source marked as

‘O’ on the same figure. These voltages are also called pole voltages.

The pole voltages that can be produced are either Vdc/2 or −Vdc/2. For example,

when switches S1, S6, and S2 are closed, the corresponding pole voltages are Vao =Vdc/2,

Vbo = −Vdc/2, and Vco = −Vdc/2. This state is denoted as (1,0,0) and, according to

Equation (3.1), may be depicted as the space vector
−→
V (t) = 2

3 [Vdce j0]. Repeating the

same procedure, we can find the remaining active and non-active states shown in Figure

3.3.

The three-phase inverter is therefore controlled by six switches and eight inverter

configurations. The eight inverter states can be transformed into eight corresponding space

vectors. In each configuration, the vector identification uses a ‘0’ to represent the negative

phase voltage level and a ‘1’ to represent the positive phase voltage level. The relationship

between the space vector and the corresponding switching states is given in Table 3.1

and Figure 3.2. In addition, the switches in one inverter branch are in controlled in a

complementary fashion (1 if the switch is on and 0 if it is off). Therefore,
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Figure 3.3: Eight Switching Configuration of a Three-Phase Inverter [7].

S1+S4 = 1;

S2+S6 = 1;

S5+S2 = 1.

We use orthogonal coordinates to represent the three-phase two-level inverter in the

phase diagram. There are eight possible inverter states that can generate eight space

vectors. These are given by the complex vector expressions:

−→
V k =


2
3Vdce j(k−1) π

3 if k = 1,2,3,4,5,6

0 if k = 0,7.
(3.2)

The entire space is divided into six equal-size sectors of 60o. Each sector is bounded

by two active vectors.
−→
V 0 and

−→
V 7 are two voltage vectors with zero amplitude located at

the origin of the hexagon. The eight active and non-active state vectors are geometrically

drawn in Figure 3.4.
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Table 3.1: Space Vectors, Switching States, and On State Switches

Space Vetor Swtiching State On-state Switch Vector Definition

−→
V 0 [000] S4,S6,S2

−→
V 0 = 0

−→
V 1 [100] S1,S6,S2

−→
V 1 =

2
3Vdce j0

−→
V 2 [110] S1,S3,S2

−→
V 2 =

2
3Vdce j π

3

−→
V 3 [010] S4,S3,S2

−→
V 3 =

2
3Vdce j 2π

3

−→
V 4 [011] S4,S3,S5

−→
V 4 =

2
3Vdce j 3π

3

−→
V 5 [001] S4,S6,S5

−→
V 5 =

2
3Vdce j 4π

3

−→
V 6 [101] S1,S6,S5

−→
V 6 =

2
3Vdce j 5π

3

−→
V 7 [111] S1,S3,S5

−→
V 7 =

2
3Vdce j0

The reference voltage vector
−→
V re f rotates in space at an angular velocity ω = 2π f ,

where f is the fundamental frequency of the inverter output voltage. When the reference

voltage vector passes through each sector, different sets of switches in Table 3.1 will

be turned on or off. As a result, when the reference voltage vector rotates through one

revolution in space, the inverter output varies one electrical cycle over time. The inverter

output frequency coincides with the rotating speed of the reference voltage vector. The

zero vectors (
−→
V 0 and

−→
V 7) and active vectors (

−→
V 1 to

−→
V 6) do not move in space. They are

referred to as stationary vectors. Figure 3.4 shows the reference vector
−→
V re f in the first

sector.

The six active voltage space vectors are shown on the same graph with an equal

magnitude of 2Vdc/3 and a phase displacement of 60o. The inverter cannot produce a

desired reference voltage vector directly. It is possible to decompose the reference vector

into vectors that lie on two adjacent active vectors and two zero vectors, which are located

at the center of the hexagon.

The relationship between the switching variable vector [S1,S3,S5] and the line-to-line
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Figure 3.4: Space Vectors of Three-Phase Bridge Inverter [12].

voltage vector [Vab,Vbc,Vca] is shown in Equation (3.1). When the upper or lower transistor

of a phase is ON, the switching signal of that phase is ‘1’ or ‘-1’, and when an upper or

lower transistor is OFF, then the switching signal is ‘0’. The eight combinations and the

derived output line-to-line and phase voltages in terms of the DC supply voltage are:


Vab

Vbc

Vca

=Vdc


1 −1 0

0 1 −1

−1 0 1




S1

S3

S5

 . (3.3)

Choosing a neutral load point n, we have:



Va0 = Van +Vn0

Vb0 = Vbn +Vn0

Vc0 = Vcn +Vn0

Van +Vbn +Vcn = 0.

(3.4)
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From Equations (3.3) and (3.4), the output phase voltages of the inverter depend on the

relationship between the switching variables [S1,S3,S5] and the DC voltage as follows:


Van

Vbn

Vcn

=
Vdc

3


2 −1 −1

−1 2 −1

−1 −1 2




S1

S3

S5

 . (3.5)

According to the Equations (3.3) to (3.5), the eight switching vectors, output line-to-

neutral voltage (phase voltages), and output line-to-line voltages in terms of DC link Vdc

are given in Table 3.2 along with the eight inverter voltage vectors (
−→
V 0 to

−→
V 7).

Table 3.2: Vectors, Switching Vectors, Phase Voltages and Line to Line Voltages as a
Function of the DC Bus Voltage Vdc.

Voltage Switching Line-to-Neutral Line-to-Line

Vectors Vectors Voltages Voltages

a b c Van Vbn Vcn Vab Vbc Vca

V0 0 0 0 0 0 0 0 0 0

V1 1 0 0 2Vdc
3 −Vdc

3 −Vdc
3 Vdc 0 -Vdc

V2 1 1 0 Vdc
3

Vdc
3 − 2Vdc

3 0 Vdc -Vdc

V3 0 1 0 −Vdc
3

2Vdc
3 −Vdc

3 -Vdc Vdc 0

V4 0 1 1 − 2Vdc
3

Vdc
3

Vdc
3 -Vdc 0 Vdc

V5 0 0 1 −Vdc
3 −Vdc

3
2Vdc

3 0 -Vdc Vdc

V6 1 0 1 Vdc
3 − 2Vdc

3
Vdc
3 Vdc -Vdc 0

V7 1 1 1 0 0 0 0 0 0

The space vector can be also represented in another reference frame with two orthog-

onal axes (α and β ). We assume that the α axis is aligned in the horizontal direction

and that the β axis is vertical. Then the abc three-phase voltage vector given in Equation

(3.1) can be transformed into a vector with αβ coordinates. The αβ vector is used to find
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the sector of the αβ plane in which the reference voltage vector lies. The phase voltages

corresponding to the eight combinations of switching patterns can be mapped into αβ

coordinates:
−→
V re f =Vα + jVβ =

2
3
(Va +Vbe j 2π

3 +Vce− j 2π

3 ) (3.6)

Vα + jVβ =
2
3
(Va +Vb cos(

2π

3
)+Vc cos(

2π

3
))+ j

2
3
(Vb sin(

2π

3
)−Vc cos(

2π

3
)).

Equating real and imaginary parts, we get

Vα =
2
3
(Va +Vb cos(

2π

3
)+Vc cos(

2π

3
)) (3.7)

Vβ =
2
3
(Vb sin(

2π

3
)−Vc cos(

2π

3
)). (3.8)

In matrix form, these equations become:

−→
V re f =

 Vα

Vβ

=
2
3

 1 −1/2 −1/2

0
√

3/2 −
√

3/2




Va

Vb

Vc

 . (3.9)

The values of Vα and Vβ in Table 3.3 are called the α and β components of the space

vector, and the last column in Table 3.3 shows the reference space vector. The voltages Vα

and Vβ become the inputs for dwelling time calculations in the space vector PWM and are

used to compute the scalar magnitude of the reference voltage |−→V Re f |.

3.3 Implementation Procedure of a Two-Level Space Vector PWM

The SVPWM scheme is more complicated than that of the conventional SPWM. It re-

quires the determination of a sector, calculation of vector segments, and it involves region

identification based on the modulation index and calculation of switching time durations.
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Table 3.3: Voltage Vectors, Switching Vector, α and β

Voltage Vector a b c Vα Vβ Vector

V0 0 0 0 0 0 0

V1 1 0 0 2Vdc
3 0 V0o

V2 1 1 0 Vdc
3

Vdc√
3

V60o

V3 0 1 0 −Vdc
3

Vdc√
3

V120o

V4 0 1 1 2Vdc
3 0 V180o

V5 0 0 1 −Vdc
3 −Vdc√

3
V240o

V6 1 0 1 Vdc
3 −Vdc√

3
V300o

V7 1 1 1 0 0 0

Figure 3.5: Flow Diagram for SVPWM Implementation [11].

