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Abstract

Marine functional connectivity (MFC) refers to the flows of organic matter, genes, and energy that are caused by the active and passive
movements of marine organisms. Occurring at various temporal and spatial scales, MFC is a dynamic, constantly evolving global
ecological process, part of overall ecological connectivity, but with its own distinct and specific patterns. Geological and historical
archives of changes in the distributions, life histories, and migration of species can provide baselines for deciphering the long-term
trends (decadal to millions of years) and variability of MFC. In this food-for-thought paper, we identify the different types of geohistorical
data that can be used to study past MFC. We propose resources that are available for such work. Finally, we offer a roadmap outlining
the most appropriate approaches for analysing and interpreting these data, the biases and limitations involved, and what we consider
to be the primary themes for future research in this field. Overall, we demonstrate how, despite differences in norms and limitations
between disciplines, valuable data on ecological and societal change can be extracted from geological and historical archives, and be
used to understand changes of MFC through time.
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Introduction

Marine functional connectivity (MFC) encompasses all of the
movements of marine organisms, both active and passive, that
drive flows of organic matter, genes, and energy, and create
functional interdependence between habitat patches, distinct
areas, and ecosystems (Darnaude et al. 2022). The recent
emergence of this ecological concept moves beyond structural
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License
reuse, distribution, and reproduction in any medium, provided the original work
r seascape connectivity, which solely considers physical
onnections between marine habitats and regions (Tischen-
orf and Fahrig 2000; Table 1). MFC describes how living
rganisms respond to environmental variations throughout
heir lifespan by moving between habitat patches over various
patial and temporal scales (Tischendorf and Fahrig 2000).
s such, MFC is largely determined by structural connections
tional Council for the Exploration of the Sea. This is an Open Access
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
is properly cited.
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Table 1. Examples of changes in MFC that might be observed over long (>decadal) timescales associated with their long-term drivers.

Long-term driver Environmental changes Consequences for MFC Examples

Climate − Ocean temperature
− Sea-level
− Ice cover
− Seawater salinity
− Ocean pH

− Changes population
connectivity as species
distributions shift due to:
a) their
thermal/salinity/pH/oxygen
tolerance and
b) physical disconnection of
habitats as ice sheets contract (for
polar species) or sea level rises (for
coastal/shelf species)

− Migration of small pelagic fishes from
the Atlantic into the Mediterranean
changed in the historical past following the
different phases of the North Atlantic
Oscillation and the Atlantic Meridional
Oscillation (Alheit et al. 2014, Tsikliras et
al. 2019).

Palaeogeography
controlled by tectonics
and volcanism

− Marine gateways size
− Coast and shelf areas
sizes and physical
connectivity

− Population connectivity changes
− Migration routes closed with
the restriction of marine gateways
− Changes dispersal pathways

− Opening of Bering Straits led to Early
Pliocene trans-Arctic interchange and
homogenization of Pacific and Atlantic
mollusc fauna by facilitating larval
dispersal (Vermeij 1991).
− Formation of the Isthmus of Panama
hindered dispersal between Caribbean and
Pacific (O’Dea et al. 2016).

Ocean circulation − Water-column
stratification
− (De)oxygenation

− Changes population
connectivity due to species
distribution contraction in
response to deoxygenation
− Stratification inhibits vertical
migration of zooplankton and
fishes
− Changes plankton and larval
dispersal pathways
− Changes seasonal latitudinal
migration routes (for animals
depending on currents)

− Expansion of marine molluscs in the
Southern Ocean after the establishment of
the Antarctic Circumpolar Current (Beu et
al. 1997, Hodell et al. 2021).

Biogeochemical cycles
over geological
timescales

− C, N, S, P, and O
availability and
distribution in the oceans

− Changes in migration routes
driven by nutrient availability
− Vertical migration patterns
controlled by changing
productivity at surface

−Change in nutrient supply during the
Early Oligocene drove lanternfishes to
deeper waters, potentially initiating their
diel vertical migration (Schwarzhans and
Carnevale 2022).

Evolution − Organismal traits associated
with MFC (e.g. larval dispersal
capacity) may be favoured or not
by the evolutionary process

−The evolution of herbivory-related traits
of coral reef fishes favored
Miocene–Pleistocene expansion of their
lineages and thus of coastal-to-deep
connectivity (Siqueira et al. 2019).
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Lough et al. 2017). However, the biology and ecology of
rganisms can often lead to divergence from structural con-
ectivity, sometimes even resulting in linkages that could not
e achieved by passive fluxes (McInturf et al. 2019).
While climate change and human activities affect both

tructural and functional connectivity, it is functional connec-
ivity that ultimately determines the demographic, ecological,
nd evolutionary interdependency of populations and com-
unities (Cowen and Sponaugle 2009, Lamberti et al. 2010),

nd may attenuate or amplify the ecological effects of envi-
onmental change (Marcos et al. 2021). MFC varies in space
nd through time, since it may be caused by temporary or
ermanent movements of individuals during their lifespan,
ut also because it depends on the evolutionary stability of
he related organism traits (Auffret et al. 2015). Therefore,
hanges in MFC may occur over timescales from several
enturies to hundreds of millions of years, and, importantly,

FC evolves through time as individuals, populations, and
pecies respond to progressive or episodic environmental
hanges (Wood et al. 2022).

Geological, archaeological, and historical archives (to-
ether referred to here as ‘geohistorical’) are useful for de-
cribing the past distributions, life histories, and migratory be-
aviour of marine species, (Fig. 1), revealing past functional
onnections between populations, communities, and ecosys-
ems, both at sea and the land–sea interface. This paper results
rom the discussions at the international workshop ‘Geohis-
orical perspectives on functional connectivity patterns’ (Ses-
mbra, Portugal—25 May 2023) and aims to provide food
or thought and a research roadmap for using geohistorical
ata to study MFC. Specifically, we focus on identifying: (1)
he types of geohistorical data that can be used to study past

FC patterns; (2) the resources available for such work and
heir limitations; and (3) how they might be used to under-
tand MFC. In order to illustrate how geohistorical records
an provide information on MFC, we present three case stud-
es: (a) population connectivity during the Pleistocene glacial–
nterglacial cycles; (b) the Mediaeval and early modern hunt-
ng of marine mammals; and (c) the formation of the Isth-
us of Panama and its cascading effects of ocean connectivity

oss. We conclude with a set of best-practice guidelines and
series of open questions that we believe should be the fo-

us of future research on this topic, highlighting the impor-
ance of advances in recovery methods and of the taxonomic
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Figure 1. Overview of MFC processes, their long-term drivers, and how geohistorical data can help unravel their changes over time. The boxes reflect
the methods and materials used: human sources and archaeological artifacts are remains from human activities; zooarchaeological remains and fossil
assemblages are the preserved (mostly hard) parts of organisms; biogeochemical proxies, sclerochronological archives and genetic data derive from the
application of methods to a wide range of organismal remains.
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identification of fossil and zooarchaeological material for the
correct interpretation of the results.

MFC processes and their long-term drivers

Active migrations

Functional connections between the land and the sea, and be-
tween coasts and the deeper ocean are formed by the migra-
tions of many marine birds, mammals like seals, and diadro-
mous fishes such as salmons, sturgeons, or eels (Fariña et al.
2003, Wagner and Reynolds 2019, Hentati-Sundberg et al.
2020, Benkwitt et al. 2022). Changes in the life history and
behaviour of these species led to past changes in land-to-sea
(e.g. D’Amore et al. 2011, Whitfield et al. 2017, Sturrock et al.
2019) and coastal-to-deep connectivity (Gorlova et al. 2012).

Past warming and ocean acidification are expected to have
reduced the capacity of marine organisms to perform seasonal
latitudinal migrations. For instance, changing migration pat-
terns of small pelagic fishes in the Atlantic and the Mediter-
ranean Sea in the historical past have been associated with
different phases of the North Atlantic Oscillation and the At-
lantic Meridional Oscillation (Alheit et al. 2014, Tsikliras et
al. 2019). Another example is the Northeast Arctic cod, whose
spawning distribution has shifted northwards in the last cen-
tury (Martínez-García et al. 2022). On the other hand, in
deeper time, the stable oxygen isotopic composition of barna-
les has been used to determine the seasonal migration routes
f whales and turtles in the past, and their changes that are
ssociated with climate (Bianucci et al. 2006) and sea-level
hange (Pyenson and Lindberg 2011, Taylor et al. 2019).

