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1. Introduction

Discovery of new biomaterials is essential
for future healthcare approaches as they
are integral to the creation of new tissue
engineering and regenerative medicine
strategies,[1] for the development of
implants and medical devices,[2,3] and in
the next generation of pharmacological
delivery.[4] It has become increasingly
recognized that the inherent material
properties of biomaterials, such as their
surface chemistry,[5,6] topography,[7–9] and
mechanical properties,[10,11] offer struc-
tural, mechanical, and compositional sig-
nals that direct complex cell behaviors
without the need for exogenous biological
molecules.[12] However, there is insuffi-
cient understanding of the role that mate-
rials play in directing cell phenotype to
develop novel biomaterials in a systematic,
reliable, predictable manner. Screening of
large libraries has therefore been employed
to comprehensively cover the biomaterial

High-throughput screening (HTS) can be used when ab initio information is
unavailable for rational design of new materials, generating data on properties
such as chemistry and topography that control cell behavior. Biomaterial screens
are typically fabricated as microarrays or “chips,” seeded with the cell type
of interest, then phenotyped using immunocytochemistry and high-content
imaging, generating vast quantities of image data. Typically, analysis is only
performed on fluorescent cell images as it is relatively simple to automate
through intensity thresholding of cellular features. Automated analysis of bright-
field images is rarely performed as it presents an automation challenge as
segmentation thresholds that work in all images cannot be defined. This limits
the biological insight as cell response cannot be correlated to specifics of the
biomaterial feature (e.g., shape, size) as these features are not visible on fluo-
rescence images. Computer Vision aims to digitize tasks humans do by sight,
such as identify objects by their shape. Herein, two case studies demonstrate
how open-source approaches, (region-based convolutional neural network
and algorithmic [OpenCV]), can be integrated into cell-biomaterial HTS analysis
to automate bright-field segmentation across thousands of images, allowing
rapid, spatial definition of biomaterial features during cell analysis for the
first time.
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design space and proved an effective means to identify novel
materials and build comprehension.[13,14]

The advent of new manufacturing and computational capabil-
ities has produced high-throughput screening (HTS) platforms
for biomaterials to discover these properties.[15] These include
systems to screen the effects of chemical (e.g., composition,[16]

wettability[17]), and physical (e.g., topography,[18–20] 3D architec-
ture,[21] stiffness[22]) properties on cell behavior (e.g., attachment,
proliferation, differentiation) individually or in combination,[23]

as recently reviewed by Yang et al.[1] These are powerful tools
which allow thousands of conditions and experiments to be con-
ducted simultaneously on a single platform at relatively low cost.
HTS platforms for soluble drug discovery involves the assay of
hundreds of individual conditions which are physically separated
by microwell walls in a well plate, allowing individual conditions
and cell populations to be assayed without cross-communication
of cells and soluble factors.[24] In contrast, biomaterial HTS
generally relies on substrates of interest being deposited into
a single unit, such as a microarray or “chip,” in a manner analo-
gous to pathology tissue microarrays.[25]

The resulting lack of physical separation between substrates
results in analysis of cell performance on biomaterial HTS arrays
being largely confined to high-content imaging (HCI), the
acquisition of multiple images at each location resulting in vast
datasets.[26] These are typically bright-field images of the bioma-
terial location and multi-channel fluorescent images of the cells.
User friendly, accessible, image analysis software programs such
as CellProfiler,[27] ImageJ/FIJI[28,29] (open source), and Imaris
(Oxford Instruments)[30] present a straightforward way to auto-
mate the assessment of cell response through the segmentation
and quantification of the fluorescent images. These software
packages utilize a model-based approach where fluorescent stain-
ing can be used to locate and segment cells on each substrate
(e.g., by nuclei and cytoskeleton), and immunocytochemistry
can be used to quantify the expression of protein(s) of interest
on a per cell and per substrate basis by correlating with fluores-
cence intensity. These HCI approaches have facilitated the
discovery of many new biomaterials, for example, chemistries
for the expansion and differentiation of stem cells,[5,31] and top-
ographies that enhance in vivo osseointegration[32] and maintain
tenocyte phenotype.[33]

While these studies use established, robust tools for automat-
ically segmenting and analyzing fluorescent cell images captured
by HCI, none automate the extraction of data from bright-field
images captured of the biomaterials they are studying. This is
because the lower contrast bright-field images that are used to
locate the material region of interest (ROI) (e.g., polymer spot,
manufactured topography) present a much larger automation
challenge compared to fluorescence segmentation. The model-

based approaches used for fluorescent images do not translate
to large bright-field datasets as it is not readily possible to define
segmentation thresholds that work across all images. Therefore,
unless done manually by the researcher (a laborious task), these
data are often not used, which reduces the accuracy of the pro-
cess and does not extract all available data. If bright-field segmen-
tation could be automated across the vast image datasets
generated by HTS, it would be possible to mask the automated
fluorescent analysis to the biomaterial region, allowing more
accurate characterization, e.g., normalization of cell markers
to substrate surface area and determination of whether cells
are on top or between topographical features.

Computer Vision is a field of artificial intelligence and
machine learning that digitizes tasks humans do by sight, such
as identifying objects by their shape.[34] Its popularity has surged
in recent years across all disciplines that process large quantities
of image data, from autonomous vehicles[35] to the healthcare
sector in the automation of diagnosis from medical images.[36]

By detecting biomaterial features by their overall visual
appearance, a Computer Vision approach to segmentation of
bright-field biomaterial images has the potential to overcome the
current barriers to their inclusion in HTS analyses. Here, we
present two Computer Vision approaches that permit automated
bright-field segmentation in both chemical and topographical
biomaterial screening arrays and demonstrate how they can
be incorporated into HCI analyses to improve mechanistic
biological insight and achieve significant time savings.

