
Journal of Water Process Engineering 63 (2024) 105535

Available online 27 May 2024
2214-7144/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Machine learning assisted improved desalination pilot system design and 
experimentation for the circular economy 

Waqar Muhammad Ashraf a,1, Muhammad Ahmad Jamil b,*,1, Ghulam Moeen Uddin c, 
Bashar Shboul d, Kashif Ishfaq e, Kim Choon Ng f, Mike Dixon g, Ben Bin Xu b, 
Muhammad Wakil Shahzad b,* 

a The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK 
b Mechanical & Construction Engineering Department, Northumbria University, Newcastle Upon Tyne NE18ST, UK 
c Department of Mechanical Engineering, University of Engineering & Technology, Lahore, Punjab 54890, Pakistan 
d Department of Renewable Energy Engineering, Faculty of Engineering, Al Al-Bayt University, Mafraq, Jordan 
e Department of Industrial and Manufacturing Engineering, University of Engineering and Technology Lahore, 548900, Pakistan 
f Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia 
g Synauta Inc, Canada   

A R T I C L E  I N F O   

Editor: Guangming Jiang  

Keywords: 
Water circular economy 
Distillate production 
Machine learning 
Sustainable development goal 
Desalination 

A B S T R A C T   

Desalination is among the most feasible solutions to supply sustainable and clean drinking water in water scarcity 
areas. In this regard, Multi-Effect Desalination (MED) systems are particularly preferred for harsh feeds (high 
temperature and salinity) because of their robust mode of operation for water production. However, maintaining 
the efficient operation of the MED systems is challenging because of the large system design and variables' in-
terdependencies that are sensitive to the distillate production. Therefore, this research leverages the power of 
machine learning and optimization to estimate the optimal operating conditions for the maximum distillate 
production from the MED system. In the first step, detailed experimentation is conducted for distillate production 
against hot water temperature (HWT) varying from 38 to 70 ◦C, and feed water temperature (FWT) is changed 
from 34 to 42 ◦C. Whereas, the feed flow rate (FFR) is investigated to be varied nearly from 3.6 to 8.7 LPM in the 
three stages, i.e., FFR-S1, FFR-S2 and FFR-S3. The compiled dataset is used to make the process models of the 
MED system by three ML-based algorithms, i.e., Artificial Neural Network (ANN), Support Vector Machine 
(SVM), and Gaussian Process Regression (GPR) under rigorous hyperparameters optimization. GPR exhibited 
superior predictive performance than those of ANN and SVM on R2 value of 0.99 and RMSE of 0.026 LPM. Monte 
Carlo technique-based variable significance analysis revealed that the HWT has the highest effect on distillate 
production with a percentage significance of 95.6 %. Then Genetic Algorithm is used to maximize the distillate 
production with the GPR model embedded in the optimization problem. The GPR-GA driven maximum distillate 
production is estimated on HWT = 70 ± 0.5 ◦C, FWT = 40 ± 2.5 ◦C, FFR-S1 = 6 ± 2.6 LPM, FFR-S2 = 7 ± 1 LPM 
and FFR-S3 = 7 ± 1. The ML-GA-based system analysis and optimization of the MED system can boost the 
distillate production that promotes operation excellence and circular economy from the desalination sector.   

1. Introduction 

Clean drinking water is among the formidable challenges because 
over 2.2 billion people do not have its availability [1]. The situation is 
exacerbated with surging demand which is expected to surpass 6000 
billion cubic meters by 2030 from 4200 billion cubic meters in 2015 
driven by rising population, industrial development, and life quality 

standards [2]. To deal with the water scarcity problem, desalination has 
emerged as the only practical and feasible solution [3]. They also 
contribute towards the water circular economy. Therefore, different 
desalination systems are working worldwide, majorly including Multi-
stage Flash (MSF), Reverse Osmosis (RO), Multi-effect Desalination 
(MED), and others (electrodialysis, nanofiltration, ultrafiltration, 
membrane distillation, etc.) [4]. Meanwhile, a surge in the installed 
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capacity is observed and is predicted to grow further as shown in Fig. 1 
[5,6]. It is also worth mentioning that thermal-based systems have 
grown significantly over the last decades due to low pretreatment needs, 
robust design, low maintenance, and versatile feed handling ability [7]. 
Among thermal-based systems, multi-effect desalination (MED) has 
shown promising characteristics including better heat transfer, high 
working efficiency, capability to harness low-grade energy, and hy-
bridization flexibility with other systems [8] resulting in a wide range of 
installations worldwide as a standalone as well as hybrid systems [9]. 
However, these systems have high energy consumption, operating costs, 
and CO2 emissions compared to membrane-based systems [10]. These 
perform only within 10 to 13 % of their thermodynamic limit and hence 
are the subject of extensive research for improved performance [11]. 

Besides the above-mentioned established technologies, significant 
research interest has been observed in biomass-based adsorbent mate-
rials for water treatment [12,13]. These can be developed from agri-
cultural residues [14], natural fibres [15], wood cellulosic [16], 
composite material [17] and activated carbons [18]. Hossain et al. [19] 
proposed a cost-effective adsorbent material for effective adsorption and 
recovery of rare earth metals Yb (III). In another study [20] they 
developed an eco-friendly composite adsorbent via an eco-friendly 
process for successful detection and removing Cd (II). Similarly, they 
also proposed ligand-immobilized nano-composite adsorbent for effi-
cient cerium(III) detection and recovery [21]. They showed that the 
proposed adsorbent was also highly selective to Ce (III) with fast kinetic 
performances Su et al. [22] proposed a microbubble floating-extraction 
mechanism which has the separation efficiency of molybdenum over 99 
%. Awual [23] developed novel nanocomposite materials that were 
prepared for optical Hg (II) detection/removal and showed that the 
proposed materials are promising candidates for in situ environmental 
remediation. Similarly, they developed ligand-based facial conjugate 
materials for treating copper (II) [24]. They showed that the conjugate 
materials exhibited high sensitivity and selectivity to Cu(II) ions. 

Desalination plays a critical role in the water circular economy to 
minimize water waste and promote the responsible use and reuse of 
water resources. Desalination technologies can contribute to this by 
addressing water scarcity and enhancing water resource management in 
several ways. The earlier research on MED desalination systems includes 
experimental and theoretical studies [25]. The experimental studies 
included the development of the system, hybridization with other sys-
tems, and performance investigation [26]. The theoretical developments 
include numerical modelling, optimization, parametric analysis, and 
retrofitting of different components for performance improvement 
[27,28]. These conventional mathematical models require extensive 
knowledge, complex equation development, and calculation of associ-
ated properties [29]. Particularly, under unpredictable demands, and 
fluctuating energy resources like renewable energy, cogeneration plants, 

and hybrid systems, the designing is difficult [30]. Also, the conven-
tional models use assumptions that compromise the accuracy of the 
predicted characteristics [31]. Furthermore, the development and so-
lution of the mathematical model for performance prediction and opti-
mization is computationally expensive. Owing to the limitations of the 
conventional methods and the superiority of machine learning models to 
approximate the complex function space with high accuracy, reduced 
computational resource requirement, and flexibility to update the 
trained model, a growing trend of employing machine learning for water 
desalination systems is observed and plenty of research is conducted as 
summarized below [32]. 

1.1. Desalination and machine learning 

The application of machine learning (ML) on desalination systems is 
obviously to benefit from technological advancements and accurate 
data-driven methods [33]. ML tools can be applied for the system 
modelling and analysis of the MED system for informed decision-making 
and operational strategy development for the desalination systems [34]. 
Plenty of work has been conducted in this regard deploying the ML tools 
to model different performance indicators of the desalination systems. 
For instance, Son et al. [35] proposed the utilization of a convolutional 
neural network in conjunction with a long short-term memory ML 
structure for pH prediction in water treatment systems. They showed 
that the proposed framework demonstrated better accuracy with R2 ≥

0.998 than the conventional numerical models with R2 < 0.309. Bonny 
et al. [36] developed a deep reinforcement learning-based method to 
optimize the pressure across a trans-membrane reverse osmosis system. 
They reported improvement in permeate and salt rejection with 99 %. 
Shahane et al. [37] optimized the evaporator design for higher water 
production, better heat transfer, and lower scale formation using an 
artificial intelligence-based non-dominated sorting genetic algorithm. 
They showed that the proposed model achieved optimal results with an 
average relative error of <3.24 % and can be used for further 
improvement. Krzywanski et al. [38] identified the optimal operating 
conditions to achieve water uptake of 1.65 g/g for a fluidized bed 
adsorption cooling and desalination system using artificial intelligence. 
Similarly, He et al. [39] reported a 10 % improvement in freshwater 
productivity by using AI-based optimization of renewable energy-driven 
desalination systems. 