A simplified flow diagram for the implementation of the SVPWM algorithm is shown

in Figure 3.5. The procedure for implementing a two-level space vector PWM can be

summarized as follows:

1. Calculate the angle θ and reference voltage vector
−→
V re f based on the input voltage

components.

2. Calculate the modulation index and determine if it is in the over-modulation region.

3. Find the sector in which
−→
V re f lies, and the adjacent space vectors of

−→
V k and

−→
V k+1
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based on the sector angle θ .

4. Find the time intervals Ta and Tb and T0 based on Ts, and the angle θ . (For over-

modulation, find T ′a, T ′b and T ′0 is zero.)

5. Determine the modulation times for the different switching states.

3.3.1 Angle and Reference Voltage Vector

In the Space Vector PWM, the three-phase output voltage vector is represented by a

reference vector that rotates at an angular speed of ω = 2π f . The Space Vector PWM

uses the combinations of switching states to approximate the reference vector
−→
V re f . A

reference voltage vector
−→
V re f that rotates with angular speed ω in the αβ plane represents

three sinusoidal waveforms with angular frequency ω in the abc coordinate system. Each

output voltage combination in Table 3.3 corresponds to a different voltage space vector.

Three sinusoidal and balanced voltages are given by the relations:

Va(t) = Vre f cos(ωt) (3.10)

Vb(t) = Vre f cos(ωt−2π/3) (3.11)

Vc(t) = Vre f cos(ωt +2π/3). (3.12)

For any three-phase system with three wires and equal load impedances, we have

Va(t)+Vb(t)+Vc(t) = 0. (3.13)

The space vector with magnitude Vre f rotates in a circular direction at an angular velocity

of ω where the direction of rotation depends on the phase sequence of the voltages. If it

has a positive phase sequence, then it rotates in the counterclockwise direction. Otherwise,

it rotates in the clockwise direction with a negative phase sequence.
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The three-phase voltages could be described with only two components, α and β , in a

two-dimensional plane. The magnitude of each active vector is 2Vdc/3. The active vectors

are 60o apart and describe a hexagon boundary. The locus of the circle projected by the

space reference vector
−→
V re f depends on

−→
V 0,
−→
V 1,
−→
V 2,
−→
V 3,
−→
V 4,
−→
V 5,
−→
V 6,
−→
V 7,

−→
V re f =

2
3
[Va +aVb +a2Vc] (3.14)

where a = e j2π/3. The magnitude of the reference vector is:

|−→V re f | =
√

V 2
α +V 2

β
. (3.15)

The phase angle is evaluated from

θ = tan−1(
Vβ

Vα

), (3.16)

where θ ∈ [0,2π].

3.3.2 Modulation Index of Linear Modulation

In the linear region, the rotating reference vector always remains within the hexagon. The

largest output voltage magnitude is the radius of the largest circle that can be inscribed

within the hexagon. This means that the linear region ends when the reference voltage is

equal to the radius of the circle inscribed within the hexagon.

The fundamental component of the voltage waveform is shown in Figure 3.6. From a

Fourier analysis, the fundamental voltage magnitude is given by
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Vmax−sixstep =
4
π

[∫
π/3

0

Vdc

3
sinθ dθ +

∫
π/2

π/3

2Vdc

3
sinθ dθ

]
=

4Vdc

3π

[
(−cos

π

3
+1)+(−2cos

π

2
+2cos

π

3

]
=

4Vdc

3π

[
1+ cos

π

3

]
=

2Vdc

π
.

(3.17)

The ratio between the reference vector
−→
V re f and the fundamental peak value of the square

Figure 3.6: Fundamental of Voltage Waveform [10].

phase voltage wave (2Vdc/π) is called the modulation index. The mode of operation is

determined by the modulation index (MI). In this linear region, the MI can be expressed

as:

MI =

−→
V re f

Vmax−sixstep
. (3.18)

From the geometry of Figure 3.1, the maximum modulation index is obtained when
−→
V re f

equals the radius of the inscribed circle.

−→
V re f (max) =

2
3

Vdc cos(π/6). (3.19)
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Therefore,

MImax =
2
3Vdc cos(π

6 )
2Vdc

π

= 0.907. (3.20)

3.3.3 Sector Determination

It is necessary to know in which sector the reference output lies in order to determine the

switching time and sequence. The identification of the sector where the reference vector

is located is straightforward. The phase voltages correspond to eight switching states: six

non-zero vectors and two zero vectors at the origin. Depending on the reference voltages

Vα and Vβ , the angle of the reference vector can be used to determine the sector as per

Table 3.4.

Table 3.4: Sector Definition.

Sector Degrees

1 0 < θ ≤ 60 o

2 60 < θ ≤ 120o

3 120 < θ ≤ 180o

4 180 < θ ≤ 240o

5 240 < θ ≤ 300o

6 300 < θ ≤ 360o

3.3.4 Time Durations Ta, Tb, T0

The duty cycle computation is done for each triangular sector formed by two state vectors.

The magnitude of each switching state vector is 2Vdc/3 and the magnitude of a vector

to the midpoint of the hexagon line from one vertex to another is Vdc/
√

3. In the under-

modulation, the maximum possible modulation index is 0.907 as derived previously.
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The reference space vector rotates and moves through different sectors of the complex

plane as time increases. In each PWM cycle, the reference vector
−→
V re f is sampled at

a fixed input sampling frequency fs. During this time, the sector is determined and the

modulation vector
−→
V re f is mapped onto two adjacent vectors. The non-zero vectors can

be represented by

−→
V k =

2
3

Vdce j(k−1) π

3 (3.21)

for k=1, 2, 3, 4, 5, 6.

Therefore, the non-zero vectors for
−→
V k and

−→
V k+1 become

−→
V k =

2
3

Vdc[cos(k−1)
π

3
+ j sin(k−1)

π

3
]

−→
V k+1 =

2
3

Vdce jk π

3 =
2
3

Vdc[cos
kπ

3
+ j sin

kπ

3
].

Due to symmetry in the patterns in the six sectors, the integration

∫ Ts
2

0

−→
V re f dt =

∫ T0
4

0

−→
V 0 dt +

∫ T0
4 +Ta

T0
4

−→
V k dt +

∫ T0
4 +Ta+Tb

T0
4 +Ta

−→
V k+1 dt +

∫ Ts
2

T0
4 +Ta+Tb

−→
V 7 dt (3.22)

can be carried out for only half of the pulse-width modulation period (Ts/2). Zero voltages

are applied during the null state times:

∫ T0
4

0

−→
V 0 dt =

∫ Ts
2

T0
4 +Ta+Tb

−→
V 7 dt = 0. (3.23)

Then Equation (3.22) becomes:

∫ Ts
2

0

−→
V re f dt =

∫ T0
4 +Ta

T0
4

−→
V k dt +

∫ T0
4 +Ta+Tb

T0
4 +Ta

−→
V k+1 dt. (3.24)

Thus, the product of the reference voltage vector
−→
V re f and Ts/2 equals the sum of the
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voltage multiplied by the time interval of the chosen space vectors. The reference voltage

vector
−→
V re f can be expressed as function of Vk and Vk+1 as

−→
V re f

Ts

2
=
−→
V kTa +

−→
V k+1Tb

−→
V re f =Vα + jVβ ,

(3.25)

where Ta and Tb denote the required on-time of the active-state vectors
−→
V k and

−→
V k+1

during each sample period, and k is the sector number denoting the reference location.

The calculated times Ta and Tb are applied to the switches to produce space vector PWM

switching patterns based on each sector. The switching time is arranged according to the

first half of the switching period while the other half is a reflection forming a symmetrical

pattern (see Figure 3.7). T0 and T7 are the times of the null state vectors in Figure 3.7.

If
−→
V re f lies exactly in the middle between two vectors, for example between

−→
V 1 and

−→
V 2 with an angle of π/6, Ta for

−→
V 1 will be equal to Tb for

−→
V 2. If

−→
V re f is closer to

−→
V 2 than

−→
V 1, it means that Tb will be greater than Ta. If

−→
V re f coincides with

−→
V 2, then

Ta will be equal to zero. If the reference keeps making a circular trajectory inside the

hexagon, then T0 is greater than zero, the output voltage will be a sinusoidal waveform in

the under-modulation region.