2. Results

2.1. Case Study 1: Computer Vision for High-Throughput
Polymer Microarray Chemistry Screens

To demonstrate how Computer Vision can be used to automati-
cally segment materials from high-throughput chemistry screens,
here we use a polymer microarray screen of primary
human human-bone-marrow-derived mesenchymal stromal cells
(hMSCs) as an exemplar. Primary hMSCs from three donors were
cultured on polymer microarrays formed from 300 commercially
available monomers deposited in triplicate on each cell repellent
poly(2-hydroxyethyl methacrylate) (polyHEMA)-coated glass slide
(900 locations total, Figure 2). To quantify primary hMSC number
on these materials at different timepoints, cells were fixed at days
5, 7, and 14 (9 arrays total), and nuclei (4 0,6-diamidino-2-phenyl-
indole [DAPI]) and cytoskeleton (α-tubulin) were fluorescently
stained. Data was captured through HCI, with each polymer spot
(8100 total) imaged using an automated fluorescence microscope,
capturing two fluorescent images and a bright-field image at each
location (24 300 images, Figure 1B).

2.1.1. The Challenge of Segmenting Polymer Microarray Spots

Variability in the bright-field images captured from the 8100
polymer spots is illustrated by the three spots presented in
Figure 1C, making obvious the difficulties with edge threshold-
based automated segmentation. Despite robotic deposition
of polymers and imaging, tolerances in both these processes, dif-
ferent material chemistries, and the imaging process itself
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Figure 1. A) Schematic of a polymer microarray containing 300 polymers in triplicate (900 spots per array), seeded with primary human mesenchymal
stromal cells (3 donors, 3 time points = 9 arrays = 8100 spots). B) At each timepoint, every spot imaged in bright-field (polymer spot) and fluorescent
channels (cells, blue: nuclei [DAPI], green: cytoskeleton [α-tubulin]). C) Representative variability in the brightness, contrast, and noise of bright-field
images captured from the 8100 polymer spots. D) Flow chart showing how transfer learning modified the original detectron2 model to identify polymer
spots. The original model (left) has two parts: an underlying neural network trained to automatically detect and segment image features (blue), and a
targeting region which identifies specific common objects (red). Through transfer learning, we retarget the neural network to identify features of interest
(green) by manually labeling 150 bright-field images. E) The retargeted model can then detect and segment polymer spots in the entire 8100 image
dataset. This can be binarized to create a mask to define an ROI for use in CellProfiler analyses. All scale bars—100 μm.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400573 2400573 (3 of 13) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400573 by T

est, W
iley O

nline L
ibrary on [13/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


(e.g., differences in illumination) mean that in each image the
polymer spots have different locations, size, morphology, bright-
ness, contrast, and background noise. These combined make it
impossible to set a singular intensity threshold that can be
applied to the whole dataset that will robustly segment the spots.
However, despite each image being unique, they all contain sim-
ilar circular shapes. When viewing these images as humans, it is
readily possible to identify the spot regardless of the other differ-
ences. Therefore, our hypothesis is that a Computer Vision that
uses shape recognition approaches is likely to be well suited to
this challenge.

2.1.2. Region-Based Convolutional Neural Networks Can Identify
Polymer Spots via Transfer Learning

Region-based convolutional neural networks (R-CNNs) are
machine learning models used for object detection within
images.[37] While creating and training an R-CNN ab initio is a
complicated undertaking, adapting an open-source, pretrained
R-CNN is much more accessible (Figure 1D). Here, we use detec-
tron2 provided by FacebookAI.[38]

The original R-CNN was trained on the ‘Common Image in
Context’ (COCO) dataset of≈300 000 images of complex everyday
scenes containing common objects in their natural context.[39]

This developed a neural network capable of effective object seg-
mentation. Through transfer learning, here we easily retargeted
this neural network to detect polymer spots using a much smaller
dataset. A total of 150 polymer spots (1.85% of the whole
bright-field dataset) were manually outlined using LabelMe,[40]

and this information was used to iteratively retrain the R-CNN
to find a single polymer spot within each image. When all
8100 spot images were inputted into the retrained model, where
present, polymer spots were identified regardless of image diver-
sity or the number of cells present, as confirmed by manual
inspection of a representative sample. By taking the output
images from the R-CNN and converting them into a binary
mask, an ROI could be incorporated into the CellProfiler analysis
pipeline to delineate the area covered by the polymer spot
(Figure 1E).

2.1.3. “Hit” Chemistries for the Attachment and Growth of
Primary hMSCs

The final analysis of “hit” chemistries for hMSCs adherence and
growth on the polymer spots incorporated the ability to deter-
mine spot presence and normalize cell area to spot area by rank-
ing materials according to two metrics: the number of nuclei per
10 000 spot pixels and the percentage spot coverage by cytoskele-
ton over days of culture and per donor (Figure 2A,B). For mate-
rials that support hMSC attachment and growth, they will
proliferate on these substrates increasing their coverage over-
time. These data allow the expression of cell number per spot
area and total coverage of the surface by cells, respectively, with
the best performing substrates allowing cells to reach confluence
(100% coverage) by the study endpoint. To rankmaterials, a score
of 1 was awarded for each spot where the polymer exceeded
thresholds of 1.5 nuclei per 10 000 spot pixels and 50% spot cov-
erage (purple dashed lines) as this awarded ≈50% of polymers a

point at the first timepoint for each donor. The scores for each
parameter were equally weighted, averaged, and then 0–1 nor-
malized (0 min, 1 max) to give the final ranking and identify
hits (score >0.75). By ranking materials by their ability to support
both high cell numbers and high total cell coverage, a deeper
insight into hMSC substrate preference is achieved than just con-
sidering nuclei number alone (Figure 2C–E). The final ranking of
all materials is available in Supporting Information. In compari-
son to unmasked analyses, this allowed cell number to be
expressed as a function of area to account for differences in spot
size.

To demonstrate that more insightful analysis is possible by
masking to the polymer spot, a comparison of the ranking by
nuclei number to nuclei number per 10 000 spot pixels was made
(Figure 2F). Although there is agreement in large parts of the
dataset where cells are only present on the polymer spot and
the polymer spot is average in size (black), the importance of tak-
ing into consideration the size and presence of a spot is revealed
in the remainder of the dataset. Where polymer spots had
delaminated (red) or overgrown the spot perimeter (green) they
achieve an accurate, lower rank versus the false positive returned
from the unmasked analysis. Conversely, where polymer spots
are below average in size but supported high numbers of cells
(blue), they are ranked higher when masked due to the normali-
zation to surface area. Importantly for biomaterials discovery,
some of these are the final “hit”materials and in unmasked anal-
yses would have been discarded.