Karambasti et al. [40] optimized a hybrid Stirling engine integrated 
with a MED system using an analytical hierarchy process that increased 
energy and water productivity thus reducing the operating costs of the 
system. They showed that the optimal system can deliver 2.58 kW of 
power, 19.92 m3/day of water at a rate of 0.29 $/kW-hr, and 1.6 $/m3, 
respectively. Similarly, Pombo et al. [41] designed a small, modular 
nuclear fission chamber to be used as a hybrid plant; solar energy and 
wind energy were used to achieve an optimum hybrid plant that 
improved both safety and energy efficiency. Salem et al. [42] optimized 
a hybrid solar still and humidification-dehumidification system using a 
multilayer perceptron. They showed the superiority of the proposed 
model to predict and enhance system performance in less time and re-
sources. Shakibi et al. [43] developed and optimized a cogeneration 
plant with a gas turbine cycle combined with a field of heliostats and 
thermal vapor compression MED system using a multi-objective grey 
wolf, support vector regression, and grasshopper optimization algo-
rithms. The study reported an exergy efficiency of up to 45.6 %. 

The above-mentioned literature review suggests that the use of ML 
tools in the water sector improved system performance, process control, 
and effective resource planning in fluctuating situations. However, ML- 
based process design and performance improvement of the MED systems 
for maximum distillate production are rarely conducted in the literature 
potentially because of the fabrication challenges of the MED system and 
the unavailability of the design and process data. More importantly, a 
comprehensive analytical framework consisting of a step-by-step 
approach for carrying out the ML-assisted analysis and optimization Fig. 1. Global desalination trend and prediction [5,6].  
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for enhancing MED system performance is missing in the literature 
which is a major obstacle to the inclusion of ML in the desalination 
sector. The verification of the ML-based estimated solution may 
contribute to the knowledge pool of applied ML in the desalination 
sector demonstrating its effectiveness and usefulness for the perfor-
mance enhancement of desalination systems. 

Thus, the current study provides an ML-based comprehensive 
analytical framework deploying the advanced modelling algorithm and 
optimization technique for maximum water production from the MED 
system. For this task, an extensive experimental investigation of an in- 
house MED system is conducted first on different operational condi-
tions and the dataset is compiled. ML models like artificial neural 
network (ANN), support vector machines (SVM), and Gaussian process 
regression (GPR) based process models for distillate production are 
constructed under rigorous hyperparameter optimization to train a well- 
predictive model that can approximate the operating behavior of the 
designed MED system. A sensitivity analysis employing the Monte Carlo 
method is conducted to get an insight into the variable's significance on 
the distillate production that is missing in the literature. The model- 
based optimization analysis by genetic algorithm is carried out to esti-
mate the optimized operating conditions for the maximum water gen-
eration and the results are verified on the experimental set-up thereby 
demonstrating the major novel aspect of this work. An extensive closed- 
loop data-driven modelling and optimization assessment for the per-
formance enhancement of the designed MED system and distillate pro-
duction are carried out by the ML approach which is the major novelty of 
this work and may help the industrial practitioners and engineers to 
deploy the proposed framework for the operational excellence of their 
industrial systems to contribute to water scarcity and sustainability 
challenges. 

2. Materials and methods 

The methodology adopted to conduct the current research work is 
graphically represented in Fig. 2. The first step involves detailed 
experimentation and data collection at assorted operating conditions of 
the MED system. Then, the data is visualized and processed to eliminate 
outliers in the dataset compiled from the experiments performed on the 
MED system. In the next stage, ML models including ANN, SVM and GPR 
are developed under extensive hyperparameter tuning. The best pre-
dictive model is then used to conduct the significance analysis of the 
variables and maximize the distillate production under the optimized 
operating conditions by genetic algorithm. Finally, the investigation of 
the model-based optimized operating conditions is verified on the 
experimental system. All these stages are described in detail below. 

2.1. Experimentation and data collection 

Extensive experimentation is conducted using a Multi-Effect Desali-
nation (MED) test rig as indicated in Fig. 3. The rig contains a steam 
generator, evaporator stages, a condenser, a cooling tower, a brine 
cooler, collection tanks, pumps, and a control system. The system 
operates as the hot water is directed to the steam generator in a closed 
loop. The steam produced by the generator is then supplied to the first 
evaporator. The saltwater feed is applied on the outer surface of the 
evaporators using a pump and nozzles. The feed flow rate is controlled 
using throttling valves according to the demand. In the first evaporator, 

Fig. 2. A stepwise methodology is adopted in this study to maximize the distillate production from the MED system. The experiments are conducted on the 
experimental set-up, the collected dataset is compiled and visualized and then used to make process models by ML. The significance order of the input variables of the 
MED system is established by the Monte Carlo technique. The ML model is embedded in the optimization problem to maximize the distillate production and the 
problem is solved by genetic algorithm. The estimated results for the maximum distillate production are also verified on the experimental setup. 

Fig. 3. MED experimental test rig (a) evaporators and (b) pumps and 
tanks [44]. 
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the steam inside the tube transfers heat to the feed water and evaporates 
a portion of it. The vapours produced in the first evaporator are then 
directed to the next evaporator tubes and the process goes on. Mean-
while, the steam inside the tubes is condensed and collected as a 
distillate (freshwater). The brine enters the subsequent effect which 
produces some additional vapor due to flashing caused by pressure drop 
between the evaporators. The vapours produced in the final evaporator 
are sent to the condenser to produce distillate by using a cooling tower. 
The distillate and brine from all the evaporator stages are collected in 
the distillate collection tank and brine collection tank respectively using 
headers. The brine is partially recirculated to mix with feed which im-
proves the system's recovery ratio. Turbine flow meters are utilized to 
calculate the flow rate inside the system. Meanwhile, the vacuum inside 
the system is maintained using a vacuum pump to ensure continuous 
evaporation. 

The test rig is completely instrumented to observe and log real-time 
data. Meanwhile, it is also important to mention that the instruments are 
vacuum-grade because the system operates under vacuum conditions. 
Table 1 summarizes the instrumentation details of the system, and an 
Agilent data logger is used to record the data. 

2.2. Data-visualization & pre-processing 

The MED system was operated under steady-state conditions for 
diverse operating scenarios to ensure the stable operation of distillate 
production in each stage [45]. It was observed that the values of various 
thermo-physical operating parameters in the second and third stages are 
effectively influenced by that of the first stage's operating parameters. 
Therefore, the important system control parameters are considered from 
the 1st stage for ML-assisted analysis of the aforementioned system due 
to two reasons. (1) The 1st stage operating parameters serve as the 
driver of MED (2) ML models work well on the causal and independent 
nature of the input variables [46]. 

The operating parameters taken from the 1st stage of MED are hot 
water temperature (HWT), and feed water temperature (FWT) since 
these are independently controlled variables. Moreover, these are the 
most critical parameters in MED system operation. For instance, a higher 
hot water temperature means higher input energy and higher produc-
tivity. Similarly, a higher feed water temperature reduces the preheating 
requirements and is of significance when waste heat is used. Similarly, 
the feed flow rate (FFR) corresponding to the three stages is also 
included which represents the feed of seawater flow to the stages of MED 
and are represented as FFR-S1, FFR-S2, and FFR-S3 respectively. The 
feed flow also impacts productivity; however, it needs to be controlled 
carefully. This is because a very low feed flow rate results in dry patches 
in the evaporator and reduces system performance. On the other hand, a 
very high flow rate results in lower evaporation because of higher 

sensible water heating. Finally, the output of the MED system is the 
distillate water production (now called distillate production) that is to 
be modelled on the selected input variables. 