Although direct evidence of past vertical migrations is diffi-
ult to obtain, as many of the organisms performing these mi-
rations today do not usually fossilize (e.g. copepods and jelly-
shes), much information can be obtained about mesopelagic
shes. Palaeoclimate drove seawater temperature, oxygena-
ion, and circulation, and ultimately controlled the geographic
istribution, abundance, and functional traits (e.g. body size
nd feeding behaviour) of mesopelagic fishes that perform
aily vertical migrations (Agiadi et al. 2011, 2018, 2023, Lin
t al. 2023).

lankton and larval dispersal

elagic larval dispersal capacity (measured as either duration
r distance of dispersal until settlement) has been used to ex-
lain the distribution of extant and extinct species of gas-
ropods and corals based on genetic and fossil occurrence data
Henry et al. 2014, Hongo and Montaggioni 2015), but the
uration of pelagic dispersal alone does not always explain
he observed species ranges and size distributions (Ludt and
ocha 2015, Nanninga and Manica 2018). Plankton dispersal
ay have been instrumental in the rapid re-establishment of
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arine biota after major palaeoenvironmental perturbations
Bulian et al. 2022a, b).

Global warming can impact larval life cycles and dispersal
Munday et al. 2009, Gerber et al. 2014). Oceanic circula-
ion then controls seawater temperatures, salinity, and oxy-
enation that can determine the capacity of water bodies to
acilitate larval transport (Strugnell et al. 2008). Through its
ffects on water-column stratification and sea level, climate in
he past regulated oceanic circulation, and thus the flows of
utrients and genes (Beu et al. 1997, Fraass et al. 2019, Fen-
on et al. 2023). On geological timescales, the effects of pa-
eogeographic changes on plankton and larval dispersal can
e observed indirectly through the expansion or contraction
f the biogeographic distributions of the species. Large-scale
hanges in dispersal pathways have been attributed to the
pening and closure of marine gateways: the opening of the
rake Passage leading to the onset of Antarctic Circumpo-

ar Current (31–26 Ma; Beu et al. 1997, Hodell et al. 2021);
he opening of the Fram Strait (17.5 Ma) and the Bering Strait
4.8–7.4 Ma) that ventilated the Arctic (Jakobsson et al. 2007,
asuhara et al. 2019); the closing of the Tethys Seaway (Lo et
l. 2014, Agiadi et al. 2021, Li et al. 2021, Carolin et al. 2022);
he formation and closure of the Central American Seaway
200–154 Ma and 3.5 Ma, respectively; Beu 2001, Teske et al.
007, although Miura et al. 2011); and the stepwise restric-
ion and reopening of the Atlantic–Mediterranean gateway
hat enabled establishment of the present-day water exchange
etween the two basins at Gibraltar (5.97 Ma and 5.33 Ma,
espectively; Mancini et al. 2021, Bulian et al. 2022a, Agiadi
t al. 2024).

opulation connectivity

ecurring periods of climatic and hydrological changes in the
ast led to extreme changes in the oceans including warming,
hanges in thermohaline circulation, acidification (Zachos et
l. 2005, Marcott et al. 2014, Penman et al. 2014, Babila et
l. 2018), deoxygenation (Dickson et al. 2012, Praetorius et al.
015, Rohling et al. 2015, Yasuhara et al. 2019), and salini-
cation (Krijgsman et al. 1999, Fenton et al. 2000, Arz et al.
003; Table 1). Such changes were detrimental for many ma-
ine taxa, driving defaunation and habitat degradation, de-
truction and fragmentation, and increasing the isolation of
opulations and communities (McCauley et al. 2015). Varia-
ions in the Earth’s orbital movements (Milankovitch cycles)
hat drive climate over 105–106 years (Hays et al. 1976) di-
ectly affected the geographic distributions of species, con-
ecting and disconnecting populations and driving evolution
Dynesius and Jansson 2000).

Palaeogeographic reconfigurations, eustatic changes, and
hanges in sea ice-cover prevented or enabled physical connec-
ivity between habitats (i.e. structural connectivity), and there-
ore affected MFC patterns over evolutionary timescales. The
pening and closure of marine gateways, as oceans formed
nd died, controlled the connectivity of populations of ma-
ine species between the seas (Zaffos et al. 2017, Rossi et al.
023, Agiadi et al. 2024). Critical for the MFC of cosmopoli-
an species at low–mid latitudes were the Tethys Sea (clos-
ng at 13.8 Ma) and the Central American Seaway (closing
t 2.8 Ma), which affected population connectivity of shal-
ow and deep-water species (Harzhauser et al. 2007, Lessios
008, Rahiminejad et al. 2011, Leprieur et al. 2016, O’Dea et
l. 2016). Furthermore, the formation of epicontinental seas
as been instrumental in facilitating or hindering MFC in the
eological past. The Paratethys is a characteristic example of
ow changing paleogeography has altered MFC particularly
or neritic organisms, ultimately determining the evolution of
any important clades. The Paratethys formed at ∼34 Ma

nd spread across most of Central–Eastern Europe and the
estern part of Asia; its remnants are the Aral Sea, the Caspian

ea, and the Black Sea (Palcu et al. 2017, Hoyle et al. 2021).
ecause of its complex history, numerous fresh, brackish, and
arine endemic species originated in the Paratethys: the tran-

ient connections between its adjacent seas allowed species
o disperse increasing regional marine diversity (Agiadi et al.
017, 2021, Schwarzhans et al. 2020).
There is ample evidence that the large sea-level changes oc-

urring during the Pleistocene glacial–interglacial cycles af-
ected population connectivity between land and sea, coastal,
nd deeper habitats (Erlandson et al. 2007, Pellissier et al.
014, Ludt and Rocha 2015), which likely in turn influenced
he fluxes of matter and energy in coastal areas. Finally, deep-
ime records (e.g. Vermeij and Roopnarine 2008, Iba et al.
011) can provide insights into how the future opening of po-
ar corridors in the Arctic and the increasing connectedness in
he Antarctic can impact MFC.

he impact of preindustrial human activities
n MFC

lthough recent human activities and climatic change disrupt-
ng MFC patterns today are relatively well-known, evaluating
he long-term impacts is challenging due to the lack of preim-
act baselines and their unprecedented nature. Connectivity
etween the early human populations themselves, which
xchanged technologies and experiences, enhanced their
mpacts on the marine environment and MFC (e.g. Pawlik
021; Table 2). The archaeological record shows evidence
f human exploitation of marine populations over millennia
Desse and Desse-Berset 2002, Erlandson and Rick 2008,
rton 2016). However, establishing to what extent human

xploitation impacted MFC in the distant past is typically
ifficult to infer due to the spatially and temporally patchy
ature of archaeological sites and preserved materials, as well
s written historical sources.

The scale and sustainability of harvesting practices through
ime, the quantities and nature of marine products traded and
heir trade routes, and the potential implications for marine
opulations, have been interpreted from archaeological data
sing techniques such as allometry, growth-increment ageing,
nd stable isotope signatures (Desse and Desse-Berset 1999,
arrett et al. 2011, Betts et al. 2014, Orton et al. 2014, Welker
nd Morales 2022). Comparisons between archaeological ma-
erials and present-day exploitation can also provide clues to
.g. the distribution and size of species harvested, and their
elative abundance through time as exploitation or the envi-
onmental conditions changed (Desse and Desse-Berset 2002,
imburg et al. 2008, Maschner et al. 2008, Morales Muñiz
nd Roselló Izquierdo 2008). These data are essential for es-
imating human effect on MFC in the past.

In more recent time periods (i.e. the Mediaeval period to the
resent day), evidence of human impacts on marine species
nd habitats, typically from exploitation but including habi-
at transformation and degradation, coastal development,
ollution, and disease, exist in the historical record (Table 3).
ollation of information from historical sources (which
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Table 2. Examples of changes in MFC that might be observed over long (>decadal) timescales associated with human drivers.

Human driver Environmental changes Consequences for MFC Examples

Coastal
urbanization

−Habitat loss, deterioration, and
fragmentation
−New artificial habitats (sea
defences, offshore infrastructure, and
ship wrecks)
−Construction of canals creates new
connections
−Construction of weirs, dams, and
other constructions on rivers that
affect flow or create a physical
obstruction

−Disconnects
populations/communities
−Isolates habitat-forming species
and organisms that inhabit them

−The spawing and migration of
catadromous and anadromous fish (e.g. eel,
sturgeon, salmon, and alewife) have been
impacted by alterations to rivers for
millennia (D’Amore et al. 2011, Sturrock et
al. 2019, Lenders et al. 2016, Mattocks et
al. 2017)

Anthropogenic
transport
(hitchhikers on
hulls or within
ballast tanks,
aquarium trade,
and aquaculture)

−Connects or disconnects
populations/communities
−Makes novel connections
between species and populations
(natural and genetically modified)
−Introduces diseases

− Marine non-native species have been
transported since at least 1200 (Crosby
2004, Lotze et al. 2014, Hoffmann 2023).