2.1.4. Neural Network Approaches Are Successful Across Image
Acquisition Modalities

To ensure the transferability of the R-CNN segmentation
approach to other chemistry screen datasets where a different
image acquisition platform is used (Zeiss Axio Observer Z1;
see methods), the methodology was applied to a disparate dataset
of a polymer microarray screen analyzing the adherence of
pseudo-virus particles (PPs). Two polymer microarrays (as used
for the mammalian cell experiments: 1800 spots total) were used
to screen PP attachment, each imaged in bright-field (polymer
spot) and a fluorescent channel (attachment at 4 h of
AlexaFluor-647 tagged pseudo-virus). Using the previously
trained R-CNN generated from the primary hMSC dataset for
the PP screen resulted in 31% of the microarray spots being suc-
cessfully identified, as determined by manual inspection.
Labeling a subset of images and retraining the R-CNN resulted
in a model that identified all polymer spots across the whole data-
set, demonstrating the transfer-learning process should be
repeated for each image-acquisition method.

2.1.5. Neural Network Segmentation Is Significantly Faster and as
Robust as Manual Segmentation

A comparison to manual segmentation was performed to calcu-
late time-savings and validate the robustness of the automated
approach. Manual segmentation of polymer spots and subse-
quent fluorescent intensity measurements on two microarrays
using the polygon tool in ImageJ took two researchers 20 work-
ing hours: 40 s per polymer spot (Figure 3A), with each
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Figure 2. Overview of the ranking pipeline to identify hit materials for hMSC attachment and growth on HTS polymer microarrays. A) The relationship
between mean number of nuclei and mean nuclei per 10 000 polymer spot pixels for each polymer spot on each microarray. Each point represents a
triplicate of one polymer. Threshold for “hit”: 1.5 nuclei per 10 000 spot pixels (purple dashed line). B) The high-low ranked percentage coverage of each
polymer spot by cytoskeleton on each microarray. Each point represents one polymer. Threshold for “hit”: 50% coverage (purple dashed line). All error
bars� SD. C) Final ranking and identification hits (0.75þ) and D) corresponding images. E) Representative images of high, medium, and low scoring
polymers showing both the segmented spots and CellProfiler output image. F) Comparison of material rankings by unmasked (total nuclei) and masked
(nuclei/10 000 spot pixels). Both rankings 0–1 normalized with grey curves y= 0.5x, y= x, and y= 2x for visualization purposes. Regions and difference to
masked analyses: Black—agree, blue—underestimated, green—overestimated, and red—undetected false positives. All scale bars—100 μm.
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researcher segmenting one microarray. After retraining the
R-CNN (50min), using a binary mask generated from the R-CNN
output to define an ROI and calculating the total fluorescence
within using CellProfiler, each array took 20min to analyze:
1.3 s per spot (Figure 3B).

Time savings afforded by automated analysis are only valuable
if the outputs are true. To validate them against manual process-
ing, the correlation coefficients (R, R2) for fluorescence per pixel
values (Figure 3C) and the material ranking (Figure 3D) from the
manual and automated analyses was calculated for the two
arrays. For all four comparisons, R ranged from 0.94 to 0.99
and R2 from 0.89 to 0.99, with three arrays exceeding 0.98, indi-
cating strong positive correlation and validating the automated
approach.

2.2. Case Study 2—Computer Vision for Topography Screens

To demonstrate how Computer Vision can be used to automati-
cally segment materials from high-throughput topography
screens, here we use a reference bright-field image dataset of

the TopoChip to develop a Computer Vision segmentation
approach. The “TopoChip,” a previously developed topography
screening platform, contains a library of 2176 distinct, randomly
designed surface topographies termed “TopoUnits.” These are
created using mathematical algorithms to combine three primi-
tive shapes into topography “features” either 10, 20, or 28 μm in
size (Figure 4A).[18] Once a computer vision approach was cre-
ated using a reference TopoChip, this was validated using an
experimental dataset to assess the spatial response of human-
induced pluripotent-derived cardiomyocytes (hiPSC-CMs) to
the topographies through staining of nuclei (DAPI) and cytoskel-
eton (cardiac troponin), assessing whether we can now segment
cells by their location, e.g., on top of or in between topography
features (Figure 4B).

2.2.1. The Challenge of Segmenting Images of Cells Cultured on
Repetitive, Identical Topographies

Each image of a TopoUnit can contain up to 784 identical fea-
tures with no variation, and these topographies are different

Figure 3. Workflows of the A) manual and B) automated approaches of quantifying AlexaFluor-647 tagged pseudo-virus particle adherence (4 h) to HTS
polymer microarrays. Manual analysis takes 40s per spot in ImageJ to define the polymer area using the polygon tool and measure the fluorescence
intensity. Automated analysis averages 1.3s per spot, following retraining of the R-CNN identification of the polymer producing a binary mask for ROI
analysis, and fluorescence intensity per pixel calculated within using CellProfiler. C) Raw fluorescence per pixel values shows positive correlation between
automated and manual approaches across two arrays segmented by two users (R and R2 values, red: array 1, blue: array 2) resulting in an almost perfect
correlation in D) overall material rankings, indicating no loss of analysis quality through automation. All scale bars—100 μm.
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at each of the 2176 locations in the dataset. Without variation, an
R-CNN cannot be targeted to this application; therefore, a differ-
ent Computer Vision approach is needed to automatically seg-
ment TopoUnit features.

To designate whether a region is a feature or space in the
bright-field image requires prior knowledge of what is fore-
ground (the topographical feature) and what is background
(the space between topographical features). As the shapes of
the topographies screened are designed (unlike the polymer
microarray spots), this can be done with the input computer-
aided design (CAD) file which specifies their manufacture.
These input design images can be manually registered to overlay
the output bright-field image (Figure 4C). Here, we use algorith-
mic Computer Vision to automate this process and generate
binary masks that can be used to segment foreground and
background.