The data thus collected is required to be visualized to investigate the 
data-distribution space. Violin plot is an efficient approach to visualize 
the data distribution and the data-distribution curve is also plotted 
thereby showing the density of the data distribution. The visualization of 
data distribution is an important step before building the ML models 
since visualizing the data distribution space on the operating ranges of 
the variables helps ensure data quality. Once the data visualization step 
is carried out, the collected data is normalized for the development of 
ML models. Data normalization is essentially important because it en-
sures the efficient construction of ML models for the given input vari-
ables which may have significantly large operating ranges. Thus, scaling 
all the variables into equal ranges, depending upon the normalization 
technique, provides fair chances for developing their association with 
the output variable which could otherwise be biased towards some 
particular input variable(s). Among the various data-normalization 
techniques reported in the literature [47] min-max scaler normaliza-
tion technique has shown promising results in model development [48]. 
The theoretical description of the minima and maxima normalization 
method is given as: 

uʹ =
u − umin

umax − umin
(1) 

Here, u, umin and umax are the actual, minimum, and maximum values 
of the variable present in the dataset. uʹ is the normalized value corre-
sponding to u and is mapped in the [0,1] range. Subsequently, the 
normalized training dataset thus obtained is then used for ML modelling. 

2.3. ML modelling algorithms 

Three state-of-the-art ML models, i.e., ANN, SVM, and GPR are 
employed for development of the data-driven models for MED system 
due to their excellent modelling capabilities and suitability for the sys-
tem under consideration. ANN is an advanced and efficient data- 
modelling tool that mimics the functioning of the human brain. Multi- 
layer perceptron with backpropagation, one of the commonly used 
network architectures among the scientific community, is proven to be 
efficient enough for developing engineering solutions for complex and 
large-scale industrial systems [49]. ANN has fast and effective learning 
ability in addition to digging the non-linearities present in the large 
volumes of the data [50]. Moreover, backpropagation is a supervised 
technique and can develop a generalized model for the given system 
provided optimized network architecture is constructed [51]. 

SVM being the supervised learning technique has demonstrated 
excellent performance in modelling complex systems [52,53]. The 
normalized training data undergoes space transformation to fit the hy-
perplane within the decision boundaries and subsequently, the in-
teractions among the input-output variables are captured by Karush- 
Kuhn-Tucker (KKT) statement [54]. Therefore, SVM has good general-
ization capability and high prediction accuracy. One of the advanced 
and competitive features of SVM over ANN is that its computational 
complexity is independent of input space dimensions as well as it cannot 
be trapped in the local extreme [55]. 

GPR is also one of the powerful modelling algorithms of ML and can 
approximate the complex function underlying the dataset with high 
accuracy. GPR represents a probabilistic model that relies on non- 
parametric kernels and is useful for interpolation tasks for the high 
dimensional input space [56]. A Gaussian process (GP) denotes a group 
of random variables, and the finite set of random variables has a joint 
Gaussian distribution. In a GPR model, the response is elucidated by 
incorporating latent variables, represented as f(xi) for i = 1, 2, …, N, 
derived from a gaussian process, alongside explicit basis functions. The 
covariance function built on the hidden variables ccapturesthe level of 
smoothness in the output variable while the basis functions project the 

Table 1 
Instrumentation details for MED system [44].  

Instrument Description Range Accuracy 

GE: Pressure 
transducer 

2-wire, 6.3 NPT 
male 

Pressure: 0–60 kPa  0.5 % FS 

OMEGA: Thermistor 
probes 

Length: 152 mm 
long, Dia: 3 mm 

Temperature: − 80 ◦C 
to 150 ◦C  

±0.1 ◦C 

OMEGA: Feed flow 
meter (turbine type) 

12.7 mm NPT 
FM, 

Flow: 1.1–11 l/min 
Temperature: − 40 to 
85 ◦C  

±1.0 % 

OMEGA: Hot and 
cooling water flow 
rate (turbine type) 

25.4 mm NPT Flow: 3.8–60 LPM, 
Temperature: − 7 to 
107 ◦C  

±1.0 % 

Aichi Tokei Denki: 
Distillate flow meter 
(turbine type) 

ND05-PATAAC Flow: 0.0–3 LPM, 
Temperature: 0 to 
70 ◦C  

±1.0 % 

Sure Instruments: 
Vapor flow meter 
(turbine type) 

Magnetic pick- 
up type 

Flow: 15–200 m3/h, 
Temperature:-30 to 
100 ◦C  

±1.0 %  
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input variables “x” into a feature space dimension. The “exploration- 
exploitation” strategy is implemented, and its trade-off is controlled 
while modelling the underlying function from the training dataset the 
trained GPR can then effectively predict the response against the new 
input observations. 

2.3.1. Evaluation criteria 
Two commonly used statistical measures, i.e., coefficient of deter-

mination (R2) and root mean square error (RMSE) are selected to mea-
sure the performance of the ML models during the model development 
phase. Their mathematical expressions are defined as: 

R2 = 1 −

∑N

i
(yi − ŷi)

2

∑N

i
(yi − yi)

2
(1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(ŷi − yi)

2

√
√
√
√ (2) 

In this context, yi represents the observed or actual values of the 
output variable and ŷi represents the predicted values of the output 
variable generated by the model and i = 1,2,3, …, N equal to the entire 
count of data points or instances within the dataset. Whereas, yi and ŷi 

are the mean of actual and model-predicted values. R2 measures the 
accuracy of the ML model in predictive analytics and it varies from 
0 (poor accuracy) to 1 (excellent accuracy). While RMSE computes the 
error between the true value and model-simulated response and is to be 
minimized. 

2.4. Variables significance analysis 

The ML models are the functional map between the input-output 
variables shaped by the data associated with the variables. In the next 
step, it is important to investigate how changing one variable in its 
operating range impacts the output variables meaning the significance 
of the input variable towards the output variable can be studied. The 
importance of the input variable about the output variable in the con-
structed functional map should be studied as it helps to recognize the 
sensitivity of the output variable towards the change in the input 
variable. 

The Monte Carlo technique is a global sensitivity analysis method to 
analyze the impact of the input variable on the output variable. In the 
Monte Carlo technique, a large number of experiments are constructed 
and simulated by the developed ML model in a manner that the impact 
of the input variable on the output variable can be investigated 
comprehensively. Resultantly, the percentage significance order of the 
input variables towards the output variables can be established. The 
details associated with the Monte Carlo technique-based experimental 
design, simulation from the ML model, and establishment of the vari-
ables' significance order can be studied from [55,57]. 

2.5. Estimating optimized operating conditions for maximizing the 
distillate production from the MED system 

A genetic algorithm is a metaheuristic and nature-inspired global 
optimization algorithm that can produce quality solutions in a reason-
able timeframe and with computational resources [58]. The genetic al-
gorithm is composed of a collection of population sets known as 
individuals, with each individual defined by a mathematical eq. A 
random initial population is generated, and its fitness value is evaluated. 
Subsequently, the individuals undergo modification through mutation 
and crossover operations, producing offspring. The fitness value of each 
offspring is recorded, and the most favourable one is selected for the 
subsequent generation [59]. This process continues until either the 

maximum number of generations is reached, during which the input 
data is modified, or the convergence criteria are met, indicating optimal 
results for the optimization. Thus, the optimized operating conditions of 
the input variables can be estimated thereby ensuring the maximum 
distillate production from the MED system under consideration [60]. 

2.6. Investigation of the optimized operating conditions 

In the last step, the optimized operating conditions for the distillate 
production from the MED system are investigated on the experimental 
set-up to check the effectiveness of the model-based analysis for the 
maximum distillate production. A good agreement between the true 
distillate production and the model-based estimated distillate produc-
tion on the determined operating conditions would validate the effec-
tiveness of the ML-based modelling and optimization analysis 
demonstrating the confidence to desalination community to apply the 
ML-based analytics for the desalination systems. 

