
IMPLEMENTATION OF A CARTESIAN GRID

INCOMPRESSIBLE NAVIER-STOKES SOLVER ON

MULTI-GPU DESKTOP PLATFORMS USING CUDA

by

Julien C. Thibault

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

May 2009

c© 2009
Julien C. Thibault

ALL RIGHTS RESERVED

APPROVAL TO SUBMIT THESIS

This thesis presented by Julien C. Thibault entitled Implementation of a Cartesian

Grid Incompressible Navier-Stokes Solver on Multi-GPU Desktop Platforms Using

CUDA is hereby approved:

Inanc Senocak Date
Advisor

Amit Jain Date
Committee Member

Timothy Barth Date
Committee Member

John R. Pelton Date
Dean of the Graduate College

Dedicated to my parents

iv

ACKNOWLEDGMENTS

Many thanks to Dr. Massimiliano Fatica, Dr. Patrick Legresley, Dr. David

Luebke from NVIDIA and Dr. Timothy J. Barth from NASA Ames Research Center

for helpful discussions on CUDA and GPU computing. Thanks are extended to Marty

Lukes and Luke Hindman of Boise State University for their help with building our

desktop supercomputers.

I would like to thank Dr. Amit Jain for allowing me to join the Master program

in Computer Science at Boise State University. He has always been there to advise

me, through my first semester when I was only an exchange student, and later on

when I decided to join the program.

I thank Dr. Inanc Senocak for his support all along this thesis. He made this

experience really valuable for me. The subject of this thesis was challenging not only

because of the parallel architecture of the GPUs but also because of the numerical

methods involved. He helped me understand the challenges of computational fluid

dynamics, in which I had only basic knowledge, to allow me to implement the software

solution.

Many thanks to Boise State University and to the College of Engineering for

the financial aid they provided and their ongoing support during these two last

years. Finally I thank NVIDIA Corporation and Micron Technology, Inc. for their

hardware donations. This work was partially funded by NASA Idaho EPSCoR

Research Initiation grant.

v

ABSTRACT

Today’s Graphics Processor Units (GPU) are powerful computation platforms

used not only for graphic rendering but also for multi-purpose computation. Now

reaching a teraflops of peak performance and over a 100 GB/sec of bandwidth,

GPUs outperform the latest CPUs and provide a new high-performance computing

platform. New languages such as CUDA and Brook+ allow developers to target

the programmable unit of the GPUs without a graphics programming background.

Scientists and engineers in various fields have started benefiting from the last gen-

erations of GPUs. In this thesis, the implementation of a Navier-Stokes solver for

incompressible flow around urban-like domains is presented. Transport and dispersion

of contaminants in urban environments is an area of intense research. The computa-

tional fluid dynamic (CFD) models necessary to provide realistic simulations require

heavy computation, usually only possible on CPU clusters. This thesis presents the

base for an urban dispersion model implementation on desktop platforms, using one

or multiple GPUs as coprocessors. The governing equations implemented for this

thesis are common to many problems in CFD where flow motion is involved. Using

a single Tesla C870 GPU card, the CUDA implementation of the lid-driven cavity

problem runs 33 times faster than a serial C code running on a single core of an

AMD Opteron 2.4GHz processor. A speedup of 100 was reached by associating

the Tesla S870 quad-GPU system to a quad-core CPU machine. Computations for

both GPU and CPU are single precision. A more complex application including

obstacle capability was developed to model building effects in the domain. Using

vi

the quad-GPU system, the flow-field in a domain of 1.28 km × 1.28 km × 320 m

was computed. A low Reynolds number flow-field projection of 22 minutes (1000

time steps) could be simulated in 3 minutes. Results show that an urban dispersion

is feasible on this type of platform and that models can be run within minutes to

provide emergency responses. More generally, it shows that complex CFD problems

can benefit from multi-GPU desktop architectures.

vii

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xix

1 INTRODUCTION . 1

1.1 Problem Context . 1

1.2 Thesis Statement . 4

1.2.1 Objectives . 4

1.2.2 Procedures . 6

1.3 Prior Work . 8

1.3.1 GPGPU Computing . 8

1.3.2 Contaminant Transport and Dispersion in Urban Environments 10

2 TECHNICAL BACKGROUND. 13

2.1 GPGPU as a Solution . 13

2.1.1 Evolution of the Graphics Pipeline . 13

2.1.2 CUDA Hardware Architecture . 15

2.1.3 CUDA Programming Model . 16

2.1.4 Compilation and Development Tools . 18

viii

2.2 Governing Equations . 19

2.2.1 Wave Equation . 19

2.2.2 Governing Equations of Incompressible Fluid Flows 20

2.2.3 Turbulence Modeling . 20

2.3 Numerical Methods . 22

2.3.1 Wave Equation . 22

2.3.2 Incompressible Navier-Stokes Equations 22

2.3.3 Turbulence Modeling . 24

3 GPU IMPLEMENTATION & VALIDATION 26

3.1 Implementation of the Wave Equation . 26

3.1.1 Wave Propagation Problem . 26

3.1.2 Main Code (Host-Side) . 27

3.1.3 Single-GPU Implementation . 27

3.1.4 Dual-GPU Implementation . 29

3.2 Implementation of a 3D Incompressible Navier-Stokes Solver 30

3.2.1 Lid-Driven Cavity Problem . 30

3.2.2 Single-GPU Implementation . 31

3.2.3 Multi-GPU Implementation . 41

3.2.4 GPU Shared Memory Implementation . 45

3.2.5 Validation . 47

3.3 Complex Geometry Capability . 48

3.3.1 Additional Features . 48

3.3.2 Obstacle Logic . 49

3.3.3 Main Code . 54

ix

3.3.4 Multi-GPU Implementation . 54

3.3.5 Final Output . 56

4 COMPUTATIONAL PERFORMANCE ANALYSIS 60

4.1 2D Wave Equation . 60

4.2 Incompressible Navier-Stokes Solver . 62

4.2.1 Serial CPU Code Benchmarking . 62

4.2.2 Kernel Acceleration Using the Shared Memory 65

4.2.3 GPU Speedup Relative to CPU . 67

4.2.4 Multi-GPU Scaling Analysis . 68

4.3 Complex Geometry Capability Implementation 71

4.3.1 Impact of Thread Block Configuration . 71

4.3.2 Weight of Data Transfer in Multi-GPU Implementation 73

4.3.3 Register Usage . 75

4.3.4 Speedup Analysis . 76

5 CONCLUSIONS . 78

5.1 Results . 78

5.2 Further Work . 80

REFERENCES . 82

A HIGH PERFORMANCE COMPUTING INFRASTRUCTURE . . 87

A.1 GPU Hardware Specifications . 87

A.2 Hardware Bandwidth Tests . 88

B DISCRETIZATION OF THE GOVERNING EQUATIONS 90

x

B.1 Continuity Equation . 90

B.2 Navier-Stokes Equations . 90

B.2.1 General Form of the Navier-Stokes Equations 90

B.2.2 Discretization of the Advection and Diffusion Terms 91

B.3 Strain Rate Tensor . 94

C CUDA CODE . 95

C.1 Parameter Definition . 95

C.2 Memory Indexing . 96

C.3 Momentum . 97

C.3.1 Global Memory Implementation . 97

C.3.2 Shared Memory Implementation . 98

C.4 Divergence . 99

C.5 Pressure . 99

C.5.1 Pressure Constant . 99

C.5.2 Global Memory Implementation . 99

C.5.3 Shared Memory Implementation . 99

C.6 Velocity Correction . 100

xi

LIST OF TABLES

4.1 GFLOPS performance of the serial CPU version of our CFD code

and NPB benchmark codes on two different computers (Intel Core

2 Duo (E8400) 3.0 GHz and AMD Opteron (8216) 2.4 GHz). LU

factorizes an equation into lower and upper triangular systems. The

iteration loop of MG consists of the multigrid V-cycle operation and

the residual calculation. SP is a simulated CFD application. Our CFD

code simulates a lid-driven cavity problem. 63

4.2 Kernel execution times for different block configurations. The urban-

like domain was represented by a 256×256×64 grid and each simulation

ran for 200 time steps. 72

4.3 Execution time of the different kernels and data exchange in a quad-

GPU simulation. An urban-like domain was represented by a 256 ×

256× 64 grid and each simulation ran for 1000 time steps. 74

4.4 Register usage (single and multi-GPU implementations) 75

A.1 Bandwidth tests for memory transfers between host and device 89

xii

LIST OF FIGURES

1.1 Performance comparison between Intel CPUs and NVIDIA GPUs (cour-

tesy of NVIDIA). 2

1.2 CFD Simulation of plume dispersion in Time Square, New York (cour-

tesy of Patnaik et al. [41]) . 5

2.1 Processing steps for graphics rendering (courtesy of NVIDIA) 14

2.2 The CUDA Model (courtesy of NVIDIA). In this example, the CUDA

grid is composed of 3× 2 blocks, each containing 5× 3 threads. 16

2.3 Staggered Grid. Pressure P is located in the cell centers. u and v

components of the velocity are located respectively in the midpoints of

the vertical and horizontal edges. 23

3.1 Wave simulation on a 1024× 1024 domain with different initial condi-

tions and boundary conditions. 26

3.2 Host-side code for the CUDA implementation of the wave equation.

The wave kernel is launched at each time step for synchronization

across CUDA blocks. 28

3.3 Assignment of a subdomain of 4× 4 to a CUDA block. Threads work

on the inner cells but need extra data to represent the borders of the

subdomain (ghost cells). 28

xiii

3.4 A schematic of the physical domain for the lid-driven cavity problem.

No-slip conditions are applied on the YZ planes in the east and west

directions and on the bottom XY plane in the south direction. Free-slip

(symmetry) condition is applied to the front and back XZ planes. A

constant velocity is applied on the XY plane in north direction. The

velocity component in the x-direction is set to a constant Ulid value. . . . 31

3.5 Mapping of a 3D computational domain to a 2D matrix. The mapping

is used on both the CPU and the GPU sides. Cells in white on the 2D

matrix represent the ghost (halo) cells to apply the boundary conditions. 32

3.6 Example of index logic to map a 2D CUDA block decomposition onto

a 3D domain. The 3D domain (a) is represented in a 2D-way (b). A

2D CUDA grid is then mapped onto the 2D domain (c). (d) represents

the thread indices associated to the CUDA block decomposition. 33

3.7 Final index logic to map the CUDA block decomposition onto a 3D

domain. (a) An 8 × 4 × 4 domain is stored as a 1D array in memory.

(b) A 2D CUDA grid is mapped onto the 1D array in memory, each

2× 2 thread block working on two levels in the z-direction. 35

3.8 Examples of coalesced global memory access patterns (courtesy of

NVIDIA). Left: coalesced float memory access, resulting in a single

memory transaction. Right: coalesced float memory access (divergent

warp), resulting in a single memory transaction. 38

xiv

3.9 Examples of global memory access patterns that are non-coalesced for

devices of compute capability 1.0 or 1.1 (courtesy of NVIDIA). Left:

non-sequential float memory access, resulting in 16 memory transac-

tions. Right: access with a misaligned starting address, resulting in 16

memory transactions. 39

3.10 Examples of global memory access by devices with compute capability

1.2 and higher (courtesy of NVIDIA). Left: random float memory

access within a 64B segment, resulting in one memory transaction.

Center: misaligned float memory access, resulting in one transaction.

Right: misaligned float memory access, resulting in two transactions. . 40

3.11 Partial host-side code that implements the projection algorithm [14]

to solve the Navier-Stokes equations for incompressible fluid flow. The

outer loop is used for time stepping while the inner loop is in the

iterative solution of the pressure Poisson equation. 42

3.12 a) Subdomain assignment for multi-GPU solution. b) Representation

of the GPU global memory. Each GPU needs ghost cells to represent

the top and bottom neighboring cells which are updated by other GPUs

(represented here in red). 43

3.13 Partial host-side code that implements the projection algorithm [14]

to solve the Navier-Stokes equations for incompressible fluid flow. The

outer loop is used for time stepping while the inner loop is in the itera-

tive solution of the pressure Poisson equation. A CPU thread is created

for each available GPU and executes the code above. Synchronization

between the CPU threads is done through a Posix barrier. 44

xv

3.14 Two different approaches for shared memory usage in a 4 × 4 block

configuration. Colored cells are updated by the threads while the

white cells are only used as data source (ghost cells). Each cell center

represents a computational node. a) Each thread updates one cell only

(red cells). b) Each thread works on 2 cells in the same vertical column.

Cells in red are updated during the first iteration and orange ones in

the second iteration. 45

3.15 Distribution of velocity magnitude and streamlines at steady-state for

Re=1000. Low velocity regions are represented in dark blue while high

velocity regions are represented in red. 47

3.16 Validation of the GPU code results with benchmark data given in

Reference [23]. Both u and v components of the velocity field are

shown. 48

3.17 Flag matrix used to represent the obstacles at the pressure points. The

gray cells (1’s) represent a building. 49

3.18 Obstacle logic applied to the U -component of the velocity in the XZ

plane . 52

3.19 host-side code used for the obstacle logic . 54

3.20 Partial host-side code to calculate flow field with 3D obstacles. 55

3.21 Flow around a surface-mounted cube for a laminar regime (Re = 42).

Grid size is 256 × 128 × 64. Red streamlines represent high velocity

magnitudes while blue streamlines represent lower velocity magnitudes . 56

3.22 FLUENT (CPU) and CUDA (GPU) simulations for a laminar flow

around a surface-mounted cube (Re = 42). Grid size is 256× 128× 64. 57

xvi

3.23 Low Reynolds number flow in an urban-like domain (Re = 155).

Execution times are relative to the quad-GPU platform running a

simulation using 256×256×64 computational nodes and representing a

domain of 1.28 km × 1.28 km × 320 m. Red streamlines represent high

velocity magnitudes while blue streamlines represent lower velocity

magnitudes . 58

3.24 Simulation of a domain of 1.28 km × 1.28 km × 320 m on a 256 ×

256 × 64 grid using a second-order Adams-Bashfort scheme. The

Reynolds number for these simulations is Re = 155 and 1000 times

steps represent over 10 minutes of physical time. 59

4.1 Acceleration of the wave simulation. GPU speedup relative to a serial

CPU implementation is plotted for different physical domain sizes. The

single GPU solution gives constant speedup over the serial code while

the dual-GPU results indicate speedup for sufficiently large problems. . 60

4.2 Overhead of the dual GPU implementation over the single GPU im-

plementation. 61

4.3 GFLOPS performance of the serial (CPU) in-house developed CFD

code with increasing domain sizes. 64

4.4 Kernel speedup of shared memory implementation relative to a full

global memory implementation (domain size is 256× 32× 256). Tests

showed that the momentum and pressure kernels benefit from a shared

memory implementation, giving a speedup of more than 2× relative a

kernel implementation that uses only the global memory. 65

xvii

4.5 GPU speedup relative to the serial (CPU) code for global memory-only

and optimized versions (domain size is 256 × 32 × 256). The optimal

solution uses shared memory for the momentum and pressure kernels

while the other kernels use global memory only. 66

4.6 GPU speedup over serial CPU code for a domain of 1024× 32× 1024

computational nodes. Quad-GPU results are not available for the Intel

Core 2 Duo configuration because no quad-GPU/dual Intel Core 2 Duo

platform was available for this study. 67

4.7 Single and multi-GPU speedup relative to a single CPU core 69

4.8 Multi-GPU scaling on the S870 server with dual-CPU platform. The

multi-GPU platform does not scale well when then there is not a one

CPU core per GPU ratio. 70

4.9 Multi-GPU scaling on the S870 server with quad-CPU platform. As

the problem size increases the multi-GPU solutions scale better. 71

4.10 Comparison of kernel execution times for different block configurations.

The urban-like domain was represented by a 256 × 256 × 64 grid and

each simulation ran for 200 time steps. 72

4.11 Single and multi-GPU speedup relative to a single CPU core of an

AMD Opteron 2.4 GHz for urban simulations . 76

A.1 GPU computing hardware utilized in the research. One of the com-

puters is equipped of 2 Tesla C870 (a), a second one is equipped with

2 GeForce 9800 GX2 (b) and another one is connected to a Tesla S870

server (c). 88

xviii

LIST OF ABBREVIATIONS

API – Application Programming Interface

CB – Chemical-Biological

CFD – Computational Fluid Dynamics

CPU – Central Processing Units

CUDA – Compute Unified Device Architecture

FLOPS – Floating-point Operations Per Seconds

GPGPU – General Purpose GPU

GPU – Graphics Processor Units

HPC – High Performance Computing

LBM – Lattice-Boltzman Method

LES – Large Eddy Simulation

MPI – Message Passing Interface

PDE – Partial Differential Equations

SDK – Software Development Kit

SIMD – Single Instruction Multiple Data

xix

1

CHAPTER 1

INTRODUCTION

1.1 Problem Context

In the last decade, CPU designers have focused on developing multi-core architec-

tures instead of increasing the clock frequency by putting more transistors on the

die because of power constraints [29]. GPU designers have adopted the many-core

strategy early on, because graphics rendering is a parallel task. GPUs are based

on the stream processing architecture that is suitable for compute-intensive parallel

tasks [38, 40]. Modern GPUs can provide memory bandwidth and floating-point

performances that are orders of magnitude faster than a standard CPU. Figure 1.1

depicts the growing gap in peak performance between GPU and CPU over the

last five years. Currently, NVIDIA GPUs outperform Intel CPUs on floating point

performance (Figure 1.1(a)) and memory bandwidth (Figure 1.1(b)), both by a factor

of roughly ten [38]. Until recently, using the GPUs for general purpose computation

was a complicated exercise. A good knowledge of graphics programming was required,

because GPU’s old fixed-function pipeline did not allow complex operations [39].