2.2.2. Algorithmic Computer Vision Can Automate Feature
Segmentation Within a TopoUnit

The algorithmic pipeline was written using an open-source
Computer Vision library (OpenCV). First, images of each
TopoUnit were preprocessed using bilateral filtering to denoise
the images, eliminating artefacts that would otherwise be caused,
e.g., by uneven lighting or the presence of cells in experimental
conditions (Figure 4D). This allowed features to be accurately
detected using Canny edge detection,[41] with thresholds calculated
per image from the median grey value (Figure 4E). To account
for differences in image size and resolution between design and
output images, sweeps of different transformations (scale, rota-
tion, flip) were performed on the design images to identify which
caused the highest similarity with the edge detected output
image using template matching (Figure 4F). With the necessary
transformations elucidated, the design image can then be over-
laid to create a binary mask of the TopoUnit feature locations.
Overlaying from a single origin or multiple origins was com-
pared (Figure 4G).

2.2.3. Time Savings from Algorithmic Computer Vision Make
Topography Segmentation a Realistic Undertaking

Manual definition of the foreground and background in
TopoUnit images took 8–35min per image depending on the
number/size of features that were present (100/28 μm—

8min, 196/20 μm15min, or 784/10 μm—35mins). Due to the
large time requirements, manual segmentation is currently done
on an ad hoc basis downstream of automated cell segmentation.
If manual segmentation of an entire TopoChip were undertaken,
with 686, 748, and 742 of each feature number, respectively,
across the 2176 TopoUnits per chip, it would take ≈29.5 days
of continuous work (≈89 working days at 8 h day�1). In contrast,
the pipeline generates a mask every 1.2 s, meaning mask gener-
ation for a whole TopoChip takes only ≈70min, which means
that it is now realistic to incorporate automatic spatial segmen-
tation of cell response to topography into cell analysis pipelines
using this method.

Figure 4. A) The TopoChip screening tool contains 2176 unique
TopoUnits composed from topographical features formed from combina-
tions of three primitive shapes. Features are in three sizes (10, 20–28 μm)
resulting 100, 196, or 784 features per TopoUnit. B) Cells (hiPSC-CMs)
may exhibit a spatial response to topography, residing either on top or
in between features. This response can only be determined with the cor-
responding bright-field image. C) As each TopoUnit is designed, the origi-
nal CAD image can be manually transformed and registered over images
captured of the manufactured TopoUnit. D) Automating this process
using Computer Vision allows us to create binary masks for subsequent
cell analyses. D) i) First, bright-field manufactured images are denoised to
improve accuracy of ii) Canny edge detection. iii) A template of the feature is
then extracted from the design image and undergoes a series of transfor-
mation sweeps (rotate, flip, scale) until the process that achieves the max-
imum similarity with the edge detected image is identified. iv) This
transformation is then applied to the design image and is then layered
over the edge detected image either as a whole (single origin) or as seg-
ments from multiple origins.
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2.2.4. Robustness of Automated OpenCV Segmentation

To compare single-origin- and multiple-origin-generated masks
and validate their accuracy, regions identified as foreground in
masks were segmented as objects using CellProfiler and overlaid
over the original bright-field images (Figure 5A). These (150)
were manually examined for each TopoUnit feature size
(10/20/28 μm), determining whether the mask had accurately
segmented foreground regions for each mask generation
method by visual inspection. Masks were deemed unusable
where segmented foreground regions did not perfectly overlay
TopoUnit features (Figure 5B). This was most commonly caused
by an error in the overlaying process (drift—single overlay only),
an inability to match the extracted template (no match—both
processes) or a failure to identify all feature coordinates
(missing—multiple overlay only).

Comparing the two mask generation approaches, overlaying at
multiple origins versus a single origin resulted in a higher per-
centage of useable masks for every TopoUnit feature size and
was twice as successful in the 20 and 10 μm feature size
TopoUnits where there are 2–8 times more features to segment
per image (Figure 5C—left, 28 μm: 91% vs 83%, 20 μm: 85% vs
36%, 10 μm: 70% vs 36%). Despite being inferior to the multiple
overlay approach overall, single overlay was able to create a usable
mask of TopoUnits where multiple overlay was not 7.7% of the
time, meaning if it was possible to automate the decision of
whether a single- or multi-origin mask was better than the theo-
retical optimum, success rate would increase to 28 μm: 94%,
20 μm: 95%, and 10 μm: 80%.

By inverting the single-origin masks, “adding” them to the
multiple origin masks to create an image of the difference
between the masks and calculating the pixel intensity, differen-
ces between single- and multiple-origin masks can be quantified,
with larger differences indicating a difference in what has
been segmented as foreground. Visualizing these data
(Figure 5C—right) reveals that where single origin outperforms
multiple origin, the median difference exceeds 0. Therefore,
automatically selecting single-origin masks if the calculated pixel
intensity exceeds a threshold of 0.05 raises the success rate to
28 μm: 93%, 20 μm: 89%, and 10 μm: 70%. Note that the higher
background noise in the 10 μm feature size results in a greater
range of values when comparing masks meaning no threshold
results in a greater success rate than multiple origin alone; there-
fore, for this feature size, a pure multiple origin approach is used.
Overall, automating foreground segmentation offers significant
benefit versus manual segmentation for the vast majority of
TopoUnits and makes undertaking segmentation a realistic (in
terms of time commitment) prospect.

2.2.5. Validation of Automated Topography Segmentation

To validate the ability of this OpenCV pipeline to automatically
segment TopoUnits, this algorithmic approach was applied to a
different, more challenging dataset of a TopoChip cell screen.
Rather than a reference dataset of a “clean” TopoChip, this exper-
imental dataset screens the spatial distribution of hiPSC-CMs on
the topographies, increasing the bright-field image noise. A dif-
ferent automated microscope was used to capture images to

validate the process across imaging systems, and a comparison
to manual segmentation was performed to validate the robust-
ness of the automated approach.