3. Result & discussion 

3.1. Visualizing the data-distribution space of input-output variables 

The experiments are constructed on the wide operating ranges of the 
input variables taken from the commissioned MED system and are 
performed on the experimental set-up. The mean, median, and mode 
values of the distillate production are calculated given the fluctuation in 
the distillate production corresponding to each experiment. The whole 
set of experiments are carried out on the commissioned MED system and 
the distillate production dataset is compiled. 

Fig. 4 presents the data-distribution profiles of the input variables 
hot water temperature (HWT - ◦C), feed water temperature (FWT - ◦C), 
feed flow rate in stage − 1 (FFR-S1, LPM), feed flow rate in stage − 2 
(FFR-S2 – LPM), and feed flow rate in stage − 3 (FFR-S3 - LPM) as well as 
the output variable (distillate production) of the MED system. HWT is 
varied from 38 ◦C to 70 ◦C which is the significantly wide operating 
range to be investigated for the distillate production from the MED 
system. HWT provides the thermal energy input to the MED system for 
the evaporation of the seawater that is condensed to make distillate 
production. Thus, operating the MED system on the large operating 
space of the HWT allows us to investigate the performance of the system 
for the distillation production. Another important input variable of the 
MED system is the FWT which is the temperature of seawater and is 
generally maintained around 34 ◦C to 42 ◦C with the mean value of 
37 ◦C. The FWT also influences the energy consumption profile of the 
MED system since the heat duty of the system is dependent on the initial 
temperature of the seawater being sprayed in the stages of the MED 
system. The FFR-S1 is varied from 3.6 LPM to 8.7 LPM in the first stage 
of the designed MED system whereas FFR-S2 and FFR-S3 are maintained 
around 5.8 LPM to 8.1 LPM. The asymmetric data-distribution profile is 
observed for the feed flow rates in the stages of the MED system and the 
mean value is computed to be 7.6 LPM, 6.8 LPM and 7.0 LPM for FFR-S1, 
FFR-S2 and FFR-S3 respectively. Good data distribution profiles of the 
experimental data spread over the operating ranges of the variables 
associated with the MED system is observed. The initial quality of the 
data collected from the experimental set up of the MED system is 
ensured since outliers are not present and the data distribution is 
continuous on the operating ranges of the variables. Thus, the dataset 
can be used to train the ML based process models to approximate the 
distillate production behavior from the MED system. 

3.2. Development of ANN, SVM, and GPR-based process models for the 
MED system 

Three modelling algorithms of ML including ANN, SVM and GPR are 
trained to predict the distillate production on the operating conditions of 
the MED system. The work regarding ML model development and 
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simulation is carried out in MATLAB 2021b. The hyperparameters 
associated with the ML models are to be rigorously and extensively 
tuned to achieve the good prediction performance of the models. For 
ANN, the hyperparameters are explored in the following ranges/cate-
gories: number of fully connected layers: 1–3, activation function: ReLU, 
tangent hyperbolic and tangent sigmoidal, regularization strength: 3.03 
× 10− 7–3033.3, and layer size: 1–300. Whereas, several hyper-
parameters are tuned for the SVM model in the operating ranges given 
as: box constraint: 0.001–1000, epsilon: 0.00028725–28.725 and kernel 
function: Gaussian, Linear, Quadratic and Cubic. Whereas, for GPR, the 
following hyperparameters are optimized within their design space 
which is established as follows: sigma: 0.0001–2.6159, basis function: 
constant, zero and linear, kernel scale: 0.033639–33.639 and kernel 
function: Nonisotropic Exponential, Nonisotropic Matern 3/2, Non-
isotropic Rotational Quadratic, Nonisotropic Squared Exponential, 
Isotropic Exponential, Isotropic Rotational Quadratic and Isotropic 
Squared Exponential. 

The cross-validation technique is a rigorous method to reduce the 
possibility of overfitting and thus promoting the generalization ability of 
the model. In this work, we have implemented five-fold cross-validation 
technique for ML models development. Grid-search method in 
conjunction with the Bayesian optimization technique and expected 
improvement per second algorithm are deployed for the hyper-
parameters tuning associated with the ANN, SVM, and GPR for building 
the well-predictive models. The grid search method systematically ex-
plores the effect of the selected combination of the hyperparameters on 
the model's predictive performance and explores different combination 
of the hyperparameters unless the ML model achieves good predictive 
performance. The optimized values of the hyperparameters obtained for 
the ANN model are as follows: the size of the first hidden layer = 233, 
the size of the second hidden layer = 113, activation function = tangent 
hyperbolic, and the regularization strength = 0.00025. The optimized 
values of hyperparameters for the SVM model are as follows: kernel 
function = linear, epsilon = 0.014, and box constraint = 779.37. 
Whereas the optimized values of hyperparameters for the GPR model are 
as follows: basis function = zero, kernel function = isentropic expo-
nential, kernel scale = 3.8809, and sigma = 0.6157. 

Fig. 5 compares the modelling performance of ANN, SVM, and GPR 
models to predict the distillate production from the MED system. The 
model-predicted responses are compared with the true values, and the 
efficacy of the model-predictability is established based on R2 and 
RMSE. Referring to Fig. 5(a), a good degree of fit is observed for the ANN 
model as R2 of 0.98 and RMSE of 0.037 LPM are computed for the 
model-based predictions of distillate production. On the other hand, 
SVM seems to comparatively underperform for the distillate pro-
duction's modelling task since R2 of 0.84 and RMSE of 0.103 LPM are 
computed as shown on Fig. 5(b). Whereas, R2 of 0.99 and RMSE of 0.026 
LPM are computed for the GPR-based predictions for the distillate pro-
duction. The true data-distribution and model-based data-distribution 

profiles are also plotted along the edges of Fig. 5. Both ANN and GPR 
model-based predictions seem to approximate the true data-distribution 
profile of distillate production. However, comparing the predictive 
performance of the three models, it is evident that GPR has developed 
superior functional mapping to predict distillate production with the 
relatively lowest predictive error in comparison with those of ANN and 
SVM. Moreover, the GPR based predictions lie close to the 95 % confi-
dence interval than those of ANN and SVM. Therefore, GPR is selected 
for performing the further analysis of interest as demonstrated in the 
following sections. 

3.3. Monte Carlo technique-based variables significance analysis 

Monte Carlo technique-based variable significance analysis explores 
the functional ranges of the input variables and constructs the simulated 
experiments that are simulated from the developed ML model. Usually, a 
large number of simulated experiments with different possible operating 
conditions of the input parameters are constructed to investigate the 
system's response. In this work, we have taken 10 step sizes for the input 
variable whose significance is to be evaluated and 1000 randomly 
generated observations within the operating ranges of the other input 
variables are generated. Thus, 1000 simulated experiments with a 
constant value of the input variable, whose significance is to be inves-
tigated, are constructed and the procedure is repeated unless the com-
plete operating range of the input variable is explored. The simulated 
experiments are predicted from the developed GPR model and the 
process is replicated for each of the input variables to investigate the 
variable's significance. 

The parametric effect of the input variables on the distillate pro-
duction is normalized, and the percentage significance of the input 
variables towards the distillate production is calculated which is pre-
sented in Fig. 6. It is found that hot water temperature (HWT) is the most 
substantial factor towards distillate production with a significance value 
of 95.6 %. It is reasoned that as the hot water temperature increases, the 
energy input to the system increases. This boosts the heat transfer in the 
evaporator resulting in higher vapor generation and resultantly the 
distillate production. Feed water temperature (FWT) is the second most 
significant variable towards distillate production with a significance 
value of 2 %. This is because at higher feed temperatures, the sensible 
energy demand for preheating feed in the evaporator is lower. There-
fore, hot water energy is utilized for evaporation which increases 
distillate production. Similarly, the percentage significance value of feed 
flow rate-S1 (FFR-S1), feed flow rate-S2 (FFR-S2), and feed flow rate-S3 
(FFR-S3) is as follows: 2 %, 0.3 %, and 0.1 % respectively. It can be 
explained considering the domain knowledge of the MED system that a 
higher feed flow rate requires higher sensible energy input to achieve 
the evaporation temperature and subsequent vapor production. Mean-
while, it is also important to mention that a lower feed flow rate results 
in dry patches that diminishes the distillate production. Therefore, the 

Fig. 4. Data-distribution profiles of the input variables: HWT, FWT, FFR-S1, FFR-S2, FFR-S3, and the output variable: Distillate Production taken from the MED 
system. The asymmetric data distribution with a continuous distribution of the data observations on the operating ranges of the variables is observed. 
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required quantity of feed water flow rate should be maintained. 