GPUs have evolved into a programmable engine, supported by new programming

models trying to find the right balance between low access to the hardware and

high-level programmability [39]. The BrookGPU programming model, released in

2004 by Stanford University, offered one of the first development platforms for gen-

2

(a) Floating-point Performance

(b) Memory Bandwidth

Figure 1.1: Performance comparison between Intel CPUs and NVIDIA GPUs (cour-
tesy of NVIDIA).

3

eral purpose GPU (GPGPU) programming [10, 40]. BrookGPU provides a GPU

abstraction layer that enables data parallelism. It keeps the programmer away from

having an extensive knowledge of graphics programming - like OpenGL - while being

platform independent. In 2007, NVIDIA released a new programming model for its

own line of GPUs: Compute Unified Device Architecture (CUDA) [38]. With CUDA,

NVIDIA offers a common architecture and programming model for its own line of

GPUs. The C-based application programming interface (API) of CUDA enables

data parallelism through the use of shared memory, but also computation parallelism

thanks to the introduction of the thread and grid concepts. The CUDA programming

model has found success in the GPGPU community. There is also a recent effort called

MCUDA [46] to program multi-core CPU architectures with the same paradigms

exposed in CUDA. On the other hand, AMD offers a compute abstraction layer

(CAL) for GPU programming. A modified version of the Brook open source compiler

(Brook+) was developed to support this cross-platform interface to the GPU. Both

AMD CAL and Brook+ are available in AMD’s software development kit (SDK) [30].

Advances in many-core architectures have been tremendous, but using the full

potential of many-core architectures is not an easy task. Engineers and scientists may

need to rewrite and optimize their legacy sequential codes to harness the compute-

power of modern day multi-core CPUs, and many-core GPUs. Message Passing

Interface (MPI) programming [21] has been widely adopted in parallel scientific

computations. The framework provides a high level API that allows programmers to

transparently make use of multiple processors on both shared and distributed systems.

The programmer does not have to deal with the details of the communication pro-

tocol between the nodes. On shared memory systems, POSIX multithreading offers

low level functions to implement multi-threaded systems, while OpenMP provides a

4

certain abstraction layer [12], which makes it more accessible to software developers.

In contrast, CUDA offers a different approach that specifically targets the many-cores

on a single GPU. It is the programmer’s responsibility to optimize the usage of the

memory and the threads available on the streaming cores [42]. Multi-GPU parallelism

is not currently addressed by CUDA, which means that implementation for multiple

GPUs is explicitly performed by programmers. External tools such as OpenMP, MPI

or POSIX can be associated to CUDA in order to benefit from a GPU cluster or

a multi-GPU desktop platform. In the future, parallel projects like CUDASA [47]

might provide new frameworks that will ease development on multi-GPU systems.

1.2 Thesis Statement

1.2.1 Objectives

The current set of computational models that is adopted by the emergency responders

to simulate chemical-biological (CB) contaminant dispersion is based on simplified

empirical models [27]. The predictive capability of these models is often unsatis-

factory, but they are still being employed because of their relatively fast run-times.

The Joint Effect Model (JEM), funded by the Department of Defense, establishes a

key performance parameter (KPP). According to the KPP, urban dispersion models

with advanced features turned off shall provide hazard prediction and graphical

display within 10 minutes. Many current CFD applications are not able to deliver a

solution within that time frame, even when the physics modeling features are turned

off [44]. During this research the main objective was to develop an incompressible

3-D Navier-Stokes solver to compute wind fields in urban-like domains. This work

serves as a baseline implementation towards a CFD-based urban dispersion model.

5

Figure 1.2: CFD Simulation of plume dispersion in Time Square, New York (courtesy
of Patnaik et al. [41])

It also provides a novel obstacle capability to simulate the effects of the buildings on

the flow field and a subgridscale turbulence model for large-eddy simulations (LES)

of turbulent flows. The NVIDIA CUDA technology was chosen to implement the

discretized form of the governing equations on CUDA-capable GPU architecture. The

goal was to substantially shorten turn-around time for simulations on a multi-CPU /

multi-GPU desktop computer. The CFD code that was developed as part of this thesis

solves a generic set of partial differential equations for incompressible fluid dynamics

(Navier-Stokes equations). Broadly speaking, the computational techniques and al-

gorithms that were developed for multi-CPU/multi-GPU architectures as part of this

research can be extended to different thermo-fluid applications such as aerodynamic

6

flows or weather forecasting.

1.2.2 Procedures

In order to develop the proposed CFD code, a step-by-step development approach

was followed. This allowed rigorous accuracy tests of the numerical implementations.

The following tasks were accomplished as part of the research:

• Implementation of the 2D wave equation to get familiar with the CUDA paradigms

and apply them to a CFD problem on multi-GPU platforms.

• Implementation of a 3D Navier-Stokes solver which is the core of the final CFD

code. The code was validated with the laminar channel flow exact solution and

lid-driven cavity benchmark simulation [49]

• Implementation of a 3D Navier-Stokes solver with novel obstacle capability (to

mimic building effects) [50].

• Implementation of a Smagorinsky large-eddy simulation turbulence model for

wind-field modeling in realistic urban environments

In a parallel effort, a serial C code was developed to validate the logic of the new

features added at each step of the development. It was also used as a benchmark for

speedup analysis. The following high performance computing (HPC) platforms with

different GPU-CPU configurations were available to perform speedup and multi-GPU

scaling analysis:

• “hellboy.boisestate.edu”- dual-GPU / dual-core CPU machine

2 × NVIDIA Tesla C870 boards (2 × 128 processors)

7

3.0 GHz Intel Core 2 Duo E8400 CPU (1333 MHz front side bus)

4GB DDR2 800 MHz memory

• “barth.boisestate.edu”- quad-GPU / 16-core CPU machine

1 × NVIDIA S870 Server (4 × 128 processors)

8 × Dual-core 2.4 GHz AMD Opteron 8216 CPU (1000 MHz front side bus)

16GB DDR2 667 MHz memory

• “sawtooth.boisestate.edu”- quad-GPU / dual-core CPU machine

2 × NVIDIA GeForce 9800 GX2 boards (2 × 256 processors)

3.0 GHz Intel Core 2 Duo E8400 CPU (1333 MHz front side bus)

4GB DDR3 1333 MHz memory

These three computing platforms offered different CPU and GPU configurations.

First, the speedup provided by a single GPU over a serial code was determined

for different types of CPU. But mainly, it helped analyzing the effects of the CPU

and the GPU hardware on multiple-GPU (2, 3 or 4 GPUs) platform performance.

The Appendix A.1 gives more details about the GPU computing hardware that was

utilized in this research. The implementation of these different tasks and the analysis

of the results using the GPU computing infrastructure is presented in the following

chapters.

8

1.3 Prior Work

1.3.1 GPGPU Computing

Prior to the introduction of the CUDA and Brook programming models, several

Navier-Stokes solvers have been implemented for the GPU. Harris [26] implemented

a 3D solver to create a physically-based cloud simulation using the Cg programming

language from NVIDIA. It is a high-level programming language for graphics on

GPUs, which operates as a layer above OpenGL. His implementation was based on

the “stable fluids”method proposed by Stam [45]. This method is adapted to graphics

application because of the real-time visualization constraint. In Reference [33] the

Navier-Stokes equations are solved for flow around complex geometries following the

work of Harris [26]. Due to its relative potential for easy parallelization, the Lattice-

Boltzman method (LBM) has also been implemented in different studies addressing

complex geometries. In Reference [31], GPU implementation of LBM resulted in

speedup of 15× relative to the CPU implementation. In Reference [17], an LBM

was implemented on a GPU cluster to calculate winds and contaminant dispersion

in urban areas. A speedup of 4.6× relative to a CPU cluster was achieved in their

study [17], which demonstrates that GPU clusters can serve as an efficient platform

for scientific computing.

High performance parallel computing with CUDA has already attracted various

scientists in several disciplines, such as molecular dynamics [3,32,52], computational

biology [43], linear algebra [6,11], weather forecasting [34] and artificial intelligence [7].

In the computational fluid dynamics (CFD) field, Tolke and Krafczyk [51] imple-

mented a 3D Lattice-Boltzman method for flow through a generic porous medium.

They obtained a gain of up to two orders of magnitude with respect to the com-

9

putation of an Intel Xeon 3.4GHz. Brandvik and Pullan [9] mapped 2D and 3D

Euler solvers to the GPU using BrookGPU and CUDA programming models. For

the CUDA version of the 3D Euler solver, their computations on NVIDIA 8800GTX

showed a speedup of 16 relative to a single core of an Intel Core 2 Duo 2.33GHz,

whereas the BrookGPU implementation of the 3D Euler solver showed a modest

speedup of only 3 on the ATI 1950XT. Molemaker et al. [35] developed a multi-grid

method to solve the pressure Poisson equation. The CUDA implementation of the

multi-grid pressure Poisson solver produced a speedup of 55 relative to a 2.2MHz AMD

Opteron processor [35]. Recently, Elsen et al. [16] showed that complex scientific

simulations are feasible on GPUs. They implemented a BrookGPU version of the

compressible Euler equations in order to simulate hypersonic vehicles. Compared

to a single core of an Intel Core 2 Duo 2.4GHz the GPU implementation achieved

speedups ranging from 15 to 40.

The recent literature attests to the compute-potential of GPU computing with

new programming models. Numerous studies have adopted the CUDA programming

model to numerical problems that have practical applications in engineering and

science at large [36]. Currently, most of the current GPU applications utilize single-

GPU platforms. The potential of GPU clusters has already been demonstrated [17].

But the current motherboards can now host multiple GPUs and become the core

of a superdesktop computer for a relatively cheap cost. This thesis introduces the

implementation of a CFD code on multi-GPU/multi-CPU desktop platforms and

demonstrates the potential of such platforms.

10

1.3.2 Contaminant Transport and Dispersion in Urban Environments

Urban dispersion is a scientific field that projects how contaminant plume spreads

through urban environments. It is usually associated with chemical-biological (CB)

contaminant release (accidental release or terrorist attack) although it was tradi-

tionally used for preventive purposes like air pollution warning. Until recently the

computational hardware did not allow scientists to run fast-response urban dispersion

simulations based on CFD models. Instead, fast-running empirical or semi-empirical

models were used to obtain running times acceptable for emergency responses. With

the latest advances in high-performance computing hardware, CFD models can now

be run on machines delivering teraflops of computing performance. They might

provide a new alternative to semi-empirical building resolved (SEB) models [44]. A

typical urban CFD domain is usually only a couple square kilometers large, between 1

km2 and 5 km2, with a vertical dimension less than 1 km. The grid system resolution is

usually between 1 m and 5 m. The urban environment is modeled using 3-D building

data, usually extracted from an existing database. Several studies [1,2,15,19] showed

that models need to be evaluated against field data. A single-building simulation [15]

is a first step to evaluate the accuracy of a model but larger-scale domains are

necessary to validate the model with realistic environments. The Oklahoma [2] and

Manhattan field experiments [1] provide the necessary data to evaluate models in

existing urban areas. In 2003 the Department of Homeland Security sponsored a

field experiment in Oklahoma City, the Joint Urban 2003 Atmospheric Dispersion

Study [2]. The study covered the central business district of the city, a domain of 900

m by 1200 m. It included around 40 city blocks and 150 buildings. Although a cluster

of 50 m tall buildings was part of the domain, most of these buildings were under

11

10 m. Tracer releases were performed on a month period, including day-time and

nighttime releases. Several types of sensors (crane, sonic anemometers) were used to

measure 5 or 10 minute averaged tracer concentrations. The study showed that the

few tall buildings actually had a big impact on the overall plume dispersion.

The MID05 experiment included six days of tracer and meteorological exper-

iments. The studied area was located in midtown Manhattan (south of Central

Park). It covered a domain of 2 km by 2 km including deep street canyons with

buildings reaching 150 meters and only a couple meters apart from each other. Thirty-

minute averaged tracer concentrations were collected by 64 different outdoor samplers.

Since the results of these field experiments were published, several studies have been

conducted to evaluate the accuracy of urban dispersion models. The Joint Urban

2003 data were used in [20] and [28] to evaluate a Reynolds-averaged Navier-Stokes

solver CFD model and a semi-empirical building resolved model, respectively. Results

showed that after customizing the models, the simulated dispersions were comparable

to the observed tracer releases. In [19], six different models were evaluated against

the data from the MID05 experiment. This study showed that in a real emergency

context, where no update on the models is possible, the different models do not

perform well and results may vary a lot from a model to another. Flaherty et

al. [19] pointed that in order to reach high-accuracy simulations, the input data

for the simulations must include accurate building data (databases) and accurate

atmospheric data. This means that the studied area should be equipped with enough

sensors to build an accurate state of the dispersion. Previous experiments on the area

should also prescribe boundary conditions if the sensors cannot provide enough data.

There is still a great need for improvement in urban dispersion modeling. Patnaik

et al. [41] showed that realistic urban contaminant dispersion is feasible. Figure 1.2

12

describes how plume dispersion can be visualized with their FAST-3D-CT model [41].

On the other hand those simulations and the postprocessing steps are still very

expensive. Currently emergency responders cannot afford this type of simulation.

Urban CFD simulations can be accelerated significantly if the numerical methods

are carefully implemented [24, 25]. Advances in computing hardware can further

accelerate computations, and allow advanced modeling features that were too time-

consuming for fast-running simulations. An urban dispersion model based on a

second-order accuracy LBM was developed for a 32-node GPU cluster by Fan et

al. [17]. They simulated the dispersion of airborne contaminants in the Times Square

area of New York City. The simulation covered an area of around 1.16 km × 1.13

km, including 91 blocks and around 850 buildings. This domain was represented by

a grid of 480 × 400 × 80 computational nodes, resulting in a resolution of 3.8 m.

Results showed a speedup of 4.6× over the CPU cluster implementation. This is

very promising as GPU hardware greatly improved since this study was conducted in

2004. Their work represents the first implementation of the LBM on a GPU cluster.

The LBM is very popular today as it is fairly easy to parallelize. This thesis present

the first CFD-based implementation of the incompressible Navier-Stokes equations

on multi-GPU desktop platforms using CUDA.

13

CHAPTER 2

TECHNICAL BACKGROUND

2.1 GPGPU as a Solution

2.1.1 Evolution of the Graphics Pipeline

Originally built for graphics rendering, GPUs are now powerful programmable en-

gines, suitable for general purpose computation [39]. In this section, the main stages

of the graphics pipeline will be introduced and the evolution of the GPU architecture

will be briefly described. The graphics pipeline can be divided into 5 main stages [40]:

• Vertex processing: The different input objects are formed from individual ver-

tices and made part of the scene system through scaling and shading (interaction

with the lights). This stage is adapted to parallelization as each vertex can be

computed independently.

• Primitive assembly: The vertices are collected and assembled into triangles.

• Rasterization: This stages determines which pixels are going to be hidden

from the camera point-of-view. Each triangle is filled with a “fragment”which

represents the actual pixels that are displayed at the screen-space location.

• Fragment operations: The final color of each fragment is determined by com-

bining the pixel’s attribute (color, depth, position) with textures fetched from

14

the memory. This stage is very demanding but each fragment can be computed

in parallel.

• Composition: Fragments are assembled into the final image, keeping only one

color per pixel.

Figure 2.1 describes the different processing steps that are needed to translate the

input vertices into the final pixel data. The first generations of GPUs were imple-

Figure 2.1: Processing steps for graphics rendering (courtesy of NVIDIA)

mented with a fixed-function pipeline. But the demand for more complex lighting

and shading effects required some modifications on the pipeline to allow user-defined

functions for vertex and fragment operations. Consequently, vertex and fragment

programs, in addition to a larger limit on their size, gained more features to render

more complex effects. The unified Shader Model 4.0, now supported by NVIDIA’s

and AMD’s GPUs, defines the different features the vertex and fragments should

support. This includes dynamic flow control (branches, loops) and 32-bit integers

and 32-bit floating-point numbers. On one hand GPU designers built increasingly

parallel sets of pipelines to compute vertices and fragments faster. On the other hand

the programmable hardware unit of the pipeline became more and more complex and

eventually became common to the fragment and vertex programs. The GPU architec-

ture is now adapted to high-performance general computation as data-parallelism is

15

conserved and programmers only have to target a single hardware unit which supports

the functions they can expect from a CPU.

2.1.2 CUDA Hardware Architecture

In GPU designs, transistors are devoted to data processing rather than data caching

and flow control [38]. A GPU is an example of a Single Instruction, Multiple Data

(SIMD) multiprocessor. In the CUDA programming model, compute-intensive tasks

of an application are grouped into an instruction set and passed on to the GPU

such that each thread core works on different data but executes the same instruction.

The CUDA memory hierarchy does not really differ from the one for a conventional

multiprocessor. Closer to the core, the local registers allow fast ALU operations. The

shared memory, seen by all the cores of a single multiprocessor, can be compared to

a first-level cache (L1), as it provides a memory closer to the processors that will be

used to store data that tend to be used over time by any core [38]. The difference

in CUDA is that the programmer is responsible for the management of this “GPU

cache”. The last level in this hierarchy is the global memory, the RAM of the device.