Assuming that the reference voltage and the voltage vectors
−→
V k and

−→
V k+1 are constant

during each pulse-width modulation period Ts and splitting the reference voltage
−→
V re f into

its real and imaginary components (Vα and Vβ ) gives the following result:

 Vα

Vβ

 Ts

2
=

2Vdc

3

Ta

 cos (k−1)π
3

sin (k−1)π
3

+Tb

 cos kπ

3

sin kπ

3




or
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=
2
3

Vdc

 cos (k−1)π
3 cos kπ

3

sin (k−1)π
3 sin kπ

3


 Ta

Tb

 . (3.26)

These equations require computations involving trigonometric functions. From the Equa-

tion (3.26), the inverse matrix is used to calculate Ta and Tb as:

 Ta

Tb

=

√
3Ts

2Vdc

 sin kπ

3 − cos kπ

3

−sin (k−1)π
3 cos (k−1)π

3


 Vα

Vβ

 . (3.27)

The Space Vector PWM produces the following balanced set of three-phase voltages with

magnitude
−→
V re f and angular frequency ω , given by:

Va = Vre f cos(ωt) (3.28)

Vb = Vre f cos(ωt− 2π

3
) (3.29)

Vc = Vre f cos(ωt− 4π

3
). (3.30)

The corresponding reference voltage space vector can be expressed as

−→
V re f = |

−→
V re f |e jωt = |−→V re f |(cosωt + j sinωt). (3.31)

Equation (3.31) then becomes:

 Ta

Tb

=

√
3Ts|
−→
V re f |

2Vdc

 sin kπ

3 − cos kπ

3

−sin (k−1)π
3 cos (k−1)π

3


 cosnωTs

sinnωTs

 . (3.32)

The modulation index is defined in Equation (3.18) as the ratio of the desired peak funda-

mental magnitude to the maximum fundamental output in a six-step mode:
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MI =
|−→V re f |

Vmaxsixstep
=

πVre f

2Vdc
(3.33)

or

|−→V re f |= MI
2
π

Vdc. (3.34)

Substituting this equation into the above equation for Ta and Tb leads to the following

duration times: Ta

Tb

=
MI
√

3Ts

π

 sin kπ

3 − cos kπ

3

−sin (k−1)π
3 cos (k−1)π

3


 cosnωTs

sinnωTs

 . (3.35)

Since the sum of 2Ta and 2Tb should be less than or equal to Ts, the inverter has to stay in a

zero state for the rest of the period. The duration of the null vectors is the remaining time

in the switching period. Since

Ts = T0 +2(Ta +Tb) (3.36)

then the time interval for the zero voltage vectors is

T0 = Ts−2(Ta +Tb). (3.37)

The switching times are arranged symmetrical around the center of the switching

period as shown in Figure 3.7. The zero vector
−→
V 7 (1,1,1) is placed at the center of

the switching period, and the zero vector
−→
V 0 (0,0,0) at the start and the end, and the total

period for a zero vector is divided equally among the two zero vectors.

In the under-modulation region, as the modulation index increases, the reference volt-

age vector grows outward in magnitude. It reaches the inscribed circle of the hexagon and

T0 will reduce to zero whenever the tip of the reference voltage vector is on the hexagon. If



34

the modulation index increases further, then T0 becomes negative and meaningless. There-

fore, the modulation index will reach a maximum of 0.907 in the linear under-modulation

region.

The calculated values of Ta and Tb in term of Ts/Vdc for all six sectors are listed in Table

3.5. The time durations of two adjacent nonzero vectors in each sector are calculated

Table 3.5: Time Intervals Ta and Tb for Each Sector

Sector θ Ta Tb

1 0 < θ ≤ 60o 3Vα

4 −
√

3Vβ

4 0Vα +

√
3Vβ

2

2 60 < θ ≤ 120o 3Vα

4 +

√
3Vβ

4
−3Vα

4 +

√
3Vβ

4

3 180 < θ ≤ 240o 0Vα +

√
3Vβ

2
−3Vα

4 −
√

3Vβ

4

4 120 < θ ≤ 180o −3Vα

4 +

√
3Vβ

4 0Vα −
√

3Vβ

2

5 240 < θ ≤ 300o −3Vα

4 −
√

3Vβ

4
3Vα

4 −
√

3Vβ

4

6 180 < θ ≤ 240o 0Vα −
√

3Vβ

2
3Vα

4 +

√
3Vβ

4

based on the magnitude and phase of the reference voltage. From Figure 3.7, a zero state

vector is applied followed with two adjacent active vectors in half of the switching period.

The next half of the switching period is symmetrical to the first half.

To generate the signals that produce the rotating vector, an equation is required to

determine the time intervals for each sector. Figure 3.8 shows the pulse patterns generated

by space vector PWM in sector 1.

For example [19], when
−→
V re f is in sector 1 as shown in Figures 3.7 and 3.8, the

−→
V 1

vector is applied to the inverter during Ta interval, and consequently the vector
−→
V 2 is

applied during T2 interval. The PWM period is shared between
−→
V 1 and

−→
V 2 for durations

Ta and Tb, respectively, and the zero vectors
−→
V 0 and

−→
V 7 for a duration T0. The switching

sequence is given by
−→
V 0-
−→
V 1-
−→
V 2-
−→
V 7-
−→
V 7-
−→
V 2-
−→
V 1-
−→
V 0 during two half-sampling periods.

The generated space vector PWM waveforms are symmetrical with respect to the middle
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Figure 3.7: Construction of Symmetrical Pulse Pattern for Three-Phase [20].

of each PWM period. The switching frequency is the same as the sampling frequency of

the inverter. An example of a symmetric space vector PWM waveform is shown in Figure

3.7 where it is assumed that the reference voltage is in the sector formed by vector
−→
V 1 and

−→
V 2 with angle 0 < θ ≤ 60o. In Figure 3.7, switching states are required to change from

one state to the next. The progress of switching states from the left to the right of that

figure with following steps:

1. When the circuit configuration is in the
−→
V 0 state (time interval is T0/2), all top

switches (S1, S3, and S5) of Figure 3.2 are opened.

2. When it is in the
−→
V 1 state (with a time interval Ta), switch S1 is closed.

3. When it is in the
−→
V 2 state (with a time interval Tb), switch S3 is closed (S1 is still

closed).

4. When it is in the
−→
V 7 state (with a time interval T0/2), switch S5 is closed. (S1, and

S3, are still closed.)
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After the first half of the switching period is done, the switching combination is re-

versed. All switches are closed for T0/2 seconds before the circuit configuration is back to
−→
V 2, then

−→
V 1, and

−→
V 0 with corresponding time intervals of Tb, Ta, and T0/2. Following a

similar process, the switching cycles are determined for the five remaining vectors.

From Tables 3.1 and 3.2 for this example the magnitude of all the space vectors is

2Vdc/3 and the phase voltages are Van = 2Vdc/3,Vbn = −Vdc/3, Vcn = −Vdc/3 and the

line-to-line voltages are Vab =Vdc, Vbc = 0, Vca =−Vdc.

Figure 3.8: Vre f Falls into Sector 1 [21].

3.3.5 Determination of the Switching Times for Each Transistor Switch (S1 - S6)

It is necessary to arrange the switching sequence so that the switching frequency of each

inverter leg is minimized. There are many switching patterns that can be used to implement

SVPWM. To minimize the switching losses, only two adjacent active vectors and two zero

vectors are used in a sector [15,20,21]. To meet this optimal condition, each switching

period starts with one zero vector and end with another zero vector during the sampling

time Ts. This rule applies normally to three-phase inverters as a switching sequence.
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Therefore, the switching cycle of the output voltage is double the sampling time, and

the two output voltage waveforms become symmetrical during Ts. Table 3.6 presents a

symmetric switching sequence.

Referring to this table, the binary representations of two adjacent basic vectors differ in

only one bit, so that only one of the upper transistors switches is closed when the switching

pattern moves from one vector to an adjacent one. The two vectors are time-weighted in a

sample period Ts to produce the desired output voltage.

Table 3.6: Seven-Segment Switching Sequence

Sector Switching Segment

1 2 3 4 5 6 7

1 ~V0,[000] ~V1,[100] ~V2,[110] ~V7,[111] ~V2,[110] ~V1,[100] ~V0, [000]

2 ~V0,[000] ~V3,[010] ~V2,[110] ~V7,[111] ~V2,[110] ~V3,[010] ~V0, [000]

3 ~V0,[000] ~V3,[010] ~V4,[011] ~V7,[111] ~V4,[011] ~V3,[010] ~V0, [000]

4 ~V0,[000] ~V5,[001] ~V4,[011] ~V7,[111] ~V4,[011] ~V5,[001] ~V0, [000]

5 ~V0,[000] ~V5,[001] ~V6,[101] ~V7,[111] ~V6,[101] ~V5,[001] ~V0, [000]

6 ~V0,[000] ~V1,[100] ~V6,[101] ~V7,[111] ~V6,[101] ~V1,[100] ~V0, [000]

3.3.6 Types of Different Schemes

There are two modes of operation available for the PWM waveform: symmetric and

asymmetric PWM. The pulse of an asymmetric edge aligned signal always has the same

side aligned with one end of each PWM period. On the other hand, the pulse of symmetric

signals is always symmetric with respect to the center of each PWM period. The sym-

metrical PWM signal is often preferred because it has been shown to have the lowest total

harmonic distortion (THD), and has been implemented in [22,23,24]. Output patterns for

each sector are based on a symmetrical sequence. There are different schemes in space
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vector PWM and they are based on their repeating duty distribution. The seven-segment

technique is studied in this thesis and will be referred to as the symmetric technique.