Historical biomass
removal

−Destroys, damages, or fragments
seafloor habitats, including biogenic
coral, bryozoans, and oyster reefs

−Connects or disconnects
populations/communities
−Deteriorations in population
demographics

−Substantial historical removal of fish and
shellfish biomass impacted population size
and demographics (Clements et al. 2017),
and caused extirpations (Caribbean monk
seal (Baker 2008, Brito and Vieira
2016,Vieira and Brito 2017, Vieira et al.
2019).
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include written materials, iconography and cartography,
artefacts, and verbal transmission of knowledge) can be used
to infer changes in MFC resulting from human activities
spanning decades to centuries. This can include evidence for
the loss of functionally important habitat-forming species and
resulting fragmentation of biogenic habitats (the presence of
which enhances ecological functions such as nutrient cycling
and energy capture and promotes biodiversity) through the
use of fishing gears or coastal development (e.g. Zu Ermgassen
et al. 2012, Alleway and Connell 2015), declines or extinc-
tion of populations targeted for their meat, oils, or fur (i.e.
local and global whaling activities, exploitation of seals, sea
otters, sea cows, and sea turtles; e.g. Springer 2003, Brito and
Vieira 2016, Vieira and Brito 2017, Letessier et al. 2023),
and the transport and introduction of non-native species into
new habitats (Albano et al. 2018). Specifically, the impacts
on MFC can include the disruption or loss of community
structure, both physical (i.e. habitat fragmentation, loss or
changes in the dominant habitat-forming species)—which
may impact the survivability of particular life stages or influ-
ence their migration patterns—and demographic e.g. the loss
of older sexually mature individuals or subsets of the popu-
lation that are more vulnerable to exploitation due to specific
behaviours, such as site fidelity (Engelhaupt et al. 2009).

The impacts on MFC may also include changes in be-
haviour, for example, the migrations of a targeted species may
be disrupted due to the loss of knowledgeable older individu-
als (i.e. evidence of whales loss of culture; Clapham et al. 2008,
Sremba et al. 2023) or the loss of meta-populations. Changes
in whale population composition and size can also be detected
through historical analyses, depending on the techniques em-
ployed and the studied period (e.g. Prieto et al. 2013, for 20th-
century sperm whale hunting in the Azores). For example, in-
tense targeting of females (in earlier periods) may have im-
pacted population dynamics, while the persecution of males
r larger animals (in recent times) impacted the body size of
ndividuals and led to the shrinking of populations (Clements
t al. 2017). Species responses to wider environmental change
ay lead to the loss of meta-populations or even adapta-

ion by adopting novel behaviours. For example, human alter-
tions of the physical environment e.g. the placement of dams,
eirs, or other structures that reduce riverine flow or prevent
ovement, can also create physical impediments to MFC i.e.

he movement of diadromous fish (Lenders et al. 2016, Mat-
ocks et al. 2017), meaning subpopulations are quickly lost.
ressure from human exploitation, can also induce shifts in
ize or age at sexual maturity, and altered behaviour in the
arget species i.e. favouring the survival of individuals that are
ore hook-shy or who use alternative migratory routes (e.g.
onk et al. 2021).

eological and historical resources: utility and
imitations

nderstanding the multiple dimensions of MFC is conceptu-
lly challenging, in terms of the breadth and scale of data re-
uired versus what is available (Menegotto and Rangel 2018,
anonico et al. 2019), the complexity of ocean connectiv-

ty, and deficiencies in understanding of organism life his-
ory and ecological connections over broad spatial and tem-
oral scales (Hillman et al. 2018, Townsend et al. 2018).
any different approaches are being employed to understand

oth structural and functional connectivity, including har-
essing data on ecological-niches, biophysics, genetics, geo-
hemical signatures, and the physical tagging of animals.
hese approaches vary in utility, across taxa, spatio-temporal
cales, the underlying hypotheses, and assumptions (Bryan-
rown et al. 2017, Darnaude et al. 2022). The challenges dif-

er as we move deeper into the past, where the organisms’
ife histories and ecological connections cannot be observed
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Figure 2. Fragment of the mosaic discovered at the ‘Sea front villa’ in Hippo, dating from 210 and 260 AD (photo taken by Ali Becheker, 2023).
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directly, but must instead be inferred. We identify here eight
types of records that provide evidence of past MFC: sedimen-
tary records, biogeochemical proxies, fossil assemblages, scle-
rochronological archives, genetic data, zooarchaeological re-
mains, archaeological artefacts and representations, and his-
torical sources (Fig. 2).

Sedimentary records

Sediments record the conditions of past environments, includ-
ing sedimentological and geochemical evidence of the physi-
cal connectivity between marine basins and climate contexts
(Table 3A). Sedimentary structures reflect the level of energy
in the depositional setting and the direction and strength of
currents (Bernhardt et al. 2017). The chemical and isotopic
composition of the sediments, especially in conjunction with
fossil assemblages provide evidence of past connectivity. For
example, the total organic carbon in marine sediments re-
flects organic carbon burial and hence the combination of pro-
duction and the biological carbon pump efficiency, including
through the diel vertical migration performed by zooplankton
(e.g. Li et al. 2023).

Changes in continental arrangement, extent of sea-ice cover,
ocean primary production, and terrestrial vegetation can also
be detected from sediments, fossils, and their geochemical sig-
natures: providing the environmental context needed for de-
termining past local, regional, and global changes in structural
connectivity, functional connectivity, and its drivers.

Mapping the extent of important habitats and ecosystems
in the past such as seagrass meadows, reefs, and deep-sea
geothermal vents can be achieved using sedimentological data,
which in turn can help reconstruct their structural and func-
tional connectivity.

Biogeochemical proxies

The elemental and isotopic composition of marine fossils
provide direct evidence of the movements and migration of
marine organisms (Gorlova et al. 2012, Trueman et al. 2016,
Taylor et al. 2019). Unlike studies of present-day MFC pat-
terns that can benefit from the analysis of the soft tissues
of organisms (e.g. muscle, blood, and skin), only hard tis-
sues (e.g. shells, bones, teeth, otoliths, and microfossil tests)
are usually preserved as fossils and can be used to recon-
truct palaeoenvironmental conditions and life histories in
istorical and geological times (Table 3B–H). The compo-
ition of hard tissues depends on the elemental availability
nd isotopic ratios in the ambient water. Taxon- and tissue-
pecific fractionations control the final incorporation of the
lements and isotopes into these tissues during biomineral-
zation. The main premises in using biogeochemical proxies
or reconstructing long-term MFC patterns are that: (a) the
oncentration of the measured element or the isotopic ratio
iffers between the marine environments the organism (was
uspected to) occupy; (b) the fractionation of the measured
lement or isotopes between the ambient seawater and the
argeted tissue can be determined (preferably for the target
pecies, or at the lowest possible taxonomic level in case of
xtinct species); (c) any vital effects on the fractionation are in-
ignificant or well-constrained; and (d) the preservation of the
ossil is good and any possible effects of diagenesis (i.e. all the
hysical and chemical alteration taking place after the organ-

sm remains have been buried) have been excluded prior to
nalysis.

Elemental and isotopic ratios from the remains of skeletal
lements, e.g. fish otoliths, mollusc shells, corals, and calcare-
us microfossils (such as foraminifera and ostracods) have
lready been used as proxies in long-term (decadal–millions
f years) MFC studies. The Mg/Ca, Sr/Ca, Ba/Ca, and Na/Ca
atios are strongly controlled by ambient water temperature
nd salinity allowing the reconstruction of the movements of
arine organisms across thermal and salinity gradients (Eg-

ins et al. 2003, Amekawa et al. 2016). On the other hand,
ovements may be inferred by a change of provenance be-

ause of the differences in the Li content of seawater be-
ween sites (Thibon et al. 2022). Life histories of organisms
oving between environments of different salinities are com-
only reconstructed based on 87Sr/86Sr of their hard tissues

Koch et al. 1992, Kocsis et al. 2007, Glykou et al. 2018),
ut this proxy is also used in deep-time studies to test hy-
otheses about the connectivity of aquatic settings (e.g. An-
reetto et al. 2021, Hoyle et al. 2021). The 15N/14N ratio is a
ommonly used proxy for trophic position: in the case of mi-
rating animals, a dietary shift may also indicate a change in
igration potential, patterns or routes (Hesslein et al. 1991).
he analyses of 13C/12C and 18O/16O in fossil and modern
namel (Clementz et al. 2014, Taylor et al. 2021), otoliths
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r invertebrate shells (Zazzo et al. 2006, Lukeneder et al.
010, Geffen et al. 2011, Stevens et al. 2015, Immenhauser et
l. 2016) provide evidence of ontogenetic and (sub-)seasonal
igration patterns in the deep past, especially when com-
ined with the record from other, nonmigratory organisms
r other proxies (Amekawa et al. 2016). The Branched and
soprenoid Tetraethers index, an organic geochemical proxy,
efines the terrigenous versus aquatic components of organic
nputs into a basin (Butiseacă et al. 2022), reflecting the de-
ree of land-to-sea connectivity. Similarly, glomalin, a protein
roduced by fungi, is transported to the sea through rivers
nd groundwater, and is detected in varying amounts in reefs,
angroves and seagrasses (Adame et al. 2012, López-Merino

t al. 2015).