It can be accessed by any processor of the GPU, but for a higher latency cost. Threads

can actually perform simultaneous scatter or simultaneous gather operations if those

addresses are aligned in memory [38]. Coalesced memory access is crucial for superior

kernel performance as it hides the latency of the global memory. The challenge for

a CUDA software developer is then, not only the parallelization of the code, but

also the optimization of the memory accesses by making the best use of the shared

memory and the coalesced access to the global (device) memory. Each multiprocessor

also has read-only constant cache and texture cache. The constant cache can be used

by the threads of a multiprocessor when trying to read the same constant value at

16

(a) Hardware architecture (b) Programming Model

Figure 2.2: The CUDA Model (courtesy of NVIDIA). In this example, the CUDA
grid is composed of 3× 2 blocks, each containing 5× 3 threads.

the same time. Texture cache on the other hand is optimized for 2D spatial locality

and should be preferred over global device memory when coalesced read cannot be

achieved [38].

2.1.3 CUDA Programming Model

The computation core of the CUDA programming model is the kernel, which is passed

on to the GPU and executed by all the processor units, using different data streams.

Figure 2.2(b) presents the layout of the threads in the CUDA programming model.

Each kernel is launched from the host side (CPU), and it is mapped to a thread grid

on the GPU. Each grid is composed of thread blocks. All the threads from a particular

block have access to the same shared memory and can synchronize together. On the

17

other hand, threads from different blocks cannot synchronize and can exchange data

only through the global (device) memory [38]. A single block can only contain a

limited number of threads, depending on the device model. But different blocks can

be executed in parallel. Blocks executing the same kernel are batched together into

a grid. Blocks are managed by CUDA and executed in parallel in a batch mode.

The programmer needs to define the number of threads per block and the grid size

(number of blocks) before launching the kernel. As mentioned earlier, CUDA API is

an extension to the C programming language. It provides functions to manage the

computations on the GPU. The full list of functions is discussed in detail in the CUDA

programming guide [38]. The major functions used in this study are cudaMalloc()

and cudaMemcpy() functions. These functions allocate memory on the GPU and copy

data from the CPU memory into the device memory of the GPU, respectively. The

cudaFree() function is used to free memory on the device. The kernel is launched by

specifying the size of the grid (number of blocks) and the size of the blocks (number

of threads) using the following prototype: kernelName<<gridSize, blockSize>>().

synchthreads() can be used inside a kernel to synchronize all the threads of a same

block. Global synchronization is not addressed by the CUDA model. A practical way

to force a global synchronization is to exit the kernel before launching a new one. In

addition, the CUDA API introduces the qualifiers shared , device and constant

to define the type of memory a variable should use. The function qualifiers device ,

global , and host specify whether the GPU or the CPU should execute and call

the qualified function [38].

18

2.1.4 Compilation and Development Tools

CUDA Toolkit

The CUDA Toolkit [36] enables CUDA applications to run on a general purpose

computer with Windows, Linux or Mac operating systems, using the GPU as a

coprocessor to the CPU. Jobs are launched on the GPU from the host process using

remote procedure calls, supported by the CUDA toolkit.

NVCC Compiler

Nvcc [37] is used to compile CUDA code, which is a combination of C/C++ code for

the host side and GPU code for the device. The host code can actually be compiled

with any general purpose C/C++ compiler that is available on the host platform

such as the GNU C compiler gcc [22], while the device code uses proprietary NVIDIA

compilers and assemblers. Compilation options for the host code are then similar to

a general purpose compiler, but NVCC offers more options to specify the mode of

CUDA compilation, such as the release, emulation or fat device code binaries modes.

CUDA Software Development Kit (SDK)

The SDK [36] offers the necessary libraries and configuration files to build a CUDA

application. Several applications are available for demonstration purpose and code

source. The SDK 1.1 was used to build the applications developed during this

research.

19

CUDA Profiler

The SDK [37] also offers a profiler. It can output different statistics about the CUDA

program that is executed against it. The profiler provides information about GPU

time, CPU time, the number of coalesced access memory and branch conditions,

which can be displayed in summary tables but also in various kinds of plots. The

CUDA profiler is useful to identify kernel implementations that have a high number

of non-coalesced stores/loads and warp serializations (branch conditions).

2.2 Governing Equations

Before describing the CUDA implementation of the CFD code, it is necessary to

introduce the governing equations. They are defined in the following sections along

with the numerical methods that allow their implementation.

2.2.1 Wave Equation

The wave equation is a computationally tractable partial differential equation (PDE)

that can serve as a model to learn and experiment with the CUDA programming

model before targeting more complex PDEs such as the Navier-Stokes equations.

The two dimensional wave equation is defined as:

∂2u

∂t2
= c2∇2u (2.1)

where u is the amplitude of the wave and c the propagation speed of the wave.

20

2.2.2 Governing Equations of Incompressible Fluid Flows

Continuity Equation

The continuity equation Eq. 2.2 describes the conservation of mass:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.2)

where u, v and w are the components of the velocity vector in the x, y and z directions,

respectively.

Navier-Stokes Equations

The Navier-Stokes equations, along with the continuity equation (Eq. 2.2), describe

the motion of incompressible viscous fluids:

∂u

∂t
+ u∇.u = −1

ρ
∇P + ν∇2u +∇.¯̄τR (2.3)

where u is the velocity vector, P is the pressure, ρ is the density, ¯̄τR is the subgrid

scale Reynolds stress term, and ν is the kinematic viscosity. Under laminar flow

conditions the Reynolds stresses are absent from Eq. 2.3. For turbulent flow con-

ditions, a turbulent eddy viscosity needs to be defined. In the Reynolds-averaged

Navier-Stokes approach u, v, w, and P represent ensemble-averaged quantities and in

the large-eddy-simulation approach u, v, w, and P represent filtered quantities [48].

2.2.3 Turbulence Modeling

The present research effort mainly focused on laminar flow simulations. Additionally,

an LES subgrid scale model for turbulent flows was implemented, which will be

21

validated in future. The Large Eddy Simulation (LES) approach is used for the

turbulence closure problem. In LES modeling, large scale energetic flow structures are

resolved by the computations, while the effect of unresolved small-scale flow structures

are represented by a sub-grid scale (SGS) model. The presented implementation uses

the Smagorinsky eddy viscosity model [48]. The Smagorinsky model is characterized

by a mixing-length lmix which is proportional to the filter width is defined as:

lmix = Cs∆, (2.4)

where Cs is the Smagorinsky constant (Cs ≈ 0.1) and ∆ is the characteristic width

of the filter. In the present study, a box filter is implemented, in which case:

∆ = 3
√

∆x∆y∆z, (2.5)

where ∆x, ∆y and ∆z are the grid resolutions in the x, y, z directions, respectively.

The mixing-length appears in the eddy viscosity as follows

νt = l2mix

√
SijSji, (2.6)

where the strain rate tensor Sij is given by:

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.7)

22

2.3 Numerical Methods

2.3.1 Wave Equation

Second order accurate numerical schemes in both time and space are used to discretize

the wave equation. The discretized form of the equation can be written as follows

ut+1
i,j = c

(
1− 2ρ2

)
ut

i,j + ρ2
(
ut

i+1,j + ut
i−1,j + ut

i,j+1 + ut
i,j−1

)
− ut−1

i,j (2.8)

where u is the amplitude of the wave, and i, j, and t are the indices for the x-direction,

y-direction and the time level, respectively. ρ defines the ratio of time step to the

spatial resolution (∆t/∆h). The wave propagation speed c has a value of 1.0. The

wave equation is discretized on a spatial domain size of [0, π; 0, π].

2.3.2 Incompressible Navier-Stokes Equations

Staggered Grid

The Navier-Stokes equations can be discretized on either a staggered or a non-

staggered (collocated) grid. The staggered grid eliminates the odd-even pressure

oscillations that may occur on non-staggered grids [48]. A staggered configuration

is used for this implementation. Figure 2.3 shows the location of the computational

nodes for each component (u, v, w) of the velocity field and the pressure P on a

staggered grid.

Projection Algorithm

Second-order accurate central difference scheme is used to discretize the advection

and diffusion terms of the Navier-Stokes equations on a uniform staggered grid [18].

23

Figure 2.3: Staggered Grid. Pressure P is located in the cell centers. u and v
components of the velocity are located respectively in the midpoints of the vertical
and horizontal edges.

Both first-order accurate, explicit Euler scheme and second-order accurate Adams-

Bashfort were used for the time derivative term. The projection algorithm [14] is then

adopted to find a numerical solution to the Navier-Stokes equation for incompressible

fluid flows. In the projection algorithm, the velocity field u∗ is predicted using the

momentum equations without the pressure gradient term [14, 18]. The predicted

velocity, using a first order Euler scheme, can be written as follows:

u∗ = ut + ∆t
(
−ut∇.ut + ν∇2ut

)
, (2.9)

where the index t and ∆t represents the time level and time step size, respectively.

ut∇.ut represents the advective term and ν∇2ut represents the diffusion term. The

discretization of these terms is given in Appendix B.2. A second-order accurate

method in space and time is preferable to reduce numerical errors. The second order

Adams-Bashfort scheme gives

u∗ = ut + ∆t
[
1.5
(
−ut∇.ut + ν∇2ut

)
− 0.5

(
−ut∇.ut + ν∇2ut

)]
(2.10)

24

The discretization for the diffusive and advective terms remains the same (see Ap-

pendix B.2) but now the predicted velocity at (t + 1) depends on the diffusive and

advective terms at both t and (t− 1).

The predicted velocity field u∗ does not satisfy the divergence free condition

because the pressure gradient term is not included in Eq. 2.9. By enforcing the

divergence free condition on the velocity field at time (t + 1), the following pressure

Poisson equation can be derived from the momentum equations given in Eq. 2.3:

∇2P t+1 =
ρ

∆t
∇.u∗ (2.11)

In the present study, the above equation is solved using a Jacobi iterative solver

to time march the equations to a steady-state solution. A more efficient solver

(e.g., geometric multi-grid method) should be adopted for time-accurate unsteady

simulations. The pressure field at time (t + 1) is then used to correct the predicted

velocity field u∗ as follows:

ut+1 = u∗ − ∆t

ρ
∇P t+1 (2.12)

2.3.3 Turbulence Modeling

Smagorinsky Subgrid Model

The eddy viscosity νt defined by Eq. 2.6 is calculated at the pressure point. For

the magnitude of the strain rate tensor defined in Eq. 2.6 the discretization given

in Appendix B.3 is used. The viscosity is calculated at the pressure point while the

viscous terms are evaluated at the cell sides when computing the predicted velocity.

A spatial interpolation is then necessary.

25

Pressure Poisson Solver

The Jacobi solver implemented in this study is not sufficient for turbulence modeling.

Conservation of mass and momentum needs to be be strictly enforced as turbulent

models are very sensitive to numerical errors. This can be achieved by using a

multigrid method on top of the Jacobi solver.

26

CHAPTER 3

GPU IMPLEMENTATION & VALIDATION

3.1 Implementation of the Wave Equation

3.1.1 Wave Propagation Problem

(a) Dirichlet boundary conditions (b) Mixed Neuman Dirichlet boundary
conditions

Figure 3.1: Wave simulation on a 1024×1024 domain with different initial conditions
and boundary conditions.

The 2D wave equation is a fairly simple partial differential equation (PDE) to

implement. But at the implementation level, the wave equation shares certain com-

mon features with other PDEs (time-dependent solution, necessity to apply boundary

conditions, etc.). Figure 3.1 shows two different waves obtained from simulations with

1024× 1024 computational nodes. The first plot is from a simulation with Dirichlet

27

boundary conditions on all sides (u = 0), while the second plot uses mixed Dirichlet

and Neumann boundary conditions.

3.1.2 Main Code (Host-Side)

The discretized form of the wave equation (Eq. 2.8) shows that the computation of

a node value at the time level (t + 1) requires information about the same node for

the two previous time levels (t and t− 1) and information about the four neighboring

nodes from the current time level (t). Therefore, it is necessary to have two matrices

to keep track of the last two time levels and another matrix to store the computation

results. The next time step starts after each node is computed. At this stage, the

matrices are swapped so that the oldest one can be reused to store the result of the

next iteration. The matrix representing the time level t now represents the time level

(t−1), and the one that stores the results of the previous iteration represents the time

level t. This process is repeated at each time steps. Note that costly data transfer

between the device and the host is avoided by employing pointers. Figure 3.2 shows

how the matrices are swapped at the end of each time step (uold, u, unew representing

ut−1, ut and ut+1, respectively).

3.1.3 Single-GPU Implementation

The computational domain for the wave equation is first decomposed with a checker-

board approach. Each sub-domain is assigned to a particular CUDA block by copying

the corresponding data to the shared memory. It includes the subdomain inner cells

but also the cells representing the neighboring cells. Figure 3.3 shows an example for a

4×4 thread block for simplicity purposes. Only 4×4 cells are computed by the threads

28

//for each time step
for (t=0; t < ntstep; t++)
{

//call kernel to compute ut
wave << grid, block >> (unew, u, uold)
//rotate matrices
utemp = uold; uold=u; u=unew; unew=utemp

}

Figure 3.2: Host-side code for the CUDA implementation of the wave equation. The
wave kernel is launched at each time step for synchronization across CUDA blocks.

but 6× 6 cells are actually needed to be able to compute the inner cells on the north,

south, east and west edges. Note that in the actual implementation, each block holds

16× 16 threads, for a total of 256 threads per block for faster computations. CUDA

actually allows 512 threads per block but the CUDA user guide advises to use 256

threads, which was confirmed in the results of this study. The grid size depends on the

size of the physical problem. This first implementation assumes a square domain that

can be divided into several 16× 16 subdomains. A 1024× 1024 domain for example

would contain 64 × 64 blocks. A CUDA block is not a physical multi-processor, the

Figure 3.3: Assignment of a subdomain of 4× 4 to a CUDA block. Threads work on
the inner cells but need extra data to represent the borders of the subdomain (ghost
cells).

user can have multiple sub-domains per multi-processor, CUDA takes care of this

29

step automatically. However, one of the consequences of this feature is that there

is no global synchronization of threads from different blocks. This is a performance

issue for numerical methods that requires time marching. One needs to synchronize

threads after each time step to make sure that the ghost cells are updated. One way

to address the issue is to use a multi-pass approach, where a kernel is launched at

every time step. This introduces an overhead due to kernel load and, for a shared

memory implementation, an overhead due to data transfer between the shared and

the global memory. Each block needs to copy its subdomain from the global memory

to the shared memory before computation and from the shared memory to the global

memory after computation. This last step is required as shared memory data is

lost when a new kernel is launched. An alternative approach is to update the ghost

cells only every N iteration using a pyramidal approach as explained in [13]. This

method reduces the multi-pass approach overhead by having the blocks working on

overlapping data. Tests showed that his approach could offer a maximum speedup

of 6.5× when compared with a Pentium 4 CPU for a 2D problem [13]. This might

be acceptable but the quantity of overlapping data for a 3D application would make

it unpractical for large 3D problems [13]. Additionally, it implies that the updated

status of the domain is needed only every N iterations. Despite the overhead due

to kernel load and memory transfer at every time step, the multi-pass recipe seems

more appropriate than a pyramidal approach as the final application presented in this

thesis is a large 3D simulation problem.

3.1.4 Dual-GPU Implementation

As mentioned earlier, CUDA does not provide any API to handle multiple GPUs. The

multi- GPU implementation presented here uses POSIX multi-threading. Advanced

30

frameworks like MPI could have been used but POSIX threading assures that the

communication overhead of the dual GPU implementation is minimized. OpenMP

[12] is also an option with extra features for general parallel computing on shared

memory platforms. In the present implementation, the parallelization strategy needs

to handle thread operations such as synchronize, create and kill, for which it suffices

to use POSIX multi-threading. In dual-GPU implementation, the kernel is almost the

same as the one used for the single-GPU implementation. On the other hand, the host

code needs to be modified to handle the domain decomposition and multi-threading.

Each GPU is responsible for half of the domain (horizontal stripe). One CPU thread

is assigned to each GPU. First, it initializes the memory on its device, and then iterate

through the time steps by launching the kernel as many times as necessary. After each

iteration, the two GPUs need to exchange ghost cells at the domain decomposition

boundary. The CPU threads synchronize using a barrier once the edge cells are copied

from the device to the host memory. The device memory is then updated and a new

iteration starts.

3.2 Implementation of a 3D Incompressible Navier-Stokes

Solver

3.2.1 Lid-Driven Cavity Problem

The lid-driven cavity problem described in Figure 3.4 is a well-established benchmark

case in the CFD field [23] and can be used as a validation case to check the correct

implementation of the Navier-Stokes equations, because there is no net mass and

momentum transport across the domain. The lid-driven cavity is a cubic container

filled with a fluid. Its lid moves at constant velocity Ulid (Figure 3.4) and drives the

31

Figure 3.4: A schematic of the physical domain for the lid-driven cavity problem.
No-slip conditions are applied on the YZ planes in the east and west directions and
on the bottom XY plane in the south direction. Free-slip (symmetry) condition is
applied to the front and back XZ planes. A constant velocity is applied on the XY
plane in north direction. The velocity component in the x-direction is set to a constant
Ulid value.

fluid inside the container. The flow is assumed to be laminar in this problem. The

viscosity is then considered constant and the first-order Euler scheme (Eq. 2.9) is

used for time integration. The Reynolds number for this problem is Re = Ulid×L/ν,

where ν is the viscosity of the fluid and L is the height of the cube.