Based on the equations for Ta, Tb, T0, T7, and according to the principle of symmetrical

PWM, the switching sequence in Table 3.7 is shown for the upper and lower switches.

Figure 3.10 shows the switching patterns of all six sectors in the circle. As shown in

the same figure, the space vector for a three-phase voltage source inverter is divided into

six sectors based on six fundamental vectors. Any voltage vector in this vector space can

be synthesized using two adjacent vectors. One switching period is depicted in the same

figure. In sector 1, for example, switching is achieved by applying a zero state vector

followed by two adjacent active state vectors in a half switching period. The next half of

the switching period is the mirror image of the first half.

In order to reduce the switching loss of the power components of the inverter, it

is required that at each time only one bridge arm is switched. After re-organizing the

switching sequences, a scheme with center-aligned pulses is obtained as shown in Figure

3.9.

The switching pulse patterns of six different sectors in Figure 3.11 are shown for the

upper and lower switches of a three-phase inverter. It is obvious that in the odd sector

the active state sequence is in ascending-descending order; whereas, it is in a descending-

ascending order in an even sector. For example:

1. In an odd sector 1, the state sequence of space vectors is in the order
−→
V 0,
−→
V 1,
−→
V 2,

−→
V 7,
−→
V 7,
−→
V 2,
−→
V 1,
−→
V 0.

2. In an even sector 2, the state sequence of space vectors is:
−→
V 0,
−→
V 3,
−→
V 2,
−→
V 7,
−→
V 7,
−→
V 2,

−→
V 3,
−→
V 0.

Following the same procedure, we have the switching sequence summarized in Table 3.8

for all six sectors.
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Figure 3.10: Switching Patterns of Six Sectors in Circle [20].
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Table 3.7: Switching Pulse Pattern for the Three Phase for Each Sector

Sector Upper Switches: S1, S3, S5 Lower Switches: S4, S6, S2

1 S1 = Ta +Tb +T0/2 S4 = T0/2

S3 = Tb +T0/2 S6 = Ta +T0/2

S5 = T0/2 S2 = Ta +Tb +T0/2

2 S1 = Ta +T0/2 S4 = Tb +T0/2

S3 = Ta +Tb +T0/2 S6 = T0/2

S5 = T0/2 S2 = Ta +Tb +T0/2

3 S1 = T0/2 S4 = Ta +Tb +T0/2

S3 = Ta +Tb +T0/2 S6 = T0/2

S5 = Tb +T0/2 S2 = Ta +T0/2

4 S1 = T0/2 S4 = Ta +Tb +T0/2

S3 = Ta +T0/2 S6 = Tb +T0/2

S5 = Ta +Tb +T0/2 S2 = T0/2

5 S1 = Tb +T0/2 S4 = Ta +T0/2

S3 = T0/2 S6 = Ta +Tb +T0/2

S5 = Ta +Tb +T0/2 S2 = T0/2

6 S1 = Ta +Tb +T0/2 S4 = T0/2

S3 = T0/2 S6 = Ta +Tb +T0/2

S5 = Ta +T0/2 S2 = Tb +T0/2
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Table 3.8: Switching Sequence for Three-Phase PWM Technique

Sector Switching Sequence of the Three Phase Modulation

1 ~V0-~V1-~V2-~V7-~V2-~V1-~V0

2 ~V0-~V3-~V2-~V7-~V2-~V3-~V0

3 ~V0-~V3-~V4-~V7-~V4-~V3-~V0

4 ~V0-~V5-~V4-~V7-~V4-~V5-~V0

5 ~V0-~V5-~V6-~V7-~V6-~V5-~V0

6 ~V0-~V1-~V6-~V7-~V6-~V1-~V0
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Figure 3.11: Switching Sequence of all Six Sectors [4].
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CHAPTER 4

SPACE VECTOR PWM IN OVER-MODULATION REGION

4.1 Introduction

Full utilization of the DC bus voltage is important for achieving, for example, maximum

output torque under all operating conditions in AC machine drive applications. Over-

modulation aims to extend the linear operation region of the SVPWM, which leads to a

better utilization of the DC bus voltage and enhances the power utilization of the voltage

source inverter. Several approaches to over-modulation have been proposed to extend the

linear region of SVPWM over the years. It is an advanced method and possibly the best

technique for variable frequency drive applications.

For SPWM, the highest possible peak phase fundamental voltage is 0.5Vdc. With

SVPWM, the peak phase fundamental voltage can be as high as 0.577Vdc during under-

modulation when the reference vector makes a circular trajectory and it can be higher in

the nonlinear modulation region when the desired trajectory partly passes outside of the

hexagon.

The modulation index of the over-modulation region ranges from 0.907 up to 1 [11].

The over-modulation range can be considered as one region or it can be divided into two

regions (see Figure 4.1). In this thesis, the over-modulation region is considered as two

regions with two modes of operation depending on the modulation index values.

• In mode 1, the actual voltage vector keeps the angular speed of a modified reference

vector constant, but its amplitude changes over time.
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Figure 4.1: The Two Over-Modulation Regions in Space Vector Representation [12].

• In mode 2, both the amplitude and angle of the modified reference vector are varied.

4.2 Over-Modulation Mode 1

The over-modulation region starts when the reference voltage exceeds the hexagon bound-

ary, and the MI is larger than 0.907. The boundary between the under-modulation zone

and over-modulation region 1 starts when MI=0.907 and the boundary between the over-

modulation region 1 and the over-modulation region 2 starts when MI=0.952. In region

1, the crossover angle (αr) is measured from a hexagon vertex to the intersection of the

compensated voltage vector trajectory with a hexagon side (see Figure 4.3). The crossover

angle decreases as the modulation index is increased until at the limit of region 1. It

depends on the value of the modulation index and varies between π/6 at the beginning

of region 1 when MI=0.907 and 0o at the end of region 1 when MI =0.952 as shown in

Figure 4.2. When the crossover angle equals zero degrees, the reference vector is fully on
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the hexagon. The fundamental peak value generated in this way voltage is about 95% of

the peak voltage of the square wave. This gives a modulation index of 0.952 [23].
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Figure 4.2: Crossover Angle vs. Modulation Index in the Mode 1.

In mode 1, the amplitude of the desired voltage is modified to fit inside a hexagon

while the desired phase angle is not modified. It starts when the reference voltage
−→
V re f

crosses the hexagon at two points in each sector. Figure 4.3 shows two crossing points at

B and C. There is a loss of fundamental voltage in the region where the reference vector

exceeds the hexagon boundary of B-C. To compensate for that loss, the output voltage

must track the modified reference voltage
−→
V re f , where it must change to a larger radius.

This leads to a new reference voltage (
−→
V ′re f ), which crosses the hexagon at an angle αr.

The angle of the new reference vector is transmitted without any change.

The characteristic of the over-modulation mode 1 is that the voltage space vector moves

partially on the hexagon (along B-C) and partially on the circle providing a continuous op-

eration. The output voltage waveform is approximated by linear segments on the hexagon

trajectory and by sinusoidal segments on the circular trajectory.

When the reference voltage vector is within the hexagon, near the outer corners of a

sector on curve length A-B in the same figure, it is on a circular trajectory with switching

times of Ta, Tb, and T0 as in the under-modulation mode, but with a modified reference

voltage.

During the nonlinear modulation, only the active vectors are taken into account while
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Figure 4.3: Over-Modulation Mode Region 1 [12].

the zero states are neglected. So, when
−→
V re f is on the hexagon, T ′0=0, the switching times

must be calculated using the modified equations [10]:

T ′a =

[
Ts

2

]
Ta

Ta +Tb
(4.1)

T ′b =

[
Ts

2

]
Tb

Ta +Tb
. (4.2)

When the original reference trajectory passes outside of the hexagon, the tip of the

reference vector is located in the area between the inside circle and the outside circle of

the hexagon. The Ta and Tb equations in linear space vector PWM yield a negative and

meaningless duration for the zero vectors. Whether the trajectory is inside the hexagon or

not can be easily recognized using the following explanation.
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The magnitude of the new reference voltage is a function of the phase angle θ . If

the modulation index is above 0.907, the desired trajectory passes outside of the hexagon

and the interval time T0 is negative on the zero state vectors. In this case, the converter

exceeds its linear region of operation and enters the over-modulation region. Therefore,

the synthesized waveform becomes distorted.