3.4. Maximizing the distillate production by genetic algorithm 

In this work, the GPR model exhibited good performance to model 
the distillate production from the MED system based on the identified 
input variables. The MED system is operated in the lab on the design 
space of the input variables and the distillate production dataset is 
compiled corresponding to the experimental conditions. It is imperative 
to investigate the MED system by advanced optimization techniques to 
estimate the optimized operating conditions of the input variables such 
that distillate production is maximized. Thus, the optimization problem 
is formulated that takes the distillate production as the objective func-
tion and the design space of the input variables is incorporated to 
explore it for the determination of the optimized operating conditions to 
obtain the maximum distillate production. The optimization problem for 
maximizing the distillate production from the MED system is written as: 

max f = Distillate Production 

Subject to: 

38 C ≤ HWT ≤ 70C  

34 C ≤ FWT ≤ 42C  

3.6 LPM ≤ FFR − S1 ≤ 8.7 LPM  

6.1 LPM ≤ FFR − S2 ≤ 8.1 LPM  

5.8 LPM ≤ FFR − S3 ≤ 7.8 LPM 

The optimization problem is solved in MATLAB 2021b by genetic 
algorithm solver and the default values of number of generations, 
number of population, and other settings are deployed to obtain the 
solution for the maximum distillate production. Fig. 7 presents the 
mapping of the optimized values of the hot water temperature and feed 
water temperature as determined by the GA-based optimization tech-
nique on the distillate production profile. The two input variables are 
deployed for constructing the distillate production profile since they 
have 97.6 % percentage significance towards it. The mean value of hot 

Fig. 5. Development of ML models to predict the distillate production by (a) 
ANN, (b) SVM, and (c) GPR. The GPR model appears to have comparatively 
superior modelling performance than those of ANN and SVM. The prediction 
interval on 95 % confidence interval is also constructed for the model-based 
predictions. 

Fig. 6. Significance percentages associated with input variables towards the 
prediction of distillate production. HWT is the most significant variable towards 
the distillate production followed by FWT, FFR-S1, FFR-S2, and FFR-S3. 
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water temperature is 70 ± 0.5 ◦C and feed water temperature is 40 ±
2.5 ◦C corresponding to distillate production of 1.042 LPM – the 
maximum achievable distillate production from the MED system. 
Similarly, the optimized operating range for feed flow rate-S1, feed flow 
rate-S2, and feed flow rate-S3 for maximum distillate production (1.042 
LPM) is as follows: 6 ± 2.6 LPM, 7 ± 1 LPM, and 7 ± 1 LPM respectively. 
Overall, the higher hot water temperature increases the energy input to 
the system which boosts the heat transfer in the evaporator resulting in 
higher vapor production and distillate. Meanwhile, higher feed water 
temperature also increases distillate production because the higher feed 
temperature results in lower sensible energy demand for preheating feed 
in the evaporator. Therefore, hot water energy is utilized for evaporation 
which increases water production. However, the feedwater temperature 
can only be increased by recuperating energy from the rejected brine, 
distillate stream, or auxiliary energy source. 

3.5. Investigation of the GA-driven optimized solution on the MED set-up 

The ML-based studies conducted in the domain of desalination sys-
tems focus on modelling its performance indicators and subsequently, 
the trained models are deployed for predictive analytics. A closed-loop 
ML-based modelling and optimization framework that can be 
deployed for estimating the effective solutions for the desalination sys-
tems, especially for MED systems is potentially missing in the literature 
and is an obstacle to the inclusion of ML in the domain of desalination 
systems. The experimental validation of the model-based optimized 
solution to obtain the maximum distillate production from the MED 
system is carried out to evaluate the accuracy of the estimated solution 
on the experimental setup. 

The MED system is operated on the optimized operating range of the 
input variables and the distillate production dataset is compiled. The 
important input parameters including HWT, FWT, and FFR-S1, FFR-S2 
and FFR-S3 are maintained carefully in the optimized range. This is 
because the appropriate selection of these parameters increases distillate 
production. The distribution of the distillate production against the 
optimized operating ranges of the input variables is presented on Fig. 8. 
The distillate production is varied from 0.04 LPM to 1.98 LPM during the 
experimentation while the average distillate water production remained 
around 0.98 LPM during the experimentation. The fluctuation in the 
distillate production can be explained by the sensitivity of the sensors 
and flashing (due to pressure drop) of the distillation production. 
Therefore, the average value of the distillate production is computed to 
estimate the distillate production during the experimentation. 

Comparing the true distillate production with the GPR model-based 
maximum distillate production estimated by GA, i.e., 1.042 LPM, it is 
apparent that the model-based optimized solution for the maximum 
distillate production is quite close to the experimental observation. The 
experimental verification of the ML-based optimized solution demon-
strates the effectiveness of the presented ML-based modelling and 
optimization framework for the maximum distillate production from the 
MED system. Thus, the data-driven ML approach can be applied for the 
improved operation of distillate production thereby contributing to 
operation excellence of the MED system. 

4. Conclusion 

Desalination technologies hold the promise to meet the water de-
mand for different applications on the face of water scarcity and sus-
tainability issues. The improved process design and operation of the 
MED system can enhance distillate production boosting the performance 
of the installed desalination technologies worldwide. In this work, the 
analytical framework leveraging the power of machine learning and 
rigor of optimization technique is proposed for the improved design of 
the MED system to support the circular economy.  

• Extensive experimentation is carried out on the in-house built MED 
system to collect the dataset which is deployed for constructing the 
ML-based process models. ANN, SVM, and GPR-based process 
models are trained, under rigorous hyperparameter tuning, to pre-
dict the distillate production from the MED system. GPR is turned out 
to be a superior algorithm having R2 of 0.99 and RMSE of 0.026 LPM.  

• Monte Carlo technique-based variables significance analysis reveals 
that hot water temperature is the most significant input variable 
towards the distillate production with a percentage significance 
value of 95.6 followed by feed water temperature having a per-
centage significance of 2.  

• The trained GPR model is integrated into the optimization problem 
for the maximum distillate production and the optimization problem 
is solved by genetic algorithm. The optimized operating conditions 
for the maximum distillate production are estimated which are as 
follows: hot water temperature = 70 ± 0.5 ◦C, feed water tempera-
ture = 40 ± 2.5 ◦C, feed flow rate-S1 = 6 ± 2.6 LPM, feed flow rate- 
S2 = 7 ± 1 LPM and feed flow rate-S3 = 7 ± 1. 

• The optimized operating values of the input variables are investi-
gated on the experimental MED system and a close agreement 

Fig. 7. Mapping the genetic algorithm-driven optimal solution for the 
maximum distillate production on the response curve of distillate production 
constructed against the two significant input variables – hot water temperature 
and feed water temperature. 

Fig. 8. Investigation of model-based optimized solution for maximum distil-
lation production. A close agreement between the GA-estimated and experi-
mental value of distillate production is observed. 
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between the true distillate production (0.98 LPM) and estimated 
distillate production (1.042 LPM) is found.  

• The closed-loop investigation of model-based optimization results on 
the MED system developed by the proposed analytical framework 
demonstrates the effectiveness of ML for the improved process 
design, performance enhancement and operation excellence of the 
MED system that contributes to the circular economy and digitali-
zation of the desalination systems. 