3.2.2 Single-GPU Implementation

Domain Decomposition and Thread Assignment

Let NX, NY and NZ be the number of computational nodes in the x, y and z

directions for a flow domain, respectively. The 3D domain of size NX ×NY ×NZ is

represented by a 2D matrix of width NX and height NY ×NZ on the host side, as

shown in Figure 3.5. On the GPU side, the same representation is used to store data

in global memory. This 2D mapping translates to efficient data transfer between the

32

host (CPU) and the device (GPU). Note that several matrices are needed to represent

the pressure and velocity components at different time levels. Memory allocation on

the device is done only once before starting the time stepping. Figure 3.6 gives the

Figure 3.5: Mapping of a 3D computational domain to a 2D matrix. The mapping is
used on both the CPU and the GPU sides. Cells in white on the 2D matrix represent
the ghost (halo) cells to apply the boundary conditions.

logic used to access data from the GPU. In this example a 2D CUDA grid of 4 × 4

blocks is mapped onto a 3D domain of 8×4×2. Each block is a set of 2×2 threads, each

thread being mapped to a cell of the domain. The 3D domain is actually represented

by a 1D array in the device memory. The corresponding indices of each domain cell

are given in Figure 3.6(a) and 3.6(b). The translation from 3D to 1D is defined by:

A [i + j ×NX + k ×NX ×NY] = B [k] [j] [i] ,

where A is a 1D array with (NX × NY × NZ) elements and B a 3D matrix of

dimension (NX ×NY ×NZ). If the size of the domain is (NX ×NY ×NZ), then

the index translation from the thread ID (in a 2D CUDA grid) to a 1D array element

index in global memory is given by:

33

(a) 3D domain (b) 2D representation

(c) CUDA block decomposition
(blockIdx.x, blockIdx.y)

(d) CUDA thread indices
(threadIdx.x, threadIdx.y)

Figure 3.6: Example of index logic to map a 2D CUDA block decomposition onto a
3D domain. The 3D domain (a) is represented in a 2D-way (b). A 2D CUDA grid
is then mapped onto the 2D domain (c). (d) represents the thread indices associated
to the CUDA block decomposition.

I = gridDim.x× blockDim.x× blockDim.y × blockIdx.y

+ threadIdx.y × gridDim.x× blockDim.x

+ blockIdx.x× blockDim.x + threadIdx.x

where I is the index used to access the global memory (1D array).

(blockDim.x, blockDim.y) represents the dimensions of a single CUDA block and

(blockIdx.x, blockIdx.y) the ID (2D coordinates) of the block to which the current

thread belongs to. The ID of the thread inside the block is given by (threadIdx.x, threadIdx.y).

34

Using the example given in Figure 3.6 and Eq. 3.1, thread (0,1) from block (0,3)

updates the 1D array element at the index I defined by:

I = 4× 2× 2× 3

+ 1× 4× 2

+ 0× 2 + 0

I = 56

Using this index logic, each thread becomes responsible for one computational node

of the domain. As discussed in Section 3.2.4, in some cases it might be interesting to

have one thread responsible for multiple grid cells. In Figure 3.7, a 2D CUDA grid of

4×4 blocks and 2×2 threads per block is mapped onto the 3D domain. Each thread

block is responsible for 2 subdomains aligned in the z-direction. For this approach,

the size of the CUDA grid is defined by:

(gridDim.x, gridDim.y) = (GRID SIZE X, GRID SIZE Y × SIZE Z), (3.1)

where GRID SIZE X is the number of blocks in the x-direction, GRID SIZE Y is the

number of blocks in the y-direction necessary to represent a slice of the domain in the

XY plane, and SIZE Z is the number of levels in the z-direction on which a single

block work. The index of the first element on which a given thread should work is

defined by:

35

(a) 2D representation of the memory (b) Mapping of the CUDA grid

Figure 3.7: Final index logic to map the CUDA block decomposition onto a 3D
domain. (a) An 8×4×4 domain is stored as a 1D array in memory. (b) A 2D CUDA
grid is mapped onto the 1D array in memory, each 2×2 thread block working on two
levels in the z-direction.

Itemp = gridDim.x× blockDim.x× blockDim.y

× (blockIdx.y%GRID SIZE Y)

+ threadIdx.y × gridDim.x× blockDim.x

+ blockIdx.x× blockDim.x + threadIdx.x

I = Itemp + (NX ×NY × SIZE Z)× bblockIdx.y/GRID SIZE Y c(3.2)

In the example given in Figure 3.7, the size of the CUDA grid defined by Eq. 3.1

becomes:

(gridDim.x, gridDim.y) = (4, 2× 2) = (4, 4)

36

In this configuration the thread (1,0) from the block (1,2) would start working with

the element located at the index I calculated as follows:

Itemp = (4× 2× 2× (2%2)) + (0× 4× 2) + (1× 2) + 1

I = Itemp + (8× 4× 2)× b2/2c

I = 67

Thread (1,0) from block (1,2) is then repsonsible for the array elements at the indices

67 and (67 + NX ×NY) = (67 + 8× 4) = 99. The code for the index logic is given

in Appendix C.2.

In each kernel, only one thread updates the value of a given compuational node

in global memory. Having a CUDA block configuration where the number of threads

is a multiple of 16 allows fast coalesced scatter operations. Coalesced access al-

low multiple threads to read or write to the global memory in a single memory

transaction. Good usage of coalescing can hide the memory latency. Figure 3.8

depicts data access in a coalesced fashion, where threads access words in sequence.

In this implementation, coalesced access is performed whenever the thread defined by

(threadIdx.x, threadIdx.y) and (blockIdx.x, blockIdx.y) accesses global memory at

the index I defined earlier. As the update of a computational node usually requires

knowledge on the neighboring values, gather operations cannot always be coalesced.

The right pattern presented in Figure 3.9 shows how the thread would access the

global memory if the east neighboring value had to be read. With the architecture

of the GPUs utilized in this research (compute capability 1.0), this would result in

a non-coalesced gather. With the latest NVIDIA hardware (compute capability 1.2

and higher), the rules for coalesced access have been relaxed. Coalescing can now be

37

performed even if multiple threads access the same address or if words in memory

are not accessed in sequence (with some limitations [38]). Figure 3.10 shows a couple

examples of coalesced access patterns for devices of compute capability 1.2 or higher.

The kernels using only global memory would definitely benefit from a new generation

GPU as threads use the same shifting to read a global memory value at a given time.

For a shared memory implementation, the gain in performance would probably not

be so visible as most of the non-coalesced memory accesses are avoided by loading the

necessary data into the shared memory. The inner cells represented in shared memory

are loaded in a coalesced way as each thread copies one value from global memory.

On the other hand part of the ghost cells need to be loaded in a non-coalesced way,

wether a new generation GPU is considered or not.

Main Code (Host-side)

Figure 3.11 shows the host side code for the time stepping. The code snippet is

composed of two nested loops. The outer loop is used to advance the solution in

time, and the inner loop is used for the iterations of the Jacobi solver to numerically

solve the pressure Poisson equation (Eq. 2.11). With the first order Euler scheme,

the velocity field at time t depends only on the velocity field at t − 1. Six different

matrices are used to represent the velocity fields at the time t (u, v, w) and t − 1

(uold, vold, wold). The matrices are swapped at the end of each time step for reuse

as shown in Figure 3.11. In a similar way, the Jacobi solver requires two matrices

p and pold, which are swapped after each iteration of the Jacobi solver. As shown

in Figure 3.11 the GPU code is composed of six different kernels to implement the

major steps of the projection algorithm [14]. Separate kernels are needed to achieve

global synchronization across the CUDA blocks before proceeding to the next time

38

Figure 3.8: Examples of coalesced global memory access patterns (courtesy of
NVIDIA). Left: coalesced float memory access, resulting in a single memory
transaction. Right: coalesced float memory access (divergent warp), resulting in
a single memory transaction.

39

Figure 3.9: Examples of global memory access patterns that are non-coalesced for
devices of compute capability 1.0 or 1.1 (courtesy of NVIDIA). Left: non-sequential
float memory access, resulting in 16 memory transactions. Right: access with a
misaligned starting address, resulting in 16 memory transactions.

40

Figure 3.10: Examples of global memory access by devices with compute capability
1.2 and higher (courtesy of NVIDIA). Left: random float memory access within
a 64B segment, resulting in one memory transaction. Center: misaligned float

memory access, resulting in one transaction. Right: misaligned float memory access,
resulting in two transactions.

41

step for the computations. The code is composed of two nested loops. The outer

loop is used for time marching to advance the solution in time, and the inner loop is

used for the iterations of the Jacobi solver to numerically solve the pressure Poisson

equation. In the current implementation, the velocity field at time t depends only on

the velocity field at t− 1 (explicit time marching scheme). Six different matrices are

used to represent the velocity fields at the time t (u, v, w) and t− 1 (uold, vold, wold).

Using the same procedure as for the wave equation implementation, the matrices are

swapped at the end of each time step as shown in the code snippet given in Figure 3.11.

In a similar way, the Jacobi solver requires two matrices p and pold, which are swapped

after each iteration of the Jacobi solver. The GPU code is composed of six different

kernels as shown in Figure 3.11), the existence of each being justified by the necessity

of a global synchronization before proceeding to the next step of the computation.

The implementation of the different kernels is given in the Appendix C.

3.2.3 Multi-GPU Implementation

In the multi-GPU implementation, each GPU is responsible for a subdomain of size

NX×NY × (NZ/number of GPUs), as shown in Figure 3.12(a) The whole domain

is represented on the host side while the GPUs only store their respective subdomains

in global memory, and the ghost cells used to update the cells at the bottom and the

top of the subdomain. As shown in Figure 3.12(b), 2 × NX × NY ghost cells need

to be filled with data from the GPUs responsible for the top and bottom neighboring

subdomains. At the GPU level, the subdomain is mapped to a 2D CUDA grid the

same way it was for the single-GPU implementation. With the domain decomposition

shown in Figure 3.12(a), each GPU needs neighboring data computed by other GPUs

which means all GPUs need to synchronize to exchange velocity and pressure fields

42

//for each time step

for (t=0; t < ntstep; t++)

{

//call kernel to compute momentum (ut, vt, wt)

momentum << grid, block >> (u, v, w, uold, vold, wold)

//call kernel to compute boundary conditions

momentum_bc << grid, block >> (u, v, w)

//call kernel to compute the divergence (div)

divergence << grid, block >> (u, v, w, div)

//for each Jacobi solver iteration

for (j=0; j < njacobi; j++)

{

//call kernel to compute pressure

pressure << grid, block >> (u, v, w, p, pold, div)

//rotate matrices

ptemp = pold; pold=p; p=ptemp;

//call kernel to compute boundary conditions

pressure_bc << grid, block >> (p)

}

//call kernel to correct velocity (ut, vt, wt)

correction << grid, block >> (u, v, w, p)

//call kernel to compute boundary conditions

momentum_bc << grid, block >> (u, v, w)

//swap pointers

utemp = uold; uold=u; u=utemp;

vtemp = vold; vold=v; v=vtemp;

wtemp = wold; wold=w; w=wtemp;

}

Figure 3.11: Partial host-side code that implements the projection algorithm [14] to
solve the Navier-Stokes equations for incompressible fluid flow. The outer loop is
used for time stepping while the inner loop is in the iterative solution of the pressure
Poisson equation.

43

(a) (b)

Figure 3.12: a) Subdomain assignment for multi-GPU solution. b) Representation
of the GPU global memory. Each GPU needs ghost cells to represent the top and
bottom neighboring cells which are updated by other GPUs (represented here in red).

at each time step. But a GPU cannot directly exchange data with another GPU.

Hence, ghost cells at the multi-GPU domain decomposition boundaries needs to

be copied back to the host, which adds an extra communication overhead to the

overall computation in addition to the CUDA kernel launches at every time step. As

mentioned earlier, multi-GPU parallelism is not currently addressed by CUDA. One

CPU thread is assigned to each GPU so that each device has its own context on the

host. Figure 3.13 shows the host side code snippet for the multi-GPU implementation

of the projection algorithm. Each CPU thread executes the code given in Figure 3.13.

First the GPUs copy the top and bottom cells of their subdomains from their global

memory to a matrix on the host side. After the GPUs are synchronized using a POSIX

barrier (pthread barrier wait), the GPUs read from the host-side matrix data that

represent their ghost cells and update their global memory. For the velocity field,

this process happens twice per time step, once after the solution of the momentum

44

for (t=0; t < steps; t++)
{

//copy velocity ghost cells from host to GPU
...
momentum<<<grid,block>>>(u,v,w,uold,vold,wold,ngpus,*device);
momentum_bc<<<grid,block>>>(u,v,w,ngpus,*device);
//copy velocity border cells from GPU to host memory
...
//synchronize with other GPUs before reading
pthread_barrier_wait(&barrier);
//copy velocity ghost cells from host to GPU
...
divergence <<< grid, block >>>(u,v,w, div,ngpus,*device);
//for each Jacobi solver iteration
for(m = 0; m< njacobi; m++)
{

pressure <<<grid,block>>>(div,pold,p,ngpus,*device);
ptemp = pold; pold=p; p=ptemp;
pressure_bc <<<grid,block >>>(d_p,ngpus,*device);
//copy pressure border cells from GPU to host memory
...
//synchronize with other GPUs before reading
pthread_barrier_wait(&barrier);
//copy pressure ghost cells from host to GPU
...

}
correction <<<grid,block>>>(u,v,w,p,ngpus,*device);
momentum_bc<<<grid,block>>>(u,v,w,ngpus,*device);
//copy velocity border cells from GPU to host memory
...
//synchronize with other GPUs before reading
pthread_barrier_wait(&barrier);
//rotate matrices
utemp = uold; uold=u; u=utemp;
vtemp = vold; vold=v; v=vtemp;
wtemp = wold; wold=w; w=wtemp;

}

Figure 3.13: Partial host-side code that implements the projection algorithm [14] to
solve the Navier-Stokes equations for incompressible fluid flow. The outer loop is
used for time stepping while the inner loop is in the iterative solution of the pressure
Poisson equation. A CPU thread is created for each available GPU and executes
the code above. Synchronization between the CPU threads is done through a Posix
barrier.

45

equations and once after the correction step. For the pressure field, data exchange

occurs after each Jacobi solver iteration.

3.2.4 GPU Shared Memory Implementation

(a) (b)

Figure 3.14: Two different approaches for shared memory usage in a 4 × 4 block
configuration. Colored cells are updated by the threads while the white cells are only
used as data source (ghost cells). Each cell center represents a computational node.
a) Each thread updates one cell only (red cells). b) Each thread works on 2 cells
in the same vertical column. Cells in red are updated during the first iteration and
orange ones in the second iteration.

Usage of the shared memory (SM) in a kernel is a three-step process. First, the

block threads copy the subdomain they are responsible for from the global memory

to the shared memory. Then computation is done by the threads, using data from the

shared memory. Finally the result of the computation is written back to the global

memory before exiting the kernel. This back and forth data transfer between the

global memory to the shared memory creates an overhead that is not present in a

global memory implementation. Hence, the arithmetic intensity of the kernel should

be sufficiently large to compensate for the overhead of data copying in order to benefit

from the shared memory implementation. One way to achieve this is to increase the

size of the subdomain that is mapped to a thread block. Figure 3.14 compares two

different domain decompositions where each block contains 4 × 4 threads. In the

first one (Figure 3.14(a)), the block is directly mapped to a subdomain of 4 × 4

46

computational nodes. In order to update those computational nodes, the subdomain

and all its surrounding nodes (ghost cells) need to be copied to the shared memory. To

update 4×4 cells, 6×6×3 cells actually need to be copied to the shared memory. In

which case, less than 15% of the shared memory will be updated by the thread block.

The second approach shown in Figure 3.14(b) allows threads to update multiple cells

in a distinct vertical column. In this example each thread works on two cells (one in

the red plane and in the orange plane). The threads are now working on 4 × 4 × 2

cells and 6× 6× 4 cells are required in total. The cells to be updated now represent

22% of the data brought to the shared memory. This can be easily implemented by

having a for loop iterating in the z-direction for each thread. Notice that the number

of iterations in the z-direction is known in advance as it is defined by the programmer.

The directive #pragma unroll can be used to unroll the for loop. Then the cost of

the for loop is not critical while the mapping shown in Figure 3.14(b) reduces the

amount of time spent in transferring data from the global to the shared memory.

As the size of the block and the number of cells to update per thread increase, the

overhead due to data copying to the shared memory is compensated by the time spent

on actual computations. For the current shared memory implementation, each block

works on two different levels in the XY -plane. The size of the shared memory being

limited to 16 KB, no more than four levels (two inner levels and two ghost levels) can

be copied into the shared memory if the block size is 16× 16. Note that if the shared

memory gets too large, few threads can be created at the same time as less registers

are available [42]. An alternative implementation would be to have fewer threads per

block but more levels for each thread to work. Further tests will give us more insight

on the optimal configuration. The way the indices are computed to access global

memory and shared memory with this technique is given in Appendix C.2.

47

3.2.5 Validation

Figure 3.15: Distribution of velocity magnitude and streamlines at steady-state for
Re=1000. Low velocity regions are represented in dark blue while high velocity regions
are represented in red.