ossil assemblages

ossils allow us to map the distributions (or biogeographic
anges) of species and how they have changed through time
e.g. Smith et al. 2023), inferring connectivity and evolution-
ry dynamics (e.g. Vermeij 1991, Vermeij and Roopnarine
008, Iba et al. 2011, Dunne et al. 2014, Leprieur et al. 2016,
’Dea et al. 2016, Agiadi et al. 2018, Friedman and Carnevale
018, Reddin et al. 2018, Caswell and Herringshaw 2023).
The potential for making such inferences about MFC de-

ends upon the species studied, their preservation poten-
ial, and the conditions of burial. This could range from
ear-complete soft tissue preservation as found in conserva-
ion lagerstätten (e.g. the Burgess Shale and the Solnhofen
imestone) to accumulations of disarticulated and trans-
orted skeletal materials. The fossil record is spatially patchy
nd incomplete and tends to be biased towards lower en-
rgy marine environments with reasonable sediment accu-
ulation rates and organisms with hard parts that have
igher preservation potential. This can be supplemented by
race fossils that record the behaviour of animals. Excep-
ionally preserved materials, although rare, can yield valu-
ble biological information on individual species and on MFC
Table 3F).

Biological traits that are related to MFC can also be re-
onstructed from particular fossilized skeletal remains. For
nstance, fish body size and morphology, which are directly
orrelated to the fish’s mobility, can be reconstructed from
ossil otoliths, teeth, and other bones (Table 3C–E; Agiadi
t al. 2023). Similarly, shark denticles reflect body morphol-
gy and behavioural traits (Dillon et al. 2017, Cooper et al.
023). Fish scales, both fossilized and nonfossilized, may also
ield valuable information on species distribution, popula-
ion size and demographics, traits, and the response of fish
o environmental and anthropogenic changes (e.g. Salvatteci
t al. 2022). Data on marine invertebrates can be extracted for
pecies with good preservation potential (e.g. molluscs, crus-
acea, and echinoderms) and linked with changes in the envi-
onment (e.g. Caswell and Coe 2013, Fuksi et al. 2018, Rita et
l. 2019; Table 3F). Changes in invertebrate traits can be in-
erpreted based on the principles of functional morphology
nd comparison with modern analogues (Kroh and Nebel-
ick 2003, Caswell and Frid 2013), for those with incremen-
al structures, growth life history can be reconstructed, and
or some (e.g. molluscs), the larval shell may be preserved on
he adult and so fossils may provide information on larval be-
aviour, including dispersal (Landau et al. 2009, Nützel 2014,
arnik et al. 2017). In others (e.g. echinoids), features of the
dult skeleton may be used to infer larval development modes
e.g. Cunningham and Jeffery Abt 2009).

The temporal resolution of MFC reconstructions that can
e achieved through the study of fossil assemblages cannot be
ower than the range of time-averaging, which depends on abi-
tic and biotic factors (Kidwell 1997, 2001, Kowalewski et al.
018, Albano et al. 2020, Agiadi et al. 2022, Ritter et al. 2023,
yler and Kowalewski 2023). Abiotic factors include the sed-

mentation rate, paleodepth, substratum, the level of mixing,
nd other factors specific to the depositional environment. Bi-
tic factors are the marine production, the type of skeletal ma-
erial and its preservation potential, the presence of organisms
hat disturb the sea bottom through burrowing, and so on.
sually, fossil assemblages are time-averaged at centennial–
illennial ranges (e.g. Scarponi et al. 2013, Terry and Novak
015, Tomašových et al. 2015, Albano et al. 2020), but there
re notable exceptions, where temporal resolution can even
e decadal (e.g. Kowalewski et al. 2018).

clerochronological archives

clerochronology is the study of physical and chemical varia-
ions in the hard tissues of organisms, focusing primarily on
rowth patterns and the variety of environmental factors in-
uencing growth (Oschmann 2009). Analogous to the study
f tree rings, sclerochronology aims to reveal individual life-
istory traits and reconstruct environmental changes through
ime and space.

Marine taxa producing sclerochronological archives range
rom mammals and fishes, bivalves, and gastropods (shells) to
orals and coralline algae (Table 3C–E) (Baglinière et al. 1992,
anfili et al. 2002, Trofimova et al. 2020).
Different resources can be exploited as sclerochronological

rchives to obtain information on past MFC patterns over
imescales ranging from decades to millennia. These include
ooarchaeological samples obtained from middens, fossil
amples from sediment cores, and more recent collections
rchived in fisheries institutes (e.g. otolith from research sur-
ey programs) and museums (e.g. biological material archived
rom past expeditions to remote locations). The growth incre-
ents of sclerochronological archives provide two types of

nformation relevant to MFC: (i) life-history parameters and
vents and (ii) past climate and environment, including human
mpacts. Individual age and/or size at death is a key parameter
hat is readily obtained from sclerochronological archives
nd for some taxa can be complemented with information on
mportant life-history traits, such as metamorphosis and set-
lement, age or size at maturity, growth pattern, and longevity,
hich can be used to infer dispersal duration and timing as
ell as movement behaviour (Campana and Thorrold 2001).

clerochronological archives, in particular the shells of
ong-lived bivalves (e.g. Arctica islandica), have been suc-
essfully employed to create multicentury composite records
f climate (e.g. Schöne 2013), which can be used to infer
abitat characteristics and suitability for hindcasting species
istribution. Sclerochronological archives are also useful
ools to investigate human impacts on marine environments,
n particular comparing preindustrial and modern environ-
ental conditions and rates of exploitation. Archaeological
sh otoliths from the mid- to late-Holocene period indicated
arger size of individuals in the past, which may be related to
ore recent fishing practices, introduced species and habitat
egradation (Disspain et al. 2012). Covering up to a century,
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otolith-increment-based chronologies have enabled re-
searchers to assess the impact of both climate change and
fishing on many different species around the world (e.g.
Morrongiello et al. 2019, Tanner et al. 2019, Denechaud et
al. 2020). Finally, sclerochronological archives from zooar-
chaeological sites can be used to determine the season of
capture, which is of broad interest to archaeologists, but may
also provide information on fish migration timing (Desse and
Desse-Berset et al. 1992, Van Neer et al. 1999, Çakirlar 2014,
Butler et al. 2019).

Genetic data

In the last decades, the potential of ancient DNA (aDNA)
analysis in marine conservation has been widely recognized.
The advancement of high-throughput DNA techniques has
revolutionized the field of palaeogenomics, enabling the
extraction and analysis of aDNA from fossil shells and
skeletal remains recovered from sediment cores (Der
Sarkissian et al. 2017, 2020, Nguyen et al. 2021; Table
3I). For example, through aDNA analysis of fossil bones
and baleen from museum specimens, Borge et al. (2007)
demonstrated that bowhead whale populations from the
North Atlantic and North Pacific were connected in the Early
Holocene, and raised questions about current whale stocks
in the Arctic. Sedimentary ancient DNA (sedaDNA) can also
be used for reconstructing palaeoecological communities and
inferring changes in past environments (De Schepper et al.
2019, Nguyen et al. 2021). While most studies are currently
restricted to the Holocene, this technique has the potential
for reconstructing communities dating back over a million
years (Kjær et al. 2022). By providing snapshots of historical
genetic diversity and community composition at different
points in time, this technique allows the reconstruction of
changes in marine assemblages, which can shed light on
historical biodiversity loss and patterns of migration and dis-
persal for both species and communities (Gómez-Cabrera et
al. 2019, Shaw et al. 2019, Barrenechea-Angeles et al. 2023).
These records of biotic change can describe how populations
have been connected or isolated over historical periods, and
can give useful insights for future marine conservation and
management.