Figure 5. A) Representative images of successful TopoUnit segmenta-
tions using the multiple- and single-origin processes for each TopoUnit
feature size. B) Where masks were unusable, it was predominantly due
to drift (single origin only), inability to match the template (both), or failure
to identify every feature coordinate (multiple origin only). For A&B, binary
masks are false colored and overlaid over bright-field to visualize success-
ful/failed segmentation. C) Overlaying frommultiple origins outperformed
single origin at every feature size overall, yet there were some TopoUnits
where single origin was superior. By quantifying differences in masks
generated by the two processes, a threshold (purple dashed line) could
be set above which single-origin masks should be used, bringing the over-
all success rate closes to the theoretical combined maximum.
D) Representative output of how masks from the OpenCV pipeline can
be incorporated into CellProfiler analyses. The bright-field image of the
TopoUnit (Manufactured) is processed through the pipeline to generate
a mask. When this along with fluorescent images of hiPSC-CMs nuclei
(blue—DAPI) and cytoskeleton (red—cardiac troponin) are used as inputs
in CellProfiler cells can be automatically segmented and overlaid on the
original bright-field image (Cells—all). By using the mask to define an
ROI, segmentation can be limited to cells on top of features (Cells–
top), or by inverting the mask, cells in between features (cells–between),
allowing automated differential spatial analysis of cells on TopoChip
screens.
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2.2.6. Applicability of Algorithmic Computer Vision Between
Datasets Using Mammalian Cells

Unmodified, the pipeline was unable to create masks from the
new dataset due to the difference in bright-field image size and
resolution between the reference and experimental dataset.
However, by modifying the upper and lower limits on the trans-
formation sweeps (Figure 4D-iii) performed before matching the
similarity between the design and bright-field image, this was
overcome with no other changes to the pipeline required, despite
the increase in image noise from cells. As a result, binary masks
could be generated using the pipeline for the experimental data-
set (Figure 5D). When incorporated into a CellProfiler pipeline
that detects nuclei and cytoskeleton, this allowedmasking of fluo-
rescent cell images that permitted automated differential spatial
segmentation of cell location on TopoChips for the first time.

3. Discussion

This study demonstrates how automated, open-source Computer
Vision approaches can be implemented into HTS of biomaterials
to improve the insight from analyses by allowing spatial segmen-
tation of cells according to the biomaterial features (chemistry or
topography). Previously, analysis of cell response on these
screening tools was largely confined to HCI of fluorescent cells
only,[5,31–33] often disregarding bright-field biomaterial images
due to the difficulties with automated segmentation of these
image types. The limitation of an approach that only analyses
fluorescent cell images is that it assumes substrates are either
all identical (in the case of chemical screens) or that substates
are manufactured in perfect accordance with the design file
(in the case of topographical screens), and in both cases it gives
no information about the spatial distribution of cells on the bio-
material substrate.

The HTS platforms used here (chemistry/topography) pre-
sented two disparate segmentation challenges requiring different
Computer Vision approaches. For the chemistry screens, hun-
dreds to thousands of materials as sessile drops of monomer
solution are deposited, forming spots that have a similar overall
morphology and a singular occurrence per image. Each location
has a different substrate morphology due to the difference in
material properties (e.g., hydrophobicity and/or viscosity

affecting spreading prior to polymerization). This means that cell
number for a material is also affected by substrate surface area,
but this cannot be accounted for without defining an ROI based
on the substrate morphology. Furthermore, within each screen,
there may be some locations where either the substrate has
detached from the substrate surface leaving just the cell repellent
coating, or the coating has also delaminated exposing the cell-
permissive substrate underneath. In these scenarios, if substrate
morphology is not accounted for, automated cell image analysis
would give a false-negative or false-positive result, respectively,
for the chemistry, requiring manual check of each image.

Segmenting 2D fluorescent cell images is relatively facile
using pixel intensity thresholding within software packages such
as CellProfiler and ImageJ, as excitation only occurs where a flu-
orophore is present. The challenge of automating segmentation
of large bright-field datasets stems from the impossibility of
defining a singular intensity threshold across the dataset for
the boundary of the substrate as every pixel in every image
has an intensity. Despite this, it is easy for a human to identify
the substrate(s) within the image as we do so by their shape
rather than their edge intensity. As Computer Vision aims to
train computers to replicate tasks humans do by sight, it offers
a promising solution within the field of image analysis. Within
the latest versions of Imaris (9.6þ), a popular commercial
microscopy image analysis software package,[30] the ability to
define foreground and background within an image set using
machine learning has begun to be introduced. Here, they directly
link to LABKIT, a FIJI[29] plugin that uses a random forest
machine learning approach to classify pixels for foreground/
background[42] rather than the object detection approach pursued
here.

The variation in the similar morphologies of chemical screens
makes them ideal for identification by R-CNNs as this can be
used in the training of the neural network to teach the software
exactly what morphology we are segmenting for. Interest in auto-
mating object detection has surged across all fields of research,
with detectron2 previously being applied to applications from
improving detection of road damage[43] to assessing fall risk from
posture.[44] Within biological research, use of R-CNNs has pri-
marily focused on the segmentation of cells or subcellular organ-
elles, for example in the LIVEcell project that uses deep learning
to facilitate stain-free, live-cell segmentation,[45] or in histologi-
cally stained tissues sections in pathology.[46,47] Here, we demon-
strated how across two disparate datasets with images acquired
by different users operating different HCI systems, an R-CNN
can be retrained to quickly and accurately segment a feature
of interest from the entire bright-field dataset through manually
labeling only 150 images. While the manual training and retrain-
ing through transfer learning has a time cost (≈50min using a
typical desktop computer for these examples), the benefits
become clear almost immediately when applied to the remainder
of the dataset due to the increase in segmentation speed. The
trained R-CNN can also be used in all subsequent analyses where
the spot images have been captured using the same acquisition
method. With manual segmentation, other than operator famil-
iarity with the protocol, previous analyses offer no opportunity to
expedite subsequent analyses.