If T ′0 is equal to zero, T ′a and T ′b should be reduced with an equal ratio so that their

sum should equal Ts. We need to use Equations (4.1) and (4.2) for T ′a and T ′b in the region

where the modified reference trajectory moves along the hexagon. The durations of the

active vectors during one switching period Ts are calculated using

T ′a =

[
Ts

2

]√
3cos(α− (k−1)π

3 )− sin(α− (k−1)π

3 )√
3cos(α− (k−1)π

3 )+ sin(α− (k−1)π

3 )
(4.3)

T ′b = Ts−T ′a (4.4)

T ′0 = 0, (4.5)

where k is the sector number. Equation (4.3) to (4.5) are used to calculate the durations of

the active vectors for each sector. Table 5.1 shows those durations for each sector. Using

Table 4.1: The Time Intervals T ′a and T ′b for Each Sector

Sector θ T ′a T ′b

1 0 < θ ≤ 600
√

3Vα−Vβ√
3Vα+Vβ

2Vβ√
3Vα+Vβ

2 60 < θ ≤ 1200
√

3Vα+Vβ

2Vβ

−
√

3Vα+Vβ

2Vβ

3 120 < θ ≤ 1800 2Vβ

−
√

3Vα+Vβ

−
√

3Vα−Vβ

−
√

3Vα+Vβ

4 180 < θ ≤ 2400 −
√

3Vα+Vβ

−
√

3Vα−Vβ

−2Vβ

−
√

3Vα−Vβ

5 240 < θ ≤ 3000 −
√

3Vα−Vβ

−2Vβ

√
3Vα−Vβ

−2Vβ

6 300 < θ ≤ 3600 −2Vβ√
3Vα−Vβ

√
3Vα+Vβ√
3Vα−Vβ
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Equation (3.22) in the under-modulation chapter, we can find the new reference voltage

space vector in the over-modulation region of mode 1:

−→
V re f

Ts

2
=
−→
V k.Ta +

−→
V k+1.Tb. (4.6)

Then,

−→
V ′re f

Ts

2
=

−→
V kT ′a +

−→
V k+1T ′b

−→
V ′re f =

[
2
Ts

](−→
V kTa +

−→
V k+1Tb

)( Ts

2(Ta +Tb)

)
−→
V ′re f =

(
Ts

2(Ta +Tb)

)
−→
V re f .

(4.7)

Referring to Figure 4.4, consider the trajectory of three voltage vectors rotating in a

complex plane (left-hand side) and the phase voltage waveform of an actual voltage refer-

ence vector transformed in a time domain (right-hand side), which is actually modulated

by the inverter [14]. The phase voltage waveform is divided into four segments and the

Figure 4.4: Trajectory of Reference Voltage Vector and Phase Voltage Waveform in Mode
1 [14].
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voltage equations in each segment are expressed as follows [14]:

f1 =
Vdc√

3
tanθ , for (

π

6
−αr)> θ ≥ 0

f2 =
Vdc√

3cos(π

6 −αr)
sinθ , for (

π

6
+αr)> θ ≥ (

π

6
−αr)

f3 =
Vdc√

3cos(π

3 −αr)
sinθ , for (

π

2
−αr)> θ ≥ (

π

6
+αr)

f4 =
Vdc√

3cos(π

6 −αr)
sinθ , for (

π

2
)> θ ≥ (

π

2
−αr),

(4.8)

where θ = ωt and ω is the angular velocity of the fundamental voltage reference vector.

The modification of the reference voltage vector is the same in all of the six sectors of

vector diagram, the relationship between the crossover angle (αr) and the new reference

voltage is given by:

cos(
π

6
−αr) =

(Vdc/
√

3)

(
−→
V ′re f )

. (4.9)

By expanding those four segment equations with a Fourier series, the fundamental com-

ponent of the phase voltage can be expressed as:

F(αr) =
4
π

[∫ π

6−θ

0
f1 sinθdθ +

∫ π

6 +θ

π

6−θ

f2 sinθdθ +
∫ π

2−θ

π

6 +θ

f3 sinθdθ

∫ π

2

π

2−θ

f4 sinθdθ

]
.(4.10)

This integral ranges from an angle of 0 to π/2 as shown in the complex plane (right part)

of the same figure. We can obtain the value of Fourier series F(αr) with respect to the

angle αr. Since F(αr) is the peak of the reference voltage,

F(αr) =
2
π

Vdc×MI (4.11)

and according to the definition of the modulation index,
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MI =
F(αr)

2
π

Vdc
. (4.12)

The Fourier series F(αr) can be generated from a MATLAB script. The relationship

between MI and the angle αr gives us the plot shown in Figure 4.2, which shows the

correlation between MI and the crossover angle αr.

4.3 Over-Modulation Mode 2

At the end of mode 1, the component of the reference voltage changes to a piecewise

linear waveform. When the modulation index is higher than 0.952, the second region of

the over-modulation region algorithm is entered. Both the reference magnitude and the

phase angle have to be changed compared to the linear region. The modified reference

vector is held at a vertex of the hexagon in every sector for the rest of the switching period.

The angle for which the active switching state vector is held constant is called the holding

angle αh. Figure 4.5 shows the holding angle in region 2 as a function of the modulation

index.

Figure 4.5: Holding Angle vs. Modulation Index in Mode 2 [11].

At the end of Mode 2, the linear segments vanish giving a six-step or square-wave

operation where the modified vector is held at the hexagon corner for 60o, that is, αh=30o
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[11]. An expression for the modified angle αh in Mode 2 can be given as

αm =


0 if : 0≤ α ≤ αh

α−αh
π/6−αh

∗ π

6 if : αh < α < (π/3−αh)

π

3 if: (π/3−αh)≤ α ≤ π/3,

(4.13)

αm is the modified angle of αh.

The holding angle increases from 0 to π/6 as modulation index goes from 0.955 to

1. The relation between the holding angle and the modulation index is nonlinear [16].

Therefore, the actual trajectory is modified so that the output fundamental voltage matches

that of the reference voltage. The operation in this region is characterized by partly holding

the modified vector at a hexagon corner for a holding angle αh, and partly by tracking the

hexagon sides in every sector. During the holding angle, the magnitude of Van remains

constant, whereas during hexagon tracking, the voltage changes almost linearly. In Figure

4.6, the trajectory shows five steps following by four angle ranges.

Figure 4.6: Angular Displacement of Reference and Actual Voltage Vectors in Mode 2
[12].

1. If the angle falls between zero and the holding angle (αh), the modified reference

voltage vector is held at a vertex, while the fundamental voltage vector is continu-
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ously rotating.

2. If the angle range is from the holding angle to (π/6-αh), the modified reference

vector moves along the hexagon, but lags the fundamental voltage vector.

3. When α equals π/6 exactly, the modified reference vector catches up with the

reference vector.

4. When α < (π

3 −αh), the modified reference vector speeds past it until α = π/3−αh.

5. In the last angle range (π/3 > α ≥ π/3−αh), the modified reference voltage vector

has just arrived at the other vertex. It remains there until the reference voltage vector

has caught up with the modified reference voltage vector.

The modulation will gradually change to a six-step mode for αh equal zero and generate a

square wave when the modulation index gets close to 1. The six-step mode is characterized

by a selection of the switching vector for one-sixth of the fundamental period. In this case,

the maximum possible inverter output voltage is generated. Mode 2 ends when the holding

angle is π/6.

The voltage equations in the four segments (see Figure 4.7) are expressed as:

f1 =
Vdc√

3
. tanαp, for 0≤ θ < (

π

6
−αh)

f2 =
Vdc

3
, for (

π

6
−αh)≤ θ < (

π

6
+αh)

f3 =
Vdc sin(α ′p)√
3.cos(π

3 −α ′p)
, for (

π

6
+αh)≤ θ < (

π

2
−αh)

f4 =
2Vdc

3
, for (

π

2
−αh)≤ θ <

π

2
)

(4.14)

where

α
′
p = αp−

6
π
=

θ

1− 6αh
π

− π

6
=

θ − π

6 +αh

1− 6αh
π

=
θ ′+αh

1− 6αh
π

(4.15)

Equations (4.10) to (4.12) are then used to find the values of modulation index and Fourier
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series F(αh) with respect to the holding angle. A relationship between MI and holding

angle gives us the plot shown in Figure 4.5 [14]. The modulation index increases from 0

to π/6 as the holding angle increases from 0.955 to 1.