Zooarchaeological remains

The remains of marine organisms found in archaeological sites
(specifically sites of human occupation) comprise the hard
parts of marine mammals and birds, fishes, molluscs, and
other invertebrates (e.g. mostly crustaceans, stony corals, sea
urchins, and cephalopods) (Colley 1987, Wheeler and Jones
1989, Claassen 1998, Theodoropoulou 2023), which can be
used to infer changes in MFC patterns in historical times
(Table 3J). Despite certain limitations, these archives may pro-
vide valuable information, especially during periods for which
other lines of evidence are lacking. Viewed over short spa-
tial and temporal scales, they can reflect local conditions and
small-scale changes in coastal areas close to past human habi-
tations. Over longer timescales, they can provide information
on human pressures on living resources or their body size that
led to shifts in species distributions, population connectivity,
and/or seasonal migration patterns of these animals (e.g. Allen
et al. 2001, Leach and Davidson 2001, Desse and Desse-Berset
2002, Bernal-Casasola et al. 2016, Béarez et al. 2016). They
can also be correlated with known climatic events and the
oastal geomorphological record to infer changes in struc-
ural connectivity between populations, habitats, or ecosys-
ems due to sea-level change or habitat degradation (e.g. Owen
nd Merrick 1994, Rodrigo García 1994, Johnsson 1995, Re-
tz 2001, Desse and Desse-Berset 2002, Cortés Sánchez et al.
008, Hunt et al. 2011, Béarez et al. 2012, Rodrigues et al.
016).

rchaeological artefacts and representations

rtefacts related to fishing, whaling, and other extractive prac-
ices are occasionally found in archaeological sites and may
nform us directly on the fishing techniques used and the
ocial organization of these activities, as well as indirectly
n the species/quantities/habitats targeted (e.g. Buchholz and
oehrens 1973, Colley 1987, Cleyet-Merle 1991, Leach 2006).
t is important to keep in mind that, depending on the region,
sually only the hard parts of the fishing tackle (e.g. hooks,
arpoon points, and net weights) are preserved in the archaeo-

ogical sediment, while equipment made from perishable plant
r animal materials (e.g. nets, floaters, lines, and baskets) will
nly survive in extreme environmental conditions (dry, water-

ogged, anaerobic, or frozen, e.g. Pedersen 1995; Table 3K).
deally, these should be compared with the results from his-
orical evidence and also from faunal analyses (Table 3J), al-
hough the two may not always occur within a single archae-
logical site (e.g. Davidson and Leach 1996, Pickard and Bon-
all 2004, Leach 2006, Michael 2023).

Pictorial evidence may also provide information on the
resence of marine species at a specific time/region, their size
nd abundance, as well as the seasonal migration routes fol-
owed by these organisms. Representations of marine organ-
sms (Fig. 2) date back to the Palaeolithic (Cleyet-Merle 1991,
leyet-Merle and Madelaine 1995) and provide valuable in-

ormation on extinct and extirpated species. Some ancient civ-
lizations recorded a wealth of information (e.g. Delorme and
oux 1987, Kankeleit 2003, Kokkini 2016), such as the mo-

aics widely distributed along the coasts of the ancient Roman
mpire depicting images of fishing and fish species (Fig. 2) up

o the European art pieces that can provide evidence of ecolog-
cal variations and sociocultural drives and consequences (Tri-
ot et al. 2021; Table 3L). For instance, the c. 11 000 year old
l Medano rock art found along the Atacama Desert coast in
hile shows in great detail the species hunted, the techniques
nd devices employed to catch them and the social organiza-
ion around such activities (Ballester 2018). However, caution
ust be made regarding these representations as they often
rovide a distorted, i.e. exaggerated, displaced or misunder-
tood, image of marine ecosystems, or marine organisms are
isidentified or nonrecognizable.

istorical sources

istorical sources that can potentially be used to track
hanges in MFC include documents such as natural history
reatises, diaries, logbooks, correspondence, legal documenta-
ion, governmental enquiries or statistical accounts, newspa-
ers and popular books, early scientific written observations
Table 3M), maps, and nautical charts (Table 3N). Knowl-
dge or skills held by individuals and communities (i.e. in-
ormation passed among generations verbally or via other
orms of nonwritten expression; Table 3O), as well as mul-
iple art and religious manifestations (Table 3P) can also hold
nformation on human-induced changes to marine popula-
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ions and habitats (Máñez et al. 2014, Engelhard et al. 2016,
arrett 2019, Brito 2023). Evidence collated from these
ources can inform on past human activities, human percep-
ions and practices, and their ecological outcomes, and be used
o track the pathways, rates, and consequences of species dis-
ributions and movements at decadal to millennial timescales
Bekker-Nielsen 2005, Jacobsen 2005, Orton et al. 2014, Brito
nd Vieira 2016, Lenders et al. 2016). Additionally, they pro-
ide information on how human activities have contributed
o functional connections and disconnections. For instance,
he transport of nonindigenous species along shipping routes
‘hitch-hikers’ on wooden hulls), and for aquaria and aquacul-
ure, has been documented from at least the 1200s (Lotze et al.
014, Holm et al. 2022a, Hoffmann 2023). This is particularly
elevant to East–West Atlantic connections, and Northern–
outhern hemispheres connections, since early European ex-
ansions and colonization of peoples, water, and territories,
hrough processes of geographic globalization, ecological
mperialism, and oceanic teleconnections (Crosby 2004, Holm
t al. 2022b). As well, the more recent construction of physical
onnections, such as the Suez Canal, has led to unprecedented
ates of biological invasion (Por 1971, Albano et al. 2021).

Historical sources may provide evidence of changes
hrough, for example, historical accounts of species behaviour
r habit that are not observed in the modern day, or their his-
orical presence in locations that are outside of its known ge-
graphic range today (or, in the case of nonindigenous species
bove, their notable absence in the historical record or the
iming of when they became a social or economic issue). His-
orical data on human exploitation can also provide evidence
f the drivers of the observed changes i.e. the scale and in-
ensification of historical increases in fishing effort, the intro-
uction of new gears or hunting techniques, of demand, taste
nd preference, the opening of new extraction grounds, trade
outes, and new locations or species being exploited (Vieira
t al. 2019, van den Hurk et al. 2023, Vieira 2023). These
ypologies of historical sources can and should be comple-
ented with other types of documentation, such as visual and

artographic sources, material evidence and remains, objects
r art, combining a number of different data sources and in-
ormation (e.g. as described in Table 3M, N, P–R) can improve
onfidence.

he biases and limitations of using geohistorical
ecords to reconstruct past MFC

hatever the source, utilization of geohistorical data and in-
ormation for understanding MFC needs to account for the
istorical, cultural, environmental, and geological contexts of
heir production, and therefore requires a critical interpreta-
ion of the information (Table 3). In the past decades, method-
logical advances now allow extracting information to cre-
te high-resolution records of ecosystem change, with variable
imescales (Table 3), which cover the last c. 540 million years
f MFC (Dietl and Flessa 2011, Kidwell 2015). Central to the
ssue of the resolution of geohistorical data is the dating (ab-
olute or relative) of the records, because it is necessary for
onstructing time-series of change, ordering events, and cal-
ulating rates of change.

Additionally, integrating data of different types requires an
nderstanding of dynamic processes across spatial (local, re-
ional, and global) and temporal scales both for marine or-
anisms and human populations. Employing the principle of
onsilience, we can weave together the separate evidence into
coherent, temporally and spatially resolved picture of social–
cological system states and changes. Temporal correlation be-
ween materials from different sources is critical to building a
imeline of change. Mapping those changes over spatial scales
s essential for understanding structural and functional con-
ectivity.
Historical, archaeological, and geological data are incom-

lete and discontinuous in time and space. This is also true
or ecological data, as natural and environmental scientists
ample the environment to detect spatial and temporal pat-
erns and the relationships that drive them. However, the sam-
ling in the case of geohistorical materials is more opportunis-
ic and determined by what materials are available and well-
reserved. For one, with few exceptions, only the hard tissues
f organisms are preserved in the fossil and archaeological
ecord, creating a gap in knowledge of micro- and mesozoo-
lankton and marine plants that do not contain hard parts.
rganisms such as jellyfishes, which play a critical role in the
arine ecosystem are virtually unknown to us from the past.
or those organisms that do leave hard parts, marine faunal
ssemblages are more or less available depending on the pe-
iod (e.g. few Pleistocene sites have provided such remains;
ncreasingly they are more available from the early Holocene
own to Antiquity, and are also quite common in the Me-
ieval period) and region (e.g. available in the Mediterranean,
uropean Atlantic coasts, circum-Arabian peninsula, Indian
cean, Australia, and few studies from coastal Africa).
The quality and resolution of geological records is strongly

ffected by anthropogenic factors, and human bias exists both
ecause of exploitation and during investigation. This is be-
ause the processes that govern the preservation of these re-
ources can be affected both positively (increased quality and
esolution) or negatively (decreased quality and resolution) by
uman activities (Nawrot et al. 2024 and references therein).
any archaeological and historical records are also biased ac-

ording to human interest in the species and the long-term
onservation potential of their tissues (Table 3): often the
est represented species are those that were exploited as a
ource of food or for other uses, e.g. those that provide ecosys-
em services. This is also true for the larger, more visible and
conic species that were spiritually and culturally valued by
umans. For instance, the amount of geohistorical evidence
f marine animal migrations increased with the onset of hu-
an settlement that allowed documentation of such patterns

Damm et al. 2022), and with advancements in fishing and
sh processing practices that facilitated the detection of mi-
rations (Avery and Underhill 1986, Boethius et al. 2021).
dditionally, the retrieval and recovery methods in both Ar-
haeology and Palaeontology have vastly advanced in the last
00 years: indeed, many records from older expeditions were
uite coarsely resolved. Refined sampling methods during ex-
avation, namely sieving, are required, otherwise the sample
ay be biased towards larger taxa or larger/intact anatomical
arts (Theodoropoulou 2023; Table 3J). Using data from di-
erse geohistorical sources can provide a more complete pic-
ure that includes other species, e.g. using data on fisheries
y-catch, naturalists accounts, creative writing, other imagery,
nd death assemblages (Table 3).