Future work 

In the future, a comprehensive study on different desalination 
technologies will be conducted following the ML-based modelling and 
optimization framework. The multi-objective optimization problem will 
be investigated for the higher energy efficiency and operation excellence 
of the desalination systems. 
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L. Ribeiro, M. Đolić, Bio-waste valorisation: agricultural wastes as biosorbents for 
removal of (in)organic pollutants in wastewater treatment, Chem. Eng. J. Adv. 9 
(2022) 100239, https://doi.org/10.1016/J.CEJA.2021.100239. 

[15] S. Wu, W. Shi, K. Li, J. Cai, L. Chen, Recent advances on sustainable bio-based 
materials for water treatment: fabrication, modification and application, 
J. Environ. Chem. Eng. 10 (2022) 108921, https://doi.org/10.1016/J. 
JECE.2022.108921. 

[16] M.N. Hasan, M.A. Shenashen, M.M. Hasan, H. Znad, M.R. Awual, Assessing of 
cesium removal from wastewater using functionalized wood cellulosic adsorbent, 
Chemosphere 270 (2021) 128668, https://doi.org/10.1016/J. 
CHEMOSPHERE.2020.128668. 

[17] M.R. Awual, M.M. Hasan, A. Islam, M.M. Rahman, A.M. Asiri, M.A. Khaleque, M. 
C. Sheikh, Offering an innovative composited material for effective lead(II) 
monitoring and removal from polluted water, J. Clean. Prod. 231 (2019) 214–223, 
https://doi.org/10.1016/J.JCLEPRO.2019.05.125. 

[18] M. Raninga, A. Mudgal, V.K. Patel, J. Patel, M. Kumar Sinha, Modification of 
activated carbon-based adsorbent for removal of industrial dyes and heavy metals: 
a review, Mater. Today Proc. 77 (2023) 286–294, https://doi.org/10.1016/J. 
MATPR.2022.11.358. 

[19] M.S. Hossain, M.A. Shenashen, M.E. Awual, A.I. Rehan, A.I. Rasee, R.M. Waliullah, 
K.T. Kubra, M.S. Salman, M.C. Sheikh, M.N. Hasan, M.M. Hasan, A. Islam, M. 
A. Khaleque, H.M. Marwani, K.A. Alzahrani, A.M. Asiri, M.M. Rahman, M. 
R. Awual, Benign separation, adsorption, and recovery of rare-earth Yb(III) ions 
with specific ligand-based composite adsorbent, Process. Saf. Environ. Prot. 185 
(2024) 367–374, https://doi.org/10.1016/J.PSEP.2024.03.026. 

[20] M.C. Sheikh, M.M. Hasan, M.N. Hasan, M.S. Salman, K.T. Kubra, M.E. Awual, R. 
M. Waliullah, A.I. Rasee, A.I. Rehan, M.S. Hossain, H.M. Marwani, A. Islam, M. 
A. Khaleque, M.R. Awual, Toxic cadmium(II) monitoring and removal from 
aqueous solution using ligand-based facial composite adsorbent, J. Mol. Liq. 389 
(2023) 122854, https://doi.org/10.1016/J.MOLLIQ.2023.122854. 

[21] M.R. Awual, M.M. Hasan, A. Shahat, M. Naushad, H. Shiwaku, T. Yaita, 
Investigation of ligand immobilized nano-composite adsorbent for efficient cerium 
(III) detection and recovery, Chem. Eng. J. 265 (2015) 210–218, https://doi.org/ 
10.1016/J.CEJ.2014.12.052. 

[22] S. Su, Y. Huang, S. Yang, B. Liu, H. Sun, G. Han, An innovative strategy for deeply 
separating macro amounts of molybdenum from tungstate solutions via 
vulcanization step-by-step and microbubble floating-extraction: theoretical and 
experimental investigation, J. Ind. Eng. Chem. 131 (2024) 635–652, https://doi. 
org/10.1016/J.JIEC.2023.10.066. 

[23] M.R. Awual, Novel nanocomposite materials for efficient and selective mercury 
ions capturing from wastewater, Chem. Eng. J. 307 (2017) 456–465, https://doi. 
org/10.1016/J.CEJ.2016.08.108. 

[24] M.R. Awual, M.M. Hasan, M.A. Khaleque, M.C. Sheikh, Treatment of copper(II) 
containing wastewater by a newly developed ligand based facial conjugate 
materials, Chem. Eng. J. 288 (2016) 368–376, https://doi.org/10.1016/J. 
CEJ.2015.11.108. 

[25] M.A. Jamil, Z.U. Din, T.S. Goraya, H. Yaqoob, S.M. Zubair, Thermal-hydraulic 
characteristics of gasketed plate heat exchangers as a preheater for thermal 
desalination systems, Energy Convers. Manag. 205 (2020) 112425, https://doi. 
org/10.1016/j.enconman.2019.112425. 

[26] H.S. Son, M.W. Shahzad, N. Ghaffour, K.C. Ng, Pilot studies on synergetic impacts 
of energy utilization in hybrid desalination system: multi-effect distillation and 
adsorption cycle (MED-AD), Desalination 477 (2020) 114266, https://doi.org/ 
10.1016/j.desal.2019.114266. 

[27] H. Rezvani, P.B. Whittaker, H.T. Chua, New MED based desalination process for 
low grade waste heat, Desalination 395 (2016) 57–71, https://doi.org/10.1016/j. 
desal.2016.05.022. 

[28] M.L. Elsayed, O. Mesalhy, R.H. Mohammed, L.C. Chow, Exergy and thermo- 
economic analysis for MED-TVC desalination systems, Desalination 447 (2018) 
29–42. 

[29] S. Rashidi, N. Karimi, W.M. Yan, Applications of machine learning techniques in 
performance evaluation of solar desalination systems – a concise review, Eng. Anal. 
Bound. Elem. 144 (2022) 399–408, https://doi.org/10.1016/j. 
enganabound.2022.08.031. 

W.M. Ashraf et al.                                                                                                                                                                                                                              

https://doi.org/10.1111/tmi.12329
https://doi.org/10.5772/intechopen.88095
https://doi.org/10.5772/intechopen.88095
http://refhub.elsevier.com/S2214-7144(24)00767-0/rf0015
http://refhub.elsevier.com/S2214-7144(24)00767-0/rf0015
http://refhub.elsevier.com/S2214-7144(24)00767-0/rf0015
https://doi.org/10.1016/j.enconman.2020.113188
https://doi.org/10.1016/j.scitotenv.2018.12.076
https://doi.org/10.3390/e21010084
https://doi.org/10.3390/e21010084
https://doi.org/10.1016/j.desal.2017.03.009
https://doi.org/10.1016/j.seta.2021.101463
http://refhub.elsevier.com/S2214-7144(24)00767-0/rf0045
http://refhub.elsevier.com/S2214-7144(24)00767-0/rf0045
http://refhub.elsevier.com/S2214-7144(24)00767-0/rf0050
http://refhub.elsevier.com/S2214-7144(24)00767-0/rf0050
http://refhub.elsevier.com/S2214-7144(24)00767-0/rf0050
https://doi.org/10.1038/s41545-021-00114-5
https://doi.org/10.3390/TOXICS11050404
https://doi.org/10.3390/TOXICS11050404
https://doi.org/10.1016/J.JIEC.2014.03.013
https://doi.org/10.1016/J.CEJA.2021.100239
https://doi.org/10.1016/J.JECE.2022.108921
https://doi.org/10.1016/J.JECE.2022.108921
https://doi.org/10.1016/J.CHEMOSPHERE.2020.128668
https://doi.org/10.1016/J.CHEMOSPHERE.2020.128668
https://doi.org/10.1016/J.JCLEPRO.2019.05.125
https://doi.org/10.1016/J.MATPR.2022.11.358
https://doi.org/10.1016/J.MATPR.2022.11.358
https://doi.org/10.1016/J.PSEP.2024.03.026
https://doi.org/10.1016/J.MOLLIQ.2023.122854
https://doi.org/10.1016/J.CEJ.2014.12.052
https://doi.org/10.1016/J.CEJ.2014.12.052
https://doi.org/10.1016/J.JIEC.2023.10.066
https://doi.org/10.1016/J.JIEC.2023.10.066
https://doi.org/10.1016/J.CEJ.2016.08.108
https://doi.org/10.1016/J.CEJ.2016.08.108
https://doi.org/10.1016/J.CEJ.2015.11.108
https://doi.org/10.1016/J.CEJ.2015.11.108
https://doi.org/10.1016/j.enconman.2019.112425
https://doi.org/10.1016/j.enconman.2019.112425
https://doi.org/10.1016/j.desal.2019.114266
https://doi.org/10.1016/j.desal.2019.114266
https://doi.org/10.1016/j.desal.2016.05.022
https://doi.org/10.1016/j.desal.2016.05.022
http://refhub.elsevier.com/S2214-7144(24)00767-0/rf0140
http://refhub.elsevier.com/S2214-7144(24)00767-0/rf0140
http://refhub.elsevier.com/S2214-7144(24)00767-0/rf0140
https://doi.org/10.1016/j.enganabound.2022.08.031
https://doi.org/10.1016/j.enganabound.2022.08.031