Figure 4.7: Trajectory of Reference Voltage Vector and Phase Voltage Waveform in Mode
2.
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CHAPTER 5

SIMULATION RESULTS

5.1 Introduction

This chapter discusses the MATLAB/Simulink software implementation of SPWM, THIPWM,

and SVPWM in the under-modulation region and the over-modulation region 1. We

describe Simulink models built on the corresponding equations in previous chapters. In

addition to the simulation results, this chapter includes detailed subsystems of the Simulink

models as well as an explanation of the role of every subsystem. Low-pass filters are

required at the outputs in order to filter out the PWM waveforms and visualize the funda-

mental results. Our simulation analysis does not include the programming of dead time

for the switching of complementary switches in an inverter leg.

Simulation results are presented in three groups based on three simulation models.

The first group (Figures 5.1-5.6) shows simulation results for SPWM and THIPWM. The

second group (Figures 5.7-5.18) presents the under-modulation results for SVPWM. The

third group shows the simulation results of region 1 in the over-modulation SVPWM

(Figures 5.19-5.23).

The simulation of the over-modulation region 2 of SVPWM has been excluded from

this thesis. A different method needs to be implemented that ensures that the output voltage

varies continuously in this mode.
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5.2 Sinusoidal PWM

SPWM is very popular and easy to implement using comparators. The SPWM simulink

system model is built in Figure 5.1. It has the following blocks: (1) Sinusoidal wave

generators, (2) High-frequency triangular wave generator, and (3) comparators.

Figure 5.1: SPWM System Model.

The SPWM technique treats each modulating voltage as a separate entity that is com-

pared to the common carrier triangular waveform. A three-phase voltage set (Va, Vb,

and Vc) of variable amplitude is compared in three separate comparators with a common

triangular carrier waveform of fixed amplitude as shown in the same figure. The output

(Vao, Vbo, and Vco) of the comparators form the control signals for the three legs of the

inverter composed of the switch pairs (S1,S4), (S3,S6), and (S5,S2), respectively. From

these switching signals and the DC bus voltage, PWM phase-to-neutral voltages (Van,

Vbn, and Vcn) are obtained. In the simulink model, the simulation is performed under the

following conditions:
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Vdc = 300 V

Switching frequency = 1800 Hz

Inverter frequency = 60 Hz

Vre f = 150 V.

Figure 5.2: Vao, Vbo, and Vco of SPWM Waveforms.

Figure 5.3 shows the simulated pole voltages Vao, Vbo, and Vco. The relationship

between the line-to-neutral voltages and the switching states (S1, S3, and S5) in a balanced

three-phase load are:

Van =
Vdc

3
(2S1−S3−S5)

Vbn =
Vdc

3
(−S1 +2S3−S5)

Vcn =
Vdc

3
(−S1−S3 +2S5).
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Figure 5.3: Vao, Vbo, and Vco of SPWM after Filtering.

To visualize the actual results, filtering of the PWM waveforms is required. The line-

to-neutral voltages Van, Vbn, and Vcn are shown after they have been passed through a

low-pass filter. As expected, magnitudes of the phase voltages (Van, Vbn, and Vcn) are about

0.5Vdc. The output voltage waveforms show that the higher the switching frequencies, the

smoother the output voltage waveforms, as expected.

5.3 THIPWM

The THIPWM simulink system model is the same as that of the SPWM system except for

the modulating waveform voltages, which are generated by injected the third-harmonic

components as follows:
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Figure 5.4: Neutral Voltages Van, Vbn, and Vcn of SPWM after Filtering.

Va =
2√
3

(
sin(ωt)+

1
6

sin(3ωt)
)

Vb =
2√
3

(
sin(ωt−2π/3)+

1
6

sin(3ωt)
)

Vc =
2√
3

(
sin(ωt +2π/3)+

1
6

sin(3ωt)
)
.

Figure 5.5 shows the line-to-neutral voltages and Figure 5.6 shows the line-to-line

voltage of THIPWM. As expected, the magnitude of the phase voltage is about 300/
√

(3)

(Volts) and 300 (Volts) for line-to-line voltage, and the results show that THIPWM im-

proves the fundamental voltages compared to SPWM.

5.4 Under-Modulation of Space Vector PWM

A two-level three-phase inverter has eight possible inverter switching states that can gen-

erate eight space vectors: six non-zero vectors (
−→
V 1 to

−→
V 6) and two zero vectors (

−→
V 0 and

−→
V 7). These vectors are applied during the switching times Ta, Tb, and T0. According to

the time duration equations in the chapter on under-modulation SVPWM, the average pole

voltage vector over one PWM period can be averaged using two adjacent vectors and the

null vectors.
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Figure 5.5: Neutral Voltages Van, Vbn, and Vcn of THIPWM after Filtering.
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Figure 5.6: Neutral Voltages Vab, Vbc, and Vca of THIPWM after Filtering.
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To generate a rotating space vector with constant amplitude, the reference voltage

vector must be limited to the inscribed circle inside the hexagon. The simulation model

used to verify the under-modulation SVPWM scheme is shown in Figure 5.7 and it has

seven main subsystems or blocks, which are shown in detail in Figures 5.8-5.13.

1. The first block Figure 5.8 is used to generate three-phase sinusoidal input voltages

with variable frequency, amplitude, direction, and DC bus voltage. The three signals

are delayed by 120o from each other.

2. The three-phase abc voltages are then converted to two-phase αβ voltages given in

the second block as:

Vα =
2
3

Va−
1
3

Vb−
1
3

Vc

Vβ =
1√
3

Vb−
1√
3

Vc.

It is necessary to know in which sector the reference output is in order to determine

the switching time. The reference voltages Vα and Vβ are utilized to determine the

sector of the vectors from 1 to 6 as shown in Figure 5.9. These values are the inputs

to the third block.

3. Equations (5.1) and (5.2) in the third block calculates the phase angle,

θ = tan−1(
Vβ

Vα

) (5.1)

θ ∈ [0,2π] (5.2)

and using Table 3.5, it can be used to identify the sector of the reference voltage as

shown in Figure 5.10.

The modulation index is entered in the first block. It is the ratio of the amplitude of

the output sinusoidal voltage to the maximum fundamental voltage.
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Figure 5.8: Three-Phase Input Sinusoidal Voltages and Modulation Index are Detail for
Block 1 in Figure 5.7.

4. In the fourth block, the switching time calculator is used to calculate the timing of the

reference voltage vector. The inputs are the sector in which the voltage vector lies,

the modulation index, the sampling time period of switching frequency, and cosωt,

and sinωt. The duration time of the active and zero vectors are then calculated using

 Ta

Tb

=
MI
√

3Ts

π

 sin kπ

3 − cos kπ

3

−sin (k−1)π
3 cos (k−1)π

3


 cosnωTs

sinnωTs

 .
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Figure 5.9: α , β Voltages and Modulation Index are Detail for Block 2 in Figure 5.7.

Figure 5.10: Detail for Block 3 in Figure 5.7.

In Figure 5.11, the time for the active and zeros vectors are arranged in the switching

pattern sequence shown in Table 3.7. In the same block (Figure 5.11), we also have

Sample & Hold blocks after sector Ta and Tb. The purpose of these blocks is to hold

the values of Ta and Tb fixed during each TPWM period [25].

5. The fifth block is a triangular generator used to produce a unit triangular waveform
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Figure 5.11: Switching Time Calculation is Detail for Block 4 in Figure 5.7.

at the PWM switching frequency.

6. The gate timing signals from the fourth block are compared with the triangular

generator of fifth block, producing the outputs for the six switches of the inverter

(Figure 5.12).

Figure 5.12: Timing Signals and Triangular Waveform Details for Block 6 in Figure 5.7.
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7. The seventh block is built to simulate a voltage source inverter (Figure 5.13).

As seen in Figure 5.14, the inputs for the sixth block are the output time signals from

Figure 5.13: Inverter Output Signals to Neutral Voltages is Detail for Block 7 in Figure
5.7.

the fourth block and the triangular waveform is output from the fifth block. Figure

5.15 shows the pole voltages Vao, Vbo, and Vco for Linear Modulation SVPWM. Due

to the relationship between the DC bus voltage and the switching states of the output

from the sixth block, we obtain the following PWM phase-to-neutral voltages:

Van =
Vdc

3
(2S1−S3−S5)

Vbn =
Vdc

3
(−S1 +2S3−S5)

Vcn =
Vdc

3
(−S1−S3 +2S5)

The simulation of the under-modulation of SVPWM is performed under the follow-

ing conditions:
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Figure 5.14: Filtered Timing Signals of Three-Phase and Triangular Waveforms in
SVPWM.