These materials will almost always be time-averaged, and
he extent of this averaging determines the temporal resolu-
ion achievable for a time series constructed from these ma-
erials (Table 3). These time-averaged records, being tempo-
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rally coarser than modern ecological records, do not preserve
short-term variations. However, they have been shown to be
more powerful for detecting ecological patterns over long
timescales and large spatial scales (Kidwell and Tomašových
2013). Time-averaged materials may actually be better for
detecting rare species, metacommunity structure (i.e. the re-
gional species pool), identifying changes in biogeographic dis-
tributions, and evaluating historic habitat use. Specifically,
Kidwell and Tomašových (2013) showed that fossil death as-
semblages capture 20% more regional diversity than life as-
semblages because of time averaging. For instance, they may
be used to confirm species absences, document the presence
of rare species, identifying biogeographic range changes, de-
scribing past habitat use, metacommunity size and structure,
community states, and shifted baselines. Many of these eco-
logical attributes are key for investigating MFC and how
it changes with natural and human drivers (Kidwell 2009,
Kidwell and Tomašových 2013). Additionally, methods exist
today to assess the completeness of the fossil record, how
faithfully death assemblages reflect living assemblage (Table
3) and to unravel the postmortem and postburial processes
they have been subjected to (which itself can also yield valu-
able context, e.g. Tomašových et al. 2021).

In some cases, the data represent only temporal snapshots
of the past: this may be the case with isolated fossilized or
nonfossilized remains in middens and material collections,
fossil lagerstätten, genetic data, much of the archaeological
data, and some historical sources (e.g. imagery, oral histo-
ries). These windows into the past can provide an, albeit
punctuated, perspective on a population, habitat, or commu-
nity and yield valuable biological or ecological information
on extinct species, contributing information on species distri-
butions, human activities, and impacts. In combination with
other sources, they can be used to extract quantitative data
that can be embedded into time series constructed from other
resources (Table 3).

Emerging approaches using aDNA and sedaDNA are sig-
nificantly affected by the environment of preservation, poten-
tial sample contamination, and are biased towards the more
abundant taxa, but as the technology advances they have
strong potential for providing direct information on species
distribution ranges, migratory life cycles and niche shifts, on
the changes in the structure of local communities over time
and on the evolutionary processes that modulate this func-
tional connectivity through time. However, obtaining reliable
sedaDNA data from marine organisms remains challenging in
many ways (Nguyen et al. 2021). One of its main limitations
is that sample collection requires specific technological in-
struments to collect long cores while avoiding contamination,
leading to very expensive oceanographic campaigns (Nguyen
et al. 2021). The acquisition of viable samples is limited to
certain environments, as environmental and physical factors
such as temperature, salinity, and sediment type influence the
preservation of DNA in the sedimentary records (reviewed in
Nguyen et al. 2021). In addition, the prevalence of sedaDNA
in the environment is related to the species-specific abundance,
and thus low-abundance organisms as top predators will be
hardly identified in these records (Kjær et al. 2022).

Finally, an important distinction should be made between
palaeontological and zooarchaeological material. Where fos-
sil assemblages offer both qualitative information (taxa, mor-
phology based on skeleton, season of capture, and exploited
habitats) and quantitative data (relative frequencies and body
ize) on the entire marine fauna and flora, assemblages from
rchaeological sites can be considered as ancient exploitation
rchives. They mostly represent the resources extracted, i.e.
aught or collected, by humans. In this sense, they are not con-
idered direct proxies of past MFC. They indirectly reflect the
vailable habitats, but not the entire range of ecosystems. The
atter is even more relevant for earlier periods, when humans
xploited almost strictly coastal resources.

ase studies

opulation connectivity during the Pleistocene
lacial–interglacial cycles

he Pleistocene glacial–interglacial cycles recorded recurring
hifts in the geographic distributions of many marine species,
hose ranges retracted (Kiessling et al. 2012, Scarponi et al.
022) or expanded (Girone et al. 2006, Agiadi et al. 2018,
elo et al. 2022) leading to the fragmentation (Rödder et al.

013) or reconnection (Sabelli and Taviani 2014) of their pop-
lations, respectively. The resulting dynamic pattern of MFC
s especially prominent in marginal and semienclosed seas,
uch as the Mediterranean Sea. The most recent example of
uch distribution shifts can be found in the Last Interglacial
arine isotope stage (MIS) 5e (ca 135–116 ka), which repre-

ents one of the most recent climate analogues for the com-
ng decades (Yin and Berger 2015). During MIS 5e, the geo-
raphic ranges of tropical molluscan species (‘warm guests’)
rom the West African coast expanded into the Mediter-
anean, and they regressed to the tropical belt during the
ubsequent glaciation (Sabelli and Taviani 2014). Conversely,
cold invaders’ were commonly found in the Mediterranean
uring glacial periods, but retracted during interglacials. Cold-
ater fish (Girone et al. 2006, Agiadi et al. 2011, 2018, Lin

t al. 2017), bivalve (Rossi et al. 2018), and even plank-
onic foraminifera (Marino et al. 2018, Quillévéré et al. 2019,
irone et al. 2023) species have been repeatedly found in sed-

ments deposited in the Mediterranean during glacial periods,
specially those corresponding to the last 1.5 million years,
hen climate started to shift towards its modern state (Mc-
lymont et al. 2023). In addition to restricted seas, biogeo-
raphic shifts in response to Pleistocene glacial–interglacial
ycles have been recorded in the Pacific and North Atlantic
ceans as well, with examples from ostracods (Yasuhara et

l. 2012, Yasuhara and Okahashi 2015, Huang et al. 2018),
hallow- (Mitsui et al. 2023), and deep-water fishes (Lin et al.
023).

ediaeval and early modern hunting of marine
ammals

arine mammals are among the largest migratory organ-
sms in the oceans today, and a group for which geohistorical
ecords have much to contribute. Whaling is a paradigmatic
ase of human exploitation, dominance, and impact on ma-
ine wildlife, leading to disconnected populations and the con-
raction of biogeographic ranges and changes in the trophic
tructure of marine ecosystems. It is estimated that between
900 and 1999, nearly 2.9 million large whales were killed
nd processed globally by industrialized whaling (Rocha Jr et
l. 2014). However, the history of whaling encompasses the
ntire history of human life as a practice of biomass and en-
rgy removal from the oceans. The fishing of several species
f cetaceans is reported since the first settlement of human
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opulations in coastal areas and extends globally, e.g. from
he Atacama Desert coast in Chile from c. 11 000 years ago
Ballester 2018) to the littoral mountain of Arrábida, 30 km
outh of Lisbon in Portugal up to 106 000 years ago (Zil-
ão et al. 2020). Data from environmental history and his-
orical ecology studies have been combined to describe the
hanges and assess the ecosystem impacts of the removal of
hales. The analysis of historical documents related to prein-
ustrial whale exploitation (covering several centuries of data)
an help track changes in whale species and populations’ ge-
graphic distributions, behaviour, and their contributions to
easonal/latitudinal and vertical MFC.