To validate the implementation, the GPU solution output was compared to nu-

merical data from Ghia et al. [23] Figure 3.16 shows that the present results obtained

from the GPU code are in excellent agreement with the results of [23]. Figure 3.15

shows the velocity streamlines at steady-state. The flow structure inside a cavity for

various Reynolds numbers is well established. Any mistake in the implementation can

be quickly detected by inspecting the streamlines and the distribution of the velocity

field. For Re = 1000, one should observe a main circulation at the core of the cavity,

and smaller recirculation zones at the bottom corners (Figure 3.15). The size of these

corner vortices increases with the Reynolds number.

48

Figure 3.16: Validation of the GPU code results with benchmark data given in
Reference [23]. Both u and v components of the velocity field are shown.

3.3 Complex Geometry Capability

3.3.1 Additional Features

In order to compute flows in urban environments, new features had to be added

to the Navier-Stokes solver. A geometry capability was added to handle building

effects in the domain. To provide an accurate simulation with turbulent flow, first

the momentum kernel was modified to use the second-order Adams-Bashfort scheme

(Eq 2.10) instead of the first-order Euler scheme (Eq. 2.9). Second, an obstacle logic

was implemented to impose boundray conditions on the buildings. Finally, a new

49

kernel was added to compute the turbulent viscosity defined in Eq. 2.6.

3.3.2 Obstacle Logic

To represent obstacles in the domain, a new logic must be applied to impose boundary

conditions on the pressure and the velocity fields. The obstacles are represented by a

flag matrix of ones and zeros, ones representing obstacles and zeros representing open

spaces. Figure 3.17 is a 2D example of this representation. The pressure gradient

Figure 3.17: Flag matrix used to represent the obstacles at the pressure points. The
gray cells (1’s) represent a building.

at the obstacle boundary should be set to zero. This can be easily achieved using

a mask. This logic is applied directly in the pressure kernel on top of the Poisson

equation:

50

B = (Fi+1,j,k + Fi−1,j,k − 2)× 1

dx2

+ (Fi,j+1,k + Fi,j−1,k − 2)× 1

dy2

+ (Fi,j,k+1 + Fi,j,k−1 − 2)× 1

dz2

A =
(Fi+1,j,k − 1)P n

i+1,j,k + (Fi−1,j,k − 1)P n
i−1,j,k

dx2

+
(Fi,j+1,k − 1)P n

i,j+1,k + (Fi,j−1,k − 1)P n
i,j−1,k

dy2

+
(F,j,ki+1 − 1)P n

i,j,k+1 + (Fi,j,k−1 − 1)P n
i,j,k−1

dz2

P n+1
i,j,k =

1

B
× (

1

dt
div(i, j, k) + A), (3.3)

where F represents the flag matrix (obstacles). A new logic should also be applied

to the velocity field to assure a null velocity inside the buildings and at the walls.

Figure 3.18 describes the logic used to assure a correct U-velocity in the XZ plane.

First the velocity inside the building is set to zero using the following mask:

Ui,j,k = (Fi,j,k − 1)× (Fi+1,j,k − 1)× Ui,j,k

Vi,j,k = (Fi,j,k − 1)× (Fi,j+1,k − 1)× Vi,j,k

Wi,j,k = (Fi,j,k − 1)× (Fi,j,k+1 − 1)×Wi,j,k (3.4)

Note that the walls of the buildings follow the cell edges. Because of the staggered

grid configuration, each velocity component is not coincident with the walls. For

example, the U-velocity in the XY plane is represented at the vertical walls but not

at the horizontal ones (Figure 3.18(a)). To force a null velocity at the horizontal walls

it is necessary to sweep the velocity vectors inside the building (Figure 3.18(b)). The

velocity at the wall is then

51

Uwall = Uext − Uint

= Uext − (−Uext)

= 0 (3.5)

The logic used to sweep the vectors representing the U component of the velocity

relative to the z-direction (horizontal walls) is presented below:

Ui,j,k = Fi,j,k ×

[(Fi,j,k+1 − 1)× Ui,j,k+1 + (Fi,j,k−1 − 1)× Ui,j,k−1

+ (Fi,j,k+1 + Fi,j,k + Fi,j,k−1 − 2)× Ui,j,k]

+ (1− Fi,j,k)× Ui,j,k (3.6)

As the studied domain is 3-D, each velocity component has to be updated twice using

this logic. The same logic is applied to U in the y-direction, to V in the x and z

directions and to W in the x and y directions. The logic used to sweep the vectors

representing the V and W components of the velocity relative to the i-direction

(vertical walls) is presented below:

Vi,j,k = Fi,j,k ×

[(Fi+1,j,k − 1)× Vi+1,j,k + (Fi−1,j,k − 1)× Vi−1,j,k

+ (Fi+1,j,k + Fi,j,k + Fi−1,j,k − 2)× Vi,j,k]

+ (1− Fi,j,k)× Vi,j,k (3.7)

52

Wi,j,k = Fi,j,k ×

[(Fi+1,j,k − 1)×Wi+1,j,k + (Fi−1,j,k − 1)×Wi−1,j,k

+ (Fi+1,j,k + Fi,j,k + Fi−1,j,k − 2)×Wi,j,k]

+ (1− Fi,j,k)×Wi,j,k (3.8)

(a) Staggered configuration (b) Vector sweeping

Figure 3.18: Obstacle logic applied to the U -component of the velocity in the XZ
plane

The corners of the building need to be treated separately, after the vector sweeping

process. For each velocity component the corners are set to zero. The corners to treat

are located using the following logic:

U-velocity (logic applied in the z-direction and j-direction)

GU
i,j,k = Fi,j,k + Fi,j,k+1 + Fi,j,k−1 + Fi+1,j,k + Fi+1,j,k+1 + Fi+1,j,k−1 + Fi−1,j,k

+ Fi,j,k + Fi,j+1,k + Fi,j−1,k + Fi+1,j,k + Fi+1,j+1,k + Fi+1,j−1,k + Fi−1,j,k

(3.9)

V-velocity (logic applied in the z-direction and i-direction)

53

GV
i,j,k = Fi,j,k + Fi,j,k+1 + Fi,j,k−1 + Fi,j+1,k + Fi,j+1,k+1 + Fi,j+1,k−1 + Fi,j−1,k

+ Fi,j,k + Fi+1,j,k + Fi−1,j,k + Fi,j+1,k + Fi+1,j+1,k + Fi−1,j+1,k + Fi,j−1,k

(3.10)

W-velocity (logic applied in the i-direction and j-direction)

GW
i,j,k = Fi,j,k + Fi+1,j,k + Fi−1,j,k + Fi,j,k+1 + Fi+1,j,k+1 + Fi−1,j,k+1 + Fi,j,k−1

+ Fi,j,k + Fi,j+1,k + Fi,j−1,k + Fi,j,k+1 + Fi,j+1,k+1 + Fi,j−1,k+1 + Fi,j,k−1

(3.11)

If (GQ
i,j,k = 7 or GQ

i,j,k = 6) then Qi,j,k is represented at a corner. Qi,j,k is then set to

zero.

As a result, four different kernels are necessary for obstacle capability:

• obstacles zero mask: forces the velocity to be 0 in closed spaces using a mask

• obstacles sweep uvw kii: sweeps U , V and W in the z, x and x directions,

respectively

• obstacles sweep uvw jkj: sweeps U , V and W in the y, z and y directions,

respectively

• obstacles corners: treats the corners of the buildings separately.

The code presented in Figure 3.19 represents the host-side code used for the obstacle

logic. The obstacle logic is applied twice in the main code (Figure 3.20), once after

the predicted velocity is computed and once after the velocity is corrected.

54

obstacles_zero_mask<<< grid, threads >>>
(d_flag, d_unew, d_vnew, d_wnew, d_ut, d_vt, d_wt);

obstacles_sweep_uvw_kii<<< grid, threads >>>
(d_flag, d_ut, d_vt, d_wt, d_unew, d_vnew, d_wnew);

//swap matrices
d_utemp = d_unew; d_unew = d_ut; d_ut = d_utemp;
d_vtemp = d_vnew; d_vnew = d_vt; d_vt = d_vtemp;
d_wtemp = d_wnew; d_wnew = d_wt; d_wt = d_wtemp;

obstacles_sweep_uvw_jkj<<< grid, threads >>>
(d_flag, d_ut, d_vt, d_wt, d_unew, d_vnew, d_wnew);

obstacles_corners<<< grid, threads >>>
(d_flag, d_unew, d_vnew, d_wnew);

Figure 3.19: host-side code used for the obstacle logic

3.3.3 Main Code

Figure 3.20 presents the host-side code for the Navier-Stokes solver with geometry

capability. The obstacle logic code section is summarized in Figure 3.19.

3.3.4 Multi-GPU Implementation

The multi-GPU implementation uses the same domain decomposition among the

GPUs as the one used for the lid-driven cavity problem. As each GPU is responsible

for an horizontal slice of the domain, this decomposition does not minimize data

exchange in an urban-like domain, where the height is the smallest dimension. To

keep the same logic, the problem is flipped so that the height becomes the width.

In this problem the inlet velocity was applied to the W -component and boundary

conditions were updated.

55

//Time marching
for (t=1; t < ntstep; t++)
{

//call kernel to compute momentum (ut, vt, wt)
momentum << grid, block >> (u, v, w, uold, vold, wold)
//apply obstacle logic
...
//call kernel to compute boundary conditions
momentum_bc << grid, block >> (u, v, w)
//call kernel to compute the divergence (div)
divergence << grid, block >> (u, v, w, div)
//for each Jacobi solver iteration
for (j=0; j < njacobi; j++)
{

//call kernel to compute pressure
pressure << grid, block >> (u, v, w, p, pold, div)
//rotate matrices
ptemp = pold; pold=p; p=ptemp;
//call kernel to compute boundary conditions
pressure_bc << grid, block >> (p)

}
//call kernel to correct velocity (ut, vt, wt)
correction << grid, block >> (u, v, w, p)
//apply obstacle logic
...
//call kernel to compute boundary conditions
momentum_bc << grid, block >> (u, v, w)
//rotate matrices
utemp = uold; uold=u; u=utemp;
vtemp = vold; vold=v; v=vtemp;
wtemp = wold; wold=w; w=wtemp;

}

Figure 3.20: Partial host-side code to calculate flow field with 3D obstacles.

56

3.3.5 Final Output

Surface-Mounted Cube

Figure 3.21: Flow around a surface-mounted cube for a laminar regime (Re = 42).
Grid size is 256×128×64. Red streamlines represent high velocity magnitudes while
blue streamlines represent lower velocity magnitudes

Figures 3.21 shows the vortices that occur in a laminar regime (Re = 42) around

and behind the cube. Figure 3.22 compares the results to a FLUENT [4] simulation.

Both pictures show the same recirculation patterns in the front and behind the cube.

Colors differ because of different mapping between FLUENT and ParaView, which

is used to display the results from the GPU simulation. Further validation should be

done by comparing the velocity profiles, in front of the cube and behind it.

Urban-like Domains

Figure 3.23 gives the output of low Reynolds number flow around urban-like domain

for different time steps. The grid is composed of 256×256×64 computational nodes,

representing a domain of 1.28 km × 1.28 km × 320 m. The inlet velocity is Uinlet = 1

57

(a) FLUENT (CPU)

(b) CUDA (GPU)

Figure 3.22: FLUENT (CPU) and CUDA (GPU) simulations for a laminar flow
around a surface-mounted cube (Re = 42). Grid size is 256× 128× 64.

m/s. The viscosity is set to ν = 0.5 m2/s. The Reynolds number, defined here as

Re = Uinlet × (height/4) /ν, is then 155. A first-order upwind scheme is used for the

discretization in space and a first-order Euler scheme is used for time integration.

Figure 3.24 shows simulation outputs for the same settings but using a second order

Adams-Bashfort scheme.

58

Figure 3.23: Low Reynolds number flow in an urban-like domain (Re = 155).
Execution times are relative to the quad-GPU platform running a simulation using
256×256×64 computational nodes and representing a domain of 1.28 km × 1.28 km
× 320 m. Red streamlines represent high velocity magnitudes while blue streamlines
represent lower velocity magnitudes

59

(a) 500 times steps (b) 500 times steps

(c) 1000 times steps (d) 1000 times steps

Figure 3.24: Simulation of a domain of 1.28 km × 1.28 km × 320 m on a 256×256×64
grid using a second-order Adams-Bashfort scheme. The Reynolds number for these
simulations is Re = 155 and 1000 times steps represent over 10 minutes of physical
time.

60

CHAPTER 4

COMPUTATIONAL PERFORMANCE ANALYSIS

4.1 2D Wave Equation

Figure 4.1: Acceleration of the wave simulation. GPU speedup relative to a serial
CPU implementation is plotted for different physical domain sizes. The single GPU
solution gives constant speedup over the serial code while the dual-GPU results
indicate speedup for sufficiently large problems.

The overhead caused by the ghost cell transfer from the device to the host memory

and vice versa is an important issue when small problems are considered for the

dual-GPU solution. For a 1024 × 1024 domain the speedup with the dual-GPU is

barely greater than the speedup obtained with a single GPU. As the problem size gets

61

larger, the performance of the dual-GPU solution gives a scaling factor of 1.79, which

is closer to the ideal scaling factor of 2× relative to a single GPU implementation.

The overhead of the dual GPU implementation over the single GPU implementation

is defined as

τdual =
2× speedupsingle − speedupdual

2× speedupsingle

(4.1)

where speedupsingle is the single GPU speedup relative to the serial CPU code, and

speedupdual is the dual-GPU speedup relative to the serial CPU code. Figure 4.2 shows

that the overhead drops to about 10% when working on an 8192× 8192 domain. The

Figure 4.2: Overhead of the dual GPU implementation over the single GPU imple-
mentation.

ratio of number of ghost cells to the total number of computational nodes decreases

with increasing problem size. For example when the domain width is doubled (overall

domain size quadruples), the GPUs have to compute 4 times more cells. On the other

hand the number of ghost cells to be exchanged across GPUs only doubles in size.

As the communication overhead is directly proportional to the number of ghost cells,

62

multi-GPU solutions will be more adapted to large scale problems where the overhead

of ghost cell communication across the GPUs is less significant than the computation

of the inner cells on the GPUs.

Preliminary results have shown that a dual-GPU configuration is feasible, and it is

a promising platform to accelerate the numerical solution of PDEs. The single-GPU

implementation offers a quite constant speedup (around 7.5) with different problem

sizes, whereas the dual-GPU performance is more dependent on the problem size.

The speedup ranged from 7.8 to 13.8 due to the trade off between communication

and computation. Better speedup and scaling performance were observed as the

physical problem size increased. This is an encouraging result as most practical CFD

applications are computationally intensive efforts.

4.2 Incompressible Navier-Stokes Solver

4.2.1 Serial CPU Code Benchmarking

Table 4.1 shows that the performance of the in-house serial CFD code is comparable to

the NPB benchmark codes in terms of single precision Giga Floating Point Operations

per Second (GFLOPS). Using only a single core, the performance of our CFD code

is approximately 1.6 GFLOPS on the Intel Core 2 Duo 3.0 GHz, 1.0 GFLOPS on the

AMD Opteron 2.4 GHz processors. Interestingly, the GFLOPS performance drops to

approximately 0.50 when the computational problem size is substantially increased.

Figure 4.3 shows more details about the performance of our serial CPU version

CFD code with increasing problem size. Before proceeding to the GPU speedup

assessment, the FLOPS performance of the serial CPU implementation of the CFD

code was tested against comparable applications. Both the serial CPU version and

63

Table 4.1: GFLOPS performance of the serial CPU version of our CFD code and
NPB benchmark codes on two different computers (Intel Core 2 Duo (E8400) 3.0
GHz and AMD Opteron (8216) 2.4 GHz). LU factorizes an equation into lower and
upper triangular systems. The iteration loop of MG consists of the multigrid V-cycle
operation and the residual calculation. SP is a simulated CFD application. Our CFD
code simulates a lid-driven cavity problem.

GFLOPS Ratio
Benchmark Size Intel Core 2 Duo AMD Opteron Intel / AMD

3.0 GHz 2.4 GHz

LU.S 12× 12× 12 2.52 1.55 1.62
LU.W 33× 33× 33 2.54 1.02 2.48
LU.A 64× 64× 64 2.13 0.68 3.13
LU.B 102× 102× 102 1.20 0.68 1.78

MG.S 32× 32× 32 2.35 1.26 1.86
MG.W 128× 128× 128 1.64 0.87 1.88
MG.A 256× 256× 256 1.67 0.73 2.29
MG.B 256× 256× 256 1.78 0.79 2.27

SP.S 12× 12× 12 3.00 1.55 1.94
SP.W 36× 36× 36 2.36 0.76 3.09
SP.A 64× 64× 64 1.46 0.70 2.08
SP.B 102× 102× 102 1.38 0.49 2.81

in-house 32× 32× 32 1.58 1.03 1.54
CFD code 1024× 32× 1024 1.42 0.54 2.64

GPU version of our CFD code use the same numerical methods. The NAS Parallel

Benchmarks [5] (NPB’s) were derived from CFD codes. NPB was designed to compare

the performance of parallel computers and it is widely recognized as a standard

indicator of computer performance. In Table 4.1 the LU, MG and SP benchmarks

from NPB are compared to the in-house developed serial CFD code written in C.

The code was compiled with GNU C Compiler [22] (gcc) using optimization level

O3 with CPU architecture specifications (i.e., -march=core2 for Intel Core 2 Duo;

64

-march=opteron for the AMD Opteron). The NPB benchmarks were compiled with

the Intel Fortran compiler. On the Intel Core 2 Duo 3 GHz processor, the serial

Figure 4.3: GFLOPS performance of the serial (CPU) in-house developed CFD code
with increasing domain sizes.