By incorporating this approach into an HTS of polymer chem-
istries, we were able to discover “hit” materials for human MSC

Figure 5. Continued.
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attachment and growth that would not have been discovered in
unmasked analyses. By masking cell images to an ROI defined by
the automated bright-field segmentation, cell number normal-
ized to substrate area and percentage substrate coverage could
be used as metrics allowing us to account for differences in sub-
strate area andmorphology for the first time in this type of screen
and automatically exclude false negatives and false positives.
Using a combination of the R-CNN for binary mask generation
and a subsequent CellProfiler analysis pipeline to quantify fluo-
rescence, analysis was over 30 times faster than manual process-
ing with no compromise on robustness. When comparing
approaches on a fluorescence per pixel basis, error bars are con-
sistently equal in the x and y directions, indicating that where
variation in fluorescent intensity occurred within a polymer trip-
licate on the microarray it was correctly detected by both
approaches. Although greater concordance in overall material
ranking between manual and automated approaches was
observed in array 1 than array 2, this is likely due to greater exper-
imental variability in array 2 rather than disagreement in the
analysis as correlation coefficients remain very high (R: 0.94,
R2: 0.89). There is also approximately equal spread of outliers
above and below the trendline in the material ranking, indicating
that neither the manual nor the automated approach was biased
to giving higher or lower rankings versus the other.

Whereas in the polymer microarray screen, the feature to be
segmented occurs once per image and is similar in macro-
morphology across the dataset, topography screens presented
a different challenge. They are precisely manufactured using
embossing or printing, resulting in many repeating, identical
morphologies that need to be segmented in each image, but a
unique macro-morphology in each image across the dataset.
Each image of a TopoUnit can contain up to 784 identical fea-
tures with no variation, and these topographies are dissimilar
at each of the 2176 locations in the dataset. This uniqueness
means R-CNNs are no more efficient at segmentation than man-
ual approaches. Within a dataset, there is a singular image of
each location, meaning targeting and identification have the
same input image, and as such an R-CNN only detects what
is labeled. Simply put, to train an R-CNN to identify every feature
in every TopoUnit requires manually labeling every feature in
every image—de facto manual segmentation.

To address this challenge, approaches available through the
OpenCV library were investigated, a toolkit which has previously
been used for purposes spanning automated detection of face-
mask compliance[48] to understanding sign language.[49]

Within the field of biomedicine, researchers have devised ways
of integrating OpenCV’s capabilities into ImageJ to streamline
their combined capabilities in image analysis.[50] The edge detec-
tion approach pursued in OpenCV to overcome this problem is
similar in principle to how fluorescent images are segmented;
pixel intensity is used to define the edge of the segmentation tar-
get. However, only an outline is produced which is insufficient to
designate foreground and background in convoluted TopoUnit
images. The designed nature of each topography within the
screen means that there are CAD files for each image location
that depict what is foreground (topography) and what is back-
ground (space).

Here, we showed how a second Computer Vision approach
can systematically transform these design files until they have

a high degree of similarity with the edge-detected image and
can subsequently be used as a mask that defines foreground/
background. Although this algorithmic approach could not pro-
duce a usable mask for every TopoUnit, a success rate of up to
90%makes spatial segmentation of cells on topography screens a
realistic proposition for the first time; where successful, it is
≈1000� faster than manual approaches, and where unsuccess-
ful, it is possible that modification of the parameters used to
extract, scale, and match templates could permit generation of
masks for this subset in a semiautomated manner for the
remaining TopoUnits, meaning that the laborious task of defin-
ing each topography is still avoided.

4. Summary

We have demonstrated how two different open-source, freely
accessible, Computer Vision approaches can be used to automate
feature segmentation from large bright-field datasets, and how
this can integrate into existing fluorescent image analysis pipe-
lines for high-throughput biomaterial chemistry and topography
discovery. They offer significant time savings without
compromising accuracy and allow us to perform more insightful
data analysis. These approaches are not limited to biomaterial
discovery datasets; depending on the nature of the bright-field
feature(s) to be segmented, the two methodologies here can
be used as a framework to automate bright-field image analysis
in the wider field of biomedical research to identify objects in
otherwise difficult-to-segment bright-field images where descrip-
tion of boundaries by pixel intensity is not practical, e.g., by rap-
idly retargeting an R-CNN on an ad hoc basis. This technology is
now at a point where it is accessible and usable to researchers
whose primary focus is not Computer Vision research.
Researchers already accustomed to (or familiar with) HCI and
downstream analyses are likely to possess the required basic
familiarity with programming languages such as Python to
immediately utilize these tools, although if not, such knowledge
is available within most research institutes.

5. Experimental Section

All Materials Sourced from Sigma Aldrich/Merck Unless Otherwise Stated.
Polymer Microarray—Fabrication: Polymer microarrays were fabricated

as described previously.[16] Briefly, epoxy-coated glass slides (Genetix) that
had been dip coated in polyHEMA (4 w/v% in 95 v/v% ethanol/water)
were used as substrates for all arrays. Monomer solutions (Sigma
Aldrich, Scientific Polymers, and Polyscience) were formulated for all
300 materials by mixing at 50 v/v% with dimethylformamide and addition
of a photo-initiator (2,2-dimethoxy-2-phenyl acetophenone) at 1 w/v%.
These were spotted onto substrates using a XYZ3200 dispensing station
(Biodot) and quilled metal pins (946MP3B, Arrayit) under an inert argon
atmosphere (O2< 2000 ppm, 25 °C, 35% humidity) polymerized with UV
light. Three replicates of each of the 300monomers (Figure S3, Supporting
Information) were printed on each slide, yielding a total of 900 polymer
spots per array. Validation of these polymer chemistries via time-of-flight
secondary ion mass spectrometry has previously been demonstrated.[51]

Polymer Microarray—MSC Culture: Three donors of primary hMSCs
were obtained from Lonza with certification of mycoplasma-free status
and maintained in basal MSC growth medium (MSCGM) supplemented
with 10% (v/v) fetal bovine serum, 2% (w/v) L-glutamine and 0.1% (w/v),
gentamicin–amphotericin (#PT-3001; Lonza, Germany). For all
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experiments, cells were used between the third and sixth passages and
cultured as individual donor stocks.