Very illustrative examples are found in records of Mediae-
al whaling in Europe that led to the extirpation of North
tlantic whales’ populations and to the early modern whal-

ng in the South Atlantic. From the Roman period to the late
iddle Ages, data from historical documents and zooarchae-

logical records show that baleen whales and toothed whales
ere valued and consumed in Europe (Teixeira et al. 2014, van
en Hurk et al. 2021, 2023). The main targets of exploitation
ere three species of baleen whales: the North Atlantic right
hale (Eubalaena glacialis), nowadays only extant in west-

rn Atlantic waters, and listed as ‘critically endangered’ by
he IUCN (Cooke 2020); the grey whale (Eschrichtius robus-
us) assessed as ‘regionally extinct’ in European waters (IUCN
SC Cetacean Specialist Group 2007); and the bowhead whale
Balaena mysticetus) with a currently increasing population
rend. In the last few decades, with a growing number of ar-
haeological and historical studies it has become possible to
nfer the relative abundance of these species in the past (e.g.
an den Hurk et al. 2023). As a result, we can now better
nderstand changes in the structure and functioning of Arctic
cosystems, since the extirpation of bowhead whales’ from the
valbard Archipelago is believed to have led to large increases
f zooplankton biomass due to the reduced grazing pressure
Rodrigues et al. 2019). The ecosystem structure switched
rom dominance by whale biomass, prior to the start of com-
ercial exploitation in 1596, towards a system dominated by
elagic fishes, and their predators (piscivorous seabirds, seals,
nd whales; Weslawski et al. 2000).

As humans began to understand that the number of whales
vailable for hunting in European coastal seas was decreas-
ng, new perceptions began to emerge on the abundance of
hales and other marine mammals (and the consequent po-

ential for gaining wealth) in America’s (North and South)
oastal waters. This was the case for several aquatic species
f Brazil within a colonial context of nature commodifica-
ion, confirming that early modern catch data, even if frag-
entary, can provide information on species occurrences and
istribution (Vieira 2023). Historical data allows us to map
pecies past geographic distributions and realized niches, for
nstance southern right whales (Eubalaena australis) that were
unted at lower latitudes, outside the current species ranges
r, inversely, for West Indian manatees (Trichechus mana-
us) that previously occupied higher latitudes than nowadays
Vieira and Brito 2017). Also, historical accounts on the spa-
ial distribution and abundance of monk seals (Monachus
onachus) in the Caribbean prior to exploitation have been
sed to model reef productivity and suggest that the extirpa-
ion of this species, as a major predator in the reef ecosys-
ems, had an ecological effect across the entire Caribbean re-
ion (Baker 2008). The continued exploitation and biomass
emoval of such species of marine mammals through the cen-
uries had significant impacts that are reflected in the extir-
ation of populations and the current conservation status of
hese species, and most probably had an important impact on

FC.

he formation of the Isthmus of Panama and the
ascading effects of ocean connectivity loss

rior to formation of the Isthmus of Panama, Miocene fos-
il records reveal taxonomic, ecological, and environmental
imilarities across the entire Tropical American marine re-
ion as large amounts of energy, biomass, and genes were
xchanged between the Pacific and Caribbean (Leigh et al.
014, Yasuhara et al. 2022). When the isthmus formed and
his link finally severed, the biodiverse tropical marine faunas
nderwent major ecological, evolutionary, and biogeographic
isruption. The most striking consequence of this was the ul-
imate cessation of gene flow between marine populations in
ither ocean, which occurred around 2.8 Ma (O’Dea et al.
016). But Isthmus formation began more than 20 million
ears earlier (Farris et al. 2011), and the movement of water,
utrients, and energy from the Pacific into the Caribbean had
een substantially reduced by the late Miocene and Pliocene
s documented in serially sampled isotopic analysis of shells
Grossman et al. 2019), which eventually created the olig-
trophic Caribbean we know today. Quantitative analyses of
ear-shore fossil assemblages of molluscs, corals, bryozoans,
rchins, fish teeth, and fish otoliths reveal how the ecologi-
al structure of these diverse tropical communities responded.
n the Caribbean, filter feeders reliant on high planktic nu-
rients declined by a third, large-bodied predatory sharks de-
lined 50% giving way to small, bottom-dwelling demersal
shes, and in the benthos predatory gastropods were replaced
y herbivorous snails (O’Dea et al. 2016). Cumulatively these
hanges demonstrated decreasing MFC between the oceans,
decline in population connectivity within the Caribbean,

nd the consequential switch of the dominant source of en-
rgy in the Caribbean from widely distributed pelagic to spa-
ially limited benthic origins. Detailed measurements of the
ize and shape of fossilized larval shells revealed that ani-
als with long-lived planktonic-feeding larvae that connected

he two regions, became substantially rarer as feeding became
ore challenging in the oligotrophic water column (Landau et

l. 2009). The consequence was a further reduction in MFC,
hich ultimately contributed to an increase in provinciality in

he Caribbean (Leigh et al. 2014).
While the majority of these biotic responses to the envi-

onmental changes were linear and predictable, others were
onlinear. For example, Caribbean species that were poorly
dapted to the new, low nutrient conditions diminished at first,
ut were able to cling on in small, isolated populations until
heir eventual demise a million years later (O’Dea and Jackson
009). This pattern can be best explained as isolated metapop-
lations in deteriorating conditions (Nee and May 1992), and
eflects the model of ‘extinction debt’ where the final loss
f a species lags long after the ultimate cause (Tilman et al.
994).
The proliferation of the Caribbean coral reefs and sea-

rasses also lagged a million years or more behind the for-
ation of the Isthmus and the collapse in planktonic pro-
uctivity, as observed in the rapid increase in abundance of
eagrass-specific lucinid bivalves and a sharp increase in coral
bundances and reef growth in the early to middle Pleistocene
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Figure 3. Roadmap for studying MFC using geohistorical resources, including key linkages, steps, and intermediate questions. A range of resources can
be used to answer questions about seasonal latitudinal, coastal-to-deep, land-to-sea, and vertical connectivity and their dynamics. The contexts and
contributions from humans are incorporated, where relevant. Eight broad categories of geohistorical resource are considered, each subtype is
designated by a letter, which refers to Table 3. Approaches apply to any taxa for which there are records or remains, unless otherwise specified, e.g. in
the case of vertical connections only those with vertical movements will convey information on vertical connectivity. ‘Archaeo.’ = archaeological,
‘Zooarchaeo.’ = zooarchaeological, and ‘terre.’ = terrestrial.
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(Johnson et al. 2008, Jackson and O’Dea 2023). Both corals
and lucinids rely on MFC not only to disperse their larvae,
but also to horizontally acquire symbiotic microbes (dinoflag-
ellates and sulphur-oxidizing bacteria, respectively) critical to
nutrient acquisition in oligotrophic waters.

This case study highlights how geohistorical records can
provide information on changes to oceanic, energetic, and ge-
netic connectivity and quantify the resulting cascading effects,
especially when combined with an understanding of the func-
tional roles and life histories of the organisms and communi-
ties. This must therefore also be true if we wish to predict how
species and communities will respond to future changes in
connectivity. For example, connectivity between the nutrient-
poor upper and nutrient-rich lower ocean layers is consistently
predicted to decline in the tropics as oceans warm and strat-
ify (Moore et al. 2018). As the Isthmus of Panama case study
shows, such a reduction in vertical connectivity of energy will
likely manifest at multiple different biological levels, and per-
haps with extended and unpredictable time lags.

In general, this is an especially important topic for tropical
systems where many taxa have already reached their environ-
mental limits. The ability of tropical species, and their symbi-
otic microbes (Leray et al. 2021), to adapt, expand, or shift
their biogeographic range to occupy more favourable regions
will be critical to their future resilience in the face of climate
change. This may not be the case at higher latitude systems
where ocean warming is predicted, in contrast, to increase
productivity and connectivity to new habitats (see Mediter-
ranean case study). More tropical geohistorical records are
therefore essential to provide low-latitude-specific predictions
and recommendations for the most biodiverse and yet threat-
ened ecosystems in the world.
oadmap

FC refers to all the flows of matter, genes, and energy that
re caused by the passive and active movements of marine life
Darnaude et al. 2022; Fig. 1). Here, we propose workflows
or studying long-term MFC (decadal to millions of years) and
cientific questions that we believe should be prioritized by
uture research.

ow to analyse and interpret geohistorical data in
he study of MFC

he application of geohistorical resources to understanding of
ong-term changes in MFC varies with the process of interest
Figs 3 and 4). Geographic distributions of the species sus-
ected to have performed seasonal latitudinal migrations can
e acquired from fossils, historical, and archaeological mate-
ials. Biogeochemical markers and sclerochronology from the
ossil hard parts of the target species or any hitchhikers can be
sed to establish if migration was occurring and if so via what
outes, paleogeography, and ocean circulation can be used
onfirm whether those routes were possible or not. Coastal-
o-deep connections can be interpreted from the taxonomic
omposition and the traits of the species present from a range
f archives (Fig. 3). Fossils and sedimentary records addition-
lly provide evidence for water flows and paleogeographic
hanges that may be used to reconstruct structural and func-
ional connections onshore–offshore (and through time). The
ffects of large-scale oceanic circulation patterns on changes
n coastal-to-deep connectivity can be constrained with bio-
eochemical proxies from fossil materials. The possible roles
f human activities in facilitating or impeding seasonal latitu-
inal migration or coastal-to-deep connections can be estab-
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Figure 4. Roadmap for studying MFC using geohistorical resources, including key linkages, steps, and intermediate questions. A range of resources can
be used to answer questions about plankton dispersal, larval dispersal, and population connectivity and their dynamics. The contexts and contributions
from humans are incorporated, where relevant. Eight broad categories of geohistorical resource are considered, each subtype is designated by a letter,
which refers to Table 3. Approaches apply to any taxa for which there are records or remains, unless otherwise specified. ‘Archaeo.’ = archaeological,
‘Zooarchaeo.’ = zooarchaeological, and ‘terre.’ = terrestrial.
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ished from historical and archaeological records (Fig. 3). Fos-
ils can provide information on the presence of taxa suspected
o perform vertical migration, historical materials may also
rovide this information, but include taxa that do not leave
ossil remains (e.g. jellyfishes, copepods, and so on; Hartman
t al. 2018, Fox et al. 2020; Fig. 3). Biogeochemical signals
nd sclerochronology can confirm vertical migrations.