Vdc = 300 V

Sampling time period = 1/1800 Sec

Inverter frequency = 60 Hz

Vre f =
300√

3
V.

Figure 5.16 shows the output voltage waveforms obtained from the SVPWM strat-

egy. The modulation waveform of the seven-segment SVPWM has a saddle shape

when passed through a low-pass filter (Figure 5.16) and its line-to-neutral voltages

are sine waveforms because of the under-modulation PWM region (Figure 5.17).

The maximum neutral voltages Van, Vbn, and Vcn in Figure 5.18 is Vdc/
√

3 (173.2

Volts).
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Figure 5.15: Vao, Vbo, and Vco for Linear Modulation SVPWM.

5.5 Mode 1 in Over-Modulation of SVPWM

In the over-modulation region 1, additional calculations are required to compute the ref-

erence space vector. As mentioned before, there is a loss of fundamental voltage in the

region where the reference vector exceeds the hexagon boundary. To compensate for this

loss, the reference vector amplitude is increased in the region where the reference vector

is inside the hexagon boundary. The magnitude of the reference vector is changed from

the reference voltage vector to a modified reference voltage vector. A modified reference

voltage trajectory proceeds partly on the hexagon and partly on the circle. When it remains

on the circular part, the switching time of Ta, Tb, and T0 are similar to the equations used
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Figure 5.16: Vao, Vbo and Vco for Linear Modulation SVPWM after Filtering.

for under-modulation. When the reference voltage vector passes outside of the hexagon,

the value of T0 is negative and meaningless. This problem is overcome by rescaling the

duration times. Thus, T ′0=0, and T ′a and T ′b are the new time intervals shown in Table 4.1.

The simulation system model of the over-modulation region 1 of SVPWM is the same

as that of the under-modulation SVPWM system except for the lookup table in first block

and an added fourth block. The lookup table in the first block is the relationship between

MI and the crossover angle, which is shown in Figure 4.2. For an added fourth block, the

switches will be changed based on the duration T0 of the zero state vectors.
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Figure 5.17: Line to Line Voltages of Linear-Modulation Region.
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Figure 5.18: Neutral Voltages Van, Vbn, and Vcn of Linear Modulation SVPWM after
Filtering.

• When T0 is greater than zero, the duration times T0, Ta, and Tb shown in Table 3.5

are used.

• When T0 is less than zero, the active duration times become T ′a and T ′b, as shown in
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Table 4.1.

Figure 5.19 shows the lookup table in the first block. Figure 5.20 shows the additional

Figure 5.19: Detail of the Lookup Table in the First Block of SPVWM Over-Modulation
Region 1.

block, which is a judgment condition for the over-modulation based on the sign of T0. In

red circle, if T0 is negative, then T ′a and T ′b are used in the blue block.

As mentioned before, in the over-modulation region 1, the magnitude of the reference

voltage vector is changed while the angle remains unchanged. This region ends when the

reference voltage is traveling along the sides of the hexagon. The simulation results are
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Figure 5.20: Detail of the Fourth Block of Space Vector PWM in Region 1.

presented to verify the effectiveness of this analysis. Figure 5.21 shows the output voltages

for region 1 of the over-modulation.

Compared to Figure 5.16, the phase voltage waveforms of Figure 5.21 do not have the

saddle waveform shape seen in the under-modulation SVPWM, but they stay at the limit

of the hexagon.

Figure 5.22 shows the neutral voltages Van, Vbn, and Vcn in region 1 of the over-

modulation SVPWM after filtering. The voltage waveforms are no longer pure sine wave-

forms. Since the desired trajectory passes outside of the hexagon, the converter exceeds

its linear region of operation and enters the over-modulation region. Therefore, the syn-

thesized waveforms become distorted.

The low pass filter removes the high-frequency switching components, leaving the

triple order harmonics in the phase voltage waveforms. These harmonics do not affect

the line-to-line voltages [1]. As shown in Figure 5.23, the waveforms of the line-to-line

voltages Vab, Vbc, and Vca are less distorted compared to the neutral voltages in Figure 5.22.
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Figure 5.21: Vao, Vbo, and Vco of Over-Modulation Region 1 before and after Filtering.
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Figure 5.22: Line-to-Neutral of Over-Modulation Region 1 after Filtering.
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Figure 5.23: Line-to-Line Voltages of Over-Modulation Region 1 after Filtering.
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CHAPTER 6

COMPARISON BETWEEN SPWM, THIPWM, AND SVPWM

TECHNIQUES

6.1 Simulation Results

The simulation studies of Chapter 5 confirmed that the THIPWM and SVPWM techniques

have a better DC bus voltage utilization than SPWM. As seen in Figure 6.1, the smaller

circle represents the operating region of the SPWM technique and the larger inscribed

circle represents the operating region of the SVPWM technique in the under-modulation

region. In SVPWM, the length of each discrete space vector
−→
V 1 through

−→
V 6 is 2Vdc/3.

Each side of the hexagon midpoint is tangential to the inscribed circle. The largest possible

magnitude of the reference voltage can be calculated as

MO = OL× cos(
π

6
) =

2Vdc

3
×
√

3
2

=
Vdc√

3
. (6.1)

Since NM is perpendicular to OL, then

ON = OM× cos(
π

6
) =

Vdc√
3
×
√

3
2

=
Vdc

2
. (6.2)

Thus, for SPWM, the smaller circle has a maximum magnitude of Vdc/2. It was al-

ready mentioned in Chapter 3 that the linear under-modulation region has a modulation

index that approaches 90.7% for a maximum output fundamental of V ∗max = (2/3)Vdc×
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cos(π/6) = Vdc/
√

3. The line-to-line voltage magnitude in linear SVPWM is thus equal

to Vdc.

In SPWM, the maximum modulation index is 78.55%, the maximum output funda-

mental is 0.5 Vdc, and the maximum amplitude of the line-to-line voltage is
√

3Vdc/2. The

line-to-line voltage of SVPWM is then increased by about:

Vdc−
√

3Vdc
2√

3Vdc
2

×100≈ 15.5%. (6.3)

Figure 6.1: Locus Comparison of Maximum Peak Voltage in SPWM and SVPWM [28].

From the simulation studies, the diagram in Figure 6.2 shows the evolution of the

voltage reference vector
−→
V Re f in the complex plane. The space voltage vector, which

rotates with constant length and constant circular frequency, has the same features as

that of a line-to-neutral phase voltage. The rotating space voltage vector is inside the
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hexagon for under-modulation and between the inscribed circle of the hexagon and the

circumscribed circle of the hexagon for over-modulation.

Figure 6.2: Loci of SPWM, SVPWM and Region 1 of SVPWM.

Figure 6.3 shows the locus of SPWM from the simulation results. When
−→
V re f is

desired to produce a balanced set of three-phase sinusoidal voltages, then the locus of
−→
V re f is a circle inscribed inside the hexagon (Figure 6.4) when these space vectors are

plotted on real and imaginary axes.

Figure 6.5 shows the maximum circle loci of THIPWM and under-modulation of

SVPWM. They have the same radius.

In Figures 6.6 and 6.7, the locus of the space vector applied is partly circular and partly

hexagonal. In the hexagon portion, only two active states are applied. The simulated
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Figure 6.3: Locus of SPWM.
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Figure 6.4: Locus of SVPWM in Linear Modulation Range.

results show that the over-modulation region 1 reported a modulation index that can reach

to 0.952. This is an extension of about 5%, which is a significant improvement.
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Figure 6.5: Loci of THIPWM and SVPWM.

6.2 Total Harmonic Distortion (THD) Comparison

In this section, the four different PWM techniques (SPWM, THIPWM, SVPWM in linear

modulation range, and SVPWM in over-modulation range 1) are compared in terms of

total harmonic distortion (THD). A Fast Fourier Transform (FFT) analysis in MATLAB is

used to conduct the harmonic analysis. The harmonic spectrum of the inverter voltage

waveforms of these techniques are presented with different modulation indices. The

frequency modulation ratio in this analysis is 30 using a modulation frequency of 60

Hz and a carrier frequency of 1800 Hz. The results shown in tables and figures below

include the first 50 harmonics. The sidebands frequency are positioned on both sides of

the carrier frequencies with a frequency separation of ±µ fo, where fo is the frequency of
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Figure 6.6: Locus of Over-Modulation Region 1 at a Cross Angle of 15 Degrees.
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Figure 6.7: Locus of Over-Modulation Region 1 at a Cross Angle of 0 Degree.

the reference sinusoidal and µ is an integer that depends on the carrier harmonic frequency

[26]. The harmonic number of individual sidebands can be found using the following
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formula: fc±µ fo, where fc is carrier frequency.

Figure 6.8: Spectrum of Vao for SPWM.