In preparation for cell culture, polymer microarrays were sterilized by
UV irradiation for 20min before incubation in MSCGM for 1 h prior to
seeding with 1� 105 hMSCs per microarray.

Polymer Microarray—Virus Particle Adsorption: A PP adsorption assay
modified from a previous study was used.[52] Briefly, AlexaFluor-647 tagged
PPs or bovine serum albumin stock solution was resuspended in Milli-Q
water or Dulbecco’s buffered saline to obtain a 5mgmL�1 of PP assay
solution. The polymer microarray was repeatedly washed with 10mL
Milli-Q water and then placed immediately into 20mL of assay solution,
incubated, and rocked gently in the dark at room temperature (RT) under
ambient conditions (20–22 °C, ≈50% RH) for 4 h. Then, the array slide was
repeatedly washed again with Milli-Q water to remove poorly attached PPs.

Polymer Microarray—Imaging: For MSC screening, assessment of cell
number was carried out 5, 7, and 14 days post-seeding by fixation with 4%
paraformaldehyde for 20 min at RT. Cells were washed and permeabilized
using 0.1% (v/v) Triton X-100 in phosphate buffer saline (PBS), and then
stained with DAPI for nuclei (blue; Invitrogen) and α-tubulin as a cytoskel-
etal marker (green; #PA1-20988, Invitrogen). Microarrays were then
imaged using an automated fluorescence microscope (IMSTAR), captur-
ing each position in bright-field, and the two fluorescent channels.

For virus particle adsorption screening, microarrays were imaged using
an automated fluorescence microscope (Zeiss Axio Observer Z1), captur-
ing each position in bright-field and with a Cy5 filter.

Polymer Microarray—Feature Segmentation by R-CNN: Detectron2 was
used for all R-CNN segmentation, with training annotations made using
LabelMe. Both were downloaded from GitHub.[38,40]

A new model was needed for each image acquisition platform. In both
cases, 150 images were taken from the whole dataset and converted from.-
tiff to.jpg. This image series was opened in LabelMe and in each image the
spot defined using the “Create Polygons” tool. Each spot within a dataset
was given the same label, identifying it as the same object, and each label
was saved as a.json file within the same directory as the training images.
The provided detectron2 model was retrained using these data for 3000
iterations on a local machine (CPU: Intel i7-7820HK, GPU: Nvidia
GeForce 1080Ti, RAM: 32 GB). The python code used for training is shown
in Section S1, Supporting Information.

To run the trained model, the model.pth file was placed in a base direc-
tory. Images to be analyzed were added to a subfolder “newimages.”Using
the python script in Section S2, Supporting Information, a “for” loop was
used to iterate over all bright-field images and presented them to the
trained detectron2 model for segmentation. Identified polymer spots were
outputted as false-colored images to an “outputs” folder, and binary
masks where a pixel value of “1” represents the ROI (polymer spot),
and a pixel value of “0” represents the background to a “masks” folder
with an “_M” suffix. The filenames, mask names, area, and area ration
were then exported as a csv file.

Polymer Microarray—Automated Cell Analysis: CellProfiler v2.2.0 was
used for all polymer microarray analyses.[27]

For hMSC screens, three image sources were imported; binary spot
masks from detectron2, fluorescent nuclei images, and fluorescent cyto-
skeleton images. Polymer spots were detected in the binary images
and used to mask the nuclei and cytoskeleton images. Nuclei were then
detected as primary objects using pixel threshold and size constraints, and
associated cytoskeleton was identified as secondary objects propagating
from these. Intensity of detected objects was measured and exported,
along with images outlining the polymer spot and segmented cells to allow
corroboration of outputs.

For virus particle screens, binary masks and fluorescent PP images
were imported. Polymer spots were detected in the binary images and
used to mask the PP images. Image intensity was measured in the masked
images and the data outputted as a spreadsheet.

Polymer Microarray—Ranking Polymers for MSC Attachment and Growth:
From the CellProfiler outputs, materials shown to support attachment of
primary hMSCs were scored as followed for each array. On a per spot
basis, the number of nuclei, total cytoskeleton area, and spot area was
extracted. The nuclei per 10 000 spot pixels and percentage spot coverage

were then calculated and averaged across the triplicate. If delamination
occurred (a spot size of 0 pixels) in more than two spots in a triplicate,
the polymer on that array was excluded from the analysis; only duplicates
and triplicates were considered. Nuclei density and percentage coverage
graphs were visualized for each of the nine arrays and a scoring threshold
established at 1.5 nuclei/10 000 pixels and 50% spot coverage. For each
array where a polymer exceeded these thresholds, they were scored 1
point. To establish a final ranking that equally weights the two scoring met-
rics, the scores for each metric were averaged and min/max normalization
between 0 and 1, retaining their relative weighting. These values were the
final scores, with 1 being the maximum score. The full ranking is available
in Section S3, Supporting Information.

Polymer Microarray—Validation of R-CNN Segmentation: Manual quan-
tification of PP adherence was performed in ImageJ. Multichannel images
containing the bright-field and fluorescent data were loaded as a stack and
the edge of the polymer spot manually defined using the polygon selection
tool. Fluorescence intensity per pixel was measured using the measure
tool to record values for “area” and “integrated density” and exported
to excel. Mean fluorescence per pixel values were calculated and averaged
across the triplicate of polymers and expressed as mean� standard devi-
ation (SD). For the automated quantification, from the data outputted
from CellProfiler, spot area and total fluorescence were extracted to cal-
culate fluorescence per pixel and averaged across the triplicate, as per
the manual approach.

Data was filtered so only duplicates and triplicates remained, then the
raw fluorescence per pixel values for the manual and automated
approaches were plotted against each other for each array to determine
correlation. In addition to this, the outright rankings were also compared
by high-low sorting of the outputs for the two approaches and assigning a
number from 1 to 300, with 300 being the highest, and the correlation
determined.

Activity time estimates were generated from file information, e.g., dif-
ference in timestamps between first and last files produced in a process.