CPU version of the CFD code performs pretty well as the GFLOPS number drops

only by 10% when the domain size increases by a factor of 1024 (i.e., domain size

increases from 323 to 10242 × 32). To put this into context, the SP benchmark

performance drops by 54% when the domain size increases by a factor of 614 (i.e.,

domain size increases from 123 to 1023). Figure 4.3 shows single precision GFLOPS

performance drop on AMD Opteron 2.4 GHz when the domain size gets larger than

128×32×128 (20 MB in memory). This was also observed with the NPB benchmark

codes for problem sizes requiring over 20 MB of memory. The results shown in

Figure 4.3 and Table 4.1 indicate that the serial CPU version of our CFD code is

fairly optimized, giving performance comparable to NPB benchmark codes. Advance

65

code optimizations techniques may improve the GFLOPS performance of the serial

CPU version of our CFD code, but it is not pursued in the present study.

4.2.2 Kernel Acceleration Using the Shared Memory

Projection algorithm involves distinct steps in a predictor-corrector fashion in the

solution of the fluid flow equations. In the current study, each step is implemented

as a kernel to be computed on the GPU. Both global and shared memory versions of

the kernels were implemented. Figure 4.4 shows the benefit of adopting the shared

memory depending on the kernel. Usage of the shared memory in the momentum and

Figure 4.4: Kernel speedup of shared memory implementation relative to a full
global memory implementation (domain size is 256 × 32 × 256). Tests showed that
the momentum and pressure kernels benefit from a shared memory implementation,
giving a speedup of more than 2× relative a kernel implementation that uses only the
global memory.

pressure kernels make them perform over 2× faster relative to a kernel implementa-

tion that uses only the global memory. These two kernels benefit from the shared

memory because the overhead due to copying data to the shared memory is largely

66

compensated by their high arithmetic intensity and the need for each thread to access

memory in a non-coalesced way. For the momentum and the pressure kernels, each

thread needs to read the current value of the cell but also the ones from its direct

neighbors in the x, y and z directions. The value to be updated can be accessed

in a coalesced way but not its neighbors. The other kernels (velocity correction and

boundary conditions for momentum and pressure) are not presented as they are similar

to the divergence kernel in terms of the arithmetic operations. Either their arithmetic

intensity is very low (boundary conditions) or the threads needs to access only a few

data in a non-coalesced way (velocity correction). Figure 4.5 shows that using the

Figure 4.5: GPU speedup relative to the serial (CPU) code for global memory-only
and optimized versions (domain size is 256 × 32 × 256). The optimal solution uses
shared memory for the momentum and pressure kernels while the other kernels use
global memory only.

shared memory only for pressure and momentum kernels (optimal solution) makes

the application run twice faster. Note that the GPU code would perform slower if all

the kernels were implemented using the shared memory on the device. Hence, this

implementation of the incompressible Navier-Stokes equations on a GPU is uniquely

67

adapted to the device memory architecture for superior performance in computational

speed.

4.2.3 GPU Speedup Relative to CPU

Figure 4.6: GPU speedup over serial CPU code for a domain of 1024 × 32 × 1024
computational nodes. Quad-GPU results are not available for the Intel Core 2 Duo
configuration because no quad-GPU/dual Intel Core 2 Duo platform was available
for this study.

Using only a single CPU core, the serial CPU version of our CFD code takes 82,930

seconds on the Intel Core 2 Duo 3.0 GHz CPU and 218,580 seconds on AMD Opteron

2.4 GHz CPU to simulate the lid-driven cavity problem with a computational grid of

1024× 32× 102 for 10,000 time steps. The serial CPU version of the CFD code runs

faster on Intel Core 2 Duo CPU than on AMD Opteron CPU because of its larger

L2 cache and its better clock frequency. On the other hand the execution time for

68

the GPU code is barely dependent on the CPU clock speed. GPU performance was

nearly the same on both the Intel and AMD platforms. As a result GPU performance

relative to the CPU performance is better for the AMD Opteron 2.4 GHz platform

as shown in Figure 4.6. On the Intel Core 2 Duo platform the GPU code performs 13

and 21 times faster than the CPU code with one and two GPUs, respectively. On the

AMD Opteron 2.4 GHz platform the GPU code performs 33, 53 and 100 times faster

using one, two and four GPUs respectively. In the wave equation only one kernel

was launched per time step. For the lid-driven cavity, multiple kernels are launched

but the overhead is compensated by the higher arithmetic intensity of each kernel,

especially for the momentum and pressure kernels. For example, it takes about 240

floating point operations to compute the velocity at a certain computational node

(momentum kernel), while only 9 operations are necessary for the wave amplitude.

4.2.4 Multi-GPU Scaling Analysis

Figure 4.7 shows computational speedup with respect to different problem sizes.

On the AMD Opteron platform (Figure 4.7(a)), depending on the problem size,

the quad-GPU performance varies from 10× to 100× relative to the serial CPU

version of the CFD code. On the Intel Core 2 Duo platform (Figure 4.7(b)), the

dual-GPU performance varies from 5× to 21×. The speedup numbers are impressive

for large problem size, because the arithmetic intensity on each GPU increases with

problem size, and the time spent on data communication among GPUs compared

to the time spent on computation becomes relatively shorter. For small problems, a

multi-GPU computation performs slower than the single-GPU computation. On the

AMD Opteron platform, for a problem of size 64 × 32 × 64, the dual-GPU solution

performs slower than the single-GPU, and the quad-GPU solution performs slower

69

(a) AMD Opteron 2.4 GHz with NVIDIA S870 Quad Tesla server

(b) Intel Core 2 Duo 3.0 GHz with dual NVIDIA C870 Tesla boards

Figure 4.7: Single and multi-GPU speedup relative to a single CPU core

70

Figure 4.8: Multi-GPU scaling on the S870 server with dual-CPU platform. The
multi-GPU platform does not scale well when then there is not a one CPU core per
GPU ratio.

than the dual-GPU (Figure 4.7(a)). As more GPUs are available, the domain treated

in the simulation should be larger to have each GPU working on large subdomain, and

hide the latency due to GPU data exchange. Based on the current implementation,

tests have shown that performance is better when there is a one-to-one matching

between the number of GPUs and number of CPUs on desktop platforms. For

example, Figure 4.8 shows that a dual-CPU platform coupled to the quad-GPU S870

server does provide any gain in performance over a dual-CPU dual-GPU Tesla C870

platform. Note that this statement is dependent on the current implementation, and

performance may be improved by overlapping communication with computation.

Figure 4.9 shows the multi-GPU performance scaling on the NVIDIA Tesla S870

server. The speedup results shown in Figure 4.7(a) are converted to scaling numbers.

By increasing the problem size and adjusting the size of the data to exchange between

the GPUs, the performance on the quad-GPU platform is 3× the performance of

a single GPU, and the dual-GPU solution performs 1.6× faster than the single

71

Figure 4.9: Multi-GPU scaling on the S870 server with quad-CPU platform. As the
problem size increases the multi-GPU solutions scale better.

GPU. These performance numbers are less than the ideal performance numbers of

4× and 2×, respectively. The bottleneck of the multi-GPU solution is the data

exchange between the GPUs, which requires synchronization and data transfer form

the different GPUs to the host and vice versa.

4.3 Complex Geometry Capability Implementation

4.3.1 Impact of Thread Block Configuration

In this section, the execution time of the code for 3 different thread block configuration

is analyzed. The simulation was run for 200 time steps and the Jacobi solver was

set to use 20 iterations per time step. With an 8× 8 thread block configuration the

overall compute time is 198 seconds. This is twice slower than the 16× 8 or 16× 16

configuration (around 98 seconds). Figure 4.10 and Table 4.2 present the time spent

in each kernel for the three block configurations. First, the pressure and the obstacle

logic kernels are the most time-consuming kernels. The pressure kernel is actually

called 20 times per timestep to solve the poisson equation, which explains why it is

72

Figure 4.10: Comparison of kernel execution times for different block configurations.
The urban-like domain was represented by a 256× 256× 64 grid and each simulation
ran for 200 time steps.

Table 4.2: Kernel execution times for different block configurations. The urban-like
domain was represented by a 256 × 256 × 64 grid and each simulation ran for 200
time steps.

8× 8 thread block 16× 8 thread block 16× 16 thread block
Kernel Time Weight Time Weight Time Weight

momentum 9.26 s 5.07 % 11.31 s 11.44 % 7.14 s 7.27 %
momentum bc 0.47 s 0.26 % 0.46 s 0.47 % 0.48 s 0.49 %
divergence 2.89 s 1.59 % 1.25 s 1.27 % 1.29 s 1.31 %
pressure 100.49 s 55.08 % 48.18 s 48.75 % 49.35 s 50.27 %
pressure bc 3.06 s 1.68 % 3.81 s 3.86 % 4.10 s 4.17 %
correction 8.08 s 4.43 % 3.18 s 3.22 % 3.31 s 3.37 %
obstacle logic 58.19 s 31.89 % 30.61 s 30.97 % 32.49 s 33.09 %

73

the most time-consuming kernel for any configuration. The obstacle logic kernels is

actually a set of 3 kernels, each being called twice per time step (after the predicted

velocity is computed and after the velocity correction). Surprisingly, the momentum

kernel is the only one benefiting from a 16×16 thread configuration. The pressure bc

kernel is actually faster with an 8×8 thread block configuration. All the other kernels

are faster with 16×8 threads per block. Those tests confirmed that each kernel should

be tested separately as the optimal thread block configuration is dependent on the

kernel implementation.

4.3.2 Weight of Data Transfer in Multi-GPU Implementation

Table 4.3 shows that about 93% of the execution time is spent in kernel execution

and about 7% is spent in data exchange between the GPUs through the host. This

does not include the time spent waiting during thread synchronization which actually

forces each GPU to wait for the slowest GPU to finish updating the ghost cells on

the host side. The weight of most data transfers is below 1% (Table 4.3). Transfers 3

and 4 are executed at each iteration of the Jacobi solver. It represents about 10% of

the time spent in the pressure kernel. Like the pressure kernel, these data transfers

would take less time overall if the Jacobi solver used less iterations. Data transfers

in general are faster for GPU 0 and 3 as GPU 0 requires ghost cells only for the

top layer of its subdomain and GPU 3 requires ghost cells only for the bottom layer

(Figure 3.12(a)).

Bandwidth tests for host-to-device memory transfers and device-to-device memory

transfers are given in Table A.1. Results show that pinned memory should be

preferred over pageable memory. Data transfers using pinned memory are twice

faster for the S870 quad-GPU system and about 1.6 times faster for the C870 boards.

74

Table 4.3: Execution time of the different kernels and data exchange in a quad-GPU
simulation. An urban-like domain was represented by a 256× 256× 64 grid and each
simulation ran for 1000 time steps.

Execution time (s) Average time (s) Weight
GPU 0 GPU 1 GPU 2 GPU 3

Kernel
momentum 8.83 8.94 8.93 9.50 9.05 4.86%
momentum bc 0.80 0.78 0.76 0.78 0.78 0.42%
divergence 1.65 1.67 1.66 1.75 1.68 0.90%
pressure 99.85 101.12 101.01 99.79 100.44 53.92%
pressure bc 7.28 7.13 7.03 7.15 7.14 3.84%
correction 4.55 4.61 4.60 4.66 4.60 2.47%
obstacle logic 48.09 48.73 48.68 49.37 48.72 26.15%

Ghost cell exchange
transfer 0 0.65 0.95 1.04 0.71 0.84 0.45%
transfer 1 0.45 0.91 0.91 0.47 0.68 0.37%
transfer 2 0.85 1.21 1.31 0.88 1.06 0.57%
transfer 3 4.05 5.61 5.48 3.81 4.73 2.54%
transfer 4 4.37 6.59 7.52 4.82 5.83 3.13%
transfer 5 0.45 0.96 0.96 0.58 0.73 0.39%

Ghost cell exchange sections:

transfer 0: copy u,v,w from host to device (before momentum kernel)
transfer 1: copy u,v,w from device to host (before divergence kernel)
transfer 2: copy u,v,w from host to device (before divergence kernel)
transfer 3: copy p from device to host (in the Jacobi solver)
transfer 4: copy p from host to device (in the Jacobi solver)
transfer 5: copy u,v,w from device to host (before starting a new time step)

75

Table 4.4: Register usage (single and multi-GPU implementations)

Register usage (per thread)
Kernel Single-GPU Multi-GPU

momentum 29 32
momentum bc 11 11
divergence 9 9
pressure 14 18
pressure bc 13 12
correction 12 12
obstacles zero mask 9 14
obstacles sweep uvw kii 14 17
obstacles sweep uvw jkj 14 19
obstacles corners 17 17
nu turbulent 9 9

Depending on the hardware and the type of memory, data transfers from host to device

are between 20 and 90 times slower than local device memory transfers. Bandwidth

tests on the new Tesla C1060 using a PCI Express Gen. 2 bus show that data

transfers using pinned memory are almost twice faster than for the C870 utilized

in this research. The multi-GPU implementation would benefit from this platform,

along with the faster on-device memory provided by the C1060.

4.3.3 Register Usage

The GPUs utilized for this research allow 8192 registers per block. Using a 16 × 16

thread configuration, each kernel can use a maximum of 8192/256 = 32 registers

per threads. Table 4.4 presents the number of registers used in the different kernels.

Modifications on the momentum kernel had to be done to reduce the number of

76

Figure 4.11: Single and multi-GPU speedup relative to a single CPU core of an AMD
Opteron 2.4 GHz for urban simulations

registers to 32 per thread. Experience showed that reducing the register pressure

is a complicated exercise when dealing with complex kernel implementations. If

the number of registers cannot be reduced to 32, then the number of threads per

blocks has to be reduced, which might cause a loss of performance depending on

the kernel implementation. The new NVIDIA GPUs, such as the Tesla C1060, have

twice more registers available, for a total of 16384 registers per block. This allows the

implementation of more complex kernels and usage of more local variables.

4.3.4 Speedup Analysis

Figure 4.3.4 shows the speedup of the CUDA implementation for urban-like domains

relative to a single CPU core of an AMD Opteron 2.4 GHz. The serial code followed

a straightforward implementation. The CPU algorithms need to be optimized for a

fair comparison relative to a GPU implementation. For a domain of 256 × 256 × 64

the serial C code uses about 210 MB of memory. As the size of the domain increases

by a factor of 4 (512 × 512 × 64) the serial code needs actually over 5 times longer

77

to run the same number of time steps. The differences of speedup for the single

and dual-GPU for the two different problem sizes is due to this slow down in the

serial code for increasing domains. On the other hand, the quad-GPU scales well and

performs better for the larger domain, even by taking the serial C code slowdown in

consideration. The quad-GPU implementation actually performs almost twice faster

than the dual-GPU. For a domain size of 256 × 256 × 64 the quad-GPU performs

2.6 times and 2.8 times faster than the single GPU implementation. These results

confirm that the multi-GPU implementation is suitable for big problems.

78

CHAPTER 5

CONCLUSIONS

5.1 Results

This thesis presents the implementation of the Navier-Stokes equations for incom-

pressible fluid flow on desktop platforms with multi-GPUs. NVIDIA’s CUDA pro-

gramming model was used to implement the discretized form of the governing equa-

tions. The major steps of the projection algorithm [14] are implemented with separate

CUDA kernels, and a unique implementation that exploits the memory hierarchy of

the CUDA programming model is suggested. Kernels for the velocity predictor step

and the solution of the pressure Poisson equation were implemented using the shared

memory of the device, whereas a global memory implementation was pursued for the

kernels that are responsible to calculate the divergence field and velocity corrections

and to apply the boundary conditions. This unique combination resulted in factor of

two speedup relative to a full global memory implementation on the device. Overall,

the numerical solution of incompressible fluid flow equations was accelerated by a

factor of 100 using the NVIDIA S870 Tesla server with quad GPUs. The speedup

number is measured relative to the serial CPU version of the CFD code that was

executed using a single core of an AMD Opteron 2.4 GHz processor. With respect

to a single core of an Intel Core 2 Duo 3.0 GHz processor, a speedup of 13 and 21

was achieved with single and dual GPUs (NVIDIA Tesla C870), respectively. Single

79

precision computations and same numerical methods were adopted in both the CPU

and GPU versions of the CFD code. Tests showed that multi-GPU scaling and

speedup results improve with increasing computational problem size, suggesting that

computationally big problems can be tackled with GPU clusters with multiple GPUs

in each node. Scaling results also showed that in a multi-GPU desktop platform, one

CPU core should be dedicated to each active GPU in order to obtain good scaling

performance across multi-GPUs.

An urban geometry capability was also added to the Navier-Stokes solver to model

building effects on the flow-field. A novel obstacle logic was applied to the pressure

and velocity fields. This was achieved by creating four extra kernels and updating the

existing ones. Using the quad-GPU system (NVIDIA Tesla S870), a low Reynolds

number (Re = 155) flow-field computation of 22 minutes (1000 time steps) in an

urban-like domain of 1.28 km × 1.28 km × 320 m was simulated in 3 minutes.

This work represents the first incompressible Navier-Stokes solver based on a CUDA

implementation for multi-GPU desktop platforms. Results showed that multi-GPU

desktop platforms have substantial potential for large CFD problems.