Journal of Water Process Engineering 63 (2024) 105535

10

[30] M.W. Shahzad, K.C. Ng, M. Burhan, Q. Chen, M.A. Jamil, N. Imtiaz, B. Bin Xu, 
Demystifying integrated power and desalination processes evaluation based on 
standard primary energy approach, Therm. Sci. Eng. Progr. 27 (2022) 101153, 
https://doi.org/10.1016/j.tsep.2021.101153. 

[31] Y. Wang, Z. Cao, A. Barati Farimani, Efficient water desalination with graphene 
nanopores obtained using artificial intelligence, NPJ 2D Mater. Appl. 5 (2021), 
https://doi.org/10.1038/s41699-021-00246-9. 

[32] J. Jawad, A.H. Hawari, S. Javaid Zaidi, Artificial neural network modeling of 
wastewater treatment and desalination using membrane processes: a review, 
Chem. Eng. J. 419 (2021) 129540, https://doi.org/10.1016/j.cej.2021.129540. 

[33] S.S. Ray, R.K. Verma, A. Singh, M. Ganesapillai, Y.N. Kwon, A holistic review on 
how artificial intelligence has redefined water treatment and seawater desalination 
processes, Desalination 546 (2023) 116221, https://doi.org/10.1016/j. 
desal.2022.116221. 

[34] H. Salem, I.M. El-Hasnony, A.E. Kabeel, E.M.S. El-Said, O.M. Elzeki, Deep learning 
model and classification explainability of renewable energy-driven membrane 
desalination system using evaporative cooler, Alex. Eng. J. 61 (2022) 
10007–10024, https://doi.org/10.1016/j.aej.2022.03.050. 

[35] M. Son, N. Yoon, K. Jeong, A. Abass, B.E. Logan, K.H. Cho, Deep learning for pH 
prediction in water desalination using membrane capacitive deionization, 
Desalination 516 (2021) 115233, https://doi.org/10.1016/j.desal.2021.115233. 

[36] T. Bonny, M. Kashkash, F. Ahmed, An efficient deep reinforcement machine 
learning-based control reverse osmosis system for water desalination, Desalination 
522 (2022) 115443, https://doi.org/10.1016/j.desal.2021.115443. 

[37] S. Shahane, H.Q. Jin, S. Wang, K. Nawaz, Numerical modeling based machine 
learning approach for the optimization of falling - film evaporator in thermal 
desalination application, Int. J. Heat Mass Transf. 196 (2022) 123223, https://doi. 
org/10.1016/j.ijheatmasstransfer.2022.123223. 

[38] J. Krzywanski, D. Skrobek, A. Zylka, K. Grabowska, A. Kulakowska, M. Sosnowski, 
W. Nowak, A.M. Blanco-Marigorta, Heat and mass transfer prediction in fluidized 
beds of cooling and desalination systems by AI approach, Appl. Therm. Eng. 225 
(2023) 120200, https://doi.org/10.1016/j.applthermaleng.2023.120200. 

[39] Q. He, H. Zheng, X. Ma, L. Wang, H. Kong, Z. Zhu, Artificial intelligence application 
in a renewable energy-driven desalination system: a critical review, Energy AI 7 
(2022) 100123, https://doi.org/10.1016/j.egyai.2021.100123. 

[40] B. Mahjoob Karambasti, M. Ghodrat, G. Ghorbani, A. Lalbakhsh, M. Behnia, Design 
methodology and multi-objective optimization of small-scale power-water 
production based on integration of Stirling engine and multi-effect evaporation 
desalination system, Desalination 526 (2022) 115542, https://doi.org/10.1016/j. 
desal.2021.115542. 

[41] D.V. Pombo, H.W. Bindner, S.V. Spataru, P.E. Sørensen, M. Rygaard, Machine 
learning-driven energy management of a hybrid nuclear-wind-solar-desalination 
plant, Desalination 537 (2022), https://doi.org/10.1016/j.desal.2022.115871. 

[42] H. Salem, A.E. Kabeel, E.M.S. El-Said, O.M. Elzeki, Predictive modelling for solar 
power-driven hybrid desalination system using artificial neural network regression 
with Adam optimization, Desalination 522 (2022) 115411, https://doi.org/ 
10.1016/j.desal.2021.115411. 

[43] H. Shakibi, A. Shokri, E. Assareh, M. Yari, M. Lee, Using machine learning 
approaches to model and optimize a combined solar/natural gas-based power and 
freshwater cogeneration system, Appl. Energy 333 (2023) 120607, https://doi. 
org/10.1016/j.apenergy.2022.120607. 

[44] M.W. Shahzad, The Hybrid Multi-effect Desalination (MED) and the Adsorption 
(AD) Cycle for Desalination | ScholarBank@NUS. https://scholarbank.nus.edu.sg 
/handle/10635/49640, 2013. 

[45] A. Abid, M.A. Jamil, N. Us Sabah, M.U. Farooq, H. Yaqoob, L.A. Khan, M. 
W. Shahzad, Exergoeconomic optimization of a forward feed multi-effect 
desalination system with and without energy recovery, Desalination 499 (2021), 
https://doi.org/10.1016/j.desal.2020.114808. 

[46] M.A. Jamil, S.M. Zubair, Effect of feed flow arrangement and number of 
evaporators on the performance of multi-effect mechanical vapor compression 
desalination systems, Desalination 429 (2018) 76–87, https://doi.org/10.1016/j. 
desal.2017.12.007. 

[47] Q. Xie, M. Suvarna, J. Li, X. Zhu, J. Cai, X. Wang, Online prediction of mechanical 
properties of hot rolled steel plate using machine learning, Mater. Des. 197 (2021) 
109201, https://doi.org/10.1016/j.matdes.2020.109201. 

[48] S. Jain, S. Shukla, R. Wadhvani, Dynamic selection of normalization techniques 
using data complexity measures, Expert Syst. Appl. 106 (2018) 252–262, https:// 
doi.org/10.1016/j.eswa.2018.04.008. 

[49] B. Shboul, M.E. Zayed, W.M. Ashraf, M. Usman, D. Roy, K. Irshad, S. Rehman, 
Energy and economic analysis of building integrated photovoltaic thermal system: 
seasonal dynamic modeling assisted with machine learning-aided method and 
multi-objective genetic optimization, Alex. Eng. J. 94 (2024) 131–148, https://doi. 
org/10.1016/J.AEJ.2024.03.049. 

[50] W.M. Ashraf, V. Dua, Artificial intelligence driven smart operation of large 
industrial complexes supporting the net-zero goal: coal power plants, Digit. Chem. 
Eng. 8 (2023) 100119, https://doi.org/10.1016/J.DCHE.2023.100119. 