TopoChip—Fabrication: TopoChips were fabricated as previously
described.[18] A reference bright-field and design image dataset of each
location was created and kindly provided by Jan de Boer.

TopoChip—Algorithmic Feature Segmentation: The “Open Computer
Vision Library” (OpenCV)[53] was used for computer vision processes
in combination with the “NumPy,” “pandas,” “os,” and “re” libraries
for the necessary mathematical operations, data analysis, operating sys-
tem interfacing, and use of regular expressions, respectively.

For both single- and multiple-origin overlay approaches, initial steps
were the same. Overlay script(s) (Single/Multiple_Origin_Overlay.py)
and a reference spreadsheet “TopoChipFeatures.xlsx” were placed in
the root directory, and design and bright-field images were placed in
two subdirectories: “design” and “bf,” respectively. When the script
was run, anticipated feature size and spacing were extracted from the ref-
erence spreadsheet for each TopoUnit, bright-field images were denoised,
design images were transformed (crop, rotate, flip), and Canny edge detec-
tion was applied to both image sets with the output cropped to the
contours.

For single-origin overlay, a template of a single topography was
extracted from the bright-field image and scaled to achieve the best match
with a singular corresponding topography in the design image. This scal-
ing was then applied to the design image, resized to the same image size
as the bright-field image, and exported as a binary mask. For multiple ori-
gin overlays, the extracted template from the design image was scaled and
matched to all occurrences of the topography in the edge-detected bright-
field and the locations recorded. A cropped and scaled topography from
the design image was then overlaid at each location and exported as a
binary mask. Scripts for single and multiple overlay mask generation
can be found in Section S4 and S5, Supporting Information, respectively.
Time calculations for manual segmentation were made by manually seg-
menting each feature in an image five times in ImageJ.

TopoChip—Validation of Algorithmic Segmentation: To determine
whether masks were “usable,” masks generated from the single and mul-
tiple overlay processes along with the original bright-field image were ana-
lyzed using CellProfiler v4.2.6. To eliminate noise, masks underwent
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Gaussian filtering before identifying segmented foreground regions as pri-
mary objects. These were false-colored and overlaid over the original
bright-field image. The first 150 of each feature size were then manually
inspected and deemed usable or unusable to calculate the success rate. All
image math calculations to determine filter thresholds for when single- or
multiple-origin masks should be used were performed within the same
pipeline.

TopoChip—hiPSC-CM Culture: The hiPSC cell line, ReBl-PAT, was
derived, cultured, and differentiated to CMs as previously described.[54]

CMmedium (RPMI 1640 basal medium [Gibco, #21875034] with B27 sup-
plement [LifeTechnologies, #0080085-SA], 10 μM Y-27632 [ROCKi, Tocris
Bioscience, #0080085-SA], and 1% penicillin–streptomycin [P0781,
Sigma-Aldrich]) was used for all experiments.

In preparation for cell culture, TopoChips were treated with oxygen
plasma for 30 s (Zepto, Diener Electronic) and placed in a six-well tissue
culture-treated polystyrene plate (Thermo Scientific Nunc). TopoChips
were sterilized via submersion in 70% ethanol for 20 min followed by
15min UV light exposure, washing three times in sterile Ca2þ/Mg2þ-free
PBS (Gibco), and incubation overnight. Immediately before use,
TopoChips were incubated in CM for 1 h at 37 °C prior to seeding with
hiPSC-CMs (0.5� 105/TopoChip).

TopoChip—hiPSC-CM Imaging: hiPSC-CMs (seeded at 15 days) were
fixed after 15 days of culture (hiPSC-CMs ≈30 days) in 4% paraformalde-
hyde (Bio-Rad) for 15min at RT and stained with anti-cardiac troponin
I–1:100 (ab47003) as previously described.[54] Briefly, samples were
washed thrice in 0.1% Tween-20 (Fisher Scientific) in PBS, permeabilized
with 0.1% Triton-X (Sigma) in PBS for 15min at RT, and incubated with
4% goat serum in 0.1% Triton-X (blocking solution) for 1 h at RT.
Subsequently, primary antibody incubation was performed overnight at
4 °C in blocking solution and incubated with Alexa Fluor 647 (Life
Technologies #A-21244) 1:400 followed by counterstaining with
0.5 μgmL�1 DAPI (Sigma #D9542) and HCS Cell Mask (1:500;
H32714) for 30min each. Samples were mounted with anti-fade medium
Pro-Long Glass (ThermoFisher #P36984) and fluorescent images were
acquired using a Zeiss Axio Observer Z1 microscope (Carl Zeiss,
Germany) equipped with a Hamamatsu Flash 4.0 CMOS camera and
motorized stage for automated acquisition using EC Plan-Neofluar
20�/0.50 Ph 2 to provide sufficient resolution while enabling the use
of the autofocus function. Images were cropped to a smaller field of view
(280� 280 μm) that did not include the walls of the TopoUnits to improve
the autofocus function and subsequent data analysis.

Captured images of the CM TopoChip were of different resolution
and aspect ratio to the reference dataset. To account for this, the scale
used for template matching (line 116 in multiple origin overlay script)
was altered from (2.1, 2.3, 100) to (1.0,2.0, 100) to allow a greater range
of scales to be compared for matching the experimental image to the CAD
image.

TopoChip—Automated Cell Analysis: To spatially segment cells, masks,
fluorescent cell nuclei, and cytoskeleton images and the original bright-
field images were analyzed using CellProfiler v2.2.0. Nuclei were detected
as primary objects using pixel threshold and size constraints, and associ-
ated cytoskeleton was detected as secondary objects propagating from
these. Segmented cells were overlaid over the original bright-field image
either as detected, or after masking using as generated or inverted masks
to visualize whether cells were present on topographical features or in the
spaces between.

Statistics: All data visualizations and statistics were performed in
GraphPad Prism 10.2.0. Correlation between manual and automated
segmentation approaches was assessed via simple linear regression to
determine correlation coefficients (R—Pearson correlation coefficient,
R2—coefficient of determination) with a two-tailed P value.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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