Table 6.1: Pole Voltage Vao in SPWM

MI THD(%) Fund h26 h28 h30 h32 h34
0.733 113.3 140 2.06 42.73 101.34 42.7 2.06
0.7854 99.51 150 2.68 47.69 90.19 47.67 2.66

Figure 6.7 and Table 6.1 show the harmonic results for the pole voltage Vao in the

SPWM technique. As expected, we do not see a third harmonic in SPWM. Comparing

the data of two different modulation indices in Table 6.1, we conclude that the higher

modulation index has a lower THD (%).

Figure 6.8 and Table 6.2 show the harmonic results of the THIPWM technique. This

technique has clearly increased the output voltage of the inverter compared to the SPWM

technique. Thus, the third harmonics is presented and has increased phase and line-to-line

voltages as well. As expected, the value of third harmonic in the Vao is about one-sixth

that of the fundamental voltage.
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Figure 6.9: Spectrum of Vao for THIPWM.

Table 6.2: Voltages Vab, Van, and Vao in THIPWM

THD(%) Fund h3 h26 h28 h30 h32 h34 Voltages
51.76 300.08 ≤1 37.56 71.42 ≤1 71.42 37.49 Vab
51.74 173.3 ≤1 21.68 41.22 ≤1 41.18 21.66 Van
70.12 173.2 28.74 21.68 41.21 56.21 41.18 21.67 Vao

Compared to SPWM, the values in 26th and 34th harmonic of THIPWM are very high

and THD of THIPWM is significantly lower than for SPWM. The values of the 24th, and

36th harmonics are less than 5 Volts.

Table 6.3: Harmonics of Vao in Under-Modulation range of SVPWM

MI THD (%) Fund h3 h26 h28 h30 h32 h34
0.733 111.34 139.72 28.56 18.25 25.9 95.73 25.43 17.63
0.7854 97.38 149.7 30.61 20.48 29.03 83.53 28.57 19.85
0.806 92.03 153.71 31.41 21.40 30.30 78.53 29.84 20.76
0.9069 67.61 172.9 35.37 25.74 36.38 54.06 35.97 25.11

Figure 6.9 and Table 6.3 show the harmonic results of Vao in the under-modulation
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Figure 6.10: Spectrum of Vao in The Under-Modulation Range of SVPWM.

region of SVPWM. In Table 6.3, there are four different modulation indices arranged in

increasing order of magnitude. As in the SPWM technique, a lower modulation index has

a higher THD (%). As can be seen from the figure, there are also a few values in the 22th,

24th, 36th, and 40th harmonic values but they are lower than 5 Volts.

Compared to SPWM with the same modulation index, the THD of SVPWM is slightly

lower. The fundamental voltages (Fund) of both techniques are the same. Compared to

THIPWM, the THD(%) of SVPWM (linear-modulation) is slightly lower than THIPWM

and the value in the 3rd harmonic of SVPWM (under-modulation) is slightly higher than

that in THIPWM. The fundamental voltages of both techniques are comparable.

Table 6.4: Vao in Over-Modulation Region 1 of SVPWM

MI THD(%) Fund h3 h26 h28 30 h32 h34
0.932 66.69 177.9 37.52 24.82 35.92 47.02 37.63 27.53
0.952 58.60 181.8 39.35 24.83 36.06 41.08 37.74 27.51
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Figure 6.11: Spectrum of Vao for SVPWM (Over-Modulation Region 1).

Figure 6.10 and Table 6.4 show the harmonic results of Vao in the over-modulation

region 1 of SVPWM. Overall, the spectrum of this technique is similar to the under-

modulation of SVPWM. However, it has a higher fundamental voltage and a higher value

of the 3rd harmonic. We also see additional harmonic values around the carrier frequency

(30th harmonic) and a lower THD (%) with a higher modulation index.

Tables 6.5-6.10 show the harmonic results for Van and Vab. Tables 6.5-6.6 show the

results of the SPWM technique. Tables 6.7-6.8 show the results of the SVPWM under-

modulation technique. Table 6.8 shows the result of the SVPWM over-modulation region

1 technique. The line-to-line voltages are undistorted since the third harmonic components

in the phase waveforms cancel out. The line-to-neutral voltages do not contain the third

harmonic because this is a three-phase three-wire system. This means that there is no

neutral connection to the wye-connected balanced load, and the triplen harmonic of the

load currents must be zero.
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Table 6.5: Vab in the SPWM

MI THD(%) Fnd h26 h28 h32 h34
0.733 75.32 242.50 3.58 73.97 73.99 3.57

0.7854 68.09 259.77 4.64 82.57 82.58 4.6

Table 6.6: Van in the SPWM

MI THD(%) Fnd h26 h28 h32 h34
0.733 75.32 140.01 2.07 42.71 42.71 2.06

0.7854 68.09 149.98 2.68 47.67 47.68 2.66

Table 6.7: Vab in Under-Modulation of SVPWM

MI THD (%) Fnd h26 h28 h32 h34
0.733 73.3 242 31.49 45.06 43.93 30.60

0.7854 66.01 259.3 35.24 50.50 49.36 34.44
0.806 63.14 266.24 36.89 52.70 51.58 36.01

0.9069 49.54 300 44.38 63.28 62.21 43.56

Table 6.8: Van in Under-Modulation of SVPWM

MI THD (%) Fnd h26 h28 h32 h34
0.733 73.29 139.7 18.52 25.88 25.44 17.62

0.7854 66 149.72 20.49 29.01 28.58 19.84
0.806 63.13 153.72 21.39 30.29 29.86 20.74

0.9069 49.51 172.9 25.74 36.37 35.97 25.10

Table 6.9: Vab in Over-Modulation Region 1 of SVPWM

MI THD(%) Fnd h26 h28 h32 h34
0.932 47.86 308 42.97 62.45 65.18 47.56
0.952 44.78 315 42.95 62.75 65.45 47.54

Table 6.10: Van in Over-Modulation Region 1 of SVPWM

MI THD(%) Fnd h26 h28 h32 h34
0.932 47.72 178 24.97 35.86 37.47 27.60
0.952 44.64 182.1 24.95 36.01 37.61 27.56



86

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis has evaluated three different PWM techniques, namely SPWM, THIPWM, and

SVPWM (in the linear modulation region and over-modulation mode 1). The contributions

of the thesis are as follows:

• The thesis has provided a thorough review of the each techniques with a special

focus on the operation of SVPWM in the under-modulation and over-modulation

modes.

• In this thesis, Simulink models for all three techniques have been developed and

tested in the MATLAB/Simulink environment. The SVPWM model is able to gen-

erate both the operation of the under-modulation region of SVPWM as well as the

over-modulation region 1.

• The thesis discusses the advantages and drawbacks of each technique. Their simu-

lation results are compared and analyzed by plotting the output harmonic spectra of

various output voltages, and computing their total harmonic distortion (THD).

As seen from the simulation results, SVPWM and THIPWM have a superior performance

compared to SPWM, especially in the over-modulation region of SVPWM. The SPWM

technique is very popular for industrial converters. It is the easiest modulation scheme to

understand and implement. This technique can be used in single-phase and three-phase
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inverters.

The THIPWM technique operates by adding a third harmonic component to the sinu-

soidal modulating wave. It is possible to increase the fundamental by about 15.5% and,

hence, allow a better utilization of the DC power supply. From the shape of the line-to-line

voltages, the resulting flat-topped waveforms allow over-modulation with respect to the

original SPWM technique.

The SVPWM technique can only be applied to a three-phase inverter and it increases

the overall system efficiency. The SVPWM is used for controlling the switching of the

machine side converter. Advantages of this method include a higher modulation index,

lower switching losses, and less harmonic distortion compared to SPWM [27]. SVPWM

research has been widespread in recent years making it one of the most popular methods

for three-phase inverters because it has a higher fundamental voltage output than SPWM

for the same DC bus voltage. The SVPWM is significantly better than SPWM by approxi-

mately 15.5%. However, the SVPWM technique is complex in implementation, especially

in the over-modulation region.

The SVPWM technique has been deeply studied in the over-modulation region due

to its performance benefits when compared to other modulation techniques. Numerous

over-modulation algorithms have been proposed in the literature for the control of voltage

source inverters [14,12,24]. The simulated results confirm that the over-modulation region

1 leads to a modulation index up to 0.952. This is an extension of around 5%, which is a

significant improvement.

7.2 Recommendations for Future Work

There are couple of interesting topics suggested for future research:

• Further simulation studies should be performed in region 2 of over-modulation SVPWM
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with neural networks and The Neural Network toolbox of MATLAB. Neural net-

work implementation is very fast and can increase the switching frequency of power

switches in the inverter.

• Many papers in the literature have reported that the dead time of space vector PWM

has an influence on drive systems. To circumvent this problem, it is important

to research how to compensate for the dead time effect in order to increase the

performance of drive systems.
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