Within a defined drainage basin, human presence may be
etermined from historical and archaeological evidence, and
his can be combined with biogeochemical data to quantify
nd interpret the impacts of human activities on land-to-sea
onnectivity (Fig. 3). If human activities were absent or in-
ignificant (in relation to the timescale of the study), the fos-
il record can be used together with genetic, sclerochrono-
ogical, and biogeochemical data to explore functional
onnections from land-to-sea. The composition of microfos-
il assemblages in laterally time-equivalent rock formations
nd sediments and historical records can provide information
n plankton distributions and dispersal of plankton (Fig. 3).
istorical archives can provide specimens and direct measure-
ents of fish eggs or plankton/larvae, images e.g. plankton at-

ases and early drawings or measurements. Pelagic larval dis-
ersal can also be inferred from the composition of microfossil
ssemblages, particularly the presence of fossil larval forms
e.g. for molluscs). Population connectivity can be assessed
hrough examination of laterally time-equivalent fossil assem-
lages, archaeological remains, or historical records for infor-
ation on taxonomic composition and the traits of species,

specially reproductive mode and larval development (Fig. 4).
uspected connectivity of plankton, pelagic larvae, and popu-
ations can be confirmed using genetics, with palaeogeography
nd climate contexts indicating whether the necessary physical
onnections existed. The role of humans in preventing or fa-
ilitating transport of adults and larvae between populations
 a
an then be established from historical or archaeological ma-
erials (Fig. 4).

irections for future research on long-term MFC

ased on the state-of-the-art presented in this paper, we pro-
ose a number of research questions that we believe are a pri-
rity for future research on MFC and should be addressed
sing geohistorical resources.
Geohistorical data can provide ecological baselines that ex-

end beyond the onset of modern, ecological monitoring pro-
rams (c. 1950s), that should be used as a basis for assess-
ng recent ecosystem changes due to anthropogenic activities,
ncluding how they impact MFC. Although many datasets
ow exist that might be used to establish preindustrial eco-
ogical baselines (e.g. Thurstan 2022), these should be ex-
anded to explicitly include MFC processes, for instance by
econstructing the biogeographic ranges and routes of sea-
onal migrations of whales or large pelagic fishes during key
eriods of palaeoenvironmental change, such as the last inter-
lacial. Moreover, preindustrial MFC as determined from his-
orical and archaeological records could be used to determine
he long-term (decadal–millennial) impacts of human activi-
ies (such as changing the physical connections e.g. between
asins or between the land and the sea) on MFC, as well as
uantifying the scale of those impacts and rates of change.
As the ocean is unambiguously intertwined with the climate

ystem, palaeoclimatic variability has had a considerable influ-
nce on the biological, chemical, and physical ocean processes,
ith knock-on impacts on past MFC. Past climate analogues

Yin and Berger 2015, Burke et al. 2018) offer insights into the
ossible future ecosystem states and MFC under different cli-
ate change scenarios. Understanding long-term (centennial–
illions of years) MFC dynamics under natural climate vari-

bility, that includes the extreme changes associated with
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major climate transitions, can reveal tipping points for MFC.
Specifically, geohistorical data can help to infer how climate
change will impact MFC in marginal and semienclosed seas,
such as the Mediterranean Sea, that are experiencing acceler-
ated rates of environmental change (e.g. Albano et al. 2021,
Scarponi et al. 2022, 2024). At the same time, these past ana-
logues may help predict potential future MFC patterns due to
the formation of new connections, e.g. the opening of polar
corridors as the Earth continues to warm (e.g. Vermeij and
Roopnarine 2008).

The two-way connections between MFC and biogeochem-
ical cycles must have evolved since the first appearance of life
on Earth (Falkowski et al. 1998, Ridgwell and Zeebe 2005,
Ziveri et al. 2023) and yet remains largely unexplored beyond
the level of hypotheses. For example, assumptions are often
made regarding the efficiency of the biological carbon pump
during past hyperthermals that imply MFC changes (Li et al.
2023), but these are not validated with evidence for changing
MFC.

Continental configurations have ranged from periods
where there was one large supercontinent (Pangaea; e.g. Cavin
et al. 2008, Torsvik et al. 2021, Li et al. 2021) and the remain-
der of the Earth’s surface was open ocean, to periods when
there were extensive areas of shallow epicontinental seas (e.g.
in the Cretaceous; Lagomarcino and Miller 2012). Geohistor-
ical resources can be leveraged to ask: What are the effects
of the large-scale changes in MFC that are created by palaeo-
geographic reconfigurations? Restriction and disconnection of
oceanic basins severed the functional connections transferring
critical energy and genetic materials between basins or be-
tween the land and sea. Although some research addresses
this theme (e.g. O’Dea et al. 2016, Agiadi et al. 2024), there
are also many periods that could be studied further such as
the impacts of the opening of the Atlantic Ocean or the entire
evolution of the Paratethys.

Some deep-time ecosystems were structured very differently
from modern marine ecosystems and their study within an
MFC framework could demonstrate the broad range of MFC
possible. For instance, changes in MFC across major periods
of ecological reorganization, such as the Cambrian substrate
revolution wherein the seafloor first became colonized by in-
fauna (Bottjer 2010, Mángano and Buatois 2017, Herring-
shaw et al. 2017), or in the aftermath of mass extinctions such
as at the end of the Permian (Wignall and Bond 2023). The
communities and ecosystems produced by changes in MFC
may have functioned very differently than those prior.

We might ask: What were the impacts of deep-time changes
in oceanic circulation on larval and plankton dispersal? This
topic has been only partially addressed for phyto- and zoo-
plankton (Sexton and Norris 2008, Henderiks et al. 2020,
Boscolo-Galazzo et al. 2022) and not at all for higher trophic-
levels.

Geohistorical resources can show how the ecological
and evolutionary interdependence of populations over long
timescales has been affected by changes in MFC. Species’ abil-
ity to disperse through the seascape and connect with other
populations is linked with various biological traits (Burgess
et al. 2016). For instance, species larval dispersal capacity,
which is determined by the duration of larval development,
buoyancy, and behaviour, determines how far the species can
passively disperse via ocean currents (e.g. Shanks 2009, Leis
2020). Greater functional connectivity enhances the resilience
of ecosystems, allowing populations to survive environmental
hanges and persist over time (Magris et al. 2014). However,
volution does not always lead to the selection of characteris-
ics that favour dispersal and connectivity (Magris et al. 2014).

How does the magnitude of MFC relate to the observed
enetic diversity and population or ecosystem resilience? Ex-
mples from geohistorical records may indicate whether there
s a minimum (or optimal) level of MFC required for healthy,
table, and resilient marine ecosystems? The changes in the
alaeobiogeography of marine species associated with basin
estrictions (e.g. during the Messinian Salinity Crisis in the

editerranean; Agiadi et al. 2024), combined with paleo-
eanographic data from within the restricted basin and out-
ide it, can be used to elucidate such thresholds. This infor-
ation can be used to inform models of MFC patterns and
elp to understand MFC at community and ecosystem lev-
ls, which is critical for inferring future ecosystem health and
anaging marine resources (Darnaude et al. 2022).
At what point does MFC become a disadvantage? If di-

erse ecosystems are more resilient to change because they
ave greater potential for adaptation and evolution in the
ace of environmental change, then will functionally very well-
onnected and therefore genetically more homogeneous sys-
ems transfer the impacts of perturbations through ecosystems
aster and farther?
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