[51] W.M. Ashraf, V. Dua, Data Information integrated Neural Network (DINN) 
algorithm for modelling and interpretation performance analysis for energy 
systems, Energy AI 16 (2024) 100363, https://doi.org/10.1016/J. 
EGYAI.2024.100363. 

[52] M.E. Zayed, A.E. Kabeel, B. Shboul, W.M. Ashraf, M. Ghazy, K. Irshad, S. Rehman, 
A.A.A. Zayed, Performance augmentation and machine learning-based modeling of 
wavy corrugated solar air collector embedded with thermal energy storage: 
support vector machine combined with Monte Carlo simulation, J. Energy Storage 
74 (2023) 109533, https://doi.org/10.1016/J.EST.2023.109533. 

[53] M.W. Shahzad, V.H. Nguyen, B. Bin Xu, R. Tariq, M. Imran, W.M. Ashraf, K.C. Ng, 
M.A. Jamil, A. Ijaz, N.A. Sheikh, Machine learning assisted prediction of solar to 
liquid fuel production: a case study, Process. Saf. Environ. Prot. 184 (2024) 
1119–1130, https://doi.org/10.1016/J.PSEP.2024.02.060. 

[54] W.M. Ashraf, G.M. Uddin, R. Tariq, A. Ahmed, M. Farhan, M.A. Nazeer, R. 
U. Hassan, A. Naeem, H. Jamil, J. Krzywanski, M. Sosnowski, V. Dua, Artificial 
intelligence modeling-based optimization of an industrial-scale steam turbine for 
moving toward net-zero in the energy sector, ACS Omega 8 (2023) 21709–21725, 
https://doi.org/10.1021/ACSOMEGA.3C01227/ASSET/IMAGES/LARGE/ 
AO3C01227_0012.JPEG. 

[55] W.M. Ashraf, G.M. Uddin, S.M. Arafat, J. Krzywanski, W. Xiaonan, Strategic-level 
performance enhancement of a 660 MWe supercritical power plant and emissions 
reduction by AI approach, Energy Convers. Manag. 250 (2021) 114913, https:// 
doi.org/10.1016/j.enconman.2021.114913. 

[56] B. Shboul, M.E. Zayed, R. Tariq, W.M. Ashraf, A.S. Odat, S. Rehman, A. 
S. Abdelrazik, J. Krzywanski, New hybrid photovoltaic-fuel cell system for green 
hydrogen and power production: performance optimization assisted with Gaussian 
process regression method, Int. J. Hydrog. Energy 59 (2024) 1214–1229, https:// 
doi.org/10.1016/J.IJHYDENE.2024.02.087. 

[57] W.M. Ashraf, G.M. Uddin, S.M. Arafat, S. Afghan, A.H. Kamal, M. Asim, M.H. Khan, 
M.W. Rafique, U. Naumann, S.G. Niazi, H. Jamil, A. Jamil, N. Hayat, A. Ahmad, 
S. Changkai, L. Bin Xiang, I.A. Chaudhary, J. Krzywanski, Optimization of a 660 
MWe supercritical power plant performance—a case of industry 4.0 in the data- 
driven operational management Part 1. Thermal efficiency, Energies Vol. 13 
(2020) 5592 (13 (2020) 5592), https://doi.org/10.3390/EN13215592. 

[58] R. Tariq, M. Ali, N.A. Sheikh, M.W. Shahzad, B. Bin Xu, Deep learning artificial 
intelligence framework for sustainable desiccant air conditioning system: 
optimization towards reduction in water footprints, Int. Commun. Heat Mass 
Transfer 140 (2023) 106538, https://doi.org/10.1016/J. 
ICHEATMASSTRANSFER.2022.106538. 

[59] R. Tariq, C.E. Torres-Aguilar, J. Xamán, I. Zavala-Guillén, A. Bassam, L.J. Ricalde, 
O. Carvente, Digital twin models for optimization and global projection of 
building-integrated solar chimney, Build. Environ. 213 (2022) 108807, https:// 
doi.org/10.1016/J.BUILDENV.2022.108807. 

[60] W. Muhammad Ashraf, G. Moeen Uddin, H. Afroze Ahmad, M. Ahmad Jamil, 
R. Tariq, M. Wakil Shahzad, V. Dua, Artificial intelligence enabled efficient power 
generation and emissions reduction underpinning net-zero goal from the coal- 
based power plants, Energy Convers. Manag. 268 (2022) 116025, https://doi.org/ 
10.1016/j.enconman.2022.116025. 

W.M. Ashraf et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.tsep.2021.101153
https://doi.org/10.1038/s41699-021-00246-9
https://doi.org/10.1016/j.cej.2021.129540
https://doi.org/10.1016/j.desal.2022.116221
https://doi.org/10.1016/j.desal.2022.116221
https://doi.org/10.1016/j.aej.2022.03.050
https://doi.org/10.1016/j.desal.2021.115233
https://doi.org/10.1016/j.desal.2021.115443
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123223
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123223
https://doi.org/10.1016/j.applthermaleng.2023.120200
https://doi.org/10.1016/j.egyai.2021.100123
https://doi.org/10.1016/j.desal.2021.115542
https://doi.org/10.1016/j.desal.2021.115542
https://doi.org/10.1016/j.desal.2022.115871
https://doi.org/10.1016/j.desal.2021.115411
https://doi.org/10.1016/j.desal.2021.115411
https://doi.org/10.1016/j.apenergy.2022.120607
https://doi.org/10.1016/j.apenergy.2022.120607
https://scholarbank.nus.edu.sg/handle/10635/49640
https://scholarbank.nus.edu.sg/handle/10635/49640
https://doi.org/10.1016/j.desal.2020.114808
https://doi.org/10.1016/j.desal.2017.12.007
https://doi.org/10.1016/j.desal.2017.12.007
https://doi.org/10.1016/j.matdes.2020.109201
https://doi.org/10.1016/j.eswa.2018.04.008
https://doi.org/10.1016/j.eswa.2018.04.008
https://doi.org/10.1016/J.AEJ.2024.03.049
https://doi.org/10.1016/J.AEJ.2024.03.049
https://doi.org/10.1016/J.DCHE.2023.100119
https://doi.org/10.1016/J.EGYAI.2024.100363
https://doi.org/10.1016/J.EGYAI.2024.100363
https://doi.org/10.1016/J.EST.2023.109533
https://doi.org/10.1016/J.PSEP.2024.02.060
https://doi.org/10.1021/ACSOMEGA.3C01227/ASSET/IMAGES/LARGE/AO3C01227_0012.JPEG
https://doi.org/10.1021/ACSOMEGA.3C01227/ASSET/IMAGES/LARGE/AO3C01227_0012.JPEG
https://doi.org/10.1016/j.enconman.2021.114913
https://doi.org/10.1016/j.enconman.2021.114913
https://doi.org/10.1016/J.IJHYDENE.2024.02.087
https://doi.org/10.1016/J.IJHYDENE.2024.02.087
https://doi.org/10.3390/EN13215592
https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2022.106538
https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2022.106538
https://doi.org/10.1016/J.BUILDENV.2022.108807
https://doi.org/10.1016/J.BUILDENV.2022.108807
https://doi.org/10.1016/j.enconman.2022.116025
https://doi.org/10.1016/j.enconman.2022.116025

	Machine learning assisted improved desalination pilot system design and experimentation for the circular economy
	1 Introduction
	1.1 Desalination and machine learning

	2 Materials and methods
	2.1 Experimentation and data collection
	2.2 Data-visualization & pre-processing
	2.3 ML modelling algorithms
	2.3.1 Evaluation criteria

	2.4 Variables significance analysis
	2.5 Estimating optimized operating conditions for maximizing the distillate production from the MED system
	2.6 Investigation of the optimized operating conditions

	3 Result & discussion
	3.1 Visualizing the data-distribution space of input-output variables
	3.2 Development of ANN, SVM, and GPR-based process models for the MED system
	3.3 Monte Carlo technique-based variables significance analysis
	3.4 Maximizing the distillate production by genetic algorithm
	3.5 Investigation of the GA-driven optimized solution on the MED set-up

	4 Conclusion
	Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