Preliminary tests with the Tesla C1060 showed that multi-GPU simulations could

be accelerated by a factor of 5 by using the latest NVIDIA GPU hardware on PCIe

Gen.2 bus. While the PCIe Gen.2 bus offers a better bandwidth for data transfers

from host to device, the new Tesla C1060 allows more coalesced accesses than its

predecessors and offers a better memory bandwidth at the GPU level. Multi-GPU

platforms will definitely benefit from the GPU hardware evolutions and should be

seriously considered as a new solution for high performance computing in CFD.

80

5.2 Further Work

This work lays the foundation for an urban dispersion model on multi-GPU desktop

platforms. A turbulent model was prototyped by adding a kernel to compute the

turbulent viscosity. The momentum kernel was modified to use a second-order Adams-

Bashfort scheme. Validation of a turbulent model was beyond the scope of this thesis

and would require numerous tests against benchmark data. But preliminary results

show that a Navier-Stokes-based urban dispersion model is feasible on a multi-GPU

platform. New kernels for the transport equation for contaminant dispersion would

have to be added to the existing set. Advection schemes for contaminant transport

that minimizes numerical diffusion while ensuring physically correct values need to

be implemented. As discussed by Blocken et al. [8], a realistic urban simulation needs

to address the atmospheric boundary layer. Wall functions would have to be defined

and applied to the buildings for more accurate wind-field computation. The Jacobi

solver used here for the pressure Poisson equation should be used in conjunction with

a multigrid method. It would enforce conservation of mass strictly at each timestep.

This is necessary as turbulent flows are very sensitive to numerical errors.

In the current implementation of the Navier-Stokes solver, a uniform grid is used

to represent the domain. As more features are added to the basic Navier-Stokes

solver, more kernels and more computation is required. Extending this work to use

an adapted mesh would avoid unnecessary computation while focusing on the domain

areas of interest, such as city rifts.

The output of the simulation is currently a Plot3D file that represents the different

quantities of interest in the studied domain. This type of file can be used as an input

by almost every visualization tool, such as ParaView. Then, after a simulation the

81

output needs to be post-processed. A visualization software can present the quantities

of interest as streamlines, contours, velocity vectors, etc. More detailed analysis can

also be done through profile plotting. The Tesla cards that were used during this

research do not offer any video output. But switching to a different hardware, such

as a GPU card from the GeForce series, would enable simple display during the

simulation in addition to the Plot3D output. The implementation on the GPU side

would require an interface with OpenGL, which is offered in CUDA.

82

REFERENCES

[1] K.J. Allwine and J.E. Flaherty. Urban Dispersion Program Overview and
MID05 Field Study Summary. Technical report, PNNL-16696, Pacific Northwest
National Laboratory (PNNL), Richland, WA (US), 2007.

[2] K.J. Allwine, M.J. Leach, L.W. Stockham, J.S. Shinn, R.P. Hosker, J.F. Bowers,
and J.C. Pace. Overview of Joint Urban 2003–An atmospheric dispersion study
in Oklahoma City. 8th Symposium on Integrated Observing and Assimilation
Systems for Atmospheres, Oceans, and Land Surface, 2004.

[3] J.A. Anderson, C.D. Lorenz, and A. Travesset. General Purpose Molecular
Dynamics Simulations Fully Implemented on Graphics Processing Units. Journal
of Computaional Physics, 227(10):5342–5359, May 2008.

[4] ANSYS, Inc. Fluent, CFD Flow Modeling Software & Solutions, Version 6.3.26.
http://www.fluent.com/.

[5] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum,
R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon,
V. Venkatakrishnan, and S.K. Weeratunga. The NAS Parallel Benchmarks.
International Journal of Supercomputer Applications and High Performance
Computing, 5(3):63–73, 1991.

[6] S. Barrachina, M. Castillo, F.D. Igual, R. Mayo, and E.S. Quintana-Ortı. Solving
Dense Linear Systems on Graphics Processors. Technical report, Technical
Report ICC 02-02-2008, Universidad Jaume I, Depto. de Ingenieria y Ciencia
de Computadores, February 2008.

[7] A. Bleiweiss. GPU Accelerated Pathfinding. In Proceedings of the 23rd ACM
Siggraph/Eurographics symposium on Graphics hardware, pages 65–74. Euro-
graphics Association Aire-la-Ville, Switzerland, 2008.

[8] B. Blocken, T. Stathopoulos, and J. Carmeliet. CFD Simulation of the Atmo-
spheric Boundary Layer: Wall Function Problems. Atmospheric Environment,
41(2):238–252, 2007.

[9] T. Brandvik and G. Pullan. Acceleration of a 3D Euler Solver Using Commodity
Graphics Hardware. 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.

83

[10] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan. Brook for GPUs: Stream Computing on Graphics Hardware.
ACM Transactions on Graphics, 23(3):777–786, August 2004.

[11] M. Castillo, E. Chan, F.D. Igual, R. Mayo, E.S. Quintana-Ortı, G. Quintana-
Ortı, R. van de Geijn, and F.G. Van Zee. Making Programming Synonymous with
Programming for Linear Algebra Libraries. FLAME Working Note, 31:08–20,
April 2008.

[12] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon.
Parallel Programming in OpenMP. Morgan Kaufmann, 2001.

[13] S. Che, J. Meng, J.W. Sheaffer, and K. Skadron. A performance study of general
purpose applications on graphics processors. In The First Workshop on General
Purpose Processing on Graphics Processing Units, 2007.

[14] A.J. Chorin. Numerical Solution of Navier-Stokes Equations. Mathematics of
Computation, 22(104):745–762, 1968.

[15] S.R. Diehl, D.A. Burrows, E.A. Hendricks, and R. Keith. Urban Dispersion
Modeling: Comparison with Single-Building Measurements. Journal of Applied
Meteorology and Climatology, 46(12):2180–2191, 2007.

[16] E. Elsen, P. LeGresley, and E. Darve. Large calculation of the flow over a
hypersonic vehicle using a GPU. Journal of Computational Physics, 2008.

[17] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU Cluster for High
Performance Computing. In Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 47. IEEE Computer Society Washington, DC, USA, 2004.

[18] J.H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer
New York, 2002.

[19] J.E. Flaherty, K.J. Allwine, M.J. Brown, W.J. Coirier, S.C. Ericson, O.R.
Hansen, A.H. Huber, S. Kim, M.J. Leach, J.D. Mirocha, et al. Evaluation study
of building-resolved urban dispersion models. In 7th Symposium on the Urban
Environment, 2007.

[20] J.E. Flaherty, D. Stock, and B. Lamb. Computational Fluid Dynamic Sim-
ulations of Plume Dispersion in Urban Oklahoma City. Journal of Applied
Meteorology and Climatology, 46(12):2110–2126, 2007.

[21] MPI Forum. The Message Passing Interface (MPI) Standard.
http://www-unix.mcs.anl.gov/mpi/.

84

[22] GCC, GNU Compiler Collection, Ver. 4.1.2, Sept. 2007. http://gcc.gnu.org.

[23] U. Ghia, K.N. Ghia, and C.T. Shin. High-RE Solutions For Incompressible-
Flow Using the Navier-Stokes Equations and a Multigrid Method. Journal of
Computational Physics, 48(3):387–411, 1982.

[24] A. Gowardhan. Towards Understanding Flow and Dispersion in Urban Areas
Using Numerical Tools. PhD thesis, University of Utah, UT, 2008.

[25] A. Gowardhan, E.R. Pardyjak, I. Senocak, and M.J. Brown. A CFD Based Wind
Solver For a Fast Response Dispersion Model. In Seventh Biennial Tri-Laboratory
Engineering Conference, Albuquerque, New Mexico, May 2007.

[26] M.J. Harris. Real-Time Cloud Simulation and Rendering. PhD thesis, University
of North Carolina, 2003.

[27] J. Heagy, N. Platt, S. Warner, and J. Urban. Joint Ef-
fects Model Urban IPT. CBIS Conference, Austin TX, 2007.
http://www.dtic.mil/ndia/2007cbis/thursday/heagyThurs945.pdf.

[28] E.A. Hendricks, S.R. Diehl, D.A. Burrows, and R. Keith. Evaluation of a Fast-
Running Urban Dispersion Modeling System Using Joint Urban 2003 Field Data.
Journal of Applied Meteorology and Climatology, 46(12):2165–2179, 2007.

[29] J.L. Hennessy, D.A. Patterson, D. Goldberg, and K. Asanovic. Computer
Architecture: A Quantitative Approach. Morgan Kaufmann, 2003.

[30] M. Houston. Stream Computing. In International Conference on Computer
Graphics and Interactive Techniques, ACM SIGGRAPH 2008 classes, num-
ber 15. ACM Press/Addison-Wesley Publishing Co. New York, NY, 2008.

[31] W. Li, Z. Fan, X. Wei, and A. Kaufman. GPU-Based Flow Simulation with
Complex Boundaries. GPU Gems, 2:747–764, 2005.

[32] W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig. Molecular Dynamics
Simulations on Commodity GPUs with CUDA. Lecture Notes in Computer
Science, 4873:185, 2007.

[33] Y. Liu, X. Liu, and E. Wu. Real-time 3D fluid simulation on GPU with complex
obstacles. In Computer Graphics and Applications, 2004. PG 2004. Proceedings.
12th Pacific Conference on, pages 247–256, 2004.

[34] J. Michalakes and M. Vachharajani. GPU Acceleration of Numerical Weather
Prediction. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1–7. IEEE Computer Society, Washington,
DC, 2008.

85

[35] J. Molemaker, J.M. Cohen, S. Patel, and J. Noh. Low Viscosity Flow Simula-
tions for Animation. Eurographics/ACM SIGGRAPH Symposium on Computer
Animation, 2008.

[36] Nvidia. CUDA Zone, the resource for CUDA developers.
http://www.nvidia.com/cuda.

[37] Nvidia. CUDA Programming Tools, 2007.
http://www.nvidia.com/object/cuda programming tools.html.

[38] Nvidia. CUDA Compute Unified Device Architecture Programming Guide, Ver-
sion 2.0, 2008. http://www.nvidia.com/object/cuda documentation.html.

[39] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips.
GPU Computing. Proceedings of the IEEE, 96(5):879–899, May 2008.

[40] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krueger, A.E. Lefohn, and
T.J. Purcell. A Survey of General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

[41] G. Patnaik, J.P. Boris, T.R. Young, and F.F. Grinstein. Large scale urban
contaminant transport simulations with MILES. Journal of Fluids Engineering,
129:1524, 2007.

[42] S. Ryoo, C.I. Rodrigues, S.S. Baghsorkhi, S.S. Stone, D.B. Kirk, and W.H.
Wen-mei. Optimization Principles and Application Performance Evaluation of a
Multithreaded GPU Using CUDA. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 73–82.
ACM New York, NY, 2008.

[43] M.C. Schatz, C. Trapnell, A.L. Delcher, and A. Varshney. High-Throughput
Sequence Alignment Using Graphics Processing Units. BMC Bioinformatics,
8:474, 2007.

[44] I. Senocak, J. Thibault, and M. Caylor. Rapid-response Urban CFD Simula-
tions Using a GPU Computing Paradigm on Desktop Supercomputers. In 8th
Symposium on the Urban Environment, 2009.

[45] J. Stam. Stable fluids. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 121–128. ACM Press/Addison-Wesley
Publishing Co. New York, NY, 1999.

[46] J.A. Stratton, S.S. Stone, and W.H. Wen-mei. MCUDA: An Efficient Imple-
mentation of CUDA Kernels on Multi-cores. Center for Reliable and High-
Performance Computing, 2008.

86

[47] M. Strengert, C. Müller, C. Dachsbacher, and T. Ertl. CUDASA: Compute
Unified Device and Systems Architecture. In EG Symp. Parallel Graph. Vis., S,
pages 49–56, 2008.

[48] J.C. Tannehill, D.A. Anderson, and R.H. Pletcher. Computational Fluid Me-
chanics and Heat Transfer. Taylor & Francis Group, 1997.

[49] J. Thibault and I. Senocak. CUDA Implementation of a Navier-Stokes Solver on
Multi-GPU Desktop Platforms for Incompressible Flows. 47th AIAA Aerospace
Sciences Meeting and Exhibit, 2008.

[50] J. Thibault and I. Senocak. Accelerating the Incompressible Flow Computations
with a Multi-GPU Computing Paradigm. 10th U.S. National Congress for
Computational Mechanics, July 2009.

[51] J. Toelke and M. Krafczyk. TeraFLOP Computing on a Desktop PC with GPUs
for 3D CFD. International Journal of Computational Fluid Dynamics, 22(7):443–
456, 2008.

[52] I.S. Ufimtsev and T.J. Mart́ınez. Quantum Chemistry on Graphical Processing
Units. 1. Strategies for Two-Electron Integral Evaluation. Journal of Chemical
Theory and Computation, 4(2):222–231, 2008.

87

APPENDIX A

HIGH PERFORMANCE COMPUTING

INFRASTRUCTURE

A.1 GPU Hardware Specifications

• Tesla C870 GPU Computing Processor (Figure A.1(a))

128 streaming processor cores at 1.35 GHz

1.5 GB of dedicated memory at 800 MHz

76.8 GB/sec of memory bandwidth

Fits in one full-length, dual slot with one open PCI Express x16 slot

• GeForce 9800 GX2 (Figure A.1(b))

Dual-GPU system

256 thread processors (128 per GPU) at 1.5 GHz

1 GB of dedicated memory at 1000 MHz

64 GB/sec of memory bandwidth per GPU

• Tesla S870 GPU Computing System (Figure A.1(c))

4 × Tesla GPUs (128 thread processors per GPU)

6 GB of dedicated memory (1.5 GB per GPU) at 800 MHz

88

76.8 GB/sec of memory bandwidth per GPU

Standard 19”, 1U rack-mount chassis

Connects to host via low power PCI Express x16 adapter card

2 PCI Express connectors driving 2 GPUs each (4 GPUs total)

• Tesla C1060 GPU Computing Processor

240 streaming processor cores at 1.3 GHz

4 GB of dedicated memory at 800 MHz

102 GB/sec of memory bandwidth

(a) Tesla C870 Board (b) GeForce 9800 GX2 (c) Tesla S870 server

Figure A.1: GPU computing hardware utilized in the research. One of the computers
is equipped of 2 Tesla C870 (a), a second one is equipped with 2 GeForce 9800 GX2
(b) and another one is connected to a Tesla S870 server (c).

A.2 Hardware Bandwidth Tests

Table A.1 gives the results of memory bandwidth tests on different hardware. The

values presented here were obtained with the bandwidthTest application provided in

the CUDA SDK.

89

Table A.1: Bandwidth tests for memory transfers between host and device

Bandwidth (MB/s)
Memory transfer Pageable memory Pinned memory

Host to device 840 1,895
S870 Device to host 691 1,246

Device to device 63,795 63,795

Host to device 2,022 3,179
C870 Device to host 1,932 3,064

Device to device 64,012 64,012

Host to device 2,302 5,793
C1060 Device to host 2,053 5,605

(with PCIe gen. 2.0) Device to device 73,715 73,715

90

APPENDIX B

DISCRETIZATION OF THE GOVERNING EQUATIONS

B.1 Continuity Equation

div(i, j, k) =
Ui,j,k − Ui−1,j,k

dx
+

Vi,j,k − Vi,j−1,k

dy
+

Wi,j,k −Wi,j,k−1

dz
(B.1)

B.2 Navier-Stokes Equations

B.2.1 General Form of the Navier-Stokes Equations

The 3D Navier-Stokes equation (Eq. 2.3) reads as follows:

∂u

∂t
= −∂uu

∂x
− ∂uv

∂y
− ∂uw

∂z
− 1

ρ

∂P

∂x

+
∂

∂x

[
2ν

∂u

∂x

]
+

∂

∂y

[
ν

(
∂u

∂y
+

∂v

∂x

)]
+

∂

∂z

[
ν

(
∂u

∂z
+

∂w

∂x

)]
− gx

∂v

∂t
= −∂uv

∂x
− ∂vv

∂y
− ∂vw

∂z
− 1

ρ

∂P

∂x

+
∂

∂x

[
ν

(
∂v

∂x
+

∂u

∂y

)]
+

∂

∂y

[
2ν

∂v

∂y

]
+

∂

∂z

[
ν

(
∂v

∂z
+

∂w

∂y

)]
− gy

∂w

∂t
= −∂uw

∂x
− ∂vw

∂y
− ∂ww

∂z
− 1

ρ

∂P

∂x

+
∂

∂x

[
ν

(
∂w

∂x
+

∂u

∂z

)]
+

∂

∂y

[
ν

(
∂w

∂y
+

∂v

∂z

)]
+

∂

∂z

[
2ν

∂w

∂z

]
− gz, (B.2)

91

where P is the pressure, gx, gy, gz are the volume forces in the x, y and z directions,

respectively.

B.2.2 Discretization of the Advection and Diffusion Terms

U-velocity

∂uv

∂x
=

1
dx

([
Ui+1,j,k + Ui,j,k

2

]2
−
[
Ui,j,k + Ui−1,j,k

2

]2)

∂uv

∂y
=

0.25
dy

([(Ui,j,k + Ui,j+1,k) (Vi,j,k + Vi+1,j,k)]

− [(Ui,j,k + Ui,j−1,k) (Vi,j−1,k + Vi+1,j−1,k)])

∂uw

∂z
=

0.25
dz

([(Ui,j,k + Ui,j,k+1) (Wi,j,k + Wi+1,j,k)]

− [(Ui,j,k + Ui,j,k−1) (Wi,j,k−1 + Wi+1,j,k−1)]) (B.3)

∂

∂x

[
2ν

∂u

∂x

]
=

1
dx

[
2ν

(
Ui+1,j,k − Ui,j,k

dx

)
− 2ν

(
Ui,j,k − Ui−1,j,k

dx

)]

∂

∂y

[
ν

(
∂u

∂y
+

∂v

∂x

)]
=

1
dy

[
ν

(
Ui,j+1,k − Ui,j,k

dy
+

Vi+1,j,k − Vi,j,k

dx

)
−ν

(
Ui,j,k − Ui,j−1,k

dy
+

Vi+1,j−1,k − Vi,j−1,k

dx

)]

∂

∂z

[
ν

(
∂u

∂z
+

∂w

∂x

)]
=

1
dz

[
ν

(
Ui,j,k+1 − Ui,j,k

dz
+

Wi+1,j,k −Wi,j,k

dx

)
−ν

(
Ui,j,k − Ui,j,k−1

dz
+

Wi+1,j,k−1 −Wi,j,k−1

dx

)]
(B.4)

92

V-velocity

∂uv

∂x
=

0.25
dx

([(Ui,j,k + Ui,j+1,k) (Vi+1,j,k + Vi,j,k)]

− [(Ui−1,j,k + Ui−1,j+1,k) (Vi,j,k + Vi−1,j,k)])

∂vv

∂y
=

1
dx

([
Vi,j+1,k + Vi,j,k

2

]2
−
[
Vi,j,k + Vi,j−1,k

2

]2)

∂vw

∂z
=

0.25
dz

([(Vi,j,k + Vi,j,k+1) (Wi,j,k + Wi,j+1,k)]

− [(Vi,j,k + Ui,j,k−1) (Wi,j,k−1 + Wi,j+1,k−1)]) (B.5)

∂

∂x

[
ν

(
∂v

∂x
+

∂u

∂y

)]
=

1
dx

[
ν

(
Vi+1,j,k − Vi,j,k

dx
+

Ui,j+1,k − Ui,j,k

dy

)
−ν

(
Vi,j,k − Vi−1,j,k

dy
+

Ui−1,j+1,k − Ui−1,j,k

dy

)]

∂

∂z

[
2ν

∂u

∂x

]
=

1
dy

[
2ν

(
Vi,j+1,k − Vi,j,k

dy

)
− 2ν

(
Vi,j,k − Vi,j−1,k

dy

)]

∂

∂z

[
ν

(
∂u

∂z
+

∂w

∂x

)]
=

1
dz

[
ν

(
Vi,j,k+1 − Vi,j,k

dz
+

Wi,j+1,k −Wi,j,k

dy

)
−ν

(
Vi,j,k − Vi,j,k−1

dz
+

Wi,j+1,k−1 −Wi,j,k−1

dy

)]
(B.6)

93

W-velocity

∂uw

∂y
=

0.25
dx

([(Ui,j,k + Ui,j,k+1) (Wi+1,j,k + Wi,j,k)]

− [(Ui−1,j,k + Ui−1,j,k+1) (Wi,j,k + Wi−1,j,k)])

∂vw

∂y
=

0.25
dy

([(Vi,j,k + Vi,j,k+1) (Wi,j+1,k + Wi,j,k)]

− [(Vi,j−1,k + Vi,j−1,k+1) (Wi,j,k + Wi,j−1,k)])

∂ww

∂z
=

1
dz

([
Wi,j,k+1 + Wi,j,k

2

]2
−
[
Wi,j,k + Wi,j,k−1

2

]2)
(B.7)

∂

∂x

[
ν

(
∂w

∂x
+

∂u

∂z

)]
=

1
dx

[
ν

(
Wi+1,j,k −Wi,j,k

dx
+

Ui,j,k+1 − Ui,j,k

dz

)
−ν

(
Wi,j,k −Wi−1,j,k

dx
+

Ui−1,j,k+1 − Ui−1,j,k

dz

)]

∂

∂y

[
ν

(
∂w

∂y
+

∂v

∂z

)]
=

1
dy

[
ν

(
Wi,j+1,k −Wi,j,k

dy
+

Vi,j,k+1 − Vi,j,k

dz

)
−ν

(
Wi,j,k −Wi,j−1,k

dy
+

Vi,j−1,k+1 − Vi,j−1,k

dz

)]

∂

∂z

[
2ν

∂w

∂z

]
=

1
dz

[
2ν

(
Wi,j,k+1 −Wi,j,k

dz

)
− 2ν

(
Wi,j,k −Wi,j,k−1

dz

)]
(B.8)

94

B.3 Strain Rate Tensor

SijSij =

4

„
Ui,j,k − Ui−1,j,k

dx

«2

+ 4

„
Vi,j,k − Vi,j−1,k

dy

«2

+ 4

„
Wi,j,k −Wi,j,k−1

dz

«2

+0.5

"„
Ui,j+1,k − Ui,j,k

dy
+

Vi+1,j,k − Vi,j,k

dx

«2

+

„
Ui,j,k − Ui,j−1,k

dy
+

Vi+1,j,k − Vi,j−1,k

dx

«2

+

„
Ui−1,j+1,k − Ui−1,j,k

dy
+

Vi,j,k − Vi−1,j,k

dx

«2

+

„
Ui−1,j,k − Ui−1,j−1,k

dy
+

Vi,j−1,k − Vi−1,j−1,k

dx

«2
#

+0.5

"„
Ui,j,k+1 − Ui,j,k

dz
+

Wi+1,j,k −Wi,j,k

dx

«2

+

„
Ui,j,k − Ui,j,k−1

dy
+

Wi+1,j,k−1 −Wi,j,k−1

dx

«2

+

„
Ui−1,j,k+1 − Ui−1,j,k

dz
+

Wi,j,k −Wi−1,j,k

dx

«2

+

„
Ui−1,j,k − Ui−1,j,k−1

dy
+

Vi,j,k − Vi,j−1,k

dy

«2
#

+0.5

"„
Vi,j,k+1 − Vi,j,k

dz
+

Wi,j+1,k −Wi,j,k

dz

«2

+

„
Vi,j,k − Vi,j,k−1

dz
+

Wi,j+1,k−1 −Wi,j,k−1

dy

«2

+

„
Vi,j−1,k+1 − Vi,j−1,k

dz
+

Wi,j,k −Wi,j−1,k

dy

«2

+

„
Vi,j−1,k − Vi,j−1,k−1

dz
+

Wi,j,k−1 −Wi,j−1,k−1

dy

«2
#

(B.9)

95

APPENDIX C

CUDA CODE

C.1 Parameter Definition

/** Max number of GPUs **/
#define MAX_CPU_THREAD 4

/** GRID and BLOCK dimensions **/
#define GRID_SIZE_X 8
#define GRID_SIZE_Y 8
#define GRID_SIZE_Z 16

#define BLOCK_SIZE_X 16
#define BLOCK_SIZE_Y 8

#define SIZE_Z 2

/** discretization parameters **/

#define NX (GRID_SIZE_X*BLOCK_SIZE_X)
#define NY (GRID_SIZE_Y*BLOCK_SIZE_Y)
#define NZ (GRID_SIZE_Z*SIZE_Z)

#define L_NX 16.0f
#define L_NY 2.0f
#define L_NZ 8.0f

#define dx ((float)(L_NX/((float)(NX-2))))
#define dy ((float)(L_NY/((float)(NY-2))))
#define dz ((float)(L_NZ/((float)(NZ-2))))
#define dxi ((float)(1.0f/dx))
#define dyi ((float)(1.0f/dy))

96

#define dzi ((float)(1.0f/dz))
#define dxi2 ((float)(dxi*dxi))
#define dyi2 ((float)(dyi*dyi))
#define dzi2 ((float)(dzi*dzi))

#define B ((float)(0.5 / (1./(dx*dx) + 1./(dy*dy) + 1./(dz*dz))))

/** Navier-Stokes parmeters **/

#define NU 0.4f
#define GAMMA 0.00f
#define CFL 0.10f
#define dt_max ((float)(0.4 * dz * dz / NU))

#define u_inlet 1.0f
#define v_inlet 0.0f
#define w_inlet 0.0f
#define u_max ((float)(1.5f*u_inlet))

#define nITERATIONS 20

#define Re (u_inlet * L_NZ / NU)

#define Cs 0.01f
#define delta ((float)(powf((dx*dy*dz),1.0/3.0)))
#define Cs_delta_2 ((float)((Cs*delta)*(Cs*delta)))

C.2 Memory Indexing

/* define positions in the global memory */
I = gridDim.x*blockDim.x*blockDim.y*(blockIdx.y % GRID_SIZE_Y)

+ threadIdx.y*gridDim.x*blockDim.x
+ blockIdx.x*blockDim.x
+ threadIdx.x;

I = I + (NX*NY*SIZE_Z)*(blockIdx.y/GRID_SIZE_Y);

/* define positions in the shared memory */
c = (threadIdx.x + 1) + (threadIdx.y + 1)*(BLOCK_SIZE_X + 2); //center
jp = c + (BLOCK_SIZE_X + 2); //north neighbor
jm = c - (BLOCK_SIZE_X + 2); //south neighbor

97

C.3 Momentum

C.3.1 Global Memory Implementation

//--
/* U-component */
//--
//diffusion
diff = dxi2*2.0*NU*((d_u[I+1 + k*NX*NY]- d_u[I + k*NX*NY])

- (d_u[I + k*NX*NY] - d_u[I-1 + k*NX*NY]))
+ dyi*NU*((d_u[I+NX + k*NX*NY] - d_u[I + k*NX*NY])*dyi

+ (d_v[I+1 + k*NX*NY] - d_v[I + k*NX*NY])*dxi
- ((d_u[I + k*NX*NY] - d_u[I-NX + k*NX*NY])*dyi
+ (d_v[I+1-NX + k*NX*NY]- d_v[I-NX + k*NX*NY])*dxi))

+ dzi*NU*((d_u[I + (k+1)*NX*NY] - d_u[I + k*NX*NY])*dzi
+ (d_w[I+1 + k*NX*NY] - d_w[I + k*NX*NY])*dxi
- ((d_u[I + k*NX*NY] - d_u[I + (k-1)*NX*NY])*dzi
+ (d_w[I+1+(k-1)*NX*NY] - d_w[I + (k-1)*NX*NY])*dxi));

//advection
adv = dxi*0.25

* ((d_u[I + k*NX*NY] + d_u[I+1 + k*NX*NY])
*(d_u[I + k*NX*NY] + d_u[I+1 + k*NX*NY])
-(d_u[I-1 + k*NX*NY] + d_u[I + k*NX*NY])
*(d_u[I-1 + k*NX*NY] + d_u[I + k*NX*NY]))
+ GAMMA*dxi*0.25
* ((fabsf(d_u[I + k*NX*NY] + d_u[I+1 + k*NX*NY])

* (d_u[I + k*NX*NY] - d_u[I+1 + k*NX*NY]))
- (fabsf(d_u[I-1 + k*NX*NY] + d_u[I + k*NX*NY])

* (d_u[I-1 + k*NX*NY] - d_u[I + k*NX*NY])))
+ dyi*0.25
* ((d_v[I + k*NX*NY] + d_v[I+1 + k*NX*NY])
* (d_u[I + k*NX*NY] + d_u[I+NX + k*NX*NY])
- (d_v[I - NX + k*NX*NY] + d_v[I+1-NX + k*NX*NY])
* (d_u[I - NX + k*NX*NY] + d_u[I + k*NX*NY]))
+ GAMMA*dyi*0.25
* ((fabsf(d_v[I + k*NX*NY]+ d_v[I+1 + k*NX*NY])

* (d_u[I + k*NX*NY] - d_u[I+NX + k*NX*NY]))
- (fabsf(d_v[I - NX + k*NX*NY] + d_v[I+1-NX + k*NX*NY])

* (d_u[I - NX + k*NX*NY] - d_u[I + k*NX*NY])))
+ dzi*0.25
* ((d_w[I + k*NX*NY] + d_w[I+1 + k*NX*NY])

98

* (d_u[I + k*NX*NY] + d_u[I + (k+1)*NX*NY])
- (d_w[I + (k-1)*NX*NY] + d_w[I+1 + (k-1)*NX*NY])
* (d_u[I + (k-1)*NX*NY] + d_u[I + k*NX*NY]))
+ GAMMA*dzi*0.25
* ((fabsf(d_w[I + k*NX*NY] + d_w[I+1 + k*NX*NY])

* (d_u[I + k*NX*NY] - d_u[I + (k+1)*NX*NY]))
- (fabsf(d_w[I + (k-1)*NX*NY] + d_w[I+1 + (k-1)*NX*NY])

* (d_u[I + (k-1)*NX*NY] - d_u[I + k*NX*NY])));

d_unew[I + k*NX*NY] = d_u[I + k*NX*NY] + dt*(-adv + diff);

C.3.2 Shared Memory Implementation

//---
/* U-component */
//---

//diffusion
diff = dxi2*2.0*NU*((s_u[k][c+1]- s_u[k][c])

- (s_u[k][c] - s_u[k][c-1]))
+ dyi*NU*((s_u[k][jp] - s_u[k][c])*dyi

+ (s_v[k][c+1] - s_v[k][c])*dxi
- ((s_u[k][c] - s_u[k][jm])*dyi
+ (s_v[k][jm+1]- s_v[k][jm])*dxi))

+ dzi*NU*((s_u[k+1][c] - s_u[k][c])*dzi
+ (s_w[k][c+1] - s_w[k][c])*dxi
- ((s_u[k][c] - s_u[k-1][c])*dzi
+ (s_w[k-1][c+1]- s_w[k-1][c])*dxi));

//advection
adv = dxi*0.25

* ((s_u[k][c] + s_u[k][c+1])*(s_u[k][c] + s_u[k][c+1])
- (s_u[k][c-1] + s_u[k][c])*(s_u[k][c-1] + s_u[k][c]))
+ GAMMA*dxi*0.25
* ((fabsf(s_u[k][c] + s_u[k][c+1]) * (s_u[k][c] - s_u[k][c+1]))
- (fabsf(s_u[k][c-1] + s_u[k][c]) * (s_u[k][c-1] - s_u[k][c])))

+ dyi*0.25
* ((s_v[k][c] + s_v[k][c+1]) * (s_u[k][c] + s_u[k][jp])
- (s_v[k][jm] + s_v[k][jm+1]) * (s_u[k][jm] + s_u[k][c]))
+ GAMMA*dyi*0.25
* ((fabsf(s_v[k][c] + s_v[k][c+1]) * (s_u[k][c] - s_u[k][jp]))

99

- (fabsf(s_v[k][jm] + s_v[k][jm+1]) * (s_u[k][jm] - s_u[k][c])))
+ dzi*0.25

* ((s_w[k][c] + s_w[k][c+1]) * (s_u[k][c] + s_u[k+1][c])
- (s_w[k-1][c] + s_w[k-1][c+1]) * (s_u[k-1][c] + s_u[k][c]))
+ GAMMA*dzi*0.25
* ((fabsf(s_w[k][c] + s_w[k][c+1]) * (s_u[k][c] - s_u[k+1][c]))
- (fabsf(s_w[k-1][c]+ s_w[k-1][c+1])* (s_u[k-1][c] - s_u[k][c])));

d_unew[I + (k-1)*NX*NY] = s_u[k][c] + dt*(-adv + diff);

C.4 Divergence

d_div[I+k*NX*NY] = (d_unew[I+k*NX*NY] - d_unew[I-1 + k*NX*NY]) *dxi
+ (d_vnew[I+k*NX*NY] - d_vnew[I-NX + k*NX*NY]) *dyi
+ (d_wnew[I+k*NX*NY] - d_wnew[I + (k-1)*NX*NY])*dzi;

C.5 Pressure

C.5.1 Pressure Constant

#define B ((float)(0.5 / (1./(dx*dx) + 1./(dy*dy) + 1./(dz*dz))))

C.5.2 Global Memory Implementation

A = (d_p[I+1 + k*NX*NY] + d_p[I-1 + k*NX*NY]) *dxi2
+ (d_p[I+NX + k*NX*NY]+ d_p[I-NX + k*NX*NY])*dyi2
+ (d_p[I+(k+1)*NX*NY] + d_p[I+(k-1)*NX*NY]) *dzi2;

d_pnew[I+k*NX*NY] = -B * (dti * d_div[I+k*NX*NY] - A);

C.5.3 Shared Memory Implementation

A = (s_p[k][c+1] + s_p[k][c-1])*dxi2

100

+ (s_p[k][jp] + s_p[k][jm])*dyi2
+ (s_p[k+1][c] + s_p[k-1][c])*dzi2;

d_pnew[I + (k-1)*NX*NY] = -B * (dti * d_div[I + (k-1)*NX*NY] - A);

C.6 Velocity Correction

d_unew[I+k*NX*NY] = d_unew[I+k*NX*NY]
- dt*dxi *(d_pnew[I+1 + k*NX*NY] - d_pnew[I+k*NX*NY]);

d_vnew[I+k*NX*NY] = d_vnew[I+k*NX*NY]
- dt*dyi *(d_pnew[I+NX + k*NX*NY]- d_pnew[I+k*NX*NY]);

d_wnew[I+k*NX*NY] = d_wnew[I+k*NX*NY]
- dt*dzi *(d_pnew[I+ (k+1)*NX*NY]- d_pnew[I+k*NX*NY